The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/e1000/e1000_vf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2 
    3   Copyright (c) 2001-2014, Intel Corporation 
    4   All rights reserved.
    5   
    6   Redistribution and use in source and binary forms, with or without 
    7   modification, are permitted provided that the following conditions are met:
    8   
    9    1. Redistributions of source code must retain the above copyright notice, 
   10       this list of conditions and the following disclaimer.
   11   
   12    2. Redistributions in binary form must reproduce the above copyright 
   13       notice, this list of conditions and the following disclaimer in the 
   14       documentation and/or other materials provided with the distribution.
   15   
   16    3. Neither the name of the Intel Corporation nor the names of its 
   17       contributors may be used to endorse or promote products derived from 
   18       this software without specific prior written permission.
   19   
   20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
   23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
   24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
   25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
   26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
   27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
   28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30   POSSIBILITY OF SUCH DAMAGE.
   31 
   32 ******************************************************************************/
   33 /*$FreeBSD$*/
   34 
   35 
   36 #include "e1000_api.h"
   37 
   38 
   39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
   40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
   41 static void e1000_release_vf(struct e1000_hw *hw);
   42 static s32 e1000_acquire_vf(struct e1000_hw *hw);
   43 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
   44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
   45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
   46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
   47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
   48                                      u16 *duplex);
   49 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
   50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
   51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
   52 static int  e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
   53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
   54 
   55 /**
   56  *  e1000_init_phy_params_vf - Inits PHY params
   57  *  @hw: pointer to the HW structure
   58  *
   59  *  Doesn't do much - there's no PHY available to the VF.
   60  **/
   61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
   62 {
   63         DEBUGFUNC("e1000_init_phy_params_vf");
   64         hw->phy.type = e1000_phy_vf;
   65         hw->phy.ops.acquire = e1000_acquire_vf;
   66         hw->phy.ops.release = e1000_release_vf;
   67 
   68         return E1000_SUCCESS;
   69 }
   70 
   71 /**
   72  *  e1000_init_nvm_params_vf - Inits NVM params
   73  *  @hw: pointer to the HW structure
   74  *
   75  *  Doesn't do much - there's no NVM available to the VF.
   76  **/
   77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
   78 {
   79         DEBUGFUNC("e1000_init_nvm_params_vf");
   80         hw->nvm.type = e1000_nvm_none;
   81         hw->nvm.ops.acquire = e1000_acquire_vf;
   82         hw->nvm.ops.release = e1000_release_vf;
   83 
   84         return E1000_SUCCESS;
   85 }
   86 
   87 /**
   88  *  e1000_init_mac_params_vf - Inits MAC params
   89  *  @hw: pointer to the HW structure
   90  **/
   91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
   92 {
   93         struct e1000_mac_info *mac = &hw->mac;
   94 
   95         DEBUGFUNC("e1000_init_mac_params_vf");
   96 
   97         /* Set media type */
   98         /*
   99          * Virtual functions don't care what they're media type is as they
  100          * have no direct access to the PHY, or the media.  That is handled
  101          * by the physical function driver.
  102          */
  103         hw->phy.media_type = e1000_media_type_unknown;
  104 
  105         /* No ASF features for the VF driver */
  106         mac->asf_firmware_present = FALSE;
  107         /* ARC subsystem not supported */
  108         mac->arc_subsystem_valid = FALSE;
  109         /* Disable adaptive IFS mode so the generic funcs don't do anything */
  110         mac->adaptive_ifs = FALSE;
  111         /* VF's have no MTA Registers - PF feature only */
  112         mac->mta_reg_count = 128;
  113         /* VF's have no access to RAR entries  */
  114         mac->rar_entry_count = 1;
  115 
  116         /* Function pointers */
  117         /* link setup */
  118         mac->ops.setup_link = e1000_setup_link_vf;
  119         /* bus type/speed/width */
  120         mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
  121         /* reset */
  122         mac->ops.reset_hw = e1000_reset_hw_vf;
  123         /* hw initialization */
  124         mac->ops.init_hw = e1000_init_hw_vf;
  125         /* check for link */
  126         mac->ops.check_for_link = e1000_check_for_link_vf;
  127         /* link info */
  128         mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
  129         /* multicast address update */
  130         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
  131         /* set mac address */
  132         mac->ops.rar_set = e1000_rar_set_vf;
  133         /* read mac address */
  134         mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
  135 
  136 
  137         return E1000_SUCCESS;
  138 }
  139 
  140 /**
  141  *  e1000_init_function_pointers_vf - Inits function pointers
  142  *  @hw: pointer to the HW structure
  143  **/
  144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
  145 {
  146         DEBUGFUNC("e1000_init_function_pointers_vf");
  147 
  148         hw->mac.ops.init_params = e1000_init_mac_params_vf;
  149         hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
  150         hw->phy.ops.init_params = e1000_init_phy_params_vf;
  151         hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
  152 }
  153 
  154 /**
  155  *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
  156  *  @hw: pointer to the HW structure
  157  *
  158  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
  159  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
  160  *  even want any SW to attempt to use them.
  161  **/
  162 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  163 {
  164         return -E1000_ERR_PHY;
  165 }
  166 
  167 /**
  168  *  e1000_release_vf - Release PHY or NVM
  169  *  @hw: pointer to the HW structure
  170  *
  171  *  There is no PHY or NVM so we want all attempts to acquire these to fail.
  172  *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
  173  *  even want any SW to attempt to use them.
  174  **/
  175 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  176 {
  177         return;
  178 }
  179 
  180 /**
  181  *  e1000_setup_link_vf - Sets up link.
  182  *  @hw: pointer to the HW structure
  183  *
  184  *  Virtual functions cannot change link.
  185  **/
  186 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
  187 {
  188         DEBUGFUNC("e1000_setup_link_vf");
  189 
  190         return E1000_SUCCESS;
  191 }
  192 
  193 /**
  194  *  e1000_get_bus_info_pcie_vf - Gets the bus info.
  195  *  @hw: pointer to the HW structure
  196  *
  197  *  Virtual functions are not really on their own bus.
  198  **/
  199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
  200 {
  201         struct e1000_bus_info *bus = &hw->bus;
  202 
  203         DEBUGFUNC("e1000_get_bus_info_pcie_vf");
  204 
  205         /* Do not set type PCI-E because we don't want disable master to run */
  206         bus->type = e1000_bus_type_reserved;
  207         bus->speed = e1000_bus_speed_2500;
  208 
  209         return 0;
  210 }
  211 
  212 /**
  213  *  e1000_get_link_up_info_vf - Gets link info.
  214  *  @hw: pointer to the HW structure
  215  *  @speed: pointer to 16 bit value to store link speed.
  216  *  @duplex: pointer to 16 bit value to store duplex.
  217  *
  218  *  Since we cannot read the PHY and get accurate link info, we must rely upon
  219  *  the status register's data which is often stale and inaccurate.
  220  **/
  221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
  222                                      u16 *duplex)
  223 {
  224         s32 status;
  225 
  226         DEBUGFUNC("e1000_get_link_up_info_vf");
  227 
  228         status = E1000_READ_REG(hw, E1000_STATUS);
  229         if (status & E1000_STATUS_SPEED_1000) {
  230                 *speed = SPEED_1000;
  231                 DEBUGOUT("1000 Mbs, ");
  232         } else if (status & E1000_STATUS_SPEED_100) {
  233                 *speed = SPEED_100;
  234                 DEBUGOUT("100 Mbs, ");
  235         } else {
  236                 *speed = SPEED_10;
  237                 DEBUGOUT("10 Mbs, ");
  238         }
  239 
  240         if (status & E1000_STATUS_FD) {
  241                 *duplex = FULL_DUPLEX;
  242                 DEBUGOUT("Full Duplex\n");
  243         } else {
  244                 *duplex = HALF_DUPLEX;
  245                 DEBUGOUT("Half Duplex\n");
  246         }
  247 
  248         return E1000_SUCCESS;
  249 }
  250 
  251 /**
  252  *  e1000_reset_hw_vf - Resets the HW
  253  *  @hw: pointer to the HW structure
  254  *
  255  *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
  256  *  This is all the reset we can perform on a VF.
  257  **/
  258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
  259 {
  260         struct e1000_mbx_info *mbx = &hw->mbx;
  261         u32 timeout = E1000_VF_INIT_TIMEOUT;
  262         s32 ret_val = -E1000_ERR_MAC_INIT;
  263         u32 ctrl, msgbuf[3];
  264         u8 *addr = (u8 *)(&msgbuf[1]);
  265 
  266         DEBUGFUNC("e1000_reset_hw_vf");
  267 
  268         DEBUGOUT("Issuing a function level reset to MAC\n");
  269         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  270         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  271 
  272         /* we cannot reset while the RSTI / RSTD bits are asserted */
  273         while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
  274                 timeout--;
  275                 usec_delay(5);
  276         }
  277 
  278         if (timeout) {
  279                 /* mailbox timeout can now become active */
  280                 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
  281 
  282                 msgbuf[0] = E1000_VF_RESET;
  283                 mbx->ops.write_posted(hw, msgbuf, 1, 0);
  284 
  285                 msec_delay(10);
  286 
  287                 /* set our "perm_addr" based on info provided by PF */
  288                 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
  289                 if (!ret_val) {
  290                         if (msgbuf[0] == (E1000_VF_RESET |
  291                             E1000_VT_MSGTYPE_ACK))
  292                                 memcpy(hw->mac.perm_addr, addr, 6);
  293                         else
  294                                 ret_val = -E1000_ERR_MAC_INIT;
  295                 }
  296         }
  297 
  298         return ret_val;
  299 }
  300 
  301 /**
  302  *  e1000_init_hw_vf - Inits the HW
  303  *  @hw: pointer to the HW structure
  304  *
  305  *  Not much to do here except clear the PF Reset indication if there is one.
  306  **/
  307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
  308 {
  309         DEBUGFUNC("e1000_init_hw_vf");
  310 
  311         /* attempt to set and restore our mac address */
  312         e1000_rar_set_vf(hw, hw->mac.addr, 0);
  313 
  314         return E1000_SUCCESS;
  315 }
  316 
  317 /**
  318  *  e1000_rar_set_vf - set device MAC address
  319  *  @hw: pointer to the HW structure
  320  *  @addr: pointer to the receive address
  321  *  @index receive address array register
  322  **/
  323 static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
  324                              u32 E1000_UNUSEDARG index)
  325 {
  326         struct e1000_mbx_info *mbx = &hw->mbx;
  327         u32 msgbuf[3];
  328         u8 *msg_addr = (u8 *)(&msgbuf[1]);
  329         s32 ret_val;
  330 
  331         memset(msgbuf, 0, 12);
  332         msgbuf[0] = E1000_VF_SET_MAC_ADDR;
  333         memcpy(msg_addr, addr, 6);
  334         ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
  335 
  336         if (!ret_val)
  337                 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
  338 
  339         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
  340 
  341         /* if nacked the address was rejected, use "perm_addr" */
  342         if (!ret_val &&
  343             (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
  344                 e1000_read_mac_addr_vf(hw);
  345 
  346         return E1000_SUCCESS;
  347 }
  348 
  349 /**
  350  *  e1000_hash_mc_addr_vf - Generate a multicast hash value
  351  *  @hw: pointer to the HW structure
  352  *  @mc_addr: pointer to a multicast address
  353  *
  354  *  Generates a multicast address hash value which is used to determine
  355  *  the multicast filter table array address and new table value.
  356  **/
  357 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
  358 {
  359         u32 hash_value, hash_mask;
  360         u8 bit_shift = 0;
  361 
  362         DEBUGFUNC("e1000_hash_mc_addr_generic");
  363 
  364         /* Register count multiplied by bits per register */
  365         hash_mask = (hw->mac.mta_reg_count * 32) - 1;
  366 
  367         /*
  368          * The bit_shift is the number of left-shifts
  369          * where 0xFF would still fall within the hash mask.
  370          */
  371         while (hash_mask >> bit_shift != 0xFF)
  372                 bit_shift++;
  373 
  374         hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
  375                                   (((u16) mc_addr[5]) << bit_shift)));
  376 
  377         return hash_value;
  378 }
  379 
  380 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
  381                                      u32 *msg, u16 size)
  382 {
  383         struct e1000_mbx_info *mbx = &hw->mbx;
  384         u32 retmsg[E1000_VFMAILBOX_SIZE];
  385         s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
  386 
  387         if (!retval)
  388                 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
  389 }
  390 
  391 /**
  392  *  e1000_update_mc_addr_list_vf - Update Multicast addresses
  393  *  @hw: pointer to the HW structure
  394  *  @mc_addr_list: array of multicast addresses to program
  395  *  @mc_addr_count: number of multicast addresses to program
  396  *
  397  *  Updates the Multicast Table Array.
  398  *  The caller must have a packed mc_addr_list of multicast addresses.
  399  **/
  400 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
  401                                   u8 *mc_addr_list, u32 mc_addr_count)
  402 {
  403         u32 msgbuf[E1000_VFMAILBOX_SIZE];
  404         u16 *hash_list = (u16 *)&msgbuf[1];
  405         u32 hash_value;
  406         u32 i;
  407 
  408         DEBUGFUNC("e1000_update_mc_addr_list_vf");
  409 
  410         /* Each entry in the list uses 1 16 bit word.  We have 30
  411          * 16 bit words available in our HW msg buffer (minus 1 for the
  412          * msg type).  That's 30 hash values if we pack 'em right.  If
  413          * there are more than 30 MC addresses to add then punt the
  414          * extras for now and then add code to handle more than 30 later.
  415          * It would be unusual for a server to request that many multi-cast
  416          * addresses except for in large enterprise network environments.
  417          */
  418 
  419         DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
  420 
  421         if (mc_addr_count > 30) {
  422                 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
  423                 mc_addr_count = 30;
  424         }
  425 
  426         msgbuf[0] = E1000_VF_SET_MULTICAST;
  427         msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
  428 
  429         for (i = 0; i < mc_addr_count; i++) {
  430                 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
  431                 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
  432                 hash_list[i] = hash_value & 0x0FFF;
  433                 mc_addr_list += ETH_ADDR_LEN;
  434         }
  435 
  436         e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
  437 }
  438 
  439 /**
  440  *  e1000_vfta_set_vf - Set/Unset vlan filter table address
  441  *  @hw: pointer to the HW structure
  442  *  @vid: determines the vfta register and bit to set/unset
  443  *  @set: if TRUE then set bit, else clear bit
  444  **/
  445 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
  446 {
  447         u32 msgbuf[2];
  448 
  449         msgbuf[0] = E1000_VF_SET_VLAN;
  450         msgbuf[1] = vid;
  451         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
  452         if (set)
  453                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
  454 
  455         e1000_write_msg_read_ack(hw, msgbuf, 2);
  456 }
  457 
  458 /** e1000_rlpml_set_vf - Set the maximum receive packet length
  459  *  @hw: pointer to the HW structure
  460  *  @max_size: value to assign to max frame size
  461  **/
  462 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
  463 {
  464         u32 msgbuf[2];
  465 
  466         msgbuf[0] = E1000_VF_SET_LPE;
  467         msgbuf[1] = max_size;
  468 
  469         e1000_write_msg_read_ack(hw, msgbuf, 2);
  470 }
  471 
  472 /**
  473  *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
  474  *  @hw: pointer to the HW structure
  475  *  @uni: boolean indicating unicast promisc status
  476  *  @multi: boolean indicating multicast promisc status
  477  **/
  478 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
  479 {
  480         struct e1000_mbx_info *mbx = &hw->mbx;
  481         u32 msgbuf = E1000_VF_SET_PROMISC;
  482         s32 ret_val;
  483 
  484         switch (type) {
  485         case e1000_promisc_multicast:
  486                 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
  487                 break;
  488         case e1000_promisc_enabled:
  489                 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
  490         case e1000_promisc_unicast:
  491                 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
  492         case e1000_promisc_disabled:
  493                 break;
  494         default:
  495                 return -E1000_ERR_MAC_INIT;
  496         }
  497 
  498          ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
  499 
  500         if (!ret_val)
  501                 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
  502 
  503         if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
  504                 ret_val = -E1000_ERR_MAC_INIT;
  505 
  506         return ret_val;
  507 }
  508 
  509 /**
  510  *  e1000_read_mac_addr_vf - Read device MAC address
  511  *  @hw: pointer to the HW structure
  512  **/
  513 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
  514 {
  515         int i;
  516 
  517         for (i = 0; i < ETH_ADDR_LEN; i++)
  518                 hw->mac.addr[i] = hw->mac.perm_addr[i];
  519 
  520         return E1000_SUCCESS;
  521 }
  522 
  523 /**
  524  *  e1000_check_for_link_vf - Check for link for a virtual interface
  525  *  @hw: pointer to the HW structure
  526  *
  527  *  Checks to see if the underlying PF is still talking to the VF and
  528  *  if it is then it reports the link state to the hardware, otherwise
  529  *  it reports link down and returns an error.
  530  **/
  531 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
  532 {
  533         struct e1000_mbx_info *mbx = &hw->mbx;
  534         struct e1000_mac_info *mac = &hw->mac;
  535         s32 ret_val = E1000_SUCCESS;
  536         u32 in_msg = 0;
  537 
  538         DEBUGFUNC("e1000_check_for_link_vf");
  539 
  540         /*
  541          * We only want to run this if there has been a rst asserted.
  542          * in this case that could mean a link change, device reset,
  543          * or a virtual function reset
  544          */
  545 
  546         /* If we were hit with a reset or timeout drop the link */
  547         if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
  548                 mac->get_link_status = TRUE;
  549 
  550         if (!mac->get_link_status)
  551                 goto out;
  552 
  553         /* if link status is down no point in checking to see if pf is up */
  554         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
  555                 goto out;
  556 
  557         /* if the read failed it could just be a mailbox collision, best wait
  558          * until we are called again and don't report an error */
  559         if (mbx->ops.read(hw, &in_msg, 1, 0))
  560                 goto out;
  561 
  562         /* if incoming message isn't clear to send we are waiting on response */
  563         if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
  564                 /* message is not CTS and is NACK we have lost CTS status */
  565                 if (in_msg & E1000_VT_MSGTYPE_NACK)
  566                         ret_val = -E1000_ERR_MAC_INIT;
  567                 goto out;
  568         }
  569 
  570         /* at this point we know the PF is talking to us, check and see if
  571          * we are still accepting timeout or if we had a timeout failure.
  572          * if we failed then we will need to reinit */
  573         if (!mbx->timeout) {
  574                 ret_val = -E1000_ERR_MAC_INIT;
  575                 goto out;
  576         }
  577 
  578         /* if we passed all the tests above then the link is up and we no
  579          * longer need to check for link */
  580         mac->get_link_status = FALSE;
  581 
  582 out:
  583         return ret_val;
  584 }
  585 

Cache object: f9faa20dc342143878322f151d77077b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.