The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/e1000/e1000_api.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2 
    3   Copyright (c) 2001-2010, Intel Corporation 
    4   All rights reserved.
    5   
    6   Redistribution and use in source and binary forms, with or without 
    7   modification, are permitted provided that the following conditions are met:
    8   
    9    1. Redistributions of source code must retain the above copyright notice, 
   10       this list of conditions and the following disclaimer.
   11   
   12    2. Redistributions in binary form must reproduce the above copyright 
   13       notice, this list of conditions and the following disclaimer in the 
   14       documentation and/or other materials provided with the distribution.
   15   
   16    3. Neither the name of the Intel Corporation nor the names of its 
   17       contributors may be used to endorse or promote products derived from 
   18       this software without specific prior written permission.
   19   
   20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
   23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
   24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
   25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
   26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
   27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
   28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30   POSSIBILITY OF SUCH DAMAGE.
   31 
   32 ******************************************************************************/
   33 /*$FreeBSD: releng/9.0/sys/dev/e1000/e1000_api.c 218530 2011-02-11 01:00:26Z jfv $*/
   34 
   35 #include "e1000_api.h"
   36 
   37 /**
   38  *  e1000_init_mac_params - Initialize MAC function pointers
   39  *  @hw: pointer to the HW structure
   40  *
   41  *  This function initializes the function pointers for the MAC
   42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
   43  **/
   44 s32 e1000_init_mac_params(struct e1000_hw *hw)
   45 {
   46         s32 ret_val = E1000_SUCCESS;
   47 
   48         if (hw->mac.ops.init_params) {
   49                 ret_val = hw->mac.ops.init_params(hw);
   50                 if (ret_val) {
   51                         DEBUGOUT("MAC Initialization Error\n");
   52                         goto out;
   53                 }
   54         } else {
   55                 DEBUGOUT("mac.init_mac_params was NULL\n");
   56                 ret_val = -E1000_ERR_CONFIG;
   57         }
   58 
   59 out:
   60         return ret_val;
   61 }
   62 
   63 /**
   64  *  e1000_init_nvm_params - Initialize NVM function pointers
   65  *  @hw: pointer to the HW structure
   66  *
   67  *  This function initializes the function pointers for the NVM
   68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
   69  **/
   70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
   71 {
   72         s32 ret_val = E1000_SUCCESS;
   73 
   74         if (hw->nvm.ops.init_params) {
   75                 ret_val = hw->nvm.ops.init_params(hw);
   76                 if (ret_val) {
   77                         DEBUGOUT("NVM Initialization Error\n");
   78                         goto out;
   79                 }
   80         } else {
   81                 DEBUGOUT("nvm.init_nvm_params was NULL\n");
   82                 ret_val = -E1000_ERR_CONFIG;
   83         }
   84 
   85 out:
   86         return ret_val;
   87 }
   88 
   89 /**
   90  *  e1000_init_phy_params - Initialize PHY function pointers
   91  *  @hw: pointer to the HW structure
   92  *
   93  *  This function initializes the function pointers for the PHY
   94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
   95  **/
   96 s32 e1000_init_phy_params(struct e1000_hw *hw)
   97 {
   98         s32 ret_val = E1000_SUCCESS;
   99 
  100         if (hw->phy.ops.init_params) {
  101                 ret_val = hw->phy.ops.init_params(hw);
  102                 if (ret_val) {
  103                         DEBUGOUT("PHY Initialization Error\n");
  104                         goto out;
  105                 }
  106         } else {
  107                 DEBUGOUT("phy.init_phy_params was NULL\n");
  108                 ret_val =  -E1000_ERR_CONFIG;
  109         }
  110 
  111 out:
  112         return ret_val;
  113 }
  114 
  115 /**
  116  *  e1000_init_mbx_params - Initialize mailbox function pointers
  117  *  @hw: pointer to the HW structure
  118  *
  119  *  This function initializes the function pointers for the PHY
  120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
  121  **/
  122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
  123 {
  124         s32 ret_val = E1000_SUCCESS;
  125 
  126         if (hw->mbx.ops.init_params) {
  127                 ret_val = hw->mbx.ops.init_params(hw);
  128                 if (ret_val) {
  129                         DEBUGOUT("Mailbox Initialization Error\n");
  130                         goto out;
  131                 }
  132         } else {
  133                 DEBUGOUT("mbx.init_mbx_params was NULL\n");
  134                 ret_val =  -E1000_ERR_CONFIG;
  135         }
  136 
  137 out:
  138         return ret_val;
  139 }
  140 
  141 /**
  142  *  e1000_set_mac_type - Sets MAC type
  143  *  @hw: pointer to the HW structure
  144  *
  145  *  This function sets the mac type of the adapter based on the
  146  *  device ID stored in the hw structure.
  147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
  148  *  e1000_setup_init_funcs()).
  149  **/
  150 s32 e1000_set_mac_type(struct e1000_hw *hw)
  151 {
  152         struct e1000_mac_info *mac = &hw->mac;
  153         s32 ret_val = E1000_SUCCESS;
  154 
  155         DEBUGFUNC("e1000_set_mac_type");
  156 
  157         switch (hw->device_id) {
  158         case E1000_DEV_ID_82542:
  159                 mac->type = e1000_82542;
  160                 break;
  161         case E1000_DEV_ID_82543GC_FIBER:
  162         case E1000_DEV_ID_82543GC_COPPER:
  163                 mac->type = e1000_82543;
  164                 break;
  165         case E1000_DEV_ID_82544EI_COPPER:
  166         case E1000_DEV_ID_82544EI_FIBER:
  167         case E1000_DEV_ID_82544GC_COPPER:
  168         case E1000_DEV_ID_82544GC_LOM:
  169                 mac->type = e1000_82544;
  170                 break;
  171         case E1000_DEV_ID_82540EM:
  172         case E1000_DEV_ID_82540EM_LOM:
  173         case E1000_DEV_ID_82540EP:
  174         case E1000_DEV_ID_82540EP_LOM:
  175         case E1000_DEV_ID_82540EP_LP:
  176                 mac->type = e1000_82540;
  177                 break;
  178         case E1000_DEV_ID_82545EM_COPPER:
  179         case E1000_DEV_ID_82545EM_FIBER:
  180                 mac->type = e1000_82545;
  181                 break;
  182         case E1000_DEV_ID_82545GM_COPPER:
  183         case E1000_DEV_ID_82545GM_FIBER:
  184         case E1000_DEV_ID_82545GM_SERDES:
  185                 mac->type = e1000_82545_rev_3;
  186                 break;
  187         case E1000_DEV_ID_82546EB_COPPER:
  188         case E1000_DEV_ID_82546EB_FIBER:
  189         case E1000_DEV_ID_82546EB_QUAD_COPPER:
  190                 mac->type = e1000_82546;
  191                 break;
  192         case E1000_DEV_ID_82546GB_COPPER:
  193         case E1000_DEV_ID_82546GB_FIBER:
  194         case E1000_DEV_ID_82546GB_SERDES:
  195         case E1000_DEV_ID_82546GB_PCIE:
  196         case E1000_DEV_ID_82546GB_QUAD_COPPER:
  197         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
  198                 mac->type = e1000_82546_rev_3;
  199                 break;
  200         case E1000_DEV_ID_82541EI:
  201         case E1000_DEV_ID_82541EI_MOBILE:
  202         case E1000_DEV_ID_82541ER_LOM:
  203                 mac->type = e1000_82541;
  204                 break;
  205         case E1000_DEV_ID_82541ER:
  206         case E1000_DEV_ID_82541GI:
  207         case E1000_DEV_ID_82541GI_LF:
  208         case E1000_DEV_ID_82541GI_MOBILE:
  209                 mac->type = e1000_82541_rev_2;
  210                 break;
  211         case E1000_DEV_ID_82547EI:
  212         case E1000_DEV_ID_82547EI_MOBILE:
  213                 mac->type = e1000_82547;
  214                 break;
  215         case E1000_DEV_ID_82547GI:
  216                 mac->type = e1000_82547_rev_2;
  217                 break;
  218         case E1000_DEV_ID_82571EB_COPPER:
  219         case E1000_DEV_ID_82571EB_FIBER:
  220         case E1000_DEV_ID_82571EB_SERDES:
  221         case E1000_DEV_ID_82571EB_SERDES_DUAL:
  222         case E1000_DEV_ID_82571EB_SERDES_QUAD:
  223         case E1000_DEV_ID_82571EB_QUAD_COPPER:
  224         case E1000_DEV_ID_82571PT_QUAD_COPPER:
  225         case E1000_DEV_ID_82571EB_QUAD_FIBER:
  226         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
  227                 mac->type = e1000_82571;
  228                 break;
  229         case E1000_DEV_ID_82572EI:
  230         case E1000_DEV_ID_82572EI_COPPER:
  231         case E1000_DEV_ID_82572EI_FIBER:
  232         case E1000_DEV_ID_82572EI_SERDES:
  233                 mac->type = e1000_82572;
  234                 break;
  235         case E1000_DEV_ID_82573E:
  236         case E1000_DEV_ID_82573E_IAMT:
  237         case E1000_DEV_ID_82573L:
  238                 mac->type = e1000_82573;
  239                 break;
  240         case E1000_DEV_ID_82574L:
  241         case E1000_DEV_ID_82574LA:
  242                 mac->type = e1000_82574;
  243                 break;
  244         case E1000_DEV_ID_82583V:
  245                 mac->type = e1000_82583;
  246                 break;
  247         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
  248         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
  249         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
  250         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
  251                 mac->type = e1000_80003es2lan;
  252                 break;
  253         case E1000_DEV_ID_ICH8_IFE:
  254         case E1000_DEV_ID_ICH8_IFE_GT:
  255         case E1000_DEV_ID_ICH8_IFE_G:
  256         case E1000_DEV_ID_ICH8_IGP_M:
  257         case E1000_DEV_ID_ICH8_IGP_M_AMT:
  258         case E1000_DEV_ID_ICH8_IGP_AMT:
  259         case E1000_DEV_ID_ICH8_IGP_C:
  260         case E1000_DEV_ID_ICH8_82567V_3:
  261                 mac->type = e1000_ich8lan;
  262                 break;
  263         case E1000_DEV_ID_ICH9_IFE:
  264         case E1000_DEV_ID_ICH9_IFE_GT:
  265         case E1000_DEV_ID_ICH9_IFE_G:
  266         case E1000_DEV_ID_ICH9_IGP_M:
  267         case E1000_DEV_ID_ICH9_IGP_M_AMT:
  268         case E1000_DEV_ID_ICH9_IGP_M_V:
  269         case E1000_DEV_ID_ICH9_IGP_AMT:
  270         case E1000_DEV_ID_ICH9_BM:
  271         case E1000_DEV_ID_ICH9_IGP_C:
  272         case E1000_DEV_ID_ICH10_R_BM_LM:
  273         case E1000_DEV_ID_ICH10_R_BM_LF:
  274         case E1000_DEV_ID_ICH10_R_BM_V:
  275                 mac->type = e1000_ich9lan;
  276                 break;
  277         case E1000_DEV_ID_ICH10_D_BM_LM:
  278         case E1000_DEV_ID_ICH10_D_BM_LF:
  279         case E1000_DEV_ID_ICH10_D_BM_V:
  280         case E1000_DEV_ID_ICH10_HANKSVILLE:
  281                 mac->type = e1000_ich10lan;
  282                 break;
  283         case E1000_DEV_ID_PCH_D_HV_DM:
  284         case E1000_DEV_ID_PCH_D_HV_DC:
  285         case E1000_DEV_ID_PCH_M_HV_LM:
  286         case E1000_DEV_ID_PCH_M_HV_LC:
  287                 mac->type = e1000_pchlan;
  288                 break;
  289         case E1000_DEV_ID_PCH2_LV_LM:
  290         case E1000_DEV_ID_PCH2_LV_V:
  291                 mac->type = e1000_pch2lan;
  292                 break;
  293         case E1000_DEV_ID_82575EB_COPPER:
  294         case E1000_DEV_ID_82575EB_FIBER_SERDES:
  295         case E1000_DEV_ID_82575GB_QUAD_COPPER:
  296         case E1000_DEV_ID_82575GB_QUAD_COPPER_PM:
  297                 mac->type = e1000_82575;
  298                 break;
  299         case E1000_DEV_ID_82576:
  300         case E1000_DEV_ID_82576_FIBER:
  301         case E1000_DEV_ID_82576_SERDES:
  302         case E1000_DEV_ID_82576_QUAD_COPPER:
  303         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
  304         case E1000_DEV_ID_82576_NS:
  305         case E1000_DEV_ID_82576_NS_SERDES:
  306         case E1000_DEV_ID_82576_SERDES_QUAD:
  307                 mac->type = e1000_82576;
  308                 break;
  309         case E1000_DEV_ID_82580_COPPER:
  310         case E1000_DEV_ID_82580_FIBER:
  311         case E1000_DEV_ID_82580_SERDES:
  312         case E1000_DEV_ID_82580_SGMII:
  313         case E1000_DEV_ID_82580_COPPER_DUAL:
  314         case E1000_DEV_ID_82580_QUAD_FIBER:
  315         case E1000_DEV_ID_DH89XXCC_SGMII:
  316         case E1000_DEV_ID_DH89XXCC_SERDES:
  317         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
  318         case E1000_DEV_ID_DH89XXCC_SFP:
  319                 mac->type = e1000_82580;
  320                 break;
  321         case E1000_DEV_ID_I350_COPPER:
  322         case E1000_DEV_ID_I350_FIBER:
  323         case E1000_DEV_ID_I350_SERDES:
  324         case E1000_DEV_ID_I350_SGMII:
  325                 mac->type = e1000_i350;
  326                 break;
  327         case E1000_DEV_ID_82576_VF:
  328                 mac->type = e1000_vfadapt;
  329                 break;
  330         case E1000_DEV_ID_I350_VF:
  331                 mac->type = e1000_vfadapt_i350;
  332                 break;
  333         default:
  334                 /* Should never have loaded on this device */
  335                 ret_val = -E1000_ERR_MAC_INIT;
  336                 break;
  337         }
  338 
  339         return ret_val;
  340 }
  341 
  342 /**
  343  *  e1000_setup_init_funcs - Initializes function pointers
  344  *  @hw: pointer to the HW structure
  345  *  @init_device: TRUE will initialize the rest of the function pointers
  346  *                 getting the device ready for use.  FALSE will only set
  347  *                 MAC type and the function pointers for the other init
  348  *                 functions.  Passing FALSE will not generate any hardware
  349  *                 reads or writes.
  350  *
  351  *  This function must be called by a driver in order to use the rest
  352  *  of the 'shared' code files. Called by drivers only.
  353  **/
  354 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
  355 {
  356         s32 ret_val;
  357 
  358         /* Can't do much good without knowing the MAC type. */
  359         ret_val = e1000_set_mac_type(hw);
  360         if (ret_val) {
  361                 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
  362                 goto out;
  363         }
  364 
  365         if (!hw->hw_addr) {
  366                 DEBUGOUT("ERROR: Registers not mapped\n");
  367                 ret_val = -E1000_ERR_CONFIG;
  368                 goto out;
  369         }
  370 
  371         /*
  372          * Init function pointers to generic implementations. We do this first
  373          * allowing a driver module to override it afterward.
  374          */
  375         e1000_init_mac_ops_generic(hw);
  376         e1000_init_phy_ops_generic(hw);
  377         e1000_init_nvm_ops_generic(hw);
  378         e1000_init_mbx_ops_generic(hw);
  379 
  380         /*
  381          * Set up the init function pointers. These are functions within the
  382          * adapter family file that sets up function pointers for the rest of
  383          * the functions in that family.
  384          */
  385         switch (hw->mac.type) {
  386         case e1000_82542:
  387                 e1000_init_function_pointers_82542(hw);
  388                 break;
  389         case e1000_82543:
  390         case e1000_82544:
  391                 e1000_init_function_pointers_82543(hw);
  392                 break;
  393         case e1000_82540:
  394         case e1000_82545:
  395         case e1000_82545_rev_3:
  396         case e1000_82546:
  397         case e1000_82546_rev_3:
  398                 e1000_init_function_pointers_82540(hw);
  399                 break;
  400         case e1000_82541:
  401         case e1000_82541_rev_2:
  402         case e1000_82547:
  403         case e1000_82547_rev_2:
  404                 e1000_init_function_pointers_82541(hw);
  405                 break;
  406         case e1000_82571:
  407         case e1000_82572:
  408         case e1000_82573:
  409         case e1000_82574:
  410         case e1000_82583:
  411                 e1000_init_function_pointers_82571(hw);
  412                 break;
  413         case e1000_80003es2lan:
  414                 e1000_init_function_pointers_80003es2lan(hw);
  415                 break;
  416         case e1000_ich8lan:
  417         case e1000_ich9lan:
  418         case e1000_ich10lan:
  419         case e1000_pchlan:
  420         case e1000_pch2lan:
  421                 e1000_init_function_pointers_ich8lan(hw);
  422                 break;
  423         case e1000_82575:
  424         case e1000_82576:
  425         case e1000_82580:
  426         case e1000_i350:
  427                 e1000_init_function_pointers_82575(hw);
  428                 break;
  429         case e1000_vfadapt:
  430                 e1000_init_function_pointers_vf(hw);
  431                 break;
  432         case e1000_vfadapt_i350:
  433                 e1000_init_function_pointers_vf(hw);
  434                 break;
  435         default:
  436                 DEBUGOUT("Hardware not supported\n");
  437                 ret_val = -E1000_ERR_CONFIG;
  438                 break;
  439         }
  440 
  441         /*
  442          * Initialize the rest of the function pointers. These require some
  443          * register reads/writes in some cases.
  444          */
  445         if (!(ret_val) && init_device) {
  446                 ret_val = e1000_init_mac_params(hw);
  447                 if (ret_val)
  448                         goto out;
  449 
  450                 ret_val = e1000_init_nvm_params(hw);
  451                 if (ret_val)
  452                         goto out;
  453 
  454                 ret_val = e1000_init_phy_params(hw);
  455                 if (ret_val)
  456                         goto out;
  457 
  458                 ret_val = e1000_init_mbx_params(hw);
  459                 if (ret_val)
  460                         goto out;
  461         }
  462 
  463 out:
  464         return ret_val;
  465 }
  466 
  467 /**
  468  *  e1000_get_bus_info - Obtain bus information for adapter
  469  *  @hw: pointer to the HW structure
  470  *
  471  *  This will obtain information about the HW bus for which the
  472  *  adapter is attached and stores it in the hw structure. This is a
  473  *  function pointer entry point called by drivers.
  474  **/
  475 s32 e1000_get_bus_info(struct e1000_hw *hw)
  476 {
  477         if (hw->mac.ops.get_bus_info)
  478                 return hw->mac.ops.get_bus_info(hw);
  479 
  480         return E1000_SUCCESS;
  481 }
  482 
  483 /**
  484  *  e1000_clear_vfta - Clear VLAN filter table
  485  *  @hw: pointer to the HW structure
  486  *
  487  *  This clears the VLAN filter table on the adapter. This is a function
  488  *  pointer entry point called by drivers.
  489  **/
  490 void e1000_clear_vfta(struct e1000_hw *hw)
  491 {
  492         if (hw->mac.ops.clear_vfta)
  493                 hw->mac.ops.clear_vfta(hw);
  494 }
  495 
  496 /**
  497  *  e1000_write_vfta - Write value to VLAN filter table
  498  *  @hw: pointer to the HW structure
  499  *  @offset: the 32-bit offset in which to write the value to.
  500  *  @value: the 32-bit value to write at location offset.
  501  *
  502  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
  503  *  table. This is a function pointer entry point called by drivers.
  504  **/
  505 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
  506 {
  507         if (hw->mac.ops.write_vfta)
  508                 hw->mac.ops.write_vfta(hw, offset, value);
  509 }
  510 
  511 /**
  512  *  e1000_update_mc_addr_list - Update Multicast addresses
  513  *  @hw: pointer to the HW structure
  514  *  @mc_addr_list: array of multicast addresses to program
  515  *  @mc_addr_count: number of multicast addresses to program
  516  *
  517  *  Updates the Multicast Table Array.
  518  *  The caller must have a packed mc_addr_list of multicast addresses.
  519  **/
  520 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
  521                                u32 mc_addr_count)
  522 {
  523         if (hw->mac.ops.update_mc_addr_list)
  524                 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
  525                                                 mc_addr_count);
  526 }
  527 
  528 /**
  529  *  e1000_force_mac_fc - Force MAC flow control
  530  *  @hw: pointer to the HW structure
  531  *
  532  *  Force the MAC's flow control settings. Currently no func pointer exists
  533  *  and all implementations are handled in the generic version of this
  534  *  function.
  535  **/
  536 s32 e1000_force_mac_fc(struct e1000_hw *hw)
  537 {
  538         return e1000_force_mac_fc_generic(hw);
  539 }
  540 
  541 /**
  542  *  e1000_check_for_link - Check/Store link connection
  543  *  @hw: pointer to the HW structure
  544  *
  545  *  This checks the link condition of the adapter and stores the
  546  *  results in the hw->mac structure. This is a function pointer entry
  547  *  point called by drivers.
  548  **/
  549 s32 e1000_check_for_link(struct e1000_hw *hw)
  550 {
  551         if (hw->mac.ops.check_for_link)
  552                 return hw->mac.ops.check_for_link(hw);
  553 
  554         return -E1000_ERR_CONFIG;
  555 }
  556 
  557 /**
  558  *  e1000_check_mng_mode - Check management mode
  559  *  @hw: pointer to the HW structure
  560  *
  561  *  This checks if the adapter has manageability enabled.
  562  *  This is a function pointer entry point called by drivers.
  563  **/
  564 bool e1000_check_mng_mode(struct e1000_hw *hw)
  565 {
  566         if (hw->mac.ops.check_mng_mode)
  567                 return hw->mac.ops.check_mng_mode(hw);
  568 
  569         return FALSE;
  570 }
  571 
  572 /**
  573  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
  574  *  @hw: pointer to the HW structure
  575  *  @buffer: pointer to the host interface
  576  *  @length: size of the buffer
  577  *
  578  *  Writes the DHCP information to the host interface.
  579  **/
  580 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
  581 {
  582         return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
  583 }
  584 
  585 /**
  586  *  e1000_reset_hw - Reset hardware
  587  *  @hw: pointer to the HW structure
  588  *
  589  *  This resets the hardware into a known state. This is a function pointer
  590  *  entry point called by drivers.
  591  **/
  592 s32 e1000_reset_hw(struct e1000_hw *hw)
  593 {
  594         if (hw->mac.ops.reset_hw)
  595                 return hw->mac.ops.reset_hw(hw);
  596 
  597         return -E1000_ERR_CONFIG;
  598 }
  599 
  600 /**
  601  *  e1000_init_hw - Initialize hardware
  602  *  @hw: pointer to the HW structure
  603  *
  604  *  This inits the hardware readying it for operation. This is a function
  605  *  pointer entry point called by drivers.
  606  **/
  607 s32 e1000_init_hw(struct e1000_hw *hw)
  608 {
  609         if (hw->mac.ops.init_hw)
  610                 return hw->mac.ops.init_hw(hw);
  611 
  612         return -E1000_ERR_CONFIG;
  613 }
  614 
  615 /**
  616  *  e1000_setup_link - Configures link and flow control
  617  *  @hw: pointer to the HW structure
  618  *
  619  *  This configures link and flow control settings for the adapter. This
  620  *  is a function pointer entry point called by drivers. While modules can
  621  *  also call this, they probably call their own version of this function.
  622  **/
  623 s32 e1000_setup_link(struct e1000_hw *hw)
  624 {
  625         if (hw->mac.ops.setup_link)
  626                 return hw->mac.ops.setup_link(hw);
  627 
  628         return -E1000_ERR_CONFIG;
  629 }
  630 
  631 /**
  632  *  e1000_get_speed_and_duplex - Returns current speed and duplex
  633  *  @hw: pointer to the HW structure
  634  *  @speed: pointer to a 16-bit value to store the speed
  635  *  @duplex: pointer to a 16-bit value to store the duplex.
  636  *
  637  *  This returns the speed and duplex of the adapter in the two 'out'
  638  *  variables passed in. This is a function pointer entry point called
  639  *  by drivers.
  640  **/
  641 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
  642 {
  643         if (hw->mac.ops.get_link_up_info)
  644                 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
  645 
  646         return -E1000_ERR_CONFIG;
  647 }
  648 
  649 /**
  650  *  e1000_setup_led - Configures SW controllable LED
  651  *  @hw: pointer to the HW structure
  652  *
  653  *  This prepares the SW controllable LED for use and saves the current state
  654  *  of the LED so it can be later restored. This is a function pointer entry
  655  *  point called by drivers.
  656  **/
  657 s32 e1000_setup_led(struct e1000_hw *hw)
  658 {
  659         if (hw->mac.ops.setup_led)
  660                 return hw->mac.ops.setup_led(hw);
  661 
  662         return E1000_SUCCESS;
  663 }
  664 
  665 /**
  666  *  e1000_cleanup_led - Restores SW controllable LED
  667  *  @hw: pointer to the HW structure
  668  *
  669  *  This restores the SW controllable LED to the value saved off by
  670  *  e1000_setup_led. This is a function pointer entry point called by drivers.
  671  **/
  672 s32 e1000_cleanup_led(struct e1000_hw *hw)
  673 {
  674         if (hw->mac.ops.cleanup_led)
  675                 return hw->mac.ops.cleanup_led(hw);
  676 
  677         return E1000_SUCCESS;
  678 }
  679 
  680 /**
  681  *  e1000_blink_led - Blink SW controllable LED
  682  *  @hw: pointer to the HW structure
  683  *
  684  *  This starts the adapter LED blinking. Request the LED to be setup first
  685  *  and cleaned up after. This is a function pointer entry point called by
  686  *  drivers.
  687  **/
  688 s32 e1000_blink_led(struct e1000_hw *hw)
  689 {
  690         if (hw->mac.ops.blink_led)
  691                 return hw->mac.ops.blink_led(hw);
  692 
  693         return E1000_SUCCESS;
  694 }
  695 
  696 /**
  697  *  e1000_id_led_init - store LED configurations in SW
  698  *  @hw: pointer to the HW structure
  699  *
  700  *  Initializes the LED config in SW. This is a function pointer entry point
  701  *  called by drivers.
  702  **/
  703 s32 e1000_id_led_init(struct e1000_hw *hw)
  704 {
  705         if (hw->mac.ops.id_led_init)
  706                 return hw->mac.ops.id_led_init(hw);
  707 
  708         return E1000_SUCCESS;
  709 }
  710 
  711 /**
  712  *  e1000_led_on - Turn on SW controllable LED
  713  *  @hw: pointer to the HW structure
  714  *
  715  *  Turns the SW defined LED on. This is a function pointer entry point
  716  *  called by drivers.
  717  **/
  718 s32 e1000_led_on(struct e1000_hw *hw)
  719 {
  720         if (hw->mac.ops.led_on)
  721                 return hw->mac.ops.led_on(hw);
  722 
  723         return E1000_SUCCESS;
  724 }
  725 
  726 /**
  727  *  e1000_led_off - Turn off SW controllable LED
  728  *  @hw: pointer to the HW structure
  729  *
  730  *  Turns the SW defined LED off. This is a function pointer entry point
  731  *  called by drivers.
  732  **/
  733 s32 e1000_led_off(struct e1000_hw *hw)
  734 {
  735         if (hw->mac.ops.led_off)
  736                 return hw->mac.ops.led_off(hw);
  737 
  738         return E1000_SUCCESS;
  739 }
  740 
  741 /**
  742  *  e1000_reset_adaptive - Reset adaptive IFS
  743  *  @hw: pointer to the HW structure
  744  *
  745  *  Resets the adaptive IFS. Currently no func pointer exists and all
  746  *  implementations are handled in the generic version of this function.
  747  **/
  748 void e1000_reset_adaptive(struct e1000_hw *hw)
  749 {
  750         e1000_reset_adaptive_generic(hw);
  751 }
  752 
  753 /**
  754  *  e1000_update_adaptive - Update adaptive IFS
  755  *  @hw: pointer to the HW structure
  756  *
  757  *  Updates adapter IFS. Currently no func pointer exists and all
  758  *  implementations are handled in the generic version of this function.
  759  **/
  760 void e1000_update_adaptive(struct e1000_hw *hw)
  761 {
  762         e1000_update_adaptive_generic(hw);
  763 }
  764 
  765 /**
  766  *  e1000_disable_pcie_master - Disable PCI-Express master access
  767  *  @hw: pointer to the HW structure
  768  *
  769  *  Disables PCI-Express master access and verifies there are no pending
  770  *  requests. Currently no func pointer exists and all implementations are
  771  *  handled in the generic version of this function.
  772  **/
  773 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
  774 {
  775         return e1000_disable_pcie_master_generic(hw);
  776 }
  777 
  778 /**
  779  *  e1000_config_collision_dist - Configure collision distance
  780  *  @hw: pointer to the HW structure
  781  *
  782  *  Configures the collision distance to the default value and is used
  783  *  during link setup.
  784  **/
  785 void e1000_config_collision_dist(struct e1000_hw *hw)
  786 {
  787         if (hw->mac.ops.config_collision_dist)
  788                 hw->mac.ops.config_collision_dist(hw);
  789 }
  790 
  791 /**
  792  *  e1000_rar_set - Sets a receive address register
  793  *  @hw: pointer to the HW structure
  794  *  @addr: address to set the RAR to
  795  *  @index: the RAR to set
  796  *
  797  *  Sets a Receive Address Register (RAR) to the specified address.
  798  **/
  799 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
  800 {
  801         if (hw->mac.ops.rar_set)
  802                 hw->mac.ops.rar_set(hw, addr, index);
  803 }
  804 
  805 /**
  806  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
  807  *  @hw: pointer to the HW structure
  808  *
  809  *  Ensures that the MDI/MDIX SW state is valid.
  810  **/
  811 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
  812 {
  813         if (hw->mac.ops.validate_mdi_setting)
  814                 return hw->mac.ops.validate_mdi_setting(hw);
  815 
  816         return E1000_SUCCESS;
  817 }
  818 
  819 /**
  820  *  e1000_hash_mc_addr - Determines address location in multicast table
  821  *  @hw: pointer to the HW structure
  822  *  @mc_addr: Multicast address to hash.
  823  *
  824  *  This hashes an address to determine its location in the multicast
  825  *  table. Currently no func pointer exists and all implementations
  826  *  are handled in the generic version of this function.
  827  **/
  828 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
  829 {
  830         return e1000_hash_mc_addr_generic(hw, mc_addr);
  831 }
  832 
  833 /**
  834  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
  835  *  @hw: pointer to the HW structure
  836  *
  837  *  Enables packet filtering on transmit packets if manageability is enabled
  838  *  and host interface is enabled.
  839  *  Currently no func pointer exists and all implementations are handled in the
  840  *  generic version of this function.
  841  **/
  842 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
  843 {
  844         return e1000_enable_tx_pkt_filtering_generic(hw);
  845 }
  846 
  847 /**
  848  *  e1000_mng_host_if_write - Writes to the manageability host interface
  849  *  @hw: pointer to the HW structure
  850  *  @buffer: pointer to the host interface buffer
  851  *  @length: size of the buffer
  852  *  @offset: location in the buffer to write to
  853  *  @sum: sum of the data (not checksum)
  854  *
  855  *  This function writes the buffer content at the offset given on the host if.
  856  *  It also does alignment considerations to do the writes in most efficient
  857  *  way.  Also fills up the sum of the buffer in *buffer parameter.
  858  **/
  859 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length,
  860                             u16 offset, u8 *sum)
  861 {
  862         if (hw->mac.ops.mng_host_if_write)
  863                 return hw->mac.ops.mng_host_if_write(hw, buffer, length,
  864                                                      offset, sum);
  865 
  866         return E1000_NOT_IMPLEMENTED;
  867 }
  868 
  869 /**
  870  *  e1000_mng_write_cmd_header - Writes manageability command header
  871  *  @hw: pointer to the HW structure
  872  *  @hdr: pointer to the host interface command header
  873  *
  874  *  Writes the command header after does the checksum calculation.
  875  **/
  876 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
  877                                struct e1000_host_mng_command_header *hdr)
  878 {
  879         if (hw->mac.ops.mng_write_cmd_header)
  880                 return hw->mac.ops.mng_write_cmd_header(hw, hdr);
  881 
  882         return E1000_NOT_IMPLEMENTED;
  883 }
  884 
  885 /**
  886  *  e1000_mng_enable_host_if - Checks host interface is enabled
  887  *  @hw: pointer to the HW structure
  888  *
  889  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
  890  *
  891  *  This function checks whether the HOST IF is enabled for command operation
  892  *  and also checks whether the previous command is completed.  It busy waits
  893  *  in case of previous command is not completed.
  894  **/
  895 s32 e1000_mng_enable_host_if(struct e1000_hw * hw)
  896 {
  897         if (hw->mac.ops.mng_enable_host_if)
  898                 return hw->mac.ops.mng_enable_host_if(hw);
  899 
  900         return E1000_NOT_IMPLEMENTED;
  901 }
  902 
  903 /**
  904  *  e1000_wait_autoneg - Waits for autonegotiation completion
  905  *  @hw: pointer to the HW structure
  906  *
  907  *  Waits for autoneg to complete. Currently no func pointer exists and all
  908  *  implementations are handled in the generic version of this function.
  909  **/
  910 s32 e1000_wait_autoneg(struct e1000_hw *hw)
  911 {
  912         if (hw->mac.ops.wait_autoneg)
  913                 return hw->mac.ops.wait_autoneg(hw);
  914 
  915         return E1000_SUCCESS;
  916 }
  917 
  918 /**
  919  *  e1000_check_reset_block - Verifies PHY can be reset
  920  *  @hw: pointer to the HW structure
  921  *
  922  *  Checks if the PHY is in a state that can be reset or if manageability
  923  *  has it tied up. This is a function pointer entry point called by drivers.
  924  **/
  925 s32 e1000_check_reset_block(struct e1000_hw *hw)
  926 {
  927         if (hw->phy.ops.check_reset_block)
  928                 return hw->phy.ops.check_reset_block(hw);
  929 
  930         return E1000_SUCCESS;
  931 }
  932 
  933 /**
  934  *  e1000_read_phy_reg - Reads PHY register
  935  *  @hw: pointer to the HW structure
  936  *  @offset: the register to read
  937  *  @data: the buffer to store the 16-bit read.
  938  *
  939  *  Reads the PHY register and returns the value in data.
  940  *  This is a function pointer entry point called by drivers.
  941  **/
  942 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
  943 {
  944         if (hw->phy.ops.read_reg)
  945                 return hw->phy.ops.read_reg(hw, offset, data);
  946 
  947         return E1000_SUCCESS;
  948 }
  949 
  950 /**
  951  *  e1000_write_phy_reg - Writes PHY register
  952  *  @hw: pointer to the HW structure
  953  *  @offset: the register to write
  954  *  @data: the value to write.
  955  *
  956  *  Writes the PHY register at offset with the value in data.
  957  *  This is a function pointer entry point called by drivers.
  958  **/
  959 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
  960 {
  961         if (hw->phy.ops.write_reg)
  962                 return hw->phy.ops.write_reg(hw, offset, data);
  963 
  964         return E1000_SUCCESS;
  965 }
  966 
  967 /**
  968  *  e1000_release_phy - Generic release PHY
  969  *  @hw: pointer to the HW structure
  970  *
  971  *  Return if silicon family does not require a semaphore when accessing the
  972  *  PHY.
  973  **/
  974 void e1000_release_phy(struct e1000_hw *hw)
  975 {
  976         if (hw->phy.ops.release)
  977                 hw->phy.ops.release(hw);
  978 }
  979 
  980 /**
  981  *  e1000_acquire_phy - Generic acquire PHY
  982  *  @hw: pointer to the HW structure
  983  *
  984  *  Return success if silicon family does not require a semaphore when
  985  *  accessing the PHY.
  986  **/
  987 s32 e1000_acquire_phy(struct e1000_hw *hw)
  988 {
  989         if (hw->phy.ops.acquire)
  990                 return hw->phy.ops.acquire(hw);
  991 
  992         return E1000_SUCCESS;
  993 }
  994 
  995 /**
  996  *  e1000_cfg_on_link_up - Configure PHY upon link up
  997  *  @hw: pointer to the HW structure
  998  **/
  999 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
 1000 {
 1001         if (hw->phy.ops.cfg_on_link_up)
 1002                 return hw->phy.ops.cfg_on_link_up(hw);
 1003 
 1004         return E1000_SUCCESS;
 1005 }
 1006 
 1007 /**
 1008  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
 1009  *  @hw: pointer to the HW structure
 1010  *  @offset: the register to read
 1011  *  @data: the location to store the 16-bit value read.
 1012  *
 1013  *  Reads a register out of the Kumeran interface. Currently no func pointer
 1014  *  exists and all implementations are handled in the generic version of
 1015  *  this function.
 1016  **/
 1017 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 1018 {
 1019         return e1000_read_kmrn_reg_generic(hw, offset, data);
 1020 }
 1021 
 1022 /**
 1023  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
 1024  *  @hw: pointer to the HW structure
 1025  *  @offset: the register to write
 1026  *  @data: the value to write.
 1027  *
 1028  *  Writes a register to the Kumeran interface. Currently no func pointer
 1029  *  exists and all implementations are handled in the generic version of
 1030  *  this function.
 1031  **/
 1032 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 1033 {
 1034         return e1000_write_kmrn_reg_generic(hw, offset, data);
 1035 }
 1036 
 1037 /**
 1038  *  e1000_get_cable_length - Retrieves cable length estimation
 1039  *  @hw: pointer to the HW structure
 1040  *
 1041  *  This function estimates the cable length and stores them in
 1042  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
 1043  *  entry point called by drivers.
 1044  **/
 1045 s32 e1000_get_cable_length(struct e1000_hw *hw)
 1046 {
 1047         if (hw->phy.ops.get_cable_length)
 1048                 return hw->phy.ops.get_cable_length(hw);
 1049 
 1050         return E1000_SUCCESS;
 1051 }
 1052 
 1053 /**
 1054  *  e1000_get_phy_info - Retrieves PHY information from registers
 1055  *  @hw: pointer to the HW structure
 1056  *
 1057  *  This function gets some information from various PHY registers and
 1058  *  populates hw->phy values with it. This is a function pointer entry
 1059  *  point called by drivers.
 1060  **/
 1061 s32 e1000_get_phy_info(struct e1000_hw *hw)
 1062 {
 1063         if (hw->phy.ops.get_info)
 1064                 return hw->phy.ops.get_info(hw);
 1065 
 1066         return E1000_SUCCESS;
 1067 }
 1068 
 1069 /**
 1070  *  e1000_phy_hw_reset - Hard PHY reset
 1071  *  @hw: pointer to the HW structure
 1072  *
 1073  *  Performs a hard PHY reset. This is a function pointer entry point called
 1074  *  by drivers.
 1075  **/
 1076 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
 1077 {
 1078         if (hw->phy.ops.reset)
 1079                 return hw->phy.ops.reset(hw);
 1080 
 1081         return E1000_SUCCESS;
 1082 }
 1083 
 1084 /**
 1085  *  e1000_phy_commit - Soft PHY reset
 1086  *  @hw: pointer to the HW structure
 1087  *
 1088  *  Performs a soft PHY reset on those that apply. This is a function pointer
 1089  *  entry point called by drivers.
 1090  **/
 1091 s32 e1000_phy_commit(struct e1000_hw *hw)
 1092 {
 1093         if (hw->phy.ops.commit)
 1094                 return hw->phy.ops.commit(hw);
 1095 
 1096         return E1000_SUCCESS;
 1097 }
 1098 
 1099 /**
 1100  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
 1101  *  @hw: pointer to the HW structure
 1102  *  @active: boolean used to enable/disable lplu
 1103  *
 1104  *  Success returns 0, Failure returns 1
 1105  *
 1106  *  The low power link up (lplu) state is set to the power management level D0
 1107  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
 1108  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 1109  *  is used during Dx states where the power conservation is most important.
 1110  *  During driver activity, SmartSpeed should be enabled so performance is
 1111  *  maintained.  This is a function pointer entry point called by drivers.
 1112  **/
 1113 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
 1114 {
 1115         if (hw->phy.ops.set_d0_lplu_state)
 1116                 return hw->phy.ops.set_d0_lplu_state(hw, active);
 1117 
 1118         return E1000_SUCCESS;
 1119 }
 1120 
 1121 /**
 1122  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
 1123  *  @hw: pointer to the HW structure
 1124  *  @active: boolean used to enable/disable lplu
 1125  *
 1126  *  Success returns 0, Failure returns 1
 1127  *
 1128  *  The low power link up (lplu) state is set to the power management level D3
 1129  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
 1130  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 1131  *  is used during Dx states where the power conservation is most important.
 1132  *  During driver activity, SmartSpeed should be enabled so performance is
 1133  *  maintained.  This is a function pointer entry point called by drivers.
 1134  **/
 1135 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
 1136 {
 1137         if (hw->phy.ops.set_d3_lplu_state)
 1138                 return hw->phy.ops.set_d3_lplu_state(hw, active);
 1139 
 1140         return E1000_SUCCESS;
 1141 }
 1142 
 1143 /**
 1144  *  e1000_read_mac_addr - Reads MAC address
 1145  *  @hw: pointer to the HW structure
 1146  *
 1147  *  Reads the MAC address out of the adapter and stores it in the HW structure.
 1148  *  Currently no func pointer exists and all implementations are handled in the
 1149  *  generic version of this function.
 1150  **/
 1151 s32 e1000_read_mac_addr(struct e1000_hw *hw)
 1152 {
 1153         if (hw->mac.ops.read_mac_addr)
 1154                 return hw->mac.ops.read_mac_addr(hw);
 1155 
 1156         return e1000_read_mac_addr_generic(hw);
 1157 }
 1158 
 1159 /**
 1160  *  e1000_read_pba_string - Read device part number string
 1161  *  @hw: pointer to the HW structure
 1162  *  @pba_num: pointer to device part number
 1163  *  @pba_num_size: size of part number buffer
 1164  *
 1165  *  Reads the product board assembly (PBA) number from the EEPROM and stores
 1166  *  the value in pba_num.
 1167  *  Currently no func pointer exists and all implementations are handled in the
 1168  *  generic version of this function.
 1169  **/
 1170 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
 1171 {
 1172         return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
 1173 }
 1174 
 1175 /**
 1176  *  e1000_read_pba_length - Read device part number string length
 1177  *  @hw: pointer to the HW structure
 1178  *  @pba_num_size: size of part number buffer
 1179  *
 1180  *  Reads the product board assembly (PBA) number length from the EEPROM and
 1181  *  stores the value in pba_num.
 1182  *  Currently no func pointer exists and all implementations are handled in the
 1183  *  generic version of this function.
 1184  **/
 1185 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
 1186 {
 1187         return e1000_read_pba_length_generic(hw, pba_num_size);
 1188 }
 1189 
 1190 /**
 1191  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
 1192  *  @hw: pointer to the HW structure
 1193  *
 1194  *  Validates the NVM checksum is correct. This is a function pointer entry
 1195  *  point called by drivers.
 1196  **/
 1197 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
 1198 {
 1199         if (hw->nvm.ops.validate)
 1200                 return hw->nvm.ops.validate(hw);
 1201 
 1202         return -E1000_ERR_CONFIG;
 1203 }
 1204 
 1205 /**
 1206  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
 1207  *  @hw: pointer to the HW structure
 1208  *
 1209  *  Updates the NVM checksum. Currently no func pointer exists and all
 1210  *  implementations are handled in the generic version of this function.
 1211  **/
 1212 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
 1213 {
 1214         if (hw->nvm.ops.update)
 1215                 return hw->nvm.ops.update(hw);
 1216 
 1217         return -E1000_ERR_CONFIG;
 1218 }
 1219 
 1220 /**
 1221  *  e1000_reload_nvm - Reloads EEPROM
 1222  *  @hw: pointer to the HW structure
 1223  *
 1224  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
 1225  *  extended control register.
 1226  **/
 1227 void e1000_reload_nvm(struct e1000_hw *hw)
 1228 {
 1229         if (hw->nvm.ops.reload)
 1230                 hw->nvm.ops.reload(hw);
 1231 }
 1232 
 1233 /**
 1234  *  e1000_read_nvm - Reads NVM (EEPROM)
 1235  *  @hw: pointer to the HW structure
 1236  *  @offset: the word offset to read
 1237  *  @words: number of 16-bit words to read
 1238  *  @data: pointer to the properly sized buffer for the data.
 1239  *
 1240  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
 1241  *  pointer entry point called by drivers.
 1242  **/
 1243 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 1244 {
 1245         if (hw->nvm.ops.read)
 1246                 return hw->nvm.ops.read(hw, offset, words, data);
 1247 
 1248         return -E1000_ERR_CONFIG;
 1249 }
 1250 
 1251 /**
 1252  *  e1000_write_nvm - Writes to NVM (EEPROM)
 1253  *  @hw: pointer to the HW structure
 1254  *  @offset: the word offset to read
 1255  *  @words: number of 16-bit words to write
 1256  *  @data: pointer to the properly sized buffer for the data.
 1257  *
 1258  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
 1259  *  pointer entry point called by drivers.
 1260  **/
 1261 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 1262 {
 1263         if (hw->nvm.ops.write)
 1264                 return hw->nvm.ops.write(hw, offset, words, data);
 1265 
 1266         return E1000_SUCCESS;
 1267 }
 1268 
 1269 /**
 1270  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
 1271  *  @hw: pointer to the HW structure
 1272  *  @reg: 32bit register offset
 1273  *  @offset: the register to write
 1274  *  @data: the value to write.
 1275  *
 1276  *  Writes the PHY register at offset with the value in data.
 1277  *  This is a function pointer entry point called by drivers.
 1278  **/
 1279 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
 1280                               u8 data)
 1281 {
 1282         return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
 1283 }
 1284 
 1285 /**
 1286  * e1000_power_up_phy - Restores link in case of PHY power down
 1287  * @hw: pointer to the HW structure
 1288  *
 1289  * The phy may be powered down to save power, to turn off link when the
 1290  * driver is unloaded, or wake on lan is not enabled (among others).
 1291  **/
 1292 void e1000_power_up_phy(struct e1000_hw *hw)
 1293 {
 1294         if (hw->phy.ops.power_up)
 1295                 hw->phy.ops.power_up(hw);
 1296 
 1297         e1000_setup_link(hw);
 1298 }
 1299 
 1300 /**
 1301  * e1000_power_down_phy - Power down PHY
 1302  * @hw: pointer to the HW structure
 1303  *
 1304  * The phy may be powered down to save power, to turn off link when the
 1305  * driver is unloaded, or wake on lan is not enabled (among others).
 1306  **/
 1307 void e1000_power_down_phy(struct e1000_hw *hw)
 1308 {
 1309         if (hw->phy.ops.power_down)
 1310                 hw->phy.ops.power_down(hw);
 1311 }
 1312 
 1313 /**
 1314  *  e1000_power_up_fiber_serdes_link - Power up serdes link
 1315  *  @hw: pointer to the HW structure
 1316  *
 1317  *  Power on the optics and PCS.
 1318  **/
 1319 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
 1320 {
 1321         if (hw->mac.ops.power_up_serdes)
 1322                 hw->mac.ops.power_up_serdes(hw);
 1323 }
 1324 
 1325 /**
 1326  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
 1327  *  @hw: pointer to the HW structure
 1328  *
 1329  *  Shutdown the optics and PCS on driver unload.
 1330  **/
 1331 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
 1332 {
 1333         if (hw->mac.ops.shutdown_serdes)
 1334                 hw->mac.ops.shutdown_serdes(hw);
 1335 }
 1336 

Cache object: 3036b7bd278b0093c55d0250a84988b6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.