The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/e1000/e1000_82543.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2 
    3   Copyright (c) 2001-2011, Intel Corporation 
    4   All rights reserved.
    5   
    6   Redistribution and use in source and binary forms, with or without 
    7   modification, are permitted provided that the following conditions are met:
    8   
    9    1. Redistributions of source code must retain the above copyright notice, 
   10       this list of conditions and the following disclaimer.
   11   
   12    2. Redistributions in binary form must reproduce the above copyright 
   13       notice, this list of conditions and the following disclaimer in the 
   14       documentation and/or other materials provided with the distribution.
   15   
   16    3. Neither the name of the Intel Corporation nor the names of its 
   17       contributors may be used to endorse or promote products derived from 
   18       this software without specific prior written permission.
   19   
   20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
   23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
   24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
   25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
   26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
   27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
   28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30   POSSIBILITY OF SUCH DAMAGE.
   31 
   32 ******************************************************************************/
   33 /*$FreeBSD$*/
   34 
   35 /*
   36  * 82543GC Gigabit Ethernet Controller (Fiber)
   37  * 82543GC Gigabit Ethernet Controller (Copper)
   38  * 82544EI Gigabit Ethernet Controller (Copper)
   39  * 82544EI Gigabit Ethernet Controller (Fiber)
   40  * 82544GC Gigabit Ethernet Controller (Copper)
   41  * 82544GC Gigabit Ethernet Controller (LOM)
   42  */
   43 
   44 #include "e1000_api.h"
   45 
   46 static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
   47 static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
   48 static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
   49 static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
   50                                      u16 *data);
   51 static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
   52                                       u16 data);
   53 static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
   54 static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
   55 static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
   56 static s32  e1000_init_hw_82543(struct e1000_hw *hw);
   57 static s32  e1000_setup_link_82543(struct e1000_hw *hw);
   58 static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
   59 static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
   60 static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
   61 static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
   62 static s32  e1000_led_on_82543(struct e1000_hw *hw);
   63 static s32  e1000_led_off_82543(struct e1000_hw *hw);
   64 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
   65                                    u32 value);
   66 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
   67 static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
   68 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
   69 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
   70 static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
   71 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
   72 static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
   73 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
   74                                            u16 count);
   75 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
   76 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
   77 static s32  e1000_read_mac_addr_82543(struct e1000_hw *hw);
   78 
   79 
   80 /**
   81  *  e1000_init_phy_params_82543 - Init PHY func ptrs.
   82  *  @hw: pointer to the HW structure
   83  **/
   84 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
   85 {
   86         struct e1000_phy_info *phy = &hw->phy;
   87         s32 ret_val = E1000_SUCCESS;
   88 
   89         DEBUGFUNC("e1000_init_phy_params_82543");
   90 
   91         if (hw->phy.media_type != e1000_media_type_copper) {
   92                 phy->type               = e1000_phy_none;
   93                 goto out;
   94         } else {
   95                 phy->ops.power_up       = e1000_power_up_phy_copper;
   96                 phy->ops.power_down     = e1000_power_down_phy_copper;
   97         }
   98 
   99         phy->addr                       = 1;
  100         phy->autoneg_mask               = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  101         phy->reset_delay_us             = 10000;
  102         phy->type                       = e1000_phy_m88;
  103 
  104         /* Function Pointers */
  105         phy->ops.check_polarity         = e1000_check_polarity_m88;
  106         phy->ops.commit                 = e1000_phy_sw_reset_generic;
  107         phy->ops.force_speed_duplex     = e1000_phy_force_speed_duplex_82543;
  108         phy->ops.get_cable_length       = e1000_get_cable_length_m88;
  109         phy->ops.get_cfg_done           = e1000_get_cfg_done_generic;
  110         phy->ops.read_reg               = (hw->mac.type == e1000_82543)
  111                                           ? e1000_read_phy_reg_82543
  112                                           : e1000_read_phy_reg_m88;
  113         phy->ops.reset                  = (hw->mac.type == e1000_82543)
  114                                           ? e1000_phy_hw_reset_82543
  115                                           : e1000_phy_hw_reset_generic;
  116         phy->ops.write_reg              = (hw->mac.type == e1000_82543)
  117                                           ? e1000_write_phy_reg_82543
  118                                           : e1000_write_phy_reg_m88;
  119         phy->ops.get_info               = e1000_get_phy_info_m88;
  120 
  121         /*
  122          * The external PHY of the 82543 can be in a funky state.
  123          * Resetting helps us read the PHY registers for acquiring
  124          * the PHY ID.
  125          */
  126         if (!e1000_init_phy_disabled_82543(hw)) {
  127                 ret_val = phy->ops.reset(hw);
  128                 if (ret_val) {
  129                         DEBUGOUT("Resetting PHY during init failed.\n");
  130                         goto out;
  131                 }
  132                 msec_delay(20);
  133         }
  134 
  135         ret_val = e1000_get_phy_id(hw);
  136         if (ret_val)
  137                 goto out;
  138 
  139         /* Verify phy id */
  140         switch (hw->mac.type) {
  141         case e1000_82543:
  142                 if (phy->id != M88E1000_E_PHY_ID) {
  143                         ret_val = -E1000_ERR_PHY;
  144                         goto out;
  145                 }
  146                 break;
  147         case e1000_82544:
  148                 if (phy->id != M88E1000_I_PHY_ID) {
  149                         ret_val = -E1000_ERR_PHY;
  150                         goto out;
  151                 }
  152                 break;
  153         default:
  154                 ret_val = -E1000_ERR_PHY;
  155                 goto out;
  156                 break;
  157         }
  158 
  159 out:
  160         return ret_val;
  161 }
  162 
  163 /**
  164  *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
  165  *  @hw: pointer to the HW structure
  166  **/
  167 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
  168 {
  169         struct e1000_nvm_info *nvm = &hw->nvm;
  170 
  171         DEBUGFUNC("e1000_init_nvm_params_82543");
  172 
  173         nvm->type               = e1000_nvm_eeprom_microwire;
  174         nvm->word_size          = 64;
  175         nvm->delay_usec         = 50;
  176         nvm->address_bits       =  6;
  177         nvm->opcode_bits        =  3;
  178 
  179         /* Function Pointers */
  180         nvm->ops.read           = e1000_read_nvm_microwire;
  181         nvm->ops.update         = e1000_update_nvm_checksum_generic;
  182         nvm->ops.valid_led_default = e1000_valid_led_default_generic;
  183         nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
  184         nvm->ops.write          = e1000_write_nvm_microwire;
  185 
  186         return E1000_SUCCESS;
  187 }
  188 
  189 /**
  190  *  e1000_init_mac_params_82543 - Init MAC func ptrs.
  191  *  @hw: pointer to the HW structure
  192  **/
  193 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
  194 {
  195         struct e1000_mac_info *mac = &hw->mac;
  196 
  197         DEBUGFUNC("e1000_init_mac_params_82543");
  198 
  199         /* Set media type */
  200         switch (hw->device_id) {
  201         case E1000_DEV_ID_82543GC_FIBER:
  202         case E1000_DEV_ID_82544EI_FIBER:
  203                 hw->phy.media_type = e1000_media_type_fiber;
  204                 break;
  205         default:
  206                 hw->phy.media_type = e1000_media_type_copper;
  207                 break;
  208         }
  209 
  210         /* Set mta register count */
  211         mac->mta_reg_count = 128;
  212         /* Set rar entry count */
  213         mac->rar_entry_count = E1000_RAR_ENTRIES;
  214 
  215         /* Function pointers */
  216 
  217         /* bus type/speed/width */
  218         mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
  219         /* function id */
  220         mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
  221         /* reset */
  222         mac->ops.reset_hw = e1000_reset_hw_82543;
  223         /* hw initialization */
  224         mac->ops.init_hw = e1000_init_hw_82543;
  225         /* link setup */
  226         mac->ops.setup_link = e1000_setup_link_82543;
  227         /* physical interface setup */
  228         mac->ops.setup_physical_interface =
  229                 (hw->phy.media_type == e1000_media_type_copper)
  230                         ? e1000_setup_copper_link_82543
  231                         : e1000_setup_fiber_link_82543;
  232         /* check for link */
  233         mac->ops.check_for_link =
  234                 (hw->phy.media_type == e1000_media_type_copper)
  235                         ? e1000_check_for_copper_link_82543
  236                         : e1000_check_for_fiber_link_82543;
  237         /* link info */
  238         mac->ops.get_link_up_info =
  239                 (hw->phy.media_type == e1000_media_type_copper)
  240                         ? e1000_get_speed_and_duplex_copper_generic
  241                         : e1000_get_speed_and_duplex_fiber_serdes_generic;
  242         /* multicast address update */
  243         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
  244         /* writing VFTA */
  245         mac->ops.write_vfta = e1000_write_vfta_82543;
  246         /* clearing VFTA */
  247         mac->ops.clear_vfta = e1000_clear_vfta_generic;
  248         /* read mac address */
  249         mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
  250         /* turn on/off LED */
  251         mac->ops.led_on = e1000_led_on_82543;
  252         mac->ops.led_off = e1000_led_off_82543;
  253         /* clear hardware counters */
  254         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
  255 
  256         /* Set tbi compatibility */
  257         if ((hw->mac.type != e1000_82543) ||
  258             (hw->phy.media_type == e1000_media_type_fiber))
  259                 e1000_set_tbi_compatibility_82543(hw, FALSE);
  260 
  261         return E1000_SUCCESS;
  262 }
  263 
  264 /**
  265  *  e1000_init_function_pointers_82543 - Init func ptrs.
  266  *  @hw: pointer to the HW structure
  267  *
  268  *  Called to initialize all function pointers and parameters.
  269  **/
  270 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
  271 {
  272         DEBUGFUNC("e1000_init_function_pointers_82543");
  273 
  274         hw->mac.ops.init_params = e1000_init_mac_params_82543;
  275         hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
  276         hw->phy.ops.init_params = e1000_init_phy_params_82543;
  277 }
  278 
  279 /**
  280  *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
  281  *  @hw: pointer to the HW structure
  282  *
  283  *  Returns the current status of 10-bit Interface (TBI) compatibility
  284  *  (enabled/disabled).
  285  **/
  286 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
  287 {
  288         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  289         bool state = FALSE;
  290 
  291         DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
  292 
  293         if (hw->mac.type != e1000_82543) {
  294                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  295                 goto out;
  296         }
  297 
  298         state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
  299                 ? TRUE : FALSE;
  300 
  301 out:
  302         return state;
  303 }
  304 
  305 /**
  306  *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
  307  *  @hw: pointer to the HW structure
  308  *  @state: enable/disable TBI compatibility
  309  *
  310  *  Enables or disabled 10-bit Interface (TBI) compatibility.
  311  **/
  312 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
  313 {
  314         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  315 
  316         DEBUGFUNC("e1000_set_tbi_compatibility_82543");
  317 
  318         if (hw->mac.type != e1000_82543) {
  319                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  320                 goto out;
  321         }
  322 
  323         if (state)
  324                 dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
  325         else
  326                 dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
  327 
  328 out:
  329         return;
  330 }
  331 
  332 /**
  333  *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
  334  *  @hw: pointer to the HW structure
  335  *
  336  *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
  337  *  (enabled/disabled).
  338  **/
  339 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
  340 {
  341         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  342         bool state = FALSE;
  343 
  344         DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
  345 
  346         if (hw->mac.type != e1000_82543) {
  347                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  348                 goto out;
  349         }
  350 
  351         state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
  352                 ? TRUE : FALSE;
  353 
  354 out:
  355         return state;
  356 }
  357 
  358 /**
  359  *  e1000_set_tbi_sbp_82543 - Set TBI SBP
  360  *  @hw: pointer to the HW structure
  361  *  @state: enable/disable TBI store bad packet
  362  *
  363  *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
  364  **/
  365 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
  366 {
  367         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  368 
  369         DEBUGFUNC("e1000_set_tbi_sbp_82543");
  370 
  371         if (state && e1000_tbi_compatibility_enabled_82543(hw))
  372                 dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
  373         else
  374                 dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
  375 
  376         return;
  377 }
  378 
  379 /**
  380  *  e1000_init_phy_disabled_82543 - Returns init PHY status
  381  *  @hw: pointer to the HW structure
  382  *
  383  *  Returns the current status of whether PHY initialization is disabled.
  384  *  True if PHY initialization is disabled else FALSE.
  385  **/
  386 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
  387 {
  388         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  389         bool ret_val;
  390 
  391         DEBUGFUNC("e1000_init_phy_disabled_82543");
  392 
  393         if (hw->mac.type != e1000_82543) {
  394                 ret_val = FALSE;
  395                 goto out;
  396         }
  397 
  398         ret_val = dev_spec->init_phy_disabled;
  399 
  400 out:
  401         return ret_val;
  402 }
  403 
  404 /**
  405  *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
  406  *  @hw: pointer to the HW structure
  407  *  @stats: Struct containing statistic register values
  408  *  @frame_len: The length of the frame in question
  409  *  @mac_addr: The Ethernet destination address of the frame in question
  410  *  @max_frame_size: The maximum frame size
  411  *
  412  *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
  413  **/
  414 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
  415                                   struct e1000_hw_stats *stats, u32 frame_len,
  416                                   u8 *mac_addr, u32 max_frame_size)
  417 {
  418         if (!(e1000_tbi_sbp_enabled_82543(hw)))
  419                 goto out;
  420 
  421         /* First adjust the frame length. */
  422         frame_len--;
  423         /*
  424          * We need to adjust the statistics counters, since the hardware
  425          * counters overcount this packet as a CRC error and undercount
  426          * the packet as a good packet
  427          */
  428         /* This packet should not be counted as a CRC error.    */
  429         stats->crcerrs--;
  430         /* This packet does count as a Good Packet Received.    */
  431         stats->gprc++;
  432 
  433         /* Adjust the Good Octets received counters             */
  434         stats->gorc += frame_len;
  435 
  436         /*
  437          * Is this a broadcast or multicast?  Check broadcast first,
  438          * since the test for a multicast frame will test positive on
  439          * a broadcast frame.
  440          */
  441         if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
  442                 /* Broadcast packet */
  443                 stats->bprc++;
  444         else if (*mac_addr & 0x01)
  445                 /* Multicast packet */
  446                 stats->mprc++;
  447 
  448         /*
  449          * In this case, the hardware has overcounted the number of
  450          * oversize frames.
  451          */
  452         if ((frame_len == max_frame_size) && (stats->roc > 0))
  453                 stats->roc--;
  454 
  455         /*
  456          * Adjust the bin counters when the extra byte put the frame in the
  457          * wrong bin. Remember that the frame_len was adjusted above.
  458          */
  459         if (frame_len == 64) {
  460                 stats->prc64++;
  461                 stats->prc127--;
  462         } else if (frame_len == 127) {
  463                 stats->prc127++;
  464                 stats->prc255--;
  465         } else if (frame_len == 255) {
  466                 stats->prc255++;
  467                 stats->prc511--;
  468         } else if (frame_len == 511) {
  469                 stats->prc511++;
  470                 stats->prc1023--;
  471         } else if (frame_len == 1023) {
  472                 stats->prc1023++;
  473                 stats->prc1522--;
  474         } else if (frame_len == 1522) {
  475                 stats->prc1522++;
  476         }
  477 
  478 out:
  479         return;
  480 }
  481 
  482 /**
  483  *  e1000_read_phy_reg_82543 - Read PHY register
  484  *  @hw: pointer to the HW structure
  485  *  @offset: register offset to be read
  486  *  @data: pointer to the read data
  487  *
  488  *  Reads the PHY at offset and stores the information read to data.
  489  **/
  490 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
  491 {
  492         u32 mdic;
  493         s32 ret_val = E1000_SUCCESS;
  494 
  495         DEBUGFUNC("e1000_read_phy_reg_82543");
  496 
  497         if (offset > MAX_PHY_REG_ADDRESS) {
  498                 DEBUGOUT1("PHY Address %d is out of range\n", offset);
  499                 ret_val = -E1000_ERR_PARAM;
  500                 goto out;
  501         }
  502 
  503         /*
  504          * We must first send a preamble through the MDIO pin to signal the
  505          * beginning of an MII instruction.  This is done by sending 32
  506          * consecutive "1" bits.
  507          */
  508         e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
  509 
  510         /*
  511          * Now combine the next few fields that are required for a read
  512          * operation.  We use this method instead of calling the
  513          * e1000_shift_out_mdi_bits routine five different times.  The format
  514          * of an MII read instruction consists of a shift out of 14 bits and
  515          * is defined as follows:
  516          *      <Preamble><SOF><Op Code><Phy Addr><Offset>
  517          * followed by a shift in of 18 bits.  This first two bits shifted in
  518          * are TurnAround bits used to avoid contention on the MDIO pin when a
  519          * READ operation is performed.  These two bits are thrown away
  520          * followed by a shift in of 16 bits which contains the desired data.
  521          */
  522         mdic = (offset | (hw->phy.addr << 5) |
  523                 (PHY_OP_READ << 10) | (PHY_SOF << 12));
  524 
  525         e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
  526 
  527         /*
  528          * Now that we've shifted out the read command to the MII, we need to
  529          * "shift in" the 16-bit value (18 total bits) of the requested PHY
  530          * register address.
  531          */
  532         *data = e1000_shift_in_mdi_bits_82543(hw);
  533 
  534 out:
  535         return ret_val;
  536 }
  537 
  538 /**
  539  *  e1000_write_phy_reg_82543 - Write PHY register
  540  *  @hw: pointer to the HW structure
  541  *  @offset: register offset to be written
  542  *  @data: pointer to the data to be written at offset
  543  *
  544  *  Writes data to the PHY at offset.
  545  **/
  546 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
  547 {
  548         u32 mdic;
  549         s32 ret_val = E1000_SUCCESS;
  550 
  551         DEBUGFUNC("e1000_write_phy_reg_82543");
  552 
  553         if (offset > MAX_PHY_REG_ADDRESS) {
  554                 DEBUGOUT1("PHY Address %d is out of range\n", offset);
  555                 ret_val = -E1000_ERR_PARAM;
  556                 goto out;
  557         }
  558 
  559         /*
  560          * We'll need to use the SW defined pins to shift the write command
  561          * out to the PHY. We first send a preamble to the PHY to signal the
  562          * beginning of the MII instruction.  This is done by sending 32
  563          * consecutive "1" bits.
  564          */
  565         e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
  566 
  567         /*
  568          * Now combine the remaining required fields that will indicate a
  569          * write operation. We use this method instead of calling the
  570          * e1000_shift_out_mdi_bits routine for each field in the command. The
  571          * format of a MII write instruction is as follows:
  572          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
  573          */
  574         mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
  575                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
  576         mdic <<= 16;
  577         mdic |= (u32) data;
  578 
  579         e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
  580 
  581 out:
  582         return ret_val;
  583 }
  584 
  585 /**
  586  *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
  587  *  @hw: pointer to the HW structure
  588  *  @ctrl: pointer to the control register
  589  *
  590  *  Raise the management data input clock by setting the MDC bit in the control
  591  *  register.
  592  **/
  593 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
  594 {
  595         /*
  596          * Raise the clock input to the Management Data Clock (by setting the
  597          * MDC bit), and then delay a sufficient amount of time.
  598          */
  599         E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
  600         E1000_WRITE_FLUSH(hw);
  601         usec_delay(10);
  602 }
  603 
  604 /**
  605  *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
  606  *  @hw: pointer to the HW structure
  607  *  @ctrl: pointer to the control register
  608  *
  609  *  Lower the management data input clock by clearing the MDC bit in the
  610  *  control register.
  611  **/
  612 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
  613 {
  614         /*
  615          * Lower the clock input to the Management Data Clock (by clearing the
  616          * MDC bit), and then delay a sufficient amount of time.
  617          */
  618         E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
  619         E1000_WRITE_FLUSH(hw);
  620         usec_delay(10);
  621 }
  622 
  623 /**
  624  *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
  625  *  @hw: pointer to the HW structure
  626  *  @data: data to send to the PHY
  627  *  @count: number of bits to shift out
  628  *
  629  *  We need to shift 'count' bits out to the PHY.  So, the value in the
  630  *  "data" parameter will be shifted out to the PHY one bit at a time.
  631  *  In order to do this, "data" must be broken down into bits.
  632  **/
  633 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
  634                                            u16 count)
  635 {
  636         u32 ctrl, mask;
  637 
  638         /*
  639          * We need to shift "count" number of bits out to the PHY.  So, the
  640          * value in the "data" parameter will be shifted out to the PHY one
  641          * bit at a time.  In order to do this, "data" must be broken down
  642          * into bits.
  643          */
  644         mask = 0x01;
  645         mask <<= (count -1);
  646 
  647         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  648 
  649         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
  650         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
  651 
  652         while (mask) {
  653                 /*
  654                  * A "1" is shifted out to the PHY by setting the MDIO bit to
  655                  * "1" and then raising and lowering the Management Data Clock.
  656                  * A "" is shifted out to the PHY by setting the MDIO bit to
  657                  * "" and then raising and lowering the clock.
  658                  */
  659                 if (data & mask) ctrl |= E1000_CTRL_MDIO;
  660                 else ctrl &= ~E1000_CTRL_MDIO;
  661 
  662                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
  663                 E1000_WRITE_FLUSH(hw);
  664 
  665                 usec_delay(10);
  666 
  667                 e1000_raise_mdi_clk_82543(hw, &ctrl);
  668                 e1000_lower_mdi_clk_82543(hw, &ctrl);
  669 
  670                 mask >>= 1;
  671         }
  672 }
  673 
  674 /**
  675  *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
  676  *  @hw: pointer to the HW structure
  677  *
  678  *  In order to read a register from the PHY, we need to shift 18 bits
  679  *  in from the PHY.  Bits are "shifted in" by raising the clock input to
  680  *  the PHY (setting the MDC bit), and then reading the value of the data out
  681  *  MDIO bit.
  682  **/
  683 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
  684 {
  685         u32 ctrl;
  686         u16 data = 0;
  687         u8 i;
  688 
  689         /*
  690          * In order to read a register from the PHY, we need to shift in a
  691          * total of 18 bits from the PHY.  The first two bit (turnaround)
  692          * times are used to avoid contention on the MDIO pin when a read
  693          * operation is performed.  These two bits are ignored by us and
  694          * thrown away.  Bits are "shifted in" by raising the input to the
  695          * Management Data Clock (setting the MDC bit) and then reading the
  696          * value of the MDIO bit.
  697          */
  698         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  699 
  700         /*
  701          * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
  702          * input.
  703          */
  704         ctrl &= ~E1000_CTRL_MDIO_DIR;
  705         ctrl &= ~E1000_CTRL_MDIO;
  706 
  707         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
  708         E1000_WRITE_FLUSH(hw);
  709 
  710         /*
  711          * Raise and lower the clock before reading in the data.  This accounts
  712          * for the turnaround bits.  The first clock occurred when we clocked
  713          * out the last bit of the Register Address.
  714          */
  715         e1000_raise_mdi_clk_82543(hw, &ctrl);
  716         e1000_lower_mdi_clk_82543(hw, &ctrl);
  717 
  718         for (data = 0, i = 0; i < 16; i++) {
  719                 data <<= 1;
  720                 e1000_raise_mdi_clk_82543(hw, &ctrl);
  721                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
  722                 /* Check to see if we shifted in a "1". */
  723                 if (ctrl & E1000_CTRL_MDIO)
  724                         data |= 1;
  725                 e1000_lower_mdi_clk_82543(hw, &ctrl);
  726         }
  727 
  728         e1000_raise_mdi_clk_82543(hw, &ctrl);
  729         e1000_lower_mdi_clk_82543(hw, &ctrl);
  730 
  731         return data;
  732 }
  733 
  734 /**
  735  *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
  736  *  @hw: pointer to the HW structure
  737  *
  738  *  Calls the function to force speed and duplex for the m88 PHY, and
  739  *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
  740  *  then call the function for polarity reversal workaround.
  741  **/
  742 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
  743 {
  744         s32 ret_val;
  745 
  746         DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
  747 
  748         ret_val = e1000_phy_force_speed_duplex_m88(hw);
  749         if (ret_val)
  750                 goto out;
  751 
  752         if (!hw->mac.autoneg &&
  753             (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
  754                 ret_val = e1000_polarity_reversal_workaround_82543(hw);
  755 
  756 out:
  757         return ret_val;
  758 }
  759 
  760 /**
  761  *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
  762  *  @hw: pointer to the HW structure
  763  *
  764  *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
  765  *  inadvertently.  To workaround the issue, we disable the transmitter on
  766  *  the PHY until we have established the link partner's link parameters.
  767  **/
  768 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
  769 {
  770         s32 ret_val = E1000_SUCCESS;
  771         u16 mii_status_reg;
  772         u16 i;
  773         bool link;
  774 
  775         if (!(hw->phy.ops.write_reg))
  776                 goto out;
  777 
  778         /* Polarity reversal workaround for forced 10F/10H links. */
  779 
  780         /* Disable the transmitter on the PHY */
  781 
  782         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
  783         if (ret_val)
  784                 goto out;
  785         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
  786         if (ret_val)
  787                 goto out;
  788 
  789         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
  790         if (ret_val)
  791                 goto out;
  792 
  793         /*
  794          * This loop will early-out if the NO link condition has been met.
  795          * In other words, DO NOT use e1000_phy_has_link_generic() here.
  796          */
  797         for (i = PHY_FORCE_TIME; i > 0; i--) {
  798                 /*
  799                  * Read the MII Status Register and wait for Link Status bit
  800                  * to be clear.
  801                  */
  802 
  803                 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
  804                 if (ret_val)
  805                         goto out;
  806 
  807                 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
  808                 if (ret_val)
  809                         goto out;
  810 
  811                 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
  812                         break;
  813                 msec_delay_irq(100);
  814         }
  815 
  816         /* Recommended delay time after link has been lost */
  817         msec_delay_irq(1000);
  818 
  819         /* Now we will re-enable the transmitter on the PHY */
  820 
  821         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
  822         if (ret_val)
  823                 goto out;
  824         msec_delay_irq(50);
  825         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
  826         if (ret_val)
  827                 goto out;
  828         msec_delay_irq(50);
  829         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
  830         if (ret_val)
  831                 goto out;
  832         msec_delay_irq(50);
  833         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
  834         if (ret_val)
  835                 goto out;
  836 
  837         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
  838         if (ret_val)
  839                 goto out;
  840 
  841         /*
  842          * Read the MII Status Register and wait for Link Status bit
  843          * to be set.
  844          */
  845         ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
  846         if (ret_val)
  847                 goto out;
  848 
  849 out:
  850         return ret_val;
  851 }
  852 
  853 /**
  854  *  e1000_phy_hw_reset_82543 - PHY hardware reset
  855  *  @hw: pointer to the HW structure
  856  *
  857  *  Sets the PHY_RESET_DIR bit in the extended device control register
  858  *  to put the PHY into a reset and waits for completion.  Once the reset
  859  *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
  860  *  of reset.
  861  **/
  862 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
  863 {
  864         u32 ctrl_ext;
  865         s32 ret_val;
  866 
  867         DEBUGFUNC("e1000_phy_hw_reset_82543");
  868 
  869         /*
  870          * Read the Extended Device Control Register, assert the PHY_RESET_DIR
  871          * bit to put the PHY into reset...
  872          */
  873         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
  874         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
  875         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
  876         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
  877         E1000_WRITE_FLUSH(hw);
  878 
  879         msec_delay(10);
  880 
  881         /* ...then take it out of reset. */
  882         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
  883         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
  884         E1000_WRITE_FLUSH(hw);
  885 
  886         usec_delay(150);
  887 
  888         if (!(hw->phy.ops.get_cfg_done))
  889                 return E1000_SUCCESS;
  890 
  891         ret_val = hw->phy.ops.get_cfg_done(hw);
  892 
  893         return ret_val;
  894 }
  895 
  896 /**
  897  *  e1000_reset_hw_82543 - Reset hardware
  898  *  @hw: pointer to the HW structure
  899  *
  900  *  This resets the hardware into a known state.
  901  **/
  902 static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
  903 {
  904         u32 ctrl, icr;
  905         s32 ret_val = E1000_SUCCESS;
  906 
  907         DEBUGFUNC("e1000_reset_hw_82543");
  908 
  909         DEBUGOUT("Masking off all interrupts\n");
  910         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
  911 
  912         E1000_WRITE_REG(hw, E1000_RCTL, 0);
  913         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
  914         E1000_WRITE_FLUSH(hw);
  915 
  916         e1000_set_tbi_sbp_82543(hw, FALSE);
  917 
  918         /*
  919          * Delay to allow any outstanding PCI transactions to complete before
  920          * resetting the device
  921          */
  922         msec_delay(10);
  923 
  924         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  925 
  926         DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
  927         if (hw->mac.type == e1000_82543) {
  928                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  929         } else {
  930                 /*
  931                  * The 82544 can't ACK the 64-bit write when issuing the
  932                  * reset, so use IO-mapping as a workaround.
  933                  */
  934                 E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  935         }
  936 
  937         /*
  938          * After MAC reset, force reload of NVM to restore power-on
  939          * settings to device.
  940          */
  941         hw->nvm.ops.reload(hw);
  942         msec_delay(2);
  943 
  944         /* Masking off and clearing any pending interrupts */
  945         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
  946         icr = E1000_READ_REG(hw, E1000_ICR);
  947 
  948         return ret_val;
  949 }
  950 
  951 /**
  952  *  e1000_init_hw_82543 - Initialize hardware
  953  *  @hw: pointer to the HW structure
  954  *
  955  *  This inits the hardware readying it for operation.
  956  **/
  957 static s32 e1000_init_hw_82543(struct e1000_hw *hw)
  958 {
  959         struct e1000_mac_info *mac = &hw->mac;
  960         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  961         u32 ctrl;
  962         s32 ret_val;
  963         u16 i;
  964 
  965         DEBUGFUNC("e1000_init_hw_82543");
  966 
  967         /* Disabling VLAN filtering */
  968         E1000_WRITE_REG(hw, E1000_VET, 0);
  969         mac->ops.clear_vfta(hw);
  970 
  971         /* Setup the receive address. */
  972         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
  973 
  974         /* Zero out the Multicast HASH table */
  975         DEBUGOUT("Zeroing the MTA\n");
  976         for (i = 0; i < mac->mta_reg_count; i++) {
  977                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
  978                 E1000_WRITE_FLUSH(hw);
  979         }
  980 
  981         /*
  982          * Set the PCI priority bit correctly in the CTRL register.  This
  983          * determines if the adapter gives priority to receives, or if it
  984          * gives equal priority to transmits and receives.
  985          */
  986         if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
  987                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
  988                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
  989         }
  990 
  991         e1000_pcix_mmrbc_workaround_generic(hw);
  992 
  993         /* Setup link and flow control */
  994         ret_val = mac->ops.setup_link(hw);
  995 
  996         /*
  997          * Clear all of the statistics registers (clear on read).  It is
  998          * important that we do this after we have tried to establish link
  999          * because the symbol error count will increment wildly if there
 1000          * is no link.
 1001          */
 1002         e1000_clear_hw_cntrs_82543(hw);
 1003 
 1004         return ret_val;
 1005 }
 1006 
 1007 /**
 1008  *  e1000_setup_link_82543 - Setup flow control and link settings
 1009  *  @hw: pointer to the HW structure
 1010  *
 1011  *  Read the EEPROM to determine the initial polarity value and write the
 1012  *  extended device control register with the information before calling
 1013  *  the generic setup link function, which does the following:
 1014  *  Determines which flow control settings to use, then configures flow
 1015  *  control.  Calls the appropriate media-specific link configuration
 1016  *  function.  Assuming the adapter has a valid link partner, a valid link
 1017  *  should be established.  Assumes the hardware has previously been reset
 1018  *  and the transmitter and receiver are not enabled.
 1019  **/
 1020 static s32 e1000_setup_link_82543(struct e1000_hw *hw)
 1021 {
 1022         u32 ctrl_ext;
 1023         s32  ret_val;
 1024         u16 data;
 1025 
 1026         DEBUGFUNC("e1000_setup_link_82543");
 1027 
 1028         /*
 1029          * Take the 4 bits from NVM word 0xF that determine the initial
 1030          * polarity value for the SW controlled pins, and setup the
 1031          * Extended Device Control reg with that info.
 1032          * This is needed because one of the SW controlled pins is used for
 1033          * signal detection.  So this should be done before phy setup.
 1034          */
 1035         if (hw->mac.type == e1000_82543) {
 1036                 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
 1037                 if (ret_val) {
 1038                         DEBUGOUT("NVM Read Error\n");
 1039                         ret_val = -E1000_ERR_NVM;
 1040                         goto out;
 1041                 }
 1042                 ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
 1043                             NVM_SWDPIO_EXT_SHIFT);
 1044                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
 1045         }
 1046 
 1047         ret_val = e1000_setup_link_generic(hw);
 1048 
 1049 out:
 1050         return ret_val;
 1051 }
 1052 
 1053 /**
 1054  *  e1000_setup_copper_link_82543 - Configure copper link settings
 1055  *  @hw: pointer to the HW structure
 1056  *
 1057  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 1058  *  for link, once link is established calls to configure collision distance
 1059  *  and flow control are called.
 1060  **/
 1061 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
 1062 {
 1063         u32 ctrl;
 1064         s32 ret_val;
 1065         bool link;
 1066 
 1067         DEBUGFUNC("e1000_setup_copper_link_82543");
 1068 
 1069         ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
 1070         /*
 1071          * With 82543, we need to force speed and duplex on the MAC
 1072          * equal to what the PHY speed and duplex configuration is.
 1073          * In addition, we need to perform a hardware reset on the
 1074          * PHY to take it out of reset.
 1075          */
 1076         if (hw->mac.type == e1000_82543) {
 1077                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1078                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1079                 ret_val = hw->phy.ops.reset(hw);
 1080                 if (ret_val)
 1081                         goto out;
 1082         } else {
 1083                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1084                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1085         }
 1086 
 1087         /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
 1088         ret_val = e1000_copper_link_setup_m88(hw);
 1089         if (ret_val)
 1090                 goto out;
 1091 
 1092         if (hw->mac.autoneg) {
 1093                 /*
 1094                  * Setup autoneg and flow control advertisement and perform
 1095                  * autonegotiation.
 1096                  */
 1097                 ret_val = e1000_copper_link_autoneg(hw);
 1098                 if (ret_val)
 1099                         goto out;
 1100         } else {
 1101                 /*
 1102                  * PHY will be set to 10H, 10F, 100H or 100F
 1103                  * depending on user settings.
 1104                  */
 1105                 DEBUGOUT("Forcing Speed and Duplex\n");
 1106                 ret_val = e1000_phy_force_speed_duplex_82543(hw);
 1107                 if (ret_val) {
 1108                         DEBUGOUT("Error Forcing Speed and Duplex\n");
 1109                         goto out;
 1110                 }
 1111         }
 1112 
 1113         /*
 1114          * Check link status. Wait up to 100 microseconds for link to become
 1115          * valid.
 1116          */
 1117         ret_val = e1000_phy_has_link_generic(hw,
 1118                                              COPPER_LINK_UP_LIMIT,
 1119                                              10,
 1120                                              &link);
 1121         if (ret_val)
 1122                 goto out;
 1123 
 1124 
 1125         if (link) {
 1126                 DEBUGOUT("Valid link established!!!\n");
 1127                 /* Config the MAC and PHY after link is up */
 1128                 if (hw->mac.type == e1000_82544) {
 1129                         hw->mac.ops.config_collision_dist(hw);
 1130                 } else {
 1131                         ret_val = e1000_config_mac_to_phy_82543(hw);
 1132                         if (ret_val)
 1133                                 goto out;
 1134                 }
 1135                 ret_val = e1000_config_fc_after_link_up_generic(hw);
 1136         } else {
 1137                 DEBUGOUT("Unable to establish link!!!\n");
 1138         }
 1139 
 1140 out:
 1141         return ret_val;
 1142 }
 1143 
 1144 /**
 1145  *  e1000_setup_fiber_link_82543 - Setup link for fiber
 1146  *  @hw: pointer to the HW structure
 1147  *
 1148  *  Configures collision distance and flow control for fiber links.  Upon
 1149  *  successful setup, poll for link.
 1150  **/
 1151 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
 1152 {
 1153         u32 ctrl;
 1154         s32 ret_val;
 1155 
 1156         DEBUGFUNC("e1000_setup_fiber_link_82543");
 1157 
 1158         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1159 
 1160         /* Take the link out of reset */
 1161         ctrl &= ~E1000_CTRL_LRST;
 1162 
 1163         hw->mac.ops.config_collision_dist(hw);
 1164 
 1165         ret_val = e1000_commit_fc_settings_generic(hw);
 1166         if (ret_val)
 1167                 goto out;
 1168 
 1169         DEBUGOUT("Auto-negotiation enabled\n");
 1170 
 1171         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1172         E1000_WRITE_FLUSH(hw);
 1173         msec_delay(1);
 1174 
 1175         /*
 1176          * For these adapters, the SW definable pin 1 is cleared when the
 1177          * optics detect a signal.  If we have a signal, then poll for a
 1178          * "Link-Up" indication.
 1179          */
 1180         if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
 1181                 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 1182         } else {
 1183                 DEBUGOUT("No signal detected\n");
 1184         }
 1185 
 1186 out:
 1187         return ret_val;
 1188 }
 1189 
 1190 /**
 1191  *  e1000_check_for_copper_link_82543 - Check for link (Copper)
 1192  *  @hw: pointer to the HW structure
 1193  *
 1194  *  Checks the phy for link, if link exists, do the following:
 1195  *   - check for downshift
 1196  *   - do polarity workaround (if necessary)
 1197  *   - configure collision distance
 1198  *   - configure flow control after link up
 1199  *   - configure tbi compatibility
 1200  **/
 1201 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
 1202 {
 1203         struct e1000_mac_info *mac = &hw->mac;
 1204         u32 icr, rctl;
 1205         s32 ret_val;
 1206         u16 speed, duplex;
 1207         bool link;
 1208 
 1209         DEBUGFUNC("e1000_check_for_copper_link_82543");
 1210 
 1211         if (!mac->get_link_status) {
 1212                 ret_val = E1000_SUCCESS;
 1213                 goto out;
 1214         }
 1215 
 1216         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
 1217         if (ret_val)
 1218                 goto out;
 1219 
 1220         if (!link)
 1221                 goto out; /* No link detected */
 1222 
 1223         mac->get_link_status = FALSE;
 1224 
 1225         e1000_check_downshift_generic(hw);
 1226 
 1227         /*
 1228          * If we are forcing speed/duplex, then we can return since
 1229          * we have already determined whether we have link or not.
 1230          */
 1231         if (!mac->autoneg) {
 1232                 /*
 1233                  * If speed and duplex are forced to 10H or 10F, then we will
 1234                  * implement the polarity reversal workaround.  We disable
 1235                  * interrupts first, and upon returning, place the devices
 1236                  * interrupt state to its previous value except for the link
 1237                  * status change interrupt which will happened due to the
 1238                  * execution of this workaround.
 1239                  */
 1240                 if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
 1241                         E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
 1242                         ret_val = e1000_polarity_reversal_workaround_82543(hw);
 1243                         icr = E1000_READ_REG(hw, E1000_ICR);
 1244                         E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
 1245                         E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
 1246                 }
 1247 
 1248                 ret_val = -E1000_ERR_CONFIG;
 1249                 goto out;
 1250         }
 1251 
 1252         /*
 1253          * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
 1254          * have Si on board that is 82544 or newer, Auto
 1255          * Speed Detection takes care of MAC speed/duplex
 1256          * configuration.  So we only need to configure Collision
 1257          * Distance in the MAC.  Otherwise, we need to force
 1258          * speed/duplex on the MAC to the current PHY speed/duplex
 1259          * settings.
 1260          */
 1261         if (mac->type == e1000_82544)
 1262                 hw->mac.ops.config_collision_dist(hw);
 1263         else {
 1264                 ret_val = e1000_config_mac_to_phy_82543(hw);
 1265                 if (ret_val) {
 1266                         DEBUGOUT("Error configuring MAC to PHY settings\n");
 1267                         goto out;
 1268                 }
 1269         }
 1270 
 1271         /*
 1272          * Configure Flow Control now that Auto-Neg has completed.
 1273          * First, we need to restore the desired flow control
 1274          * settings because we may have had to re-autoneg with a
 1275          * different link partner.
 1276          */
 1277         ret_val = e1000_config_fc_after_link_up_generic(hw);
 1278         if (ret_val) {
 1279                 DEBUGOUT("Error configuring flow control\n");
 1280         }
 1281 
 1282         /*
 1283          * At this point we know that we are on copper and we have
 1284          * auto-negotiated link.  These are conditions for checking the link
 1285          * partner capability register.  We use the link speed to determine if
 1286          * TBI compatibility needs to be turned on or off.  If the link is not
 1287          * at gigabit speed, then TBI compatibility is not needed.  If we are
 1288          * at gigabit speed, we turn on TBI compatibility.
 1289          */
 1290         if (e1000_tbi_compatibility_enabled_82543(hw)) {
 1291                 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
 1292                 if (ret_val) {
 1293                         DEBUGOUT("Error getting link speed and duplex\n");
 1294                         return ret_val;
 1295                 }
 1296                 if (speed != SPEED_1000) {
 1297                         /*
 1298                          * If link speed is not set to gigabit speed,
 1299                          * we do not need to enable TBI compatibility.
 1300                          */
 1301                         if (e1000_tbi_sbp_enabled_82543(hw)) {
 1302                                 /*
 1303                                  * If we previously were in the mode,
 1304                                  * turn it off.
 1305                                  */
 1306                                 e1000_set_tbi_sbp_82543(hw, FALSE);
 1307                                 rctl = E1000_READ_REG(hw, E1000_RCTL);
 1308                                 rctl &= ~E1000_RCTL_SBP;
 1309                                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
 1310                         }
 1311                 } else {
 1312                         /*
 1313                          * If TBI compatibility is was previously off,
 1314                          * turn it on. For compatibility with a TBI link
 1315                          * partner, we will store bad packets. Some
 1316                          * frames have an additional byte on the end and
 1317                          * will look like CRC errors to to the hardware.
 1318                          */
 1319                         if (!e1000_tbi_sbp_enabled_82543(hw)) {
 1320                                 e1000_set_tbi_sbp_82543(hw, TRUE);
 1321                                 rctl = E1000_READ_REG(hw, E1000_RCTL);
 1322                                 rctl |= E1000_RCTL_SBP;
 1323                                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
 1324                         }
 1325                 }
 1326         }
 1327 out:
 1328         return ret_val;
 1329 }
 1330 
 1331 /**
 1332  *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
 1333  *  @hw: pointer to the HW structure
 1334  *
 1335  *  Checks for link up on the hardware.  If link is not up and we have
 1336  *  a signal, then we need to force link up.
 1337  **/
 1338 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
 1339 {
 1340         struct e1000_mac_info *mac = &hw->mac;
 1341         u32 rxcw, ctrl, status;
 1342         s32 ret_val = E1000_SUCCESS;
 1343 
 1344         DEBUGFUNC("e1000_check_for_fiber_link_82543");
 1345 
 1346         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1347         status = E1000_READ_REG(hw, E1000_STATUS);
 1348         rxcw = E1000_READ_REG(hw, E1000_RXCW);
 1349 
 1350         /*
 1351          * If we don't have link (auto-negotiation failed or link partner
 1352          * cannot auto-negotiate), the cable is plugged in (we have signal),
 1353          * and our link partner is not trying to auto-negotiate with us (we
 1354          * are receiving idles or data), we need to force link up. We also
 1355          * need to give auto-negotiation time to complete, in case the cable
 1356          * was just plugged in. The autoneg_failed flag does this.
 1357          */
 1358         /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
 1359         if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
 1360             (!(status & E1000_STATUS_LU)) &&
 1361             (!(rxcw & E1000_RXCW_C))) {
 1362                 if (mac->autoneg_failed == 0) {
 1363                         mac->autoneg_failed = 1;
 1364                         ret_val = 0;
 1365                         goto out;
 1366                 }
 1367                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
 1368 
 1369                 /* Disable auto-negotiation in the TXCW register */
 1370                 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 1371 
 1372                 /* Force link-up and also force full-duplex. */
 1373                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1374                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 1375                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1376 
 1377                 /* Configure Flow Control after forcing link up. */
 1378                 ret_val = e1000_config_fc_after_link_up_generic(hw);
 1379                 if (ret_val) {
 1380                         DEBUGOUT("Error configuring flow control\n");
 1381                         goto out;
 1382                 }
 1383         } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 1384                 /*
 1385                  * If we are forcing link and we are receiving /C/ ordered
 1386                  * sets, re-enable auto-negotiation in the TXCW register
 1387                  * and disable forced link in the Device Control register
 1388                  * in an attempt to auto-negotiate with our link partner.
 1389                  */
 1390                 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
 1391                 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
 1392                 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
 1393 
 1394                 mac->serdes_has_link = TRUE;
 1395         }
 1396 
 1397 out:
 1398         return ret_val;
 1399 }
 1400 
 1401 /**
 1402  *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
 1403  *  @hw: pointer to the HW structure
 1404  *
 1405  *  For the 82543 silicon, we need to set the MAC to match the settings
 1406  *  of the PHY, even if the PHY is auto-negotiating.
 1407  **/
 1408 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
 1409 {
 1410         u32 ctrl;
 1411         s32 ret_val = E1000_SUCCESS;
 1412         u16 phy_data;
 1413 
 1414         DEBUGFUNC("e1000_config_mac_to_phy_82543");
 1415 
 1416         if (!(hw->phy.ops.read_reg))
 1417                 goto out;
 1418 
 1419         /* Set the bits to force speed and duplex */
 1420         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1421         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1422         ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
 1423 
 1424         /*
 1425          * Set up duplex in the Device Control and Transmit Control
 1426          * registers depending on negotiated values.
 1427          */
 1428         ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 1429         if (ret_val)
 1430                 goto out;
 1431 
 1432         ctrl &= ~E1000_CTRL_FD;
 1433         if (phy_data & M88E1000_PSSR_DPLX)
 1434                 ctrl |= E1000_CTRL_FD;
 1435 
 1436         hw->mac.ops.config_collision_dist(hw);
 1437 
 1438         /*
 1439          * Set up speed in the Device Control register depending on
 1440          * negotiated values.
 1441          */
 1442         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
 1443                 ctrl |= E1000_CTRL_SPD_1000;
 1444         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
 1445                 ctrl |= E1000_CTRL_SPD_100;
 1446 
 1447         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1448 
 1449 out:
 1450         return ret_val;
 1451 }
 1452 
 1453 /**
 1454  *  e1000_write_vfta_82543 - Write value to VLAN filter table
 1455  *  @hw: pointer to the HW structure
 1456  *  @offset: the 32-bit offset in which to write the value to.
 1457  *  @value: the 32-bit value to write at location offset.
 1458  *
 1459  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
 1460  *  table.
 1461  **/
 1462 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
 1463 {
 1464         u32 temp;
 1465 
 1466         DEBUGFUNC("e1000_write_vfta_82543");
 1467 
 1468         if ((hw->mac.type == e1000_82544) && (offset & 1)) {
 1469                 temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
 1470                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 1471                 E1000_WRITE_FLUSH(hw);
 1472                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
 1473                 E1000_WRITE_FLUSH(hw);
 1474         } else {
 1475                 e1000_write_vfta_generic(hw, offset, value);
 1476         }
 1477 }
 1478 
 1479 /**
 1480  *  e1000_led_on_82543 - Turn on SW controllable LED
 1481  *  @hw: pointer to the HW structure
 1482  *
 1483  *  Turns the SW defined LED on.
 1484  **/
 1485 static s32 e1000_led_on_82543(struct e1000_hw *hw)
 1486 {
 1487         u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1488 
 1489         DEBUGFUNC("e1000_led_on_82543");
 1490 
 1491         if (hw->mac.type == e1000_82544 &&
 1492             hw->phy.media_type == e1000_media_type_copper) {
 1493                 /* Clear SW-definable Pin 0 to turn on the LED */
 1494                 ctrl &= ~E1000_CTRL_SWDPIN0;
 1495                 ctrl |= E1000_CTRL_SWDPIO0;
 1496         } else {
 1497                 /* Fiber 82544 and all 82543 use this method */
 1498                 ctrl |= E1000_CTRL_SWDPIN0;
 1499                 ctrl |= E1000_CTRL_SWDPIO0;
 1500         }
 1501         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1502 
 1503         return E1000_SUCCESS;
 1504 }
 1505 
 1506 /**
 1507  *  e1000_led_off_82543 - Turn off SW controllable LED
 1508  *  @hw: pointer to the HW structure
 1509  *
 1510  *  Turns the SW defined LED off.
 1511  **/
 1512 static s32 e1000_led_off_82543(struct e1000_hw *hw)
 1513 {
 1514         u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1515 
 1516         DEBUGFUNC("e1000_led_off_82543");
 1517 
 1518         if (hw->mac.type == e1000_82544 &&
 1519             hw->phy.media_type == e1000_media_type_copper) {
 1520                 /* Set SW-definable Pin 0 to turn off the LED */
 1521                 ctrl |= E1000_CTRL_SWDPIN0;
 1522                 ctrl |= E1000_CTRL_SWDPIO0;
 1523         } else {
 1524                 ctrl &= ~E1000_CTRL_SWDPIN0;
 1525                 ctrl |= E1000_CTRL_SWDPIO0;
 1526         }
 1527         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1528 
 1529         return E1000_SUCCESS;
 1530 }
 1531 
 1532 /**
 1533  *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
 1534  *  @hw: pointer to the HW structure
 1535  *
 1536  *  Clears the hardware counters by reading the counter registers.
 1537  **/
 1538 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
 1539 {
 1540         DEBUGFUNC("e1000_clear_hw_cntrs_82543");
 1541 
 1542         e1000_clear_hw_cntrs_base_generic(hw);
 1543 
 1544         E1000_READ_REG(hw, E1000_PRC64);
 1545         E1000_READ_REG(hw, E1000_PRC127);
 1546         E1000_READ_REG(hw, E1000_PRC255);
 1547         E1000_READ_REG(hw, E1000_PRC511);
 1548         E1000_READ_REG(hw, E1000_PRC1023);
 1549         E1000_READ_REG(hw, E1000_PRC1522);
 1550         E1000_READ_REG(hw, E1000_PTC64);
 1551         E1000_READ_REG(hw, E1000_PTC127);
 1552         E1000_READ_REG(hw, E1000_PTC255);
 1553         E1000_READ_REG(hw, E1000_PTC511);
 1554         E1000_READ_REG(hw, E1000_PTC1023);
 1555         E1000_READ_REG(hw, E1000_PTC1522);
 1556 
 1557         E1000_READ_REG(hw, E1000_ALGNERRC);
 1558         E1000_READ_REG(hw, E1000_RXERRC);
 1559         E1000_READ_REG(hw, E1000_TNCRS);
 1560         E1000_READ_REG(hw, E1000_CEXTERR);
 1561         E1000_READ_REG(hw, E1000_TSCTC);
 1562         E1000_READ_REG(hw, E1000_TSCTFC);
 1563 }
 1564 
 1565 /**
 1566  *  e1000_read_mac_addr_82543 - Read device MAC address
 1567  *  @hw: pointer to the HW structure
 1568  *
 1569  *  Reads the device MAC address from the EEPROM and stores the value.
 1570  *  Since devices with two ports use the same EEPROM, we increment the
 1571  *  last bit in the MAC address for the second port.
 1572  *
 1573  **/
 1574 s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
 1575 {
 1576         s32  ret_val = E1000_SUCCESS;
 1577         u16 offset, nvm_data, i;
 1578 
 1579         DEBUGFUNC("e1000_read_mac_addr");
 1580 
 1581         for (i = 0; i < ETH_ADDR_LEN; i += 2) {
 1582                 offset = i >> 1;
 1583                 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 1584                 if (ret_val) {
 1585                         DEBUGOUT("NVM Read Error\n");
 1586                         goto out;
 1587                 }
 1588                 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
 1589                 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
 1590         }
 1591 
 1592         /* Flip last bit of mac address if we're on second port */
 1593         if (hw->bus.func == E1000_FUNC_1)
 1594                 hw->mac.perm_addr[5] ^= 1;
 1595 
 1596         for (i = 0; i < ETH_ADDR_LEN; i++)
 1597                 hw->mac.addr[i] = hw->mac.perm_addr[i];
 1598 
 1599 out:
 1600         return ret_val;
 1601 }

Cache object: 836ab81f78a5f1203814faa5095e8261


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.