The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/e1000/e1000_vf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2 
    3   Copyright (c) 2001-2010, Intel Corporation 
    4   All rights reserved.
    5   
    6   Redistribution and use in source and binary forms, with or without 
    7   modification, are permitted provided that the following conditions are met:
    8   
    9    1. Redistributions of source code must retain the above copyright notice, 
   10       this list of conditions and the following disclaimer.
   11   
   12    2. Redistributions in binary form must reproduce the above copyright 
   13       notice, this list of conditions and the following disclaimer in the 
   14       documentation and/or other materials provided with the distribution.
   15   
   16    3. Neither the name of the Intel Corporation nor the names of its 
   17       contributors may be used to endorse or promote products derived from 
   18       this software without specific prior written permission.
   19   
   20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
   23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
   24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
   25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
   26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
   27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
   28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30   POSSIBILITY OF SUCH DAMAGE.
   31 
   32 ******************************************************************************/
   33 /*$FreeBSD: releng/9.0/sys/dev/e1000/e1000_vf.c 218530 2011-02-11 01:00:26Z jfv $*/
   34 
   35 
   36 #include "e1000_api.h"
   37 
   38 
   39 static s32       e1000_init_phy_params_vf(struct e1000_hw *hw);
   40 static s32       e1000_init_nvm_params_vf(struct e1000_hw *hw);
   41 static void      e1000_release_vf(struct e1000_hw *hw);
   42 static s32       e1000_acquire_vf(struct e1000_hw *hw);
   43 static s32       e1000_setup_link_vf(struct e1000_hw *hw);
   44 static s32       e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
   45 static s32       e1000_init_mac_params_vf(struct e1000_hw *hw);
   46 static s32       e1000_check_for_link_vf(struct e1000_hw *hw);
   47 static s32       e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
   48                                               u16 *duplex);
   49 static s32       e1000_init_hw_vf(struct e1000_hw *hw);
   50 static s32       e1000_reset_hw_vf(struct e1000_hw *hw);
   51 static void      e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
   52 static void      e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
   53 static s32       e1000_read_mac_addr_vf(struct e1000_hw *);
   54 
   55 /**
   56  *  e1000_init_phy_params_vf - Inits PHY params
   57  *  @hw: pointer to the HW structure
   58  *
   59  *  Doesn't do much - there's no PHY available to the VF.
   60  **/
   61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
   62 {
   63         DEBUGFUNC("e1000_init_phy_params_vf");
   64         hw->phy.type = e1000_phy_vf;
   65         hw->phy.ops.acquire = e1000_acquire_vf;
   66         hw->phy.ops.release = e1000_release_vf;
   67 
   68         return E1000_SUCCESS;
   69 }
   70 
   71 /**
   72  *  e1000_init_nvm_params_vf - Inits NVM params
   73  *  @hw: pointer to the HW structure
   74  *
   75  *  Doesn't do much - there's no NVM available to the VF.
   76  **/
   77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
   78 {
   79         DEBUGFUNC("e1000_init_nvm_params_vf");
   80         hw->nvm.type = e1000_nvm_none;
   81         hw->nvm.ops.acquire = e1000_acquire_vf;
   82         hw->nvm.ops.release = e1000_release_vf;
   83 
   84         return E1000_SUCCESS;
   85 }
   86 
   87 /**
   88  *  e1000_init_mac_params_vf - Inits MAC params
   89  *  @hw: pointer to the HW structure
   90  **/
   91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
   92 {
   93         struct e1000_mac_info *mac = &hw->mac;
   94 
   95         DEBUGFUNC("e1000_init_mac_params_vf");
   96 
   97         /* Set media type */
   98         /*
   99          * Virtual functions don't care what they're media type is as they
  100          * have no direct access to the PHY, or the media.  That is handled
  101          * by the physical function driver.
  102          */
  103         hw->phy.media_type = e1000_media_type_unknown;
  104 
  105         /* No ASF features for the VF driver */
  106         mac->asf_firmware_present = FALSE;
  107         /* ARC subsystem not supported */
  108         mac->arc_subsystem_valid = FALSE;
  109         /* Disable adaptive IFS mode so the generic funcs don't do anything */
  110         mac->adaptive_ifs = FALSE;
  111         /* VF's have no MTA Registers - PF feature only */
  112         mac->mta_reg_count = 128;
  113         /* VF's have no access to RAR entries  */
  114         mac->rar_entry_count = 1;
  115 
  116         /* Function pointers */
  117         /* link setup */
  118         mac->ops.setup_link = e1000_setup_link_vf;
  119         /* bus type/speed/width */
  120         mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
  121         /* reset */
  122         mac->ops.reset_hw = e1000_reset_hw_vf;
  123         /* hw initialization */
  124         mac->ops.init_hw = e1000_init_hw_vf;
  125         /* check for link */
  126         mac->ops.check_for_link = e1000_check_for_link_vf;
  127         /* link info */
  128         mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
  129         /* multicast address update */
  130         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
  131         /* set mac address */
  132         mac->ops.rar_set = e1000_rar_set_vf;
  133         /* read mac address */
  134         mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
  135 
  136 
  137         return E1000_SUCCESS;
  138 }
  139 
  140 /**
  141  *  e1000_init_function_pointers_vf - Inits function pointers
  142  *  @hw: pointer to the HW structure
  143  **/
  144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
  145 {
  146         DEBUGFUNC("e1000_init_function_pointers_vf");
  147 
  148         hw->mac.ops.init_params = e1000_init_mac_params_vf;
  149         hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
  150         hw->phy.ops.init_params = e1000_init_phy_params_vf;
  151         hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
  152 }
  153 
  154 /**
  155  *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
  156  *  @hw: pointer to the HW structure
  157  *
  158  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
  159  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
  160  *  even want any SW to attempt to use them.
  161  **/
  162 static s32 e1000_acquire_vf(struct e1000_hw *hw)
  163 {
  164         return -E1000_ERR_PHY;
  165 }
  166 
  167 /**
  168  *  e1000_release_vf - Release PHY or NVM
  169  *  @hw: pointer to the HW structure
  170  *
  171  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
  172  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
  173  *  even want any SW to attempt to use them.
  174  **/
  175 static void e1000_release_vf(struct e1000_hw *hw)
  176 {
  177         return;
  178 }
  179 
  180 /**
  181  *  e1000_setup_link_vf - Sets up link.
  182  *  @hw: pointer to the HW structure
  183  *
  184  *  Virtual functions cannot change link.
  185  **/
  186 static s32 e1000_setup_link_vf(struct e1000_hw *hw)
  187 {
  188         DEBUGFUNC("e1000_setup_link_vf");
  189 
  190         return E1000_SUCCESS;
  191 }
  192 
  193 /**
  194  *  e1000_get_bus_info_pcie_vf - Gets the bus info.
  195  *  @hw: pointer to the HW structure
  196  *
  197  *  Virtual functions are not really on their own bus.
  198  **/
  199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
  200 {
  201         struct e1000_bus_info *bus = &hw->bus;
  202 
  203         DEBUGFUNC("e1000_get_bus_info_pcie_vf");
  204 
  205         /* Do not set type PCI-E because we don't want disable master to run */
  206         bus->type = e1000_bus_type_reserved;
  207         bus->speed = e1000_bus_speed_2500;
  208 
  209         return 0;
  210 }
  211 
  212 /**
  213  *  e1000_get_link_up_info_vf - Gets link info.
  214  *  @hw: pointer to the HW structure
  215  *  @speed: pointer to 16 bit value to store link speed.
  216  *  @duplex: pointer to 16 bit value to store duplex.
  217  *
  218  *  Since we cannot read the PHY and get accurate link info, we must rely upon
  219  *  the status register's data which is often stale and inaccurate.
  220  **/
  221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
  222                                      u16 *duplex)
  223 {
  224         s32 status;
  225 
  226         DEBUGFUNC("e1000_get_link_up_info_vf");
  227 
  228         status = E1000_READ_REG(hw, E1000_STATUS);
  229         if (status & E1000_STATUS_SPEED_1000) {
  230                 *speed = SPEED_1000;
  231                 DEBUGOUT("1000 Mbs, ");
  232         } else if (status & E1000_STATUS_SPEED_100) {
  233                 *speed = SPEED_100;
  234                 DEBUGOUT("100 Mbs, ");
  235         } else {
  236                 *speed = SPEED_10;
  237                 DEBUGOUT("10 Mbs, ");
  238         }
  239 
  240         if (status & E1000_STATUS_FD) {
  241                 *duplex = FULL_DUPLEX;
  242                 DEBUGOUT("Full Duplex\n");
  243         } else {
  244                 *duplex = HALF_DUPLEX;
  245                 DEBUGOUT("Half Duplex\n");
  246         }
  247 
  248         return E1000_SUCCESS;
  249 }
  250 
  251 /**
  252  *  e1000_reset_hw_vf - Resets the HW
  253  *  @hw: pointer to the HW structure
  254  *
  255  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
  256  *  This is all the reset we can perform on a VF.
  257  **/
  258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
  259 {
  260         struct e1000_mbx_info *mbx = &hw->mbx;
  261         u32 timeout = E1000_VF_INIT_TIMEOUT;
  262         s32 ret_val = -E1000_ERR_MAC_INIT;
  263         u32 ctrl, msgbuf[3];
  264         u8 *addr = (u8 *)(&msgbuf[1]);
  265 
  266         DEBUGFUNC("e1000_reset_hw_vf");
  267 
  268         DEBUGOUT("Issuing a function level reset to MAC\n");
  269         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  270         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  271 
  272         /* we cannot reset while the RSTI / RSTD bits are asserted */
  273         while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
  274                 timeout--;
  275                 usec_delay(5);
  276         }
  277 
  278         if (timeout) {
  279                 /* mailbox timeout can now become active */
  280                 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
  281 
  282                 msgbuf[0] = E1000_VF_RESET;
  283                 mbx->ops.write_posted(hw, msgbuf, 1, 0);
  284 
  285                 msec_delay(10);
  286 
  287                 /* set our "perm_addr" based on info provided by PF */
  288                 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
  289                 if (!ret_val) {
  290                         if (msgbuf[0] == (E1000_VF_RESET |
  291                                                 E1000_VT_MSGTYPE_ACK))
  292                                 memcpy(hw->mac.perm_addr, addr, 6);
  293                         else
  294                                 ret_val = -E1000_ERR_MAC_INIT;
  295                 }
  296         }
  297 
  298         return ret_val;
  299 }
  300 
  301 /**
  302  *  e1000_init_hw_vf - Inits the HW
  303  *  @hw: pointer to the HW structure
  304  *
  305  *  Not much to do here except clear the PF Reset indication if there is one.
  306  **/
  307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
  308 {
  309         DEBUGFUNC("e1000_init_hw_vf");
  310 
  311         /* attempt to set and restore our mac address */
  312         e1000_rar_set_vf(hw, hw->mac.addr, 0);
  313 
  314         return E1000_SUCCESS;
  315 }
  316 
  317 /**
  318  *  e1000_rar_set_vf - set device MAC address
  319  *  @hw: pointer to the HW structure
  320  *  @addr: pointer to the receive address
  321  *  @index receive address array register
  322  **/
  323 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
  324 {
  325         struct e1000_mbx_info *mbx = &hw->mbx;
  326         u32 msgbuf[3];
  327         u8 *msg_addr = (u8 *)(&msgbuf[1]);
  328         s32 ret_val;
  329 
  330         memset(msgbuf, 0, 12);
  331         msgbuf[0] = E1000_VF_SET_MAC_ADDR;
  332         memcpy(msg_addr, addr, 6);
  333         ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
  334 
  335         if (!ret_val)
  336                 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
  337 
  338         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
  339 
  340         /* if nacked the address was rejected, use "perm_addr" */
  341         if (!ret_val &&
  342             (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
  343                 e1000_read_mac_addr_vf(hw);
  344 }
  345 
  346 /**
  347  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
  348  *  @hw: pointer to the HW structure
  349  *  @mc_addr: pointer to a multicast address
  350  *
  351  *  Generates a multicast address hash value which is used to determine
  352  *  the multicast filter table array address and new table value.
  353  **/
  354 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
  355 {
  356         u32 hash_value, hash_mask;
  357         u8 bit_shift = 0;
  358 
  359         DEBUGFUNC("e1000_hash_mc_addr_generic");
  360 
  361         /* Register count multiplied by bits per register */
  362         hash_mask = (hw->mac.mta_reg_count * 32) - 1;
  363 
  364         /*
  365          * The bit_shift is the number of left-shifts
  366          * where 0xFF would still fall within the hash mask.
  367          */
  368         while (hash_mask >> bit_shift != 0xFF)
  369                 bit_shift++;
  370 
  371         hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
  372                                   (((u16) mc_addr[5]) << bit_shift)));
  373 
  374         return hash_value;
  375 }
  376 
  377 /**
  378  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
  379  *  @hw: pointer to the HW structure
  380  *  @mc_addr_list: array of multicast addresses to program
  381  *  @mc_addr_count: number of multicast addresses to program
  382  *
  383  *  Updates the Multicast Table Array.
  384  *  The caller must have a packed mc_addr_list of multicast addresses.
  385  **/
  386 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
  387                                   u8 *mc_addr_list, u32 mc_addr_count)
  388 {
  389         struct e1000_mbx_info *mbx = &hw->mbx;
  390         u32 msgbuf[E1000_VFMAILBOX_SIZE];
  391         u16 *hash_list = (u16 *)&msgbuf[1];
  392         u32 hash_value;
  393         u32 i;
  394 
  395         DEBUGFUNC("e1000_update_mc_addr_list_vf");
  396 
  397         /* Each entry in the list uses 1 16 bit word.  We have 30
  398          * 16 bit words available in our HW msg buffer (minus 1 for the
  399          * msg type).  That's 30 hash values if we pack 'em right.  If
  400          * there are more than 30 MC addresses to add then punt the
  401          * extras for now and then add code to handle more than 30 later.
  402          * It would be unusual for a server to request that many multi-cast
  403          * addresses except for in large enterprise network environments.
  404          */
  405 
  406         DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
  407 
  408         if (mc_addr_count > 30) {
  409                 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
  410                 mc_addr_count = 30;
  411         }
  412 
  413         msgbuf[0] = E1000_VF_SET_MULTICAST;
  414         msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
  415 
  416         for (i = 0; i < mc_addr_count; i++) {
  417                 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
  418                 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
  419                 hash_list[i] = hash_value & 0x0FFF;
  420                 mc_addr_list += ETH_ADDR_LEN;
  421         }
  422 
  423         mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE, 0);
  424 }
  425 
  426 /**
  427  *  e1000_vfta_set_vf - Set/Unset vlan filter table address
  428  *  @hw: pointer to the HW structure
  429  *  @vid: determines the vfta register and bit to set/unset
  430  *  @set: if TRUE then set bit, else clear bit
  431  **/
  432 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
  433 {
  434         struct e1000_mbx_info *mbx = &hw->mbx;
  435         u32 msgbuf[2];
  436 
  437         msgbuf[0] = E1000_VF_SET_VLAN;
  438         msgbuf[1] = vid;
  439         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
  440         if (set)
  441                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
  442 
  443         mbx->ops.write_posted(hw, msgbuf, 2, 0);
  444 }
  445 
  446 /** e1000_rlpml_set_vf - Set the maximum receive packet length
  447  *  @hw: pointer to the HW structure
  448  *  @max_size: value to assign to max frame size
  449  **/
  450 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
  451 {
  452         struct e1000_mbx_info *mbx = &hw->mbx;
  453         u32 msgbuf[2];
  454 
  455         msgbuf[0] = E1000_VF_SET_LPE;
  456         msgbuf[1] = max_size;
  457 
  458         mbx->ops.write_posted(hw, msgbuf, 2, 0);
  459 }
  460 
  461 /**
  462  *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
  463  *  @hw: pointer to the HW structure
  464  *  @uni: boolean indicating unicast promisc status
  465  *  @multi: boolean indicating multicast promisc status
  466  **/
  467 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
  468 {
  469         struct e1000_mbx_info *mbx = &hw->mbx;
  470         u32 msgbuf = E1000_VF_SET_PROMISC;
  471         s32 ret_val;
  472 
  473         switch (type) {
  474         case e1000_promisc_multicast:
  475                 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
  476                 break;
  477         case e1000_promisc_enabled:
  478                 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
  479         case e1000_promisc_unicast:
  480                 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
  481         case e1000_promisc_disabled:
  482                 break;
  483         default:
  484                 return -E1000_ERR_MAC_INIT;
  485         }
  486 
  487          ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
  488 
  489         if (!ret_val)
  490                 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
  491 
  492         if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
  493                 ret_val = -E1000_ERR_MAC_INIT;
  494 
  495         return ret_val;
  496 }
  497 
  498 /**
  499  *  e1000_read_mac_addr_vf - Read device MAC address
  500  *  @hw: pointer to the HW structure
  501  **/
  502 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
  503 {
  504         int i;
  505 
  506         for (i = 0; i < ETH_ADDR_LEN; i++)
  507                 hw->mac.addr[i] = hw->mac.perm_addr[i];
  508 
  509         return E1000_SUCCESS;
  510 }
  511 
  512 /**
  513  *  e1000_check_for_link_vf - Check for link for a virtual interface
  514  *  @hw: pointer to the HW structure
  515  *
  516  *  Checks to see if the underlying PF is still talking to the VF and
  517  *  if it is then it reports the link state to the hardware, otherwise
  518  *  it reports link down and returns an error.
  519  **/
  520 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
  521 {
  522         struct e1000_mbx_info *mbx = &hw->mbx;
  523         struct e1000_mac_info *mac = &hw->mac;
  524         s32 ret_val = E1000_SUCCESS;
  525         u32 in_msg = 0;
  526 
  527         DEBUGFUNC("e1000_check_for_link_vf");
  528 
  529         /*
  530          * We only want to run this if there has been a rst asserted.
  531          * in this case that could mean a link change, device reset,
  532          * or a virtual function reset
  533          */
  534 
  535         /* If we were hit with a reset or timeout drop the link */
  536         if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
  537                 mac->get_link_status = TRUE;
  538 
  539         if (!mac->get_link_status)
  540                 goto out;
  541 
  542         /* if link status is down no point in checking to see if pf is up */
  543         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
  544                 goto out;
  545 
  546         /* if the read failed it could just be a mailbox collision, best wait
  547          * until we are called again and don't report an error */
  548         if (mbx->ops.read(hw, &in_msg, 1, 0))
  549                 goto out;
  550 
  551         /* if incoming message isn't clear to send we are waiting on response */
  552         if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
  553                 /* message is not CTS and is NACK we have lost CTS status */
  554                 if (in_msg & E1000_VT_MSGTYPE_NACK)
  555                         ret_val = -E1000_ERR_MAC_INIT;
  556                 goto out;
  557         }
  558 
  559         /* at this point we know the PF is talking to us, check and see if
  560          * we are still accepting timeout or if we had a timeout failure.
  561          * if we failed then we will need to reinit */
  562         if (!mbx->timeout) {
  563                 ret_val = -E1000_ERR_MAC_INIT;
  564                 goto out;
  565         }
  566 
  567         /* if we passed all the tests above then the link is up and we no
  568          * longer need to check for link */
  569         mac->get_link_status = FALSE;
  570 
  571 out:
  572         return ret_val;
  573 }
  574 

Cache object: 08a4b9ea9bb197181d8c49adc2316c6c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.