The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/e1000/e1000_vf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2   SPDX-License-Identifier: BSD-3-Clause
    3 
    4   Copyright (c) 2001-2020, Intel Corporation
    5   All rights reserved.
    6 
    7   Redistribution and use in source and binary forms, with or without
    8   modification, are permitted provided that the following conditions are met:
    9 
   10    1. Redistributions of source code must retain the above copyright notice,
   11       this list of conditions and the following disclaimer.
   12 
   13    2. Redistributions in binary form must reproduce the above copyright
   14       notice, this list of conditions and the following disclaimer in the
   15       documentation and/or other materials provided with the distribution.
   16 
   17    3. Neither the name of the Intel Corporation nor the names of its
   18       contributors may be used to endorse or promote products derived from
   19       this software without specific prior written permission.
   20 
   21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
   25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   31   POSSIBILITY OF SUCH DAMAGE.
   32 
   33 ******************************************************************************/
   34 /*$FreeBSD$*/
   35 
   36 
   37 #include "e1000_api.h"
   38 
   39 
   40 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
   41 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
   42 static void e1000_release_vf(struct e1000_hw *hw);
   43 static s32 e1000_acquire_vf(struct e1000_hw *hw);
   44 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
   45 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
   46 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
   47 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
   48 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
   49                                      u16 *duplex);
   50 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
   51 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
   52 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
   53 static int  e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
   54 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
   55 
   56 /**
   57  *  e1000_init_phy_params_vf - Inits PHY params
   58  *  @hw: pointer to the HW structure
   59  *
   60  *  Doesn't do much - there's no PHY available to the VF.
   61  **/
   62 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
   63 {
   64         DEBUGFUNC("e1000_init_phy_params_vf");
   65         hw->phy.type = e1000_phy_vf;
   66         hw->phy.ops.acquire = e1000_acquire_vf;
   67         hw->phy.ops.release = e1000_release_vf;
   68 
   69         return E1000_SUCCESS;
   70 }
   71 
   72 /**
   73  *  e1000_init_nvm_params_vf - Inits NVM params
   74  *  @hw: pointer to the HW structure
   75  *
   76  *  Doesn't do much - there's no NVM available to the VF.
   77  **/
   78 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
   79 {
   80         DEBUGFUNC("e1000_init_nvm_params_vf");
   81         hw->nvm.type = e1000_nvm_none;
   82         hw->nvm.ops.acquire = e1000_acquire_vf;
   83         hw->nvm.ops.release = e1000_release_vf;
   84 
   85         return E1000_SUCCESS;
   86 }
   87 
   88 /**
   89  *  e1000_init_mac_params_vf - Inits MAC params
   90  *  @hw: pointer to the HW structure
   91  **/
   92 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
   93 {
   94         struct e1000_mac_info *mac = &hw->mac;
   95 
   96         DEBUGFUNC("e1000_init_mac_params_vf");
   97 
   98         /* Set media type */
   99         /*
  100          * Virtual functions don't care what they're media type is as they
  101          * have no direct access to the PHY, or the media.  That is handled
  102          * by the physical function driver.
  103          */
  104         hw->phy.media_type = e1000_media_type_unknown;
  105 
  106         /* No ASF features for the VF driver */
  107         mac->asf_firmware_present = false;
  108         /* ARC subsystem not supported */
  109         mac->arc_subsystem_valid = false;
  110         /* Disable adaptive IFS mode so the generic funcs don't do anything */
  111         mac->adaptive_ifs = false;
  112         /* VF's have no MTA Registers - PF feature only */
  113         mac->mta_reg_count = 128;
  114         /* VF's have no access to RAR entries  */
  115         mac->rar_entry_count = 1;
  116 
  117         /* Function pointers */
  118         /* link setup */
  119         mac->ops.setup_link = e1000_setup_link_vf;
  120         /* bus type/speed/width */
  121         mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
  122         /* reset */
  123         mac->ops.reset_hw = e1000_reset_hw_vf;
  124         /* hw initialization */
  125         mac->ops.init_hw = e1000_init_hw_vf;
  126         /* check for link */
  127         mac->ops.check_for_link = e1000_check_for_link_vf;
  128         /* link info */
  129         mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
  130         /* multicast address update */
  131         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
  132         /* set mac address */
  133         mac->ops.rar_set = e1000_rar_set_vf;
  134         /* read mac address */
  135         mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
  136 
  137 
  138         return E1000_SUCCESS;
  139 }
  140 
  141 /**
  142  *  e1000_init_function_pointers_vf - Inits function pointers
  143  *  @hw: pointer to the HW structure
  144  **/
  145 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
  146 {
  147         DEBUGFUNC("e1000_init_function_pointers_vf");
  148 
  149         hw->mac.ops.init_params = e1000_init_mac_params_vf;
  150         hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
  151         hw->phy.ops.init_params = e1000_init_phy_params_vf;
  152         hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
  153 }
  154 
  155 /**
  156  *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
  157  *  @hw: pointer to the HW structure
  158  *
  159  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
  160  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
  161  *  even want any SW to attempt to use them.
  162  **/
  163 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  164 {
  165         return -E1000_ERR_PHY;
  166 }
  167 
  168 /**
  169  *  e1000_release_vf - Release PHY or NVM
  170  *  @hw: pointer to the HW structure
  171  *
  172  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
  173  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
  174  *  even want any SW to attempt to use them.
  175  **/
  176 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  177 {
  178         return;
  179 }
  180 
  181 /**
  182  *  e1000_setup_link_vf - Sets up link.
  183  *  @hw: pointer to the HW structure
  184  *
  185  *  Virtual functions cannot change link.
  186  **/
  187 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  188 {
  189         DEBUGFUNC("e1000_setup_link_vf");
  190 
  191         return E1000_SUCCESS;
  192 }
  193 
  194 /**
  195  *  e1000_get_bus_info_pcie_vf - Gets the bus info.
  196  *  @hw: pointer to the HW structure
  197  *
  198  *  Virtual functions are not really on their own bus.
  199  **/
  200 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
  201 {
  202         struct e1000_bus_info *bus = &hw->bus;
  203 
  204         DEBUGFUNC("e1000_get_bus_info_pcie_vf");
  205 
  206         /* Do not set type PCI-E because we don't want disable master to run */
  207         bus->type = e1000_bus_type_reserved;
  208         bus->speed = e1000_bus_speed_2500;
  209 
  210         return 0;
  211 }
  212 
  213 /**
  214  *  e1000_get_link_up_info_vf - Gets link info.
  215  *  @hw: pointer to the HW structure
  216  *  @speed: pointer to 16 bit value to store link speed.
  217  *  @duplex: pointer to 16 bit value to store duplex.
  218  *
  219  *  Since we cannot read the PHY and get accurate link info, we must rely upon
  220  *  the status register's data which is often stale and inaccurate.
  221  **/
  222 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
  223                                      u16 *duplex)
  224 {
  225         s32 status;
  226 
  227         DEBUGFUNC("e1000_get_link_up_info_vf");
  228 
  229         status = E1000_READ_REG(hw, E1000_STATUS);
  230         if (status & E1000_STATUS_SPEED_1000) {
  231                 *speed = SPEED_1000;
  232                 DEBUGOUT("1000 Mbs, ");
  233         } else if (status & E1000_STATUS_SPEED_100) {
  234                 *speed = SPEED_100;
  235                 DEBUGOUT("100 Mbs, ");
  236         } else {
  237                 *speed = SPEED_10;
  238                 DEBUGOUT("10 Mbs, ");
  239         }
  240 
  241         if (status & E1000_STATUS_FD) {
  242                 *duplex = FULL_DUPLEX;
  243                 DEBUGOUT("Full Duplex\n");
  244         } else {
  245                 *duplex = HALF_DUPLEX;
  246                 DEBUGOUT("Half Duplex\n");
  247         }
  248 
  249         return E1000_SUCCESS;
  250 }
  251 
  252 /**
  253  *  e1000_reset_hw_vf - Resets the HW
  254  *  @hw: pointer to the HW structure
  255  *
  256  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
  257  *  This is all the reset we can perform on a VF.
  258  **/
  259 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
  260 {
  261         struct e1000_mbx_info *mbx = &hw->mbx;
  262         u32 timeout = E1000_VF_INIT_TIMEOUT;
  263         s32 ret_val = -E1000_ERR_MAC_INIT;
  264         u32 ctrl, msgbuf[3];
  265         u8 *addr = (u8 *)(&msgbuf[1]);
  266 
  267         DEBUGFUNC("e1000_reset_hw_vf");
  268 
  269         DEBUGOUT("Issuing a function level reset to MAC\n");
  270         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  271         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  272 
  273         /* we cannot reset while the RSTI / RSTD bits are asserted */
  274         while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
  275                 timeout--;
  276                 usec_delay(5);
  277         }
  278 
  279         if (timeout) {
  280                 /* mailbox timeout can now become active */
  281                 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
  282 
  283                 msgbuf[0] = E1000_VF_RESET;
  284                 mbx->ops.write_posted(hw, msgbuf, 1, 0);
  285 
  286                 msec_delay(10);
  287 
  288                 /* set our "perm_addr" based on info provided by PF */
  289                 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
  290                 if (!ret_val) {
  291                         if (msgbuf[0] == (E1000_VF_RESET |
  292                             E1000_VT_MSGTYPE_ACK))
  293                                 memcpy(hw->mac.perm_addr, addr, 6);
  294                         else
  295                                 ret_val = -E1000_ERR_MAC_INIT;
  296                 }
  297         }
  298 
  299         return ret_val;
  300 }
  301 
  302 /**
  303  *  e1000_init_hw_vf - Inits the HW
  304  *  @hw: pointer to the HW structure
  305  *
  306  *  Not much to do here except clear the PF Reset indication if there is one.
  307  **/
  308 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
  309 {
  310         DEBUGFUNC("e1000_init_hw_vf");
  311 
  312         /* attempt to set and restore our mac address */
  313         e1000_rar_set_vf(hw, hw->mac.addr, 0);
  314 
  315         return E1000_SUCCESS;
  316 }
  317 
  318 /**
  319  *  e1000_rar_set_vf - set device MAC address
  320  *  @hw: pointer to the HW structure
  321  *  @addr: pointer to the receive address
  322  *  @index receive address array register
  323  **/
  324 static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
  325                              u32 E1000_UNUSEDARG index)
  326 {
  327         struct e1000_mbx_info *mbx = &hw->mbx;
  328         u32 msgbuf[3];
  329         u8 *msg_addr = (u8 *)(&msgbuf[1]);
  330         s32 ret_val;
  331 
  332         memset(msgbuf, 0, 12);
  333         msgbuf[0] = E1000_VF_SET_MAC_ADDR;
  334         memcpy(msg_addr, addr, 6);
  335         ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
  336 
  337         if (!ret_val)
  338                 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
  339 
  340         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
  341 
  342         /* if nacked the address was rejected, use "perm_addr" */
  343         if (!ret_val &&
  344             (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
  345                 e1000_read_mac_addr_vf(hw);
  346 
  347         return E1000_SUCCESS;
  348 }
  349 
  350 /**
  351  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
  352  *  @hw: pointer to the HW structure
  353  *  @mc_addr: pointer to a multicast address
  354  *
  355  *  Generates a multicast address hash value which is used to determine
  356  *  the multicast filter table array address and new table value.
  357  **/
  358 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
  359 {
  360         u32 hash_value, hash_mask;
  361         u8 bit_shift = 0;
  362 
  363         DEBUGFUNC("e1000_hash_mc_addr_generic");
  364 
  365         /* Register count multiplied by bits per register */
  366         hash_mask = (hw->mac.mta_reg_count * 32) - 1;
  367 
  368         /*
  369          * The bit_shift is the number of left-shifts
  370          * where 0xFF would still fall within the hash mask.
  371          */
  372         while (hash_mask >> bit_shift != 0xFF)
  373                 bit_shift++;
  374 
  375         hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
  376                                   (((u16) mc_addr[5]) << bit_shift)));
  377 
  378         return hash_value;
  379 }
  380 
  381 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
  382                                      u32 *msg, u16 size)
  383 {
  384         struct e1000_mbx_info *mbx = &hw->mbx;
  385         u32 retmsg[E1000_VFMAILBOX_SIZE];
  386         s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
  387 
  388         if (!retval)
  389                 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
  390 }
  391 
  392 /**
  393  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
  394  *  @hw: pointer to the HW structure
  395  *  @mc_addr_list: array of multicast addresses to program
  396  *  @mc_addr_count: number of multicast addresses to program
  397  *
  398  *  Updates the Multicast Table Array.
  399  *  The caller must have a packed mc_addr_list of multicast addresses.
  400  **/
  401 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
  402                                   u8 *mc_addr_list, u32 mc_addr_count)
  403 {
  404         u32 msgbuf[E1000_VFMAILBOX_SIZE];
  405         u16 *hash_list = (u16 *)&msgbuf[1];
  406         u32 hash_value;
  407         u32 i;
  408 
  409         DEBUGFUNC("e1000_update_mc_addr_list_vf");
  410 
  411         /* Each entry in the list uses 1 16 bit word.  We have 30
  412          * 16 bit words available in our HW msg buffer (minus 1 for the
  413          * msg type).  That's 30 hash values if we pack 'em right.  If
  414          * there are more than 30 MC addresses to add then punt the
  415          * extras for now and then add code to handle more than 30 later.
  416          * It would be unusual for a server to request that many multi-cast
  417          * addresses except for in large enterprise network environments.
  418          */
  419 
  420         DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
  421 
  422         msgbuf[0] = E1000_VF_SET_MULTICAST;
  423 
  424         if (mc_addr_count > 30) {
  425                 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
  426                 mc_addr_count = 30;
  427         }
  428 
  429         msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
  430 
  431         for (i = 0; i < mc_addr_count; i++) {
  432                 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
  433                 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
  434                 hash_list[i] = hash_value & 0x0FFF;
  435                 mc_addr_list += ETHER_ADDR_LEN;
  436         }
  437 
  438         e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
  439 }
  440 
  441 /**
  442  *  e1000_vfta_set_vf - Set/Unset vlan filter table address
  443  *  @hw: pointer to the HW structure
  444  *  @vid: determines the vfta register and bit to set/unset
  445  *  @set: if true then set bit, else clear bit
  446  **/
  447 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
  448 {
  449         u32 msgbuf[2];
  450 
  451         msgbuf[0] = E1000_VF_SET_VLAN;
  452         msgbuf[1] = vid;
  453         /* Setting the 8 bit field MSG INFO to true indicates "add" */
  454         if (set)
  455                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
  456 
  457         e1000_write_msg_read_ack(hw, msgbuf, 2);
  458 }
  459 
  460 /** e1000_rlpml_set_vf - Set the maximum receive packet length
  461  *  @hw: pointer to the HW structure
  462  *  @max_size: value to assign to max frame size
  463  **/
  464 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
  465 {
  466         u32 msgbuf[2];
  467 
  468         msgbuf[0] = E1000_VF_SET_LPE;
  469         msgbuf[1] = max_size;
  470 
  471         e1000_write_msg_read_ack(hw, msgbuf, 2);
  472 }
  473 
  474 /**
  475  *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
  476  *  @hw: pointer to the HW structure
  477  *  @uni: boolean indicating unicast promisc status
  478  *  @multi: boolean indicating multicast promisc status
  479  **/
  480 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
  481 {
  482         struct e1000_mbx_info *mbx = &hw->mbx;
  483         u32 msgbuf = E1000_VF_SET_PROMISC;
  484         s32 ret_val;
  485 
  486         switch (type) {
  487         case e1000_promisc_multicast:
  488                 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
  489                 break;
  490         case e1000_promisc_enabled:
  491                 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
  492                 /* FALLTHROUGH */
  493         case e1000_promisc_unicast:
  494                 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
  495                 /* FALLTHROUGH */
  496         case e1000_promisc_disabled:
  497                 break;
  498         default:
  499                 return -E1000_ERR_MAC_INIT;
  500         }
  501 
  502          ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
  503 
  504         if (!ret_val)
  505                 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
  506 
  507         if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
  508                 ret_val = -E1000_ERR_MAC_INIT;
  509 
  510         return ret_val;
  511 }
  512 
  513 /**
  514  *  e1000_read_mac_addr_vf - Read device MAC address
  515  *  @hw: pointer to the HW structure
  516  **/
  517 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
  518 {
  519         int i;
  520 
  521         for (i = 0; i < ETHER_ADDR_LEN; i++)
  522                 hw->mac.addr[i] = hw->mac.perm_addr[i];
  523 
  524         return E1000_SUCCESS;
  525 }
  526 
  527 /**
  528  *  e1000_check_for_link_vf - Check for link for a virtual interface
  529  *  @hw: pointer to the HW structure
  530  *
  531  *  Checks to see if the underlying PF is still talking to the VF and
  532  *  if it is then it reports the link state to the hardware, otherwise
  533  *  it reports link down and returns an error.
  534  **/
  535 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
  536 {
  537         struct e1000_mbx_info *mbx = &hw->mbx;
  538         struct e1000_mac_info *mac = &hw->mac;
  539         s32 ret_val = E1000_SUCCESS;
  540         u32 in_msg = 0;
  541 
  542         DEBUGFUNC("e1000_check_for_link_vf");
  543 
  544         /*
  545          * We only want to run this if there has been a rst asserted.
  546          * in this case that could mean a link change, device reset,
  547          * or a virtual function reset
  548          */
  549 
  550         /* If we were hit with a reset or timeout drop the link */
  551         if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
  552                 mac->get_link_status = true;
  553 
  554         if (!mac->get_link_status)
  555                 goto out;
  556 
  557         /* if link status is down no point in checking to see if pf is up */
  558         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
  559                 goto out;
  560 
  561         /* if the read failed it could just be a mailbox collision, best wait
  562          * until we are called again and don't report an error */
  563         if (mbx->ops.read(hw, &in_msg, 1, 0))
  564                 goto out;
  565 
  566         /* if incoming message isn't clear to send we are waiting on response */
  567         if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
  568                 /* message is not CTS and is NACK we have lost CTS status */
  569                 if (in_msg & E1000_VT_MSGTYPE_NACK)
  570                         ret_val = -E1000_ERR_MAC_INIT;
  571                 goto out;
  572         }
  573 
  574         /* at this point we know the PF is talking to us, check and see if
  575          * we are still accepting timeout or if we had a timeout failure.
  576          * if we failed then we will need to reinit */
  577         if (!mbx->timeout) {
  578                 ret_val = -E1000_ERR_MAC_INIT;
  579                 goto out;
  580         }
  581 
  582         /* if we passed all the tests above then the link is up and we no
  583          * longer need to check for link */
  584         mac->get_link_status = false;
  585 
  586 out:
  587         return ret_val;
  588 }
  589 

Cache object: 125a34d95281a91f7075966601962e13


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.