The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/e1000/if_em.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause
    3  *
    4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 /* $FreeBSD$ */
   30 #include "if_em.h"
   31 #include <sys/sbuf.h>
   32 #include <machine/_inttypes.h>
   33 
   34 #define em_mac_min e1000_82571
   35 #define igb_mac_min e1000_82575
   36 
   37 /*********************************************************************
   38  *  Driver version:
   39  *********************************************************************/
   40 char em_driver_version[] = "7.6.1-k";
   41 
   42 /*********************************************************************
   43  *  PCI Device ID Table
   44  *
   45  *  Used by probe to select devices to load on
   46  *  Last field stores an index into e1000_strings
   47  *  Last entry must be all 0s
   48  *
   49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
   50  *********************************************************************/
   51 
   52 static pci_vendor_info_t em_vendor_info_array[] =
   53 {
   54         /* Intel(R) - lem-class legacy devices */
   55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
   56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
   57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
   58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
   59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
   60 
   61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
   62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
   63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
   64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
   65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
   66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
   67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
   68 
   69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
   70 
   71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
   72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
   73 
   74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
   75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
   76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
   77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
   78 
   79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
   80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
   81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
   82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
   83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
   84 
   85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
   86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
   87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
   88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
   89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
   90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
   91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
   92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
   93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
   94 
   95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
   96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
   97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
   98 
   99         /* Intel(R) - em-class devices */
  100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
  101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
  102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
  103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
  104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
  105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
  106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
  107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
  108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
  109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
  110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
  111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
  112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
  113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
  114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
  115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
  116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
  117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
  118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
  119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
  120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
  121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
  122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
  123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
  124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
  125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
  126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
  127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
  128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
  129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
  130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
  131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
  132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
  133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
  134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
  135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
  136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
  137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
  138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
  139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
  140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
  141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
  142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
  143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
  144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
  145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
  146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
  147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
  148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
  149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
  150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
  151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
  152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
  153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
  154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
  155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
  156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
  157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
  158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
  159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
  160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
  161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
  162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
  163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
  164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
  165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
  166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
  167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
  168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
  169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
  170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
  171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
  172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
  173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
  174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
  175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
  176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
  177         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
  178         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
  179         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
  180         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
  181         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
  182         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
  183         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
  184         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
  185         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
  186         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
  187         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
  188         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
  189         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
  190         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
  191         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
  192         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
  193         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
  194         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
  195         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
  196         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
  197         /* required last entry */
  198         PVID_END
  199 };
  200 
  201 static pci_vendor_info_t igb_vendor_info_array[] =
  202 {
  203         /* Intel(R) - igb-class devices */
  204         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
  205         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
  206         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
  207         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
  208         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
  209         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
  210         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
  211         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
  212         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
  213         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
  214         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
  215         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
  216         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
  217         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
  218         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
  219         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
  220         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
  221         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
  222         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
  223         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
  224         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
  225         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
  226         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
  227         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
  228         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
  229         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
  230         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
  231         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
  232         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
  233         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
  234         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
  235         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
  236         PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
  237         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
  238         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
  239         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
  240         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
  241         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
  242         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
  243         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
  244         /* required last entry */
  245         PVID_END
  246 };
  247 
  248 /*********************************************************************
  249  *  Function prototypes
  250  *********************************************************************/
  251 static void     *em_register(device_t);
  252 static void     *igb_register(device_t);
  253 static int      em_if_attach_pre(if_ctx_t);
  254 static int      em_if_attach_post(if_ctx_t);
  255 static int      em_if_detach(if_ctx_t);
  256 static int      em_if_shutdown(if_ctx_t);
  257 static int      em_if_suspend(if_ctx_t);
  258 static int      em_if_resume(if_ctx_t);
  259 
  260 static int      em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
  261 static int      em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
  262 static void     em_if_queues_free(if_ctx_t);
  263 
  264 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
  265 static void     em_if_init(if_ctx_t);
  266 static void     em_if_stop(if_ctx_t);
  267 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
  268 static int      em_if_media_change(if_ctx_t);
  269 static int      em_if_mtu_set(if_ctx_t, uint32_t);
  270 static void     em_if_timer(if_ctx_t, uint16_t);
  271 static void     em_if_vlan_register(if_ctx_t, u16);
  272 static void     em_if_vlan_unregister(if_ctx_t, u16);
  273 static void     em_if_watchdog_reset(if_ctx_t);
  274 static bool     em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
  275 
  276 static void     em_identify_hardware(if_ctx_t);
  277 static int      em_allocate_pci_resources(if_ctx_t);
  278 static void     em_free_pci_resources(if_ctx_t);
  279 static void     em_reset(if_ctx_t);
  280 static int      em_setup_interface(if_ctx_t);
  281 static int      em_setup_msix(if_ctx_t);
  282 
  283 static void     em_initialize_transmit_unit(if_ctx_t);
  284 static void     em_initialize_receive_unit(if_ctx_t);
  285 
  286 static void     em_if_intr_enable(if_ctx_t);
  287 static void     em_if_intr_disable(if_ctx_t);
  288 static void     igb_if_intr_enable(if_ctx_t);
  289 static void     igb_if_intr_disable(if_ctx_t);
  290 static int      em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
  291 static int      em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
  292 static int      igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
  293 static int      igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
  294 static void     em_if_multi_set(if_ctx_t);
  295 static void     em_if_update_admin_status(if_ctx_t);
  296 static void     em_if_debug(if_ctx_t);
  297 static void     em_update_stats_counters(struct e1000_softc *);
  298 static void     em_add_hw_stats(struct e1000_softc *);
  299 static int      em_if_set_promisc(if_ctx_t, int);
  300 static bool     em_if_vlan_filter_capable(if_ctx_t);
  301 static bool     em_if_vlan_filter_used(if_ctx_t);
  302 static void     em_if_vlan_filter_enable(struct e1000_softc *);
  303 static void     em_if_vlan_filter_disable(struct e1000_softc *);
  304 static void     em_if_vlan_filter_write(struct e1000_softc *);
  305 static void     em_setup_vlan_hw_support(if_ctx_t ctx);
  306 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
  307 static void     em_print_nvm_info(struct e1000_softc *);
  308 static void     em_fw_version_locked(if_ctx_t);
  309 static void     em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
  310 static void     em_print_fw_version(struct e1000_softc *);
  311 static int      em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
  312 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
  313 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
  314 static void     em_print_debug_info(struct e1000_softc *);
  315 static int      em_is_valid_ether_addr(u8 *);
  316 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
  317 static void     em_add_int_delay_sysctl(struct e1000_softc *, const char *,
  318                     const char *, struct em_int_delay_info *, int, int);
  319 /* Management and WOL Support */
  320 static void     em_init_manageability(struct e1000_softc *);
  321 static void     em_release_manageability(struct e1000_softc *);
  322 static void     em_get_hw_control(struct e1000_softc *);
  323 static void     em_release_hw_control(struct e1000_softc *);
  324 static void     em_get_wakeup(if_ctx_t);
  325 static void     em_enable_wakeup(if_ctx_t);
  326 static int      em_enable_phy_wakeup(struct e1000_softc *);
  327 static void     em_disable_aspm(struct e1000_softc *);
  328 
  329 int             em_intr(void *);
  330 
  331 /* MSI-X handlers */
  332 static int      em_if_msix_intr_assign(if_ctx_t, int);
  333 static int      em_msix_link(void *);
  334 static void     em_handle_link(void *);
  335 
  336 static void     em_enable_vectors_82574(if_ctx_t);
  337 
  338 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
  339 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
  340 static void     em_if_led_func(if_ctx_t, int);
  341 
  342 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
  343 
  344 static void     lem_smartspeed(struct e1000_softc *);
  345 static void     igb_configure_queues(struct e1000_softc *);
  346 
  347 
  348 /*********************************************************************
  349  *  FreeBSD Device Interface Entry Points
  350  *********************************************************************/
  351 static device_method_t em_methods[] = {
  352         /* Device interface */
  353         DEVMETHOD(device_register, em_register),
  354         DEVMETHOD(device_probe, iflib_device_probe),
  355         DEVMETHOD(device_attach, iflib_device_attach),
  356         DEVMETHOD(device_detach, iflib_device_detach),
  357         DEVMETHOD(device_shutdown, iflib_device_shutdown),
  358         DEVMETHOD(device_suspend, iflib_device_suspend),
  359         DEVMETHOD(device_resume, iflib_device_resume),
  360         DEVMETHOD_END
  361 };
  362 
  363 static device_method_t igb_methods[] = {
  364         /* Device interface */
  365         DEVMETHOD(device_register, igb_register),
  366         DEVMETHOD(device_probe, iflib_device_probe),
  367         DEVMETHOD(device_attach, iflib_device_attach),
  368         DEVMETHOD(device_detach, iflib_device_detach),
  369         DEVMETHOD(device_shutdown, iflib_device_shutdown),
  370         DEVMETHOD(device_suspend, iflib_device_suspend),
  371         DEVMETHOD(device_resume, iflib_device_resume),
  372         DEVMETHOD_END
  373 };
  374 
  375 
  376 static driver_t em_driver = {
  377         "em", em_methods, sizeof(struct e1000_softc),
  378 };
  379 
  380 DRIVER_MODULE(em, pci, em_driver, 0, 0);
  381 
  382 MODULE_DEPEND(em, pci, 1, 1, 1);
  383 MODULE_DEPEND(em, ether, 1, 1, 1);
  384 MODULE_DEPEND(em, iflib, 1, 1, 1);
  385 
  386 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
  387 
  388 static driver_t igb_driver = {
  389         "igb", igb_methods, sizeof(struct e1000_softc),
  390 };
  391 
  392 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
  393 
  394 MODULE_DEPEND(igb, pci, 1, 1, 1);
  395 MODULE_DEPEND(igb, ether, 1, 1, 1);
  396 MODULE_DEPEND(igb, iflib, 1, 1, 1);
  397 
  398 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
  399 
  400 static device_method_t em_if_methods[] = {
  401         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
  402         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
  403         DEVMETHOD(ifdi_detach, em_if_detach),
  404         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
  405         DEVMETHOD(ifdi_suspend, em_if_suspend),
  406         DEVMETHOD(ifdi_resume, em_if_resume),
  407         DEVMETHOD(ifdi_init, em_if_init),
  408         DEVMETHOD(ifdi_stop, em_if_stop),
  409         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
  410         DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
  411         DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
  412         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
  413         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
  414         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
  415         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
  416         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
  417         DEVMETHOD(ifdi_media_status, em_if_media_status),
  418         DEVMETHOD(ifdi_media_change, em_if_media_change),
  419         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
  420         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
  421         DEVMETHOD(ifdi_timer, em_if_timer),
  422         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
  423         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
  424         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
  425         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
  426         DEVMETHOD(ifdi_led_func, em_if_led_func),
  427         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
  428         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
  429         DEVMETHOD(ifdi_debug, em_if_debug),
  430         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
  431         DEVMETHOD_END
  432 };
  433 
  434 static driver_t em_if_driver = {
  435         "em_if", em_if_methods, sizeof(struct e1000_softc)
  436 };
  437 
  438 static device_method_t igb_if_methods[] = {
  439         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
  440         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
  441         DEVMETHOD(ifdi_detach, em_if_detach),
  442         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
  443         DEVMETHOD(ifdi_suspend, em_if_suspend),
  444         DEVMETHOD(ifdi_resume, em_if_resume),
  445         DEVMETHOD(ifdi_init, em_if_init),
  446         DEVMETHOD(ifdi_stop, em_if_stop),
  447         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
  448         DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
  449         DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
  450         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
  451         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
  452         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
  453         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
  454         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
  455         DEVMETHOD(ifdi_media_status, em_if_media_status),
  456         DEVMETHOD(ifdi_media_change, em_if_media_change),
  457         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
  458         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
  459         DEVMETHOD(ifdi_timer, em_if_timer),
  460         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
  461         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
  462         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
  463         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
  464         DEVMETHOD(ifdi_led_func, em_if_led_func),
  465         DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
  466         DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
  467         DEVMETHOD(ifdi_debug, em_if_debug),
  468         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
  469         DEVMETHOD_END
  470 };
  471 
  472 static driver_t igb_if_driver = {
  473         "igb_if", igb_if_methods, sizeof(struct e1000_softc)
  474 };
  475 
  476 /*********************************************************************
  477  *  Tunable default values.
  478  *********************************************************************/
  479 
  480 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
  481 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
  482 
  483 #define MAX_INTS_PER_SEC        8000
  484 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
  485 
  486 /* Allow common code without TSO */
  487 #ifndef CSUM_TSO
  488 #define CSUM_TSO        0
  489 #endif
  490 
  491 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  492     "EM driver parameters");
  493 
  494 static int em_disable_crc_stripping = 0;
  495 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
  496     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
  497 
  498 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
  499 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
  500 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
  501     0, "Default transmit interrupt delay in usecs");
  502 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
  503     0, "Default receive interrupt delay in usecs");
  504 
  505 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
  506 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
  507 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
  508     &em_tx_abs_int_delay_dflt, 0,
  509     "Default transmit interrupt delay limit in usecs");
  510 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
  511     &em_rx_abs_int_delay_dflt, 0,
  512     "Default receive interrupt delay limit in usecs");
  513 
  514 static int em_smart_pwr_down = false;
  515 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
  516     0, "Set to true to leave smart power down enabled on newer adapters");
  517 
  518 /* Controls whether promiscuous also shows bad packets */
  519 static int em_debug_sbp = false;
  520 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
  521     "Show bad packets in promiscuous mode");
  522 
  523 /* How many packets rxeof tries to clean at a time */
  524 static int em_rx_process_limit = 100;
  525 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
  526     &em_rx_process_limit, 0,
  527     "Maximum number of received packets to process "
  528     "at a time, -1 means unlimited");
  529 
  530 /* Energy efficient ethernet - default to OFF */
  531 static int eee_setting = 1;
  532 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
  533     "Enable Energy Efficient Ethernet");
  534 
  535 /*
  536 ** Tuneable Interrupt rate
  537 */
  538 static int em_max_interrupt_rate = 8000;
  539 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
  540     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
  541 
  542 
  543 
  544 /* Global used in WOL setup with multiport cards */
  545 static int global_quad_port_a = 0;
  546 
  547 extern struct if_txrx igb_txrx;
  548 extern struct if_txrx em_txrx;
  549 extern struct if_txrx lem_txrx;
  550 
  551 static struct if_shared_ctx em_sctx_init = {
  552         .isc_magic = IFLIB_MAGIC,
  553         .isc_q_align = PAGE_SIZE,
  554         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
  555         .isc_tx_maxsegsize = PAGE_SIZE,
  556         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
  557         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
  558         .isc_rx_maxsize = MJUM9BYTES,
  559         .isc_rx_nsegments = 1,
  560         .isc_rx_maxsegsize = MJUM9BYTES,
  561         .isc_nfl = 1,
  562         .isc_nrxqs = 1,
  563         .isc_ntxqs = 1,
  564         .isc_admin_intrcnt = 1,
  565         .isc_vendor_info = em_vendor_info_array,
  566         .isc_driver_version = em_driver_version,
  567         .isc_driver = &em_if_driver,
  568         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
  569 
  570         .isc_nrxd_min = {EM_MIN_RXD},
  571         .isc_ntxd_min = {EM_MIN_TXD},
  572         .isc_nrxd_max = {EM_MAX_RXD},
  573         .isc_ntxd_max = {EM_MAX_TXD},
  574         .isc_nrxd_default = {EM_DEFAULT_RXD},
  575         .isc_ntxd_default = {EM_DEFAULT_TXD},
  576 };
  577 
  578 static struct if_shared_ctx igb_sctx_init = {
  579         .isc_magic = IFLIB_MAGIC,
  580         .isc_q_align = PAGE_SIZE,
  581         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
  582         .isc_tx_maxsegsize = PAGE_SIZE,
  583         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
  584         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
  585         .isc_rx_maxsize = MJUM9BYTES,
  586         .isc_rx_nsegments = 1,
  587         .isc_rx_maxsegsize = MJUM9BYTES,
  588         .isc_nfl = 1,
  589         .isc_nrxqs = 1,
  590         .isc_ntxqs = 1,
  591         .isc_admin_intrcnt = 1,
  592         .isc_vendor_info = igb_vendor_info_array,
  593         .isc_driver_version = em_driver_version,
  594         .isc_driver = &igb_if_driver,
  595         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
  596 
  597         .isc_nrxd_min = {EM_MIN_RXD},
  598         .isc_ntxd_min = {EM_MIN_TXD},
  599         .isc_nrxd_max = {IGB_MAX_RXD},
  600         .isc_ntxd_max = {IGB_MAX_TXD},
  601         .isc_nrxd_default = {EM_DEFAULT_RXD},
  602         .isc_ntxd_default = {EM_DEFAULT_TXD},
  603 };
  604 
  605 /*****************************************************************
  606  *
  607  * Dump Registers
  608  *
  609  ****************************************************************/
  610 #define IGB_REGS_LEN 739
  611 
  612 static int em_get_regs(SYSCTL_HANDLER_ARGS)
  613 {
  614         struct e1000_softc *sc = (struct e1000_softc *)arg1;
  615         struct e1000_hw *hw = &sc->hw;
  616         struct sbuf *sb;
  617         u32 *regs_buff;
  618         int rc;
  619 
  620         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
  621         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
  622 
  623         rc = sysctl_wire_old_buffer(req, 0);
  624         MPASS(rc == 0);
  625         if (rc != 0) {
  626                 free(regs_buff, M_DEVBUF);
  627                 return (rc);
  628         }
  629 
  630         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
  631         MPASS(sb != NULL);
  632         if (sb == NULL) {
  633                 free(regs_buff, M_DEVBUF);
  634                 return (ENOMEM);
  635         }
  636 
  637         /* General Registers */
  638         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
  639         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
  640         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
  641         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
  642         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
  643         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
  644         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
  645         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
  646         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
  647         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
  648         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
  649         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
  650         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
  651         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
  652         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
  653         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
  654         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
  655         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
  656         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
  657         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
  658         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
  659         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
  660 
  661         sbuf_printf(sb, "General Registers\n");
  662         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
  663         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
  664         sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
  665 
  666         sbuf_printf(sb, "Interrupt Registers\n");
  667         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
  668 
  669         sbuf_printf(sb, "RX Registers\n");
  670         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
  671         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
  672         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
  673         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
  674         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
  675         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
  676         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
  677 
  678         sbuf_printf(sb, "TX Registers\n");
  679         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
  680         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
  681         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
  682         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
  683         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
  684         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
  685         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
  686         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
  687         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
  688         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
  689         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
  690 
  691         free(regs_buff, M_DEVBUF);
  692 
  693 #ifdef DUMP_DESCS
  694         {
  695                 if_softc_ctx_t scctx = sc->shared;
  696                 struct rx_ring *rxr = &rx_que->rxr;
  697                 struct tx_ring *txr = &tx_que->txr;
  698                 int ntxd = scctx->isc_ntxd[0];
  699                 int nrxd = scctx->isc_nrxd[0];
  700                 int j;
  701 
  702         for (j = 0; j < nrxd; j++) {
  703                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
  704                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
  705                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
  706         }
  707 
  708         for (j = 0; j < min(ntxd, 256); j++) {
  709                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
  710 
  711                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
  712                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
  713                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
  714 
  715         }
  716         }
  717 #endif
  718 
  719         rc = sbuf_finish(sb);
  720         sbuf_delete(sb);
  721         return(rc);
  722 }
  723 
  724 static void *
  725 em_register(device_t dev)
  726 {
  727         return (&em_sctx_init);
  728 }
  729 
  730 static void *
  731 igb_register(device_t dev)
  732 {
  733         return (&igb_sctx_init);
  734 }
  735 
  736 static int
  737 em_set_num_queues(if_ctx_t ctx)
  738 {
  739         struct e1000_softc *sc = iflib_get_softc(ctx);
  740         int maxqueues;
  741 
  742         /* Sanity check based on HW */
  743         switch (sc->hw.mac.type) {
  744         case e1000_82576:
  745         case e1000_82580:
  746         case e1000_i350:
  747         case e1000_i354:
  748                 maxqueues = 8;
  749                 break;
  750         case e1000_i210:
  751         case e1000_82575:
  752                 maxqueues = 4;
  753                 break;
  754         case e1000_i211:
  755         case e1000_82574:
  756                 maxqueues = 2;
  757                 break;
  758         default:
  759                 maxqueues = 1;
  760                 break;
  761         }
  762 
  763         return (maxqueues);
  764 }
  765 
  766 #define LEM_CAPS                                                        \
  767     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
  768     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
  769 
  770 #define EM_CAPS                                                         \
  771     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
  772     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
  773     IFCAP_LRO | IFCAP_VLAN_HWTSO
  774 
  775 #define IGB_CAPS                                                        \
  776     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
  777     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
  778     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
  779     IFCAP_TSO6
  780 
  781 /*********************************************************************
  782  *  Device initialization routine
  783  *
  784  *  The attach entry point is called when the driver is being loaded.
  785  *  This routine identifies the type of hardware, allocates all resources
  786  *  and initializes the hardware.
  787  *
  788  *  return 0 on success, positive on failure
  789  *********************************************************************/
  790 static int
  791 em_if_attach_pre(if_ctx_t ctx)
  792 {
  793         struct e1000_softc *sc;
  794         if_softc_ctx_t scctx;
  795         device_t dev;
  796         struct e1000_hw *hw;
  797         struct sysctl_oid_list *child;
  798         struct sysctl_ctx_list *ctx_list;
  799         int error = 0;
  800 
  801         INIT_DEBUGOUT("em_if_attach_pre: begin");
  802         dev = iflib_get_dev(ctx);
  803         sc = iflib_get_softc(ctx);
  804 
  805         sc->ctx = sc->osdep.ctx = ctx;
  806         sc->dev = sc->osdep.dev = dev;
  807         scctx = sc->shared = iflib_get_softc_ctx(ctx);
  808         sc->media = iflib_get_media(ctx);
  809         hw = &sc->hw;
  810 
  811         sc->tx_process_limit = scctx->isc_ntxd[0];
  812 
  813         /* Determine hardware and mac info */
  814         em_identify_hardware(ctx);
  815 
  816         /* SYSCTL stuff */
  817         ctx_list = device_get_sysctl_ctx(dev);
  818         child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
  819 
  820         SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
  821             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
  822             em_sysctl_nvm_info, "I", "NVM Information");
  823 
  824         SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
  825             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
  826             em_sysctl_print_fw_version, "A",
  827             "Prints FW/NVM Versions");
  828 
  829         SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
  830             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
  831             em_sysctl_debug_info, "I", "Debug Information");
  832 
  833         SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
  834             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
  835             em_set_flowcntl, "I", "Flow Control");
  836 
  837         SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
  838             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
  839             em_get_regs, "A", "Dump Registers");
  840 
  841         SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
  842             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
  843             em_get_rs, "I", "Dump RS indexes");
  844 
  845         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
  846         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
  847         if (bootverbose)
  848                 device_printf(dev, "attach_pre capping queues at %d\n",
  849                     scctx->isc_ntxqsets_max);
  850 
  851         if (hw->mac.type >= igb_mac_min) {
  852                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
  853                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
  854                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
  855                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
  856                 scctx->isc_txrx = &igb_txrx;
  857                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
  858                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
  859                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
  860                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
  861                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
  862                      CSUM_IP6_TCP | CSUM_IP6_UDP;
  863                 if (hw->mac.type != e1000_82575)
  864                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
  865                 /*
  866                 ** Some new devices, as with ixgbe, now may
  867                 ** use a different BAR, so we need to keep
  868                 ** track of which is used.
  869                 */
  870                 scctx->isc_msix_bar = pci_msix_table_bar(dev);
  871         } else if (hw->mac.type >= em_mac_min) {
  872                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
  873                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
  874                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
  875                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
  876                 scctx->isc_txrx = &em_txrx;
  877                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
  878                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
  879                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
  880                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
  881                 /*
  882                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
  883                  * by default as we don't have workarounds for all associated
  884                  * silicon errata.  E. g., with several MACs such as 82573E,
  885                  * TSO only works at Gigabit speed and otherwise can cause the
  886                  * hardware to hang (which also would be next to impossible to
  887                  * work around given that already queued TSO-using descriptors
  888                  * would need to be flushed and vlan(4) reconfigured at runtime
  889                  * in case of a link speed change).  Moreover, MACs like 82579
  890                  * still can hang at Gigabit even with all publicly documented
  891                  * TSO workarounds implemented.  Generally, the penality of
  892                  * these workarounds is rather high and may involve copying
  893                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
  894                  * work for a few MACs of this class - at least when sticking
  895                  * with Gigabit - in which case users may enable TSO manually.
  896                  */
  897                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
  898                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
  899                 /*
  900                  * We support MSI-X with 82574 only, but indicate to iflib(4)
  901                  * that it shall give MSI at least a try with other devices.
  902                  */
  903                 if (hw->mac.type == e1000_82574) {
  904                         scctx->isc_msix_bar = pci_msix_table_bar(dev);
  905                 } else {
  906                         scctx->isc_msix_bar = -1;
  907                         scctx->isc_disable_msix = 1;
  908                 }
  909         } else {
  910                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
  911                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
  912                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
  913                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
  914                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
  915                 scctx->isc_txrx = &lem_txrx;
  916                 scctx->isc_capabilities = LEM_CAPS;
  917                 if (hw->mac.type < e1000_82543)
  918                         scctx->isc_capabilities &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
  919                 /* 82541ER doesn't do HW tagging */
  920                 if (hw->device_id == E1000_DEV_ID_82541ER || hw->device_id == E1000_DEV_ID_82541ER_LOM)
  921                         scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
  922                 /* INTx only */
  923                 scctx->isc_msix_bar = 0;
  924                 scctx->isc_capenable = scctx->isc_capabilities;
  925         }
  926 
  927         /* Setup PCI resources */
  928         if (em_allocate_pci_resources(ctx)) {
  929                 device_printf(dev, "Allocation of PCI resources failed\n");
  930                 error = ENXIO;
  931                 goto err_pci;
  932         }
  933 
  934         /*
  935         ** For ICH8 and family we need to
  936         ** map the flash memory, and this
  937         ** must happen after the MAC is
  938         ** identified
  939         */
  940         if ((hw->mac.type == e1000_ich8lan) ||
  941             (hw->mac.type == e1000_ich9lan) ||
  942             (hw->mac.type == e1000_ich10lan) ||
  943             (hw->mac.type == e1000_pchlan) ||
  944             (hw->mac.type == e1000_pch2lan) ||
  945             (hw->mac.type == e1000_pch_lpt)) {
  946                 int rid = EM_BAR_TYPE_FLASH;
  947                 sc->flash = bus_alloc_resource_any(dev,
  948                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
  949                 if (sc->flash == NULL) {
  950                         device_printf(dev, "Mapping of Flash failed\n");
  951                         error = ENXIO;
  952                         goto err_pci;
  953                 }
  954                 /* This is used in the shared code */
  955                 hw->flash_address = (u8 *)sc->flash;
  956                 sc->osdep.flash_bus_space_tag =
  957                     rman_get_bustag(sc->flash);
  958                 sc->osdep.flash_bus_space_handle =
  959                     rman_get_bushandle(sc->flash);
  960         }
  961         /*
  962         ** In the new SPT device flash is not  a
  963         ** separate BAR, rather it is also in BAR0,
  964         ** so use the same tag and an offset handle for the
  965         ** FLASH read/write macros in the shared code.
  966         */
  967         else if (hw->mac.type >= e1000_pch_spt) {
  968                 sc->osdep.flash_bus_space_tag =
  969                     sc->osdep.mem_bus_space_tag;
  970                 sc->osdep.flash_bus_space_handle =
  971                     sc->osdep.mem_bus_space_handle
  972                     + E1000_FLASH_BASE_ADDR;
  973         }
  974 
  975         /* Do Shared Code initialization */
  976         error = e1000_setup_init_funcs(hw, true);
  977         if (error) {
  978                 device_printf(dev, "Setup of Shared code failed, error %d\n",
  979                     error);
  980                 error = ENXIO;
  981                 goto err_pci;
  982         }
  983 
  984         em_setup_msix(ctx);
  985         e1000_get_bus_info(hw);
  986 
  987         /* Set up some sysctls for the tunable interrupt delays */
  988         em_add_int_delay_sysctl(sc, "rx_int_delay",
  989             "receive interrupt delay in usecs", &sc->rx_int_delay,
  990             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
  991         em_add_int_delay_sysctl(sc, "tx_int_delay",
  992             "transmit interrupt delay in usecs", &sc->tx_int_delay,
  993             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
  994         em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
  995             "receive interrupt delay limit in usecs",
  996             &sc->rx_abs_int_delay,
  997             E1000_REGISTER(hw, E1000_RADV),
  998             em_rx_abs_int_delay_dflt);
  999         em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
 1000             "transmit interrupt delay limit in usecs",
 1001             &sc->tx_abs_int_delay,
 1002             E1000_REGISTER(hw, E1000_TADV),
 1003             em_tx_abs_int_delay_dflt);
 1004         em_add_int_delay_sysctl(sc, "itr",
 1005             "interrupt delay limit in usecs/4",
 1006             &sc->tx_itr,
 1007             E1000_REGISTER(hw, E1000_ITR),
 1008             DEFAULT_ITR);
 1009 
 1010         hw->mac.autoneg = DO_AUTO_NEG;
 1011         hw->phy.autoneg_wait_to_complete = false;
 1012         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
 1013 
 1014         if (hw->mac.type < em_mac_min) {
 1015                 e1000_init_script_state_82541(hw, true);
 1016                 e1000_set_tbi_compatibility_82543(hw, true);
 1017         }
 1018         /* Copper options */
 1019         if (hw->phy.media_type == e1000_media_type_copper) {
 1020                 hw->phy.mdix = AUTO_ALL_MODES;
 1021                 hw->phy.disable_polarity_correction = false;
 1022                 hw->phy.ms_type = EM_MASTER_SLAVE;
 1023         }
 1024 
 1025         /*
 1026          * Set the frame limits assuming
 1027          * standard ethernet sized frames.
 1028          */
 1029         scctx->isc_max_frame_size = hw->mac.max_frame_size =
 1030             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
 1031 
 1032         /*
 1033          * This controls when hardware reports transmit completion
 1034          * status.
 1035          */
 1036         hw->mac.report_tx_early = 1;
 1037 
 1038         /* Allocate multicast array memory. */
 1039         sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
 1040             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
 1041         if (sc->mta == NULL) {
 1042                 device_printf(dev, "Can not allocate multicast setup array\n");
 1043                 error = ENOMEM;
 1044                 goto err_late;
 1045         }
 1046 
 1047         /* Check SOL/IDER usage */
 1048         if (e1000_check_reset_block(hw))
 1049                 device_printf(dev, "PHY reset is blocked"
 1050                               " due to SOL/IDER session.\n");
 1051 
 1052         /* Sysctl for setting Energy Efficient Ethernet */
 1053         hw->dev_spec.ich8lan.eee_disable = eee_setting;
 1054         SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
 1055             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
 1056             em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
 1057 
 1058         /*
 1059         ** Start from a known state, this is
 1060         ** important in reading the nvm and
 1061         ** mac from that.
 1062         */
 1063         e1000_reset_hw(hw);
 1064 
 1065         /* Make sure we have a good EEPROM before we read from it */
 1066         if (e1000_validate_nvm_checksum(hw) < 0) {
 1067                 /*
 1068                 ** Some PCI-E parts fail the first check due to
 1069                 ** the link being in sleep state, call it again,
 1070                 ** if it fails a second time its a real issue.
 1071                 */
 1072                 if (e1000_validate_nvm_checksum(hw) < 0) {
 1073                         device_printf(dev,
 1074                             "The EEPROM Checksum Is Not Valid\n");
 1075                         error = EIO;
 1076                         goto err_late;
 1077                 }
 1078         }
 1079 
 1080         /* Copy the permanent MAC address out of the EEPROM */
 1081         if (e1000_read_mac_addr(hw) < 0) {
 1082                 device_printf(dev, "EEPROM read error while reading MAC"
 1083                               " address\n");
 1084                 error = EIO;
 1085                 goto err_late;
 1086         }
 1087 
 1088         if (!em_is_valid_ether_addr(hw->mac.addr)) {
 1089                 if (sc->vf_ifp) {
 1090                         ether_gen_addr(iflib_get_ifp(ctx),
 1091                             (struct ether_addr *)hw->mac.addr);
 1092                 } else {
 1093                         device_printf(dev, "Invalid MAC address\n");
 1094                         error = EIO;
 1095                         goto err_late;
 1096                 }
 1097         }
 1098 
 1099         /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
 1100         em_fw_version_locked(ctx);
 1101 
 1102         em_print_fw_version(sc);
 1103 
 1104         /* Disable ULP support */
 1105         e1000_disable_ulp_lpt_lp(hw, true);
 1106 
 1107         /*
 1108          * Get Wake-on-Lan and Management info for later use
 1109          */
 1110         em_get_wakeup(ctx);
 1111 
 1112         /* Enable only WOL MAGIC by default */
 1113         scctx->isc_capenable &= ~IFCAP_WOL;
 1114         if (sc->wol != 0)
 1115                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
 1116 
 1117         iflib_set_mac(ctx, hw->mac.addr);
 1118 
 1119         return (0);
 1120 
 1121 err_late:
 1122         em_release_hw_control(sc);
 1123 err_pci:
 1124         em_free_pci_resources(ctx);
 1125         free(sc->mta, M_DEVBUF);
 1126 
 1127         return (error);
 1128 }
 1129 
 1130 static int
 1131 em_if_attach_post(if_ctx_t ctx)
 1132 {
 1133         struct e1000_softc *sc = iflib_get_softc(ctx);
 1134         struct e1000_hw *hw = &sc->hw;
 1135         int error = 0;
 1136 
 1137         /* Setup OS specific network interface */
 1138         error = em_setup_interface(ctx);
 1139         if (error != 0) {
 1140                 device_printf(sc->dev, "Interface setup failed: %d\n", error);
 1141                 goto err_late;
 1142         }
 1143 
 1144         em_reset(ctx);
 1145 
 1146         /* Initialize statistics */
 1147         em_update_stats_counters(sc);
 1148         hw->mac.get_link_status = 1;
 1149         em_if_update_admin_status(ctx);
 1150         em_add_hw_stats(sc);
 1151 
 1152         /* Non-AMT based hardware can now take control from firmware */
 1153         if (sc->has_manage && !sc->has_amt)
 1154                 em_get_hw_control(sc);
 1155 
 1156         INIT_DEBUGOUT("em_if_attach_post: end");
 1157 
 1158         return (0);
 1159 
 1160 err_late:
 1161         /* upon attach_post() error, iflib calls _if_detach() to free resources. */
 1162         return (error);
 1163 }
 1164 
 1165 /*********************************************************************
 1166  *  Device removal routine
 1167  *
 1168  *  The detach entry point is called when the driver is being removed.
 1169  *  This routine stops the adapter and deallocates all the resources
 1170  *  that were allocated for driver operation.
 1171  *
 1172  *  return 0 on success, positive on failure
 1173  *********************************************************************/
 1174 static int
 1175 em_if_detach(if_ctx_t ctx)
 1176 {
 1177         struct e1000_softc      *sc = iflib_get_softc(ctx);
 1178 
 1179         INIT_DEBUGOUT("em_if_detach: begin");
 1180 
 1181         e1000_phy_hw_reset(&sc->hw);
 1182 
 1183         em_release_manageability(sc);
 1184         em_release_hw_control(sc);
 1185         em_free_pci_resources(ctx);
 1186         free(sc->mta, M_DEVBUF);
 1187         sc->mta = NULL;
 1188 
 1189         return (0);
 1190 }
 1191 
 1192 /*********************************************************************
 1193  *
 1194  *  Shutdown entry point
 1195  *
 1196  **********************************************************************/
 1197 
 1198 static int
 1199 em_if_shutdown(if_ctx_t ctx)
 1200 {
 1201         return em_if_suspend(ctx);
 1202 }
 1203 
 1204 /*
 1205  * Suspend/resume device methods.
 1206  */
 1207 static int
 1208 em_if_suspend(if_ctx_t ctx)
 1209 {
 1210         struct e1000_softc *sc = iflib_get_softc(ctx);
 1211 
 1212         em_release_manageability(sc);
 1213         em_release_hw_control(sc);
 1214         em_enable_wakeup(ctx);
 1215         return (0);
 1216 }
 1217 
 1218 static int
 1219 em_if_resume(if_ctx_t ctx)
 1220 {
 1221         struct e1000_softc *sc = iflib_get_softc(ctx);
 1222 
 1223         if (sc->hw.mac.type == e1000_pch2lan)
 1224                 e1000_resume_workarounds_pchlan(&sc->hw);
 1225         em_if_init(ctx);
 1226         em_init_manageability(sc);
 1227 
 1228         return(0);
 1229 }
 1230 
 1231 static int
 1232 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
 1233 {
 1234         int max_frame_size;
 1235         struct e1000_softc *sc = iflib_get_softc(ctx);
 1236         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
 1237 
 1238         IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
 1239 
 1240         switch (sc->hw.mac.type) {
 1241         case e1000_82571:
 1242         case e1000_82572:
 1243         case e1000_ich9lan:
 1244         case e1000_ich10lan:
 1245         case e1000_pch2lan:
 1246         case e1000_pch_lpt:
 1247         case e1000_pch_spt:
 1248         case e1000_pch_cnp:
 1249         case e1000_pch_tgp:
 1250         case e1000_pch_adp:
 1251         case e1000_pch_mtp:
 1252         case e1000_82574:
 1253         case e1000_82583:
 1254         case e1000_80003es2lan:
 1255                 /* 9K Jumbo Frame size */
 1256                 max_frame_size = 9234;
 1257                 break;
 1258         case e1000_pchlan:
 1259                 max_frame_size = 4096;
 1260                 break;
 1261         case e1000_82542:
 1262         case e1000_ich8lan:
 1263                 /* Adapters that do not support jumbo frames */
 1264                 max_frame_size = ETHER_MAX_LEN;
 1265                 break;
 1266         default:
 1267                 if (sc->hw.mac.type >= igb_mac_min)
 1268                         max_frame_size = 9234;
 1269                 else /* lem */
 1270                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
 1271         }
 1272         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
 1273                 return (EINVAL);
 1274         }
 1275 
 1276         scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
 1277             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
 1278         return (0);
 1279 }
 1280 
 1281 /*********************************************************************
 1282  *  Init entry point
 1283  *
 1284  *  This routine is used in two ways. It is used by the stack as
 1285  *  init entry point in network interface structure. It is also used
 1286  *  by the driver as a hw/sw initialization routine to get to a
 1287  *  consistent state.
 1288  *
 1289  **********************************************************************/
 1290 static void
 1291 em_if_init(if_ctx_t ctx)
 1292 {
 1293         struct e1000_softc *sc = iflib_get_softc(ctx);
 1294         if_softc_ctx_t scctx = sc->shared;
 1295         if_t ifp = iflib_get_ifp(ctx);
 1296         struct em_tx_queue *tx_que;
 1297         int i;
 1298 
 1299         INIT_DEBUGOUT("em_if_init: begin");
 1300 
 1301         /* Get the latest mac address, User can use a LAA */
 1302         bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
 1303             ETHER_ADDR_LEN);
 1304 
 1305         /* Put the address into the Receive Address Array */
 1306         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
 1307 
 1308         /*
 1309          * With the 82571 adapter, RAR[0] may be overwritten
 1310          * when the other port is reset, we make a duplicate
 1311          * in RAR[14] for that eventuality, this assures
 1312          * the interface continues to function.
 1313          */
 1314         if (sc->hw.mac.type == e1000_82571) {
 1315                 e1000_set_laa_state_82571(&sc->hw, true);
 1316                 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
 1317                     E1000_RAR_ENTRIES - 1);
 1318         }
 1319 
 1320 
 1321         /* Initialize the hardware */
 1322         em_reset(ctx);
 1323         em_if_update_admin_status(ctx);
 1324 
 1325         for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) {
 1326                 struct tx_ring *txr = &tx_que->txr;
 1327 
 1328                 txr->tx_rs_cidx = txr->tx_rs_pidx;
 1329 
 1330                 /* Initialize the last processed descriptor to be the end of
 1331                  * the ring, rather than the start, so that we avoid an
 1332                  * off-by-one error when calculating how many descriptors are
 1333                  * done in the credits_update function.
 1334                  */
 1335                 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
 1336         }
 1337 
 1338         /* Setup VLAN support, basic and offload if available */
 1339         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
 1340 
 1341         /* Clear bad data from Rx FIFOs */
 1342         if (sc->hw.mac.type >= igb_mac_min)
 1343                 e1000_rx_fifo_flush_base(&sc->hw);
 1344 
 1345         /* Configure for OS presence */
 1346         em_init_manageability(sc);
 1347 
 1348         /* Prepare transmit descriptors and buffers */
 1349         em_initialize_transmit_unit(ctx);
 1350 
 1351         /* Setup Multicast table */
 1352         em_if_multi_set(ctx);
 1353 
 1354         sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
 1355         em_initialize_receive_unit(ctx);
 1356 
 1357         /* Set up VLAN support and filter */
 1358         em_setup_vlan_hw_support(ctx);
 1359 
 1360         /* Don't lose promiscuous settings */
 1361         em_if_set_promisc(ctx, if_getflags(ifp));
 1362         e1000_clear_hw_cntrs_base_generic(&sc->hw);
 1363 
 1364         /* MSI-X configuration for 82574 */
 1365         if (sc->hw.mac.type == e1000_82574) {
 1366                 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
 1367 
 1368                 tmp |= E1000_CTRL_EXT_PBA_CLR;
 1369                 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
 1370                 /* Set the IVAR - interrupt vector routing. */
 1371                 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
 1372         } else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
 1373                 igb_configure_queues(sc);
 1374 
 1375         /* this clears any pending interrupts */
 1376         E1000_READ_REG(&sc->hw, E1000_ICR);
 1377         E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
 1378 
 1379         /* AMT based hardware can now take control from firmware */
 1380         if (sc->has_manage && sc->has_amt)
 1381                 em_get_hw_control(sc);
 1382 
 1383         /* Set Energy Efficient Ethernet */
 1384         if (sc->hw.mac.type >= igb_mac_min &&
 1385             sc->hw.phy.media_type == e1000_media_type_copper) {
 1386                 if (sc->hw.mac.type == e1000_i354)
 1387                         e1000_set_eee_i354(&sc->hw, true, true);
 1388                 else
 1389                         e1000_set_eee_i350(&sc->hw, true, true);
 1390         }
 1391 }
 1392 
 1393 /*********************************************************************
 1394  *
 1395  *  Fast Legacy/MSI Combined Interrupt Service routine
 1396  *
 1397  *********************************************************************/
 1398 int
 1399 em_intr(void *arg)
 1400 {
 1401         struct e1000_softc *sc = arg;
 1402         if_ctx_t ctx = sc->ctx;
 1403         u32 reg_icr;
 1404 
 1405         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
 1406 
 1407         /* Hot eject? */
 1408         if (reg_icr == 0xffffffff)
 1409                 return FILTER_STRAY;
 1410 
 1411         /* Definitely not our interrupt. */
 1412         if (reg_icr == 0x0)
 1413                 return FILTER_STRAY;
 1414 
 1415         /*
 1416          * Starting with the 82571 chip, bit 31 should be used to
 1417          * determine whether the interrupt belongs to us.
 1418          */
 1419         if (sc->hw.mac.type >= e1000_82571 &&
 1420             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
 1421                 return FILTER_STRAY;
 1422 
 1423         /*
 1424          * Only MSI-X interrupts have one-shot behavior by taking advantage
 1425          * of the EIAC register.  Thus, explicitly disable interrupts.  This
 1426          * also works around the MSI message reordering errata on certain
 1427          * systems.
 1428          */
 1429         IFDI_INTR_DISABLE(ctx);
 1430 
 1431         /* Link status change */
 1432         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
 1433                 em_handle_link(ctx);
 1434 
 1435         if (reg_icr & E1000_ICR_RXO)
 1436                 sc->rx_overruns++;
 1437 
 1438         return (FILTER_SCHEDULE_THREAD);
 1439 }
 1440 
 1441 static int
 1442 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
 1443 {
 1444         struct e1000_softc *sc = iflib_get_softc(ctx);
 1445         struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
 1446 
 1447         E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
 1448         return (0);
 1449 }
 1450 
 1451 static int
 1452 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
 1453 {
 1454         struct e1000_softc *sc = iflib_get_softc(ctx);
 1455         struct em_tx_queue *txq = &sc->tx_queues[txqid];
 1456 
 1457         E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
 1458         return (0);
 1459 }
 1460 
 1461 static int
 1462 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
 1463 {
 1464         struct e1000_softc *sc = iflib_get_softc(ctx);
 1465         struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
 1466 
 1467         E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
 1468         return (0);
 1469 }
 1470 
 1471 static int
 1472 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
 1473 {
 1474         struct e1000_softc *sc = iflib_get_softc(ctx);
 1475         struct em_tx_queue *txq = &sc->tx_queues[txqid];
 1476 
 1477         E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
 1478         return (0);
 1479 }
 1480 
 1481 /*********************************************************************
 1482  *
 1483  *  MSI-X RX Interrupt Service routine
 1484  *
 1485  **********************************************************************/
 1486 static int
 1487 em_msix_que(void *arg)
 1488 {
 1489         struct em_rx_queue *que = arg;
 1490 
 1491         ++que->irqs;
 1492 
 1493         return (FILTER_SCHEDULE_THREAD);
 1494 }
 1495 
 1496 /*********************************************************************
 1497  *
 1498  *  MSI-X Link Fast Interrupt Service routine
 1499  *
 1500  **********************************************************************/
 1501 static int
 1502 em_msix_link(void *arg)
 1503 {
 1504         struct e1000_softc *sc = arg;
 1505         u32 reg_icr;
 1506 
 1507         ++sc->link_irq;
 1508         MPASS(sc->hw.back != NULL);
 1509         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
 1510 
 1511         if (reg_icr & E1000_ICR_RXO)
 1512                 sc->rx_overruns++;
 1513 
 1514         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
 1515                 em_handle_link(sc->ctx);
 1516 
 1517         /* Re-arm unconditionally */
 1518         if (sc->hw.mac.type >= igb_mac_min) {
 1519                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
 1520                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
 1521         } else if (sc->hw.mac.type == e1000_82574) {
 1522                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC |
 1523                     E1000_IMS_OTHER);
 1524                 /*
 1525                  * Because we must read the ICR for this interrupt it may
 1526                  * clear other causes using autoclear, for this reason we
 1527                  * simply create a soft interrupt for all these vectors.
 1528                  */
 1529                 if (reg_icr)
 1530                         E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
 1531         } else
 1532                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
 1533 
 1534         return (FILTER_HANDLED);
 1535 }
 1536 
 1537 static void
 1538 em_handle_link(void *context)
 1539 {
 1540         if_ctx_t ctx = context;
 1541         struct e1000_softc *sc = iflib_get_softc(ctx);
 1542 
 1543         sc->hw.mac.get_link_status = 1;
 1544         iflib_admin_intr_deferred(ctx);
 1545 }
 1546 
 1547 /*********************************************************************
 1548  *
 1549  *  Media Ioctl callback
 1550  *
 1551  *  This routine is called whenever the user queries the status of
 1552  *  the interface using ifconfig.
 1553  *
 1554  **********************************************************************/
 1555 static void
 1556 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
 1557 {
 1558         struct e1000_softc *sc = iflib_get_softc(ctx);
 1559         u_char fiber_type = IFM_1000_SX;
 1560 
 1561         INIT_DEBUGOUT("em_if_media_status: begin");
 1562 
 1563         iflib_admin_intr_deferred(ctx);
 1564 
 1565         ifmr->ifm_status = IFM_AVALID;
 1566         ifmr->ifm_active = IFM_ETHER;
 1567 
 1568         if (!sc->link_active) {
 1569                 return;
 1570         }
 1571 
 1572         ifmr->ifm_status |= IFM_ACTIVE;
 1573 
 1574         if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
 1575             (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
 1576                 if (sc->hw.mac.type == e1000_82545)
 1577                         fiber_type = IFM_1000_LX;
 1578                 ifmr->ifm_active |= fiber_type | IFM_FDX;
 1579         } else {
 1580                 switch (sc->link_speed) {
 1581                 case 10:
 1582                         ifmr->ifm_active |= IFM_10_T;
 1583                         break;
 1584                 case 100:
 1585                         ifmr->ifm_active |= IFM_100_TX;
 1586                         break;
 1587                 case 1000:
 1588                         ifmr->ifm_active |= IFM_1000_T;
 1589                         break;
 1590                 }
 1591                 if (sc->link_duplex == FULL_DUPLEX)
 1592                         ifmr->ifm_active |= IFM_FDX;
 1593                 else
 1594                         ifmr->ifm_active |= IFM_HDX;
 1595         }
 1596 }
 1597 
 1598 /*********************************************************************
 1599  *
 1600  *  Media Ioctl callback
 1601  *
 1602  *  This routine is called when the user changes speed/duplex using
 1603  *  media/mediopt option with ifconfig.
 1604  *
 1605  **********************************************************************/
 1606 static int
 1607 em_if_media_change(if_ctx_t ctx)
 1608 {
 1609         struct e1000_softc *sc = iflib_get_softc(ctx);
 1610         struct ifmedia *ifm = iflib_get_media(ctx);
 1611 
 1612         INIT_DEBUGOUT("em_if_media_change: begin");
 1613 
 1614         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 1615                 return (EINVAL);
 1616 
 1617         switch (IFM_SUBTYPE(ifm->ifm_media)) {
 1618         case IFM_AUTO:
 1619                 sc->hw.mac.autoneg = DO_AUTO_NEG;
 1620                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
 1621                 break;
 1622         case IFM_1000_LX:
 1623         case IFM_1000_SX:
 1624         case IFM_1000_T:
 1625                 sc->hw.mac.autoneg = DO_AUTO_NEG;
 1626                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 1627                 break;
 1628         case IFM_100_TX:
 1629                 sc->hw.mac.autoneg = false;
 1630                 sc->hw.phy.autoneg_advertised = 0;
 1631                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
 1632                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
 1633                 else
 1634                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
 1635                 break;
 1636         case IFM_10_T:
 1637                 sc->hw.mac.autoneg = false;
 1638                 sc->hw.phy.autoneg_advertised = 0;
 1639                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
 1640                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
 1641                 else
 1642                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
 1643                 break;
 1644         default:
 1645                 device_printf(sc->dev, "Unsupported media type\n");
 1646         }
 1647 
 1648         em_if_init(ctx);
 1649 
 1650         return (0);
 1651 }
 1652 
 1653 static int
 1654 em_if_set_promisc(if_ctx_t ctx, int flags)
 1655 {
 1656         struct e1000_softc *sc = iflib_get_softc(ctx);
 1657         if_t ifp = iflib_get_ifp(ctx);
 1658         u32 reg_rctl;
 1659         int mcnt = 0;
 1660 
 1661         reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
 1662         reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
 1663         if (flags & IFF_ALLMULTI)
 1664                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
 1665         else
 1666                 mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
 1667 
 1668         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
 1669                 reg_rctl &= (~E1000_RCTL_MPE);
 1670         E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
 1671 
 1672         if (flags & IFF_PROMISC) {
 1673                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
 1674                 em_if_vlan_filter_disable(sc);
 1675                 /* Turn this on if you want to see bad packets */
 1676                 if (em_debug_sbp)
 1677                         reg_rctl |= E1000_RCTL_SBP;
 1678                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
 1679         } else {
 1680                 if (flags & IFF_ALLMULTI) {
 1681                         reg_rctl |= E1000_RCTL_MPE;
 1682                         reg_rctl &= ~E1000_RCTL_UPE;
 1683                         E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
 1684                 }
 1685                 if (em_if_vlan_filter_used(ctx))
 1686                         em_if_vlan_filter_enable(sc);
 1687         }
 1688         return (0);
 1689 }
 1690 
 1691 static u_int
 1692 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
 1693 {
 1694         u8 *mta = arg;
 1695 
 1696         if (idx == MAX_NUM_MULTICAST_ADDRESSES)
 1697                 return (0);
 1698 
 1699         bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
 1700 
 1701         return (1);
 1702 }
 1703 
 1704 /*********************************************************************
 1705  *  Multicast Update
 1706  *
 1707  *  This routine is called whenever multicast address list is updated.
 1708  *
 1709  **********************************************************************/
 1710 static void
 1711 em_if_multi_set(if_ctx_t ctx)
 1712 {
 1713         struct e1000_softc *sc = iflib_get_softc(ctx);
 1714         if_t ifp = iflib_get_ifp(ctx);
 1715         u8  *mta; /* Multicast array memory */
 1716         u32 reg_rctl = 0;
 1717         int mcnt = 0;
 1718 
 1719         IOCTL_DEBUGOUT("em_set_multi: begin");
 1720 
 1721         mta = sc->mta;
 1722         bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
 1723 
 1724         if (sc->hw.mac.type == e1000_82542 &&
 1725             sc->hw.revision_id == E1000_REVISION_2) {
 1726                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
 1727                 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
 1728                         e1000_pci_clear_mwi(&sc->hw);
 1729                 reg_rctl |= E1000_RCTL_RST;
 1730                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
 1731                 msec_delay(5);
 1732         }
 1733 
 1734         mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
 1735 
 1736         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
 1737                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
 1738 
 1739         reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
 1740 
 1741         if (if_getflags(ifp) & IFF_PROMISC)
 1742                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
 1743         else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
 1744             if_getflags(ifp) & IFF_ALLMULTI) {
 1745                 reg_rctl |= E1000_RCTL_MPE;
 1746                 reg_rctl &= ~E1000_RCTL_UPE;
 1747         } else
 1748                 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
 1749 
 1750         E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
 1751 
 1752         if (sc->hw.mac.type == e1000_82542 &&
 1753             sc->hw.revision_id == E1000_REVISION_2) {
 1754                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
 1755                 reg_rctl &= ~E1000_RCTL_RST;
 1756                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
 1757                 msec_delay(5);
 1758                 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
 1759                         e1000_pci_set_mwi(&sc->hw);
 1760         }
 1761 }
 1762 
 1763 /*********************************************************************
 1764  *  Timer routine
 1765  *
 1766  *  This routine schedules em_if_update_admin_status() to check for
 1767  *  link status and to gather statistics as well as to perform some
 1768  *  controller-specific hardware patting.
 1769  *
 1770  **********************************************************************/
 1771 static void
 1772 em_if_timer(if_ctx_t ctx, uint16_t qid)
 1773 {
 1774 
 1775         if (qid != 0)
 1776                 return;
 1777 
 1778         iflib_admin_intr_deferred(ctx);
 1779 }
 1780 
 1781 static void
 1782 em_if_update_admin_status(if_ctx_t ctx)
 1783 {
 1784         struct e1000_softc *sc = iflib_get_softc(ctx);
 1785         struct e1000_hw *hw = &sc->hw;
 1786         device_t dev = iflib_get_dev(ctx);
 1787         u32 link_check, thstat, ctrl;
 1788 
 1789         link_check = thstat = ctrl = 0;
 1790         /* Get the cached link value or read phy for real */
 1791         switch (hw->phy.media_type) {
 1792         case e1000_media_type_copper:
 1793                 if (hw->mac.get_link_status) {
 1794                         if (hw->mac.type == e1000_pch_spt)
 1795                                 msec_delay(50);
 1796                         /* Do the work to read phy */
 1797                         e1000_check_for_link(hw);
 1798                         link_check = !hw->mac.get_link_status;
 1799                         if (link_check) /* ESB2 fix */
 1800                                 e1000_cfg_on_link_up(hw);
 1801                 } else {
 1802                         link_check = true;
 1803                 }
 1804                 break;
 1805         case e1000_media_type_fiber:
 1806                 e1000_check_for_link(hw);
 1807                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
 1808                             E1000_STATUS_LU);
 1809                 break;
 1810         case e1000_media_type_internal_serdes:
 1811                 e1000_check_for_link(hw);
 1812                 link_check = hw->mac.serdes_has_link;
 1813                 break;
 1814         /* VF device is type_unknown */
 1815         case e1000_media_type_unknown:
 1816                 e1000_check_for_link(hw);
 1817                 link_check = !hw->mac.get_link_status;
 1818                 /* FALLTHROUGH */
 1819         default:
 1820                 break;
 1821         }
 1822 
 1823         /* Check for thermal downshift or shutdown */
 1824         if (hw->mac.type == e1000_i350) {
 1825                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
 1826                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
 1827         }
 1828 
 1829         /* Now check for a transition */
 1830         if (link_check && (sc->link_active == 0)) {
 1831                 e1000_get_speed_and_duplex(hw, &sc->link_speed,
 1832                     &sc->link_duplex);
 1833                 /* Check if we must disable SPEED_MODE bit on PCI-E */
 1834                 if ((sc->link_speed != SPEED_1000) &&
 1835                     ((hw->mac.type == e1000_82571) ||
 1836                     (hw->mac.type == e1000_82572))) {
 1837                         int tarc0;
 1838                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
 1839                         tarc0 &= ~TARC_SPEED_MODE_BIT;
 1840                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
 1841                 }
 1842                 if (bootverbose)
 1843                         device_printf(dev, "Link is up %d Mbps %s\n",
 1844                             sc->link_speed,
 1845                             ((sc->link_duplex == FULL_DUPLEX) ?
 1846                             "Full Duplex" : "Half Duplex"));
 1847                 sc->link_active = 1;
 1848                 sc->smartspeed = 0;
 1849                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
 1850                     E1000_CTRL_EXT_LINK_MODE_GMII &&
 1851                     (thstat & E1000_THSTAT_LINK_THROTTLE))
 1852                         device_printf(dev, "Link: thermal downshift\n");
 1853                 /* Delay Link Up for Phy update */
 1854                 if (((hw->mac.type == e1000_i210) ||
 1855                     (hw->mac.type == e1000_i211)) &&
 1856                     (hw->phy.id == I210_I_PHY_ID))
 1857                         msec_delay(I210_LINK_DELAY);
 1858                 /* Reset if the media type changed. */
 1859                 if (hw->dev_spec._82575.media_changed &&
 1860                     hw->mac.type >= igb_mac_min) {
 1861                         hw->dev_spec._82575.media_changed = false;
 1862                         sc->flags |= IGB_MEDIA_RESET;
 1863                         em_reset(ctx);
 1864                 }
 1865                 iflib_link_state_change(ctx, LINK_STATE_UP,
 1866                     IF_Mbps(sc->link_speed));
 1867         } else if (!link_check && (sc->link_active == 1)) {
 1868                 sc->link_speed = 0;
 1869                 sc->link_duplex = 0;
 1870                 sc->link_active = 0;
 1871                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
 1872         }
 1873         em_update_stats_counters(sc);
 1874 
 1875         /* Reset LAA into RAR[0] on 82571 */
 1876         if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
 1877                 e1000_rar_set(hw, hw->mac.addr, 0);
 1878 
 1879         if (hw->mac.type < em_mac_min)
 1880                 lem_smartspeed(sc);
 1881 }
 1882 
 1883 static void
 1884 em_if_watchdog_reset(if_ctx_t ctx)
 1885 {
 1886         struct e1000_softc *sc = iflib_get_softc(ctx);
 1887 
 1888         /*
 1889          * Just count the event; iflib(4) will already trigger a
 1890          * sufficient reset of the controller.
 1891          */
 1892         sc->watchdog_events++;
 1893 }
 1894 
 1895 /*********************************************************************
 1896  *
 1897  *  This routine disables all traffic on the adapter by issuing a
 1898  *  global reset on the MAC.
 1899  *
 1900  **********************************************************************/
 1901 static void
 1902 em_if_stop(if_ctx_t ctx)
 1903 {
 1904         struct e1000_softc *sc = iflib_get_softc(ctx);
 1905 
 1906         INIT_DEBUGOUT("em_if_stop: begin");
 1907 
 1908         e1000_reset_hw(&sc->hw);
 1909         if (sc->hw.mac.type >= e1000_82544)
 1910                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
 1911 
 1912         e1000_led_off(&sc->hw);
 1913         e1000_cleanup_led(&sc->hw);
 1914 }
 1915 
 1916 /*********************************************************************
 1917  *
 1918  *  Determine hardware revision.
 1919  *
 1920  **********************************************************************/
 1921 static void
 1922 em_identify_hardware(if_ctx_t ctx)
 1923 {
 1924         device_t dev = iflib_get_dev(ctx);
 1925         struct e1000_softc *sc = iflib_get_softc(ctx);
 1926 
 1927         /* Make sure our PCI config space has the necessary stuff set */
 1928         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
 1929 
 1930         /* Save off the information about this board */
 1931         sc->hw.vendor_id = pci_get_vendor(dev);
 1932         sc->hw.device_id = pci_get_device(dev);
 1933         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
 1934         sc->hw.subsystem_vendor_id =
 1935             pci_read_config(dev, PCIR_SUBVEND_0, 2);
 1936         sc->hw.subsystem_device_id =
 1937             pci_read_config(dev, PCIR_SUBDEV_0, 2);
 1938 
 1939         /* Do Shared Code Init and Setup */
 1940         if (e1000_set_mac_type(&sc->hw)) {
 1941                 device_printf(dev, "Setup init failure\n");
 1942                 return;
 1943         }
 1944 
 1945         /* Are we a VF device? */
 1946         if ((sc->hw.mac.type == e1000_vfadapt) ||
 1947             (sc->hw.mac.type == e1000_vfadapt_i350))
 1948                 sc->vf_ifp = 1;
 1949         else
 1950                 sc->vf_ifp = 0;
 1951 }
 1952 
 1953 static int
 1954 em_allocate_pci_resources(if_ctx_t ctx)
 1955 {
 1956         struct e1000_softc *sc = iflib_get_softc(ctx);
 1957         device_t dev = iflib_get_dev(ctx);
 1958         int rid, val;
 1959 
 1960         rid = PCIR_BAR(0);
 1961         sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
 1962             &rid, RF_ACTIVE);
 1963         if (sc->memory == NULL) {
 1964                 device_printf(dev, "Unable to allocate bus resource: memory\n");
 1965                 return (ENXIO);
 1966         }
 1967         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
 1968         sc->osdep.mem_bus_space_handle =
 1969             rman_get_bushandle(sc->memory);
 1970         sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
 1971 
 1972         /* Only older adapters use IO mapping */
 1973         if (sc->hw.mac.type < em_mac_min &&
 1974             sc->hw.mac.type > e1000_82543) {
 1975                 /* Figure our where our IO BAR is ? */
 1976                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
 1977                         val = pci_read_config(dev, rid, 4);
 1978                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
 1979                                 break;
 1980                         }
 1981                         rid += 4;
 1982                         /* check for 64bit BAR */
 1983                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
 1984                                 rid += 4;
 1985                 }
 1986                 if (rid >= PCIR_CIS) {
 1987                         device_printf(dev, "Unable to locate IO BAR\n");
 1988                         return (ENXIO);
 1989                 }
 1990                 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
 1991                     &rid, RF_ACTIVE);
 1992                 if (sc->ioport == NULL) {
 1993                         device_printf(dev, "Unable to allocate bus resource: "
 1994                             "ioport\n");
 1995                         return (ENXIO);
 1996                 }
 1997                 sc->hw.io_base = 0;
 1998                 sc->osdep.io_bus_space_tag =
 1999                     rman_get_bustag(sc->ioport);
 2000                 sc->osdep.io_bus_space_handle =
 2001                     rman_get_bushandle(sc->ioport);
 2002         }
 2003 
 2004         sc->hw.back = &sc->osdep;
 2005 
 2006         return (0);
 2007 }
 2008 
 2009 /*********************************************************************
 2010  *
 2011  *  Set up the MSI-X Interrupt handlers
 2012  *
 2013  **********************************************************************/
 2014 static int
 2015 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
 2016 {
 2017         struct e1000_softc *sc = iflib_get_softc(ctx);
 2018         struct em_rx_queue *rx_que = sc->rx_queues;
 2019         struct em_tx_queue *tx_que = sc->tx_queues;
 2020         int error, rid, i, vector = 0, rx_vectors;
 2021         char buf[16];
 2022 
 2023         /* First set up ring resources */
 2024         for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
 2025                 rid = vector + 1;
 2026                 snprintf(buf, sizeof(buf), "rxq%d", i);
 2027                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
 2028                 if (error) {
 2029                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
 2030                         sc->rx_num_queues = i + 1;
 2031                         goto fail;
 2032                 }
 2033 
 2034                 rx_que->msix =  vector;
 2035 
 2036                 /*
 2037                  * Set the bit to enable interrupt
 2038                  * in E1000_IMS -- bits 20 and 21
 2039                  * are for RX0 and RX1, note this has
 2040                  * NOTHING to do with the MSI-X vector
 2041                  */
 2042                 if (sc->hw.mac.type == e1000_82574) {
 2043                         rx_que->eims = 1 << (20 + i);
 2044                         sc->ims |= rx_que->eims;
 2045                         sc->ivars |= (8 | rx_que->msix) << (i * 4);
 2046                 } else if (sc->hw.mac.type == e1000_82575)
 2047                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
 2048                 else
 2049                         rx_que->eims = 1 << vector;
 2050         }
 2051         rx_vectors = vector;
 2052 
 2053         vector = 0;
 2054         for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
 2055                 snprintf(buf, sizeof(buf), "txq%d", i);
 2056                 tx_que = &sc->tx_queues[i];
 2057                 iflib_softirq_alloc_generic(ctx,
 2058                     &sc->rx_queues[i % sc->rx_num_queues].que_irq,
 2059                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
 2060 
 2061                 tx_que->msix = (vector % sc->rx_num_queues);
 2062 
 2063                 /*
 2064                  * Set the bit to enable interrupt
 2065                  * in E1000_IMS -- bits 22 and 23
 2066                  * are for TX0 and TX1, note this has
 2067                  * NOTHING to do with the MSI-X vector
 2068                  */
 2069                 if (sc->hw.mac.type == e1000_82574) {
 2070                         tx_que->eims = 1 << (22 + i);
 2071                         sc->ims |= tx_que->eims;
 2072                         sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
 2073                 } else if (sc->hw.mac.type == e1000_82575) {
 2074                         tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
 2075                 } else {
 2076                         tx_que->eims = 1 << i;
 2077                 }
 2078         }
 2079 
 2080         /* Link interrupt */
 2081         rid = rx_vectors + 1;
 2082         error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq");
 2083 
 2084         if (error) {
 2085                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
 2086                 goto fail;
 2087         }
 2088         sc->linkvec = rx_vectors;
 2089         if (sc->hw.mac.type < igb_mac_min) {
 2090                 sc->ivars |=  (8 | rx_vectors) << 16;
 2091                 sc->ivars |= 0x80000000;
 2092                 /* Enable the "Other" interrupt type for link status change */
 2093                 sc->ims |= E1000_IMS_OTHER;
 2094         }
 2095 
 2096         return (0);
 2097 fail:
 2098         iflib_irq_free(ctx, &sc->irq);
 2099         rx_que = sc->rx_queues;
 2100         for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
 2101                 iflib_irq_free(ctx, &rx_que->que_irq);
 2102         return (error);
 2103 }
 2104 
 2105 static void
 2106 igb_configure_queues(struct e1000_softc *sc)
 2107 {
 2108         struct e1000_hw *hw = &sc->hw;
 2109         struct em_rx_queue *rx_que;
 2110         struct em_tx_queue *tx_que;
 2111         u32 tmp, ivar = 0, newitr = 0;
 2112 
 2113         /* First turn on RSS capability */
 2114         if (hw->mac.type != e1000_82575)
 2115                 E1000_WRITE_REG(hw, E1000_GPIE,
 2116                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
 2117                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
 2118 
 2119         /* Turn on MSI-X */
 2120         switch (hw->mac.type) {
 2121         case e1000_82580:
 2122         case e1000_i350:
 2123         case e1000_i354:
 2124         case e1000_i210:
 2125         case e1000_i211:
 2126         case e1000_vfadapt:
 2127         case e1000_vfadapt_i350:
 2128                 /* RX entries */
 2129                 for (int i = 0; i < sc->rx_num_queues; i++) {
 2130                         u32 index = i >> 1;
 2131                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
 2132                         rx_que = &sc->rx_queues[i];
 2133                         if (i & 1) {
 2134                                 ivar &= 0xFF00FFFF;
 2135                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
 2136                         } else {
 2137                                 ivar &= 0xFFFFFF00;
 2138                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
 2139                         }
 2140                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
 2141                 }
 2142                 /* TX entries */
 2143                 for (int i = 0; i < sc->tx_num_queues; i++) {
 2144                         u32 index = i >> 1;
 2145                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
 2146                         tx_que = &sc->tx_queues[i];
 2147                         if (i & 1) {
 2148                                 ivar &= 0x00FFFFFF;
 2149                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
 2150                         } else {
 2151                                 ivar &= 0xFFFF00FF;
 2152                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
 2153                         }
 2154                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
 2155                         sc->que_mask |= tx_que->eims;
 2156                 }
 2157 
 2158                 /* And for the link interrupt */
 2159                 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
 2160                 sc->link_mask = 1 << sc->linkvec;
 2161                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
 2162                 break;
 2163         case e1000_82576:
 2164                 /* RX entries */
 2165                 for (int i = 0; i < sc->rx_num_queues; i++) {
 2166                         u32 index = i & 0x7; /* Each IVAR has two entries */
 2167                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
 2168                         rx_que = &sc->rx_queues[i];
 2169                         if (i < 8) {
 2170                                 ivar &= 0xFFFFFF00;
 2171                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
 2172                         } else {
 2173                                 ivar &= 0xFF00FFFF;
 2174                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
 2175                         }
 2176                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
 2177                         sc->que_mask |= rx_que->eims;
 2178                 }
 2179                 /* TX entries */
 2180                 for (int i = 0; i < sc->tx_num_queues; i++) {
 2181                         u32 index = i & 0x7; /* Each IVAR has two entries */
 2182                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
 2183                         tx_que = &sc->tx_queues[i];
 2184                         if (i < 8) {
 2185                                 ivar &= 0xFFFF00FF;
 2186                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
 2187                         } else {
 2188                                 ivar &= 0x00FFFFFF;
 2189                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
 2190                         }
 2191                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
 2192                         sc->que_mask |= tx_que->eims;
 2193                 }
 2194 
 2195                 /* And for the link interrupt */
 2196                 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
 2197                 sc->link_mask = 1 << sc->linkvec;
 2198                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
 2199                 break;
 2200 
 2201         case e1000_82575:
 2202                 /* enable MSI-X support*/
 2203                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
 2204                 tmp |= E1000_CTRL_EXT_PBA_CLR;
 2205                 /* Auto-Mask interrupts upon ICR read. */
 2206                 tmp |= E1000_CTRL_EXT_EIAME;
 2207                 tmp |= E1000_CTRL_EXT_IRCA;
 2208                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
 2209 
 2210                 /* Queues */
 2211                 for (int i = 0; i < sc->rx_num_queues; i++) {
 2212                         rx_que = &sc->rx_queues[i];
 2213                         tmp = E1000_EICR_RX_QUEUE0 << i;
 2214                         tmp |= E1000_EICR_TX_QUEUE0 << i;
 2215                         rx_que->eims = tmp;
 2216                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
 2217                             i, rx_que->eims);
 2218                         sc->que_mask |= rx_que->eims;
 2219                 }
 2220 
 2221                 /* Link */
 2222                 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
 2223                     E1000_EIMS_OTHER);
 2224                 sc->link_mask |= E1000_EIMS_OTHER;
 2225         default:
 2226                 break;
 2227         }
 2228 
 2229         /* Set the starting interrupt rate */
 2230         if (em_max_interrupt_rate > 0)
 2231                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
 2232 
 2233         if (hw->mac.type == e1000_82575)
 2234                 newitr |= newitr << 16;
 2235         else
 2236                 newitr |= E1000_EITR_CNT_IGNR;
 2237 
 2238         for (int i = 0; i < sc->rx_num_queues; i++) {
 2239                 rx_que = &sc->rx_queues[i];
 2240                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
 2241         }
 2242 
 2243         return;
 2244 }
 2245 
 2246 static void
 2247 em_free_pci_resources(if_ctx_t ctx)
 2248 {
 2249         struct e1000_softc *sc = iflib_get_softc(ctx);
 2250         struct em_rx_queue *que = sc->rx_queues;
 2251         device_t dev = iflib_get_dev(ctx);
 2252 
 2253         /* Release all MSI-X queue resources */
 2254         if (sc->intr_type == IFLIB_INTR_MSIX)
 2255                 iflib_irq_free(ctx, &sc->irq);
 2256 
 2257         if (que != NULL) {
 2258                 for (int i = 0; i < sc->rx_num_queues; i++, que++) {
 2259                         iflib_irq_free(ctx, &que->que_irq);
 2260                 }
 2261         }
 2262 
 2263         if (sc->memory != NULL) {
 2264                 bus_release_resource(dev, SYS_RES_MEMORY,
 2265                     rman_get_rid(sc->memory), sc->memory);
 2266                 sc->memory = NULL;
 2267         }
 2268 
 2269         if (sc->flash != NULL) {
 2270                 bus_release_resource(dev, SYS_RES_MEMORY,
 2271                     rman_get_rid(sc->flash), sc->flash);
 2272                 sc->flash = NULL;
 2273         }
 2274 
 2275         if (sc->ioport != NULL) {
 2276                 bus_release_resource(dev, SYS_RES_IOPORT,
 2277                     rman_get_rid(sc->ioport), sc->ioport);
 2278                 sc->ioport = NULL;
 2279         }
 2280 }
 2281 
 2282 /* Set up MSI or MSI-X */
 2283 static int
 2284 em_setup_msix(if_ctx_t ctx)
 2285 {
 2286         struct e1000_softc *sc = iflib_get_softc(ctx);
 2287 
 2288         if (sc->hw.mac.type == e1000_82574) {
 2289                 em_enable_vectors_82574(ctx);
 2290         }
 2291         return (0);
 2292 }
 2293 
 2294 /*********************************************************************
 2295  *
 2296  *  Workaround for SmartSpeed on 82541 and 82547 controllers
 2297  *
 2298  **********************************************************************/
 2299 static void
 2300 lem_smartspeed(struct e1000_softc *sc)
 2301 {
 2302         u16 phy_tmp;
 2303 
 2304         if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
 2305             sc->hw.mac.autoneg == 0 ||
 2306             (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
 2307                 return;
 2308 
 2309         if (sc->smartspeed == 0) {
 2310                 /* If Master/Slave config fault is asserted twice,
 2311                  * we assume back-to-back */
 2312                 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
 2313                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
 2314                         return;
 2315                 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
 2316                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
 2317                         e1000_read_phy_reg(&sc->hw,
 2318                             PHY_1000T_CTRL, &phy_tmp);
 2319                         if(phy_tmp & CR_1000T_MS_ENABLE) {
 2320                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
 2321                                 e1000_write_phy_reg(&sc->hw,
 2322                                     PHY_1000T_CTRL, phy_tmp);
 2323                                 sc->smartspeed++;
 2324                                 if(sc->hw.mac.autoneg &&
 2325                                    !e1000_copper_link_autoneg(&sc->hw) &&
 2326                                    !e1000_read_phy_reg(&sc->hw,
 2327                                     PHY_CONTROL, &phy_tmp)) {
 2328                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
 2329                                                     MII_CR_RESTART_AUTO_NEG);
 2330                                         e1000_write_phy_reg(&sc->hw,
 2331                                             PHY_CONTROL, phy_tmp);
 2332                                 }
 2333                         }
 2334                 }
 2335                 return;
 2336         } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
 2337                 /* If still no link, perhaps using 2/3 pair cable */
 2338                 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
 2339                 phy_tmp |= CR_1000T_MS_ENABLE;
 2340                 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
 2341                 if(sc->hw.mac.autoneg &&
 2342                    !e1000_copper_link_autoneg(&sc->hw) &&
 2343                    !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
 2344                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
 2345                                     MII_CR_RESTART_AUTO_NEG);
 2346                         e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
 2347                 }
 2348         }
 2349         /* Restart process after EM_SMARTSPEED_MAX iterations */
 2350         if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
 2351                 sc->smartspeed = 0;
 2352 }
 2353 
 2354 /*********************************************************************
 2355  *
 2356  *  Initialize the DMA Coalescing feature
 2357  *
 2358  **********************************************************************/
 2359 static void
 2360 igb_init_dmac(struct e1000_softc *sc, u32 pba)
 2361 {
 2362         device_t        dev = sc->dev;
 2363         struct e1000_hw *hw = &sc->hw;
 2364         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
 2365         u16             hwm;
 2366         u16             max_frame_size;
 2367 
 2368         if (hw->mac.type == e1000_i211)
 2369                 return;
 2370 
 2371         max_frame_size = sc->shared->isc_max_frame_size;
 2372         if (hw->mac.type > e1000_82580) {
 2373 
 2374                 if (sc->dmac == 0) { /* Disabling it */
 2375                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
 2376                         return;
 2377                 } else
 2378                         device_printf(dev, "DMA Coalescing enabled\n");
 2379 
 2380                 /* Set starting threshold */
 2381                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
 2382 
 2383                 hwm = 64 * pba - max_frame_size / 16;
 2384                 if (hwm < 64 * (pba - 6))
 2385                         hwm = 64 * (pba - 6);
 2386                 reg = E1000_READ_REG(hw, E1000_FCRTC);
 2387                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
 2388                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
 2389                     & E1000_FCRTC_RTH_COAL_MASK);
 2390                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
 2391 
 2392 
 2393                 dmac = pba - max_frame_size / 512;
 2394                 if (dmac < pba - 10)
 2395                         dmac = pba - 10;
 2396                 reg = E1000_READ_REG(hw, E1000_DMACR);
 2397                 reg &= ~E1000_DMACR_DMACTHR_MASK;
 2398                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
 2399                     & E1000_DMACR_DMACTHR_MASK);
 2400 
 2401                 /* transition to L0x or L1 if available..*/
 2402                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
 2403 
 2404                 /* Check if status is 2.5Gb backplane connection
 2405                 * before configuration of watchdog timer, which is
 2406                 * in msec values in 12.8usec intervals
 2407                 * watchdog timer= msec values in 32usec intervals
 2408                 * for non 2.5Gb connection
 2409                 */
 2410                 if (hw->mac.type == e1000_i354) {
 2411                         int status = E1000_READ_REG(hw, E1000_STATUS);
 2412                         if ((status & E1000_STATUS_2P5_SKU) &&
 2413                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
 2414                                 reg |= ((sc->dmac * 5) >> 6);
 2415                         else
 2416                                 reg |= (sc->dmac >> 5);
 2417                 } else {
 2418                         reg |= (sc->dmac >> 5);
 2419                 }
 2420 
 2421                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
 2422 
 2423                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
 2424 
 2425                 /* Set the interval before transition */
 2426                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
 2427                 if (hw->mac.type == e1000_i350)
 2428                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
 2429                 /*
 2430                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
 2431                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
 2432                 */
 2433                 if (hw->mac.type == e1000_i354) {
 2434                         int status = E1000_READ_REG(hw, E1000_STATUS);
 2435                         if ((status & E1000_STATUS_2P5_SKU) &&
 2436                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
 2437                                 reg |= 0xA;
 2438                         else
 2439                                 reg |= 0x4;
 2440                 } else {
 2441                         reg |= 0x4;
 2442                 }
 2443 
 2444                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
 2445 
 2446                 /* free space in tx packet buffer to wake from DMA coal */
 2447                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
 2448                     (2 * max_frame_size)) >> 6);
 2449 
 2450                 /* make low power state decision controlled by DMA coal */
 2451                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
 2452                 reg &= ~E1000_PCIEMISC_LX_DECISION;
 2453                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
 2454 
 2455         } else if (hw->mac.type == e1000_82580) {
 2456                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
 2457                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
 2458                     reg & ~E1000_PCIEMISC_LX_DECISION);
 2459                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
 2460         }
 2461 }
 2462 
 2463 /*********************************************************************
 2464  *
 2465  *  Initialize the hardware to a configuration as specified by the
 2466  *  sc structure.
 2467  *
 2468  **********************************************************************/
 2469 static void
 2470 em_reset(if_ctx_t ctx)
 2471 {
 2472         device_t dev = iflib_get_dev(ctx);
 2473         struct e1000_softc *sc = iflib_get_softc(ctx);
 2474         if_t ifp = iflib_get_ifp(ctx);
 2475         struct e1000_hw *hw = &sc->hw;
 2476         u32 rx_buffer_size;
 2477         u32 pba;
 2478 
 2479         INIT_DEBUGOUT("em_reset: begin");
 2480         /* Let the firmware know the OS is in control */
 2481         em_get_hw_control(sc);
 2482 
 2483         /* Set up smart power down as default off on newer adapters. */
 2484         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
 2485             hw->mac.type == e1000_82572)) {
 2486                 u16 phy_tmp = 0;
 2487 
 2488                 /* Speed up time to link by disabling smart power down. */
 2489                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
 2490                 phy_tmp &= ~IGP02E1000_PM_SPD;
 2491                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
 2492         }
 2493 
 2494         /*
 2495          * Packet Buffer Allocation (PBA)
 2496          * Writing PBA sets the receive portion of the buffer
 2497          * the remainder is used for the transmit buffer.
 2498          */
 2499         switch (hw->mac.type) {
 2500         /* 82547: Total Packet Buffer is 40K */
 2501         case e1000_82547:
 2502         case e1000_82547_rev_2:
 2503                 if (hw->mac.max_frame_size > 8192)
 2504                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
 2505                 else
 2506                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
 2507                 break;
 2508         /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
 2509         case e1000_82571:
 2510         case e1000_82572:
 2511         case e1000_80003es2lan:
 2512                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
 2513                 break;
 2514         /* 82573: Total Packet Buffer is 32K */
 2515         case e1000_82573:
 2516                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
 2517                 break;
 2518         case e1000_82574:
 2519         case e1000_82583:
 2520                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
 2521                 break;
 2522         case e1000_ich8lan:
 2523                 pba = E1000_PBA_8K;
 2524                 break;
 2525         case e1000_ich9lan:
 2526         case e1000_ich10lan:
 2527                 /* Boost Receive side for jumbo frames */
 2528                 if (hw->mac.max_frame_size > 4096)
 2529                         pba = E1000_PBA_14K;
 2530                 else
 2531                         pba = E1000_PBA_10K;
 2532                 break;
 2533         case e1000_pchlan:
 2534         case e1000_pch2lan:
 2535         case e1000_pch_lpt:
 2536         case e1000_pch_spt:
 2537         case e1000_pch_cnp:
 2538         case e1000_pch_tgp:
 2539         case e1000_pch_adp:
 2540         case e1000_pch_mtp:
 2541                 pba = E1000_PBA_26K;
 2542                 break;
 2543         case e1000_82575:
 2544                 pba = E1000_PBA_32K;
 2545                 break;
 2546         case e1000_82576:
 2547         case e1000_vfadapt:
 2548                 pba = E1000_READ_REG(hw, E1000_RXPBS);
 2549                 pba &= E1000_RXPBS_SIZE_MASK_82576;
 2550                 break;
 2551         case e1000_82580:
 2552         case e1000_i350:
 2553         case e1000_i354:
 2554         case e1000_vfadapt_i350:
 2555                 pba = E1000_READ_REG(hw, E1000_RXPBS);
 2556                 pba = e1000_rxpbs_adjust_82580(pba);
 2557                 break;
 2558         case e1000_i210:
 2559         case e1000_i211:
 2560                 pba = E1000_PBA_34K;
 2561                 break;
 2562         default:
 2563                 /* Remaining devices assumed to have a Packet Buffer of 64K. */
 2564                 if (hw->mac.max_frame_size > 8192)
 2565                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
 2566                 else
 2567                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
 2568         }
 2569 
 2570         /* Special needs in case of Jumbo frames */
 2571         if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
 2572                 u32 tx_space, min_tx, min_rx;
 2573                 pba = E1000_READ_REG(hw, E1000_PBA);
 2574                 tx_space = pba >> 16;
 2575                 pba &= 0xffff;
 2576                 min_tx = (hw->mac.max_frame_size +
 2577                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
 2578                 min_tx = roundup2(min_tx, 1024);
 2579                 min_tx >>= 10;
 2580                 min_rx = hw->mac.max_frame_size;
 2581                 min_rx = roundup2(min_rx, 1024);
 2582                 min_rx >>= 10;
 2583                 if (tx_space < min_tx &&
 2584                     ((min_tx - tx_space) < pba)) {
 2585                         pba = pba - (min_tx - tx_space);
 2586                         /*
 2587                          * if short on rx space, rx wins
 2588                          * and must trump tx adjustment
 2589                          */
 2590                         if (pba < min_rx)
 2591                                 pba = min_rx;
 2592                 }
 2593                 E1000_WRITE_REG(hw, E1000_PBA, pba);
 2594         }
 2595 
 2596         if (hw->mac.type < igb_mac_min)
 2597                 E1000_WRITE_REG(hw, E1000_PBA, pba);
 2598 
 2599         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
 2600 
 2601         /*
 2602          * These parameters control the automatic generation (Tx) and
 2603          * response (Rx) to Ethernet PAUSE frames.
 2604          * - High water mark should allow for at least two frames to be
 2605          *   received after sending an XOFF.
 2606          * - Low water mark works best when it is very near the high water mark.
 2607          *   This allows the receiver to restart by sending XON when it has
 2608          *   drained a bit. Here we use an arbitrary value of 1500 which will
 2609          *   restart after one full frame is pulled from the buffer. There
 2610          *   could be several smaller frames in the buffer and if so they will
 2611          *   not trigger the XON until their total number reduces the buffer
 2612          *   by 1500.
 2613          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
 2614          */
 2615         rx_buffer_size = (pba & 0xffff) << 10;
 2616         hw->fc.high_water = rx_buffer_size -
 2617             roundup2(hw->mac.max_frame_size, 1024);
 2618         hw->fc.low_water = hw->fc.high_water - 1500;
 2619 
 2620         if (sc->fc) /* locally set flow control value? */
 2621                 hw->fc.requested_mode = sc->fc;
 2622         else
 2623                 hw->fc.requested_mode = e1000_fc_full;
 2624 
 2625         if (hw->mac.type == e1000_80003es2lan)
 2626                 hw->fc.pause_time = 0xFFFF;
 2627         else
 2628                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
 2629 
 2630         hw->fc.send_xon = true;
 2631 
 2632         /* Device specific overrides/settings */
 2633         switch (hw->mac.type) {
 2634         case e1000_pchlan:
 2635                 /* Workaround: no TX flow ctrl for PCH */
 2636                 hw->fc.requested_mode = e1000_fc_rx_pause;
 2637                 hw->fc.pause_time = 0xFFFF; /* override */
 2638                 if (if_getmtu(ifp) > ETHERMTU) {
 2639                         hw->fc.high_water = 0x3500;
 2640                         hw->fc.low_water = 0x1500;
 2641                 } else {
 2642                         hw->fc.high_water = 0x5000;
 2643                         hw->fc.low_water = 0x3000;
 2644                 }
 2645                 hw->fc.refresh_time = 0x1000;
 2646                 break;
 2647         case e1000_pch2lan:
 2648         case e1000_pch_lpt:
 2649         case e1000_pch_spt:
 2650         case e1000_pch_cnp:
 2651         case e1000_pch_tgp:
 2652         case e1000_pch_adp:
 2653         case e1000_pch_mtp:
 2654                 hw->fc.high_water = 0x5C20;
 2655                 hw->fc.low_water = 0x5048;
 2656                 hw->fc.pause_time = 0x0650;
 2657                 hw->fc.refresh_time = 0x0400;
 2658                 /* Jumbos need adjusted PBA */
 2659                 if (if_getmtu(ifp) > ETHERMTU)
 2660                         E1000_WRITE_REG(hw, E1000_PBA, 12);
 2661                 else
 2662                         E1000_WRITE_REG(hw, E1000_PBA, 26);
 2663                 break;
 2664         case e1000_82575:
 2665         case e1000_82576:
 2666                 /* 8-byte granularity */
 2667                 hw->fc.low_water = hw->fc.high_water - 8;
 2668                 break;
 2669         case e1000_82580:
 2670         case e1000_i350:
 2671         case e1000_i354:
 2672         case e1000_i210:
 2673         case e1000_i211:
 2674         case e1000_vfadapt:
 2675         case e1000_vfadapt_i350:
 2676                 /* 16-byte granularity */
 2677                 hw->fc.low_water = hw->fc.high_water - 16;
 2678                 break;
 2679         case e1000_ich9lan:
 2680         case e1000_ich10lan:
 2681                 if (if_getmtu(ifp) > ETHERMTU) {
 2682                         hw->fc.high_water = 0x2800;
 2683                         hw->fc.low_water = hw->fc.high_water - 8;
 2684                         break;
 2685                 }
 2686                 /* FALLTHROUGH */
 2687         default:
 2688                 if (hw->mac.type == e1000_80003es2lan)
 2689                         hw->fc.pause_time = 0xFFFF;
 2690                 break;
 2691         }
 2692 
 2693         /* Issue a global reset */
 2694         e1000_reset_hw(hw);
 2695         if (hw->mac.type >= igb_mac_min) {
 2696                 E1000_WRITE_REG(hw, E1000_WUC, 0);
 2697         } else {
 2698                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
 2699                 em_disable_aspm(sc);
 2700         }
 2701         if (sc->flags & IGB_MEDIA_RESET) {
 2702                 e1000_setup_init_funcs(hw, true);
 2703                 e1000_get_bus_info(hw);
 2704                 sc->flags &= ~IGB_MEDIA_RESET;
 2705         }
 2706         /* and a re-init */
 2707         if (e1000_init_hw(hw) < 0) {
 2708                 device_printf(dev, "Hardware Initialization Failed\n");
 2709                 return;
 2710         }
 2711         if (hw->mac.type >= igb_mac_min)
 2712                 igb_init_dmac(sc, pba);
 2713 
 2714         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
 2715         e1000_get_phy_info(hw);
 2716         e1000_check_for_link(hw);
 2717 }
 2718 
 2719 /*
 2720  * Initialise the RSS mapping for NICs that support multiple transmit/
 2721  * receive rings.
 2722  */
 2723 
 2724 #define RSSKEYLEN 10
 2725 static void
 2726 em_initialize_rss_mapping(struct e1000_softc *sc)
 2727 {
 2728         uint8_t  rss_key[4 * RSSKEYLEN];
 2729         uint32_t reta = 0;
 2730         struct e1000_hw *hw = &sc->hw;
 2731         int i;
 2732 
 2733         /*
 2734          * Configure RSS key
 2735          */
 2736         arc4rand(rss_key, sizeof(rss_key), 0);
 2737         for (i = 0; i < RSSKEYLEN; ++i) {
 2738                 uint32_t rssrk = 0;
 2739 
 2740                 rssrk = EM_RSSRK_VAL(rss_key, i);
 2741                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
 2742         }
 2743 
 2744         /*
 2745          * Configure RSS redirect table in following fashion:
 2746          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
 2747          */
 2748         for (i = 0; i < sizeof(reta); ++i) {
 2749                 uint32_t q;
 2750 
 2751                 q = (i % sc->rx_num_queues) << 7;
 2752                 reta |= q << (8 * i);
 2753         }
 2754 
 2755         for (i = 0; i < 32; ++i)
 2756                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
 2757 
 2758         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
 2759                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
 2760                         E1000_MRQC_RSS_FIELD_IPV4 |
 2761                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
 2762                         E1000_MRQC_RSS_FIELD_IPV6_EX |
 2763                         E1000_MRQC_RSS_FIELD_IPV6);
 2764 }
 2765 
 2766 static void
 2767 igb_initialize_rss_mapping(struct e1000_softc *sc)
 2768 {
 2769         struct e1000_hw *hw = &sc->hw;
 2770         int i;
 2771         int queue_id;
 2772         u32 reta;
 2773         u32 rss_key[10], mrqc, shift = 0;
 2774 
 2775         /* XXX? */
 2776         if (hw->mac.type == e1000_82575)
 2777                 shift = 6;
 2778 
 2779         /*
 2780          * The redirection table controls which destination
 2781          * queue each bucket redirects traffic to.
 2782          * Each DWORD represents four queues, with the LSB
 2783          * being the first queue in the DWORD.
 2784          *
 2785          * This just allocates buckets to queues using round-robin
 2786          * allocation.
 2787          *
 2788          * NOTE: It Just Happens to line up with the default
 2789          * RSS allocation method.
 2790          */
 2791 
 2792         /* Warning FM follows */
 2793         reta = 0;
 2794         for (i = 0; i < 128; i++) {
 2795 #ifdef RSS
 2796                 queue_id = rss_get_indirection_to_bucket(i);
 2797                 /*
 2798                  * If we have more queues than buckets, we'll
 2799                  * end up mapping buckets to a subset of the
 2800                  * queues.
 2801                  *
 2802                  * If we have more buckets than queues, we'll
 2803                  * end up instead assigning multiple buckets
 2804                  * to queues.
 2805                  *
 2806                  * Both are suboptimal, but we need to handle
 2807                  * the case so we don't go out of bounds
 2808                  * indexing arrays and such.
 2809                  */
 2810                 queue_id = queue_id % sc->rx_num_queues;
 2811 #else
 2812                 queue_id = (i % sc->rx_num_queues);
 2813 #endif
 2814                 /* Adjust if required */
 2815                 queue_id = queue_id << shift;
 2816 
 2817                 /*
 2818                  * The low 8 bits are for hash value (n+0);
 2819                  * The next 8 bits are for hash value (n+1), etc.
 2820                  */
 2821                 reta = reta >> 8;
 2822                 reta = reta | ( ((uint32_t) queue_id) << 24);
 2823                 if ((i & 3) == 3) {
 2824                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
 2825                         reta = 0;
 2826                 }
 2827         }
 2828 
 2829         /* Now fill in hash table */
 2830 
 2831         /*
 2832          * MRQC: Multiple Receive Queues Command
 2833          * Set queuing to RSS control, number depends on the device.
 2834          */
 2835         mrqc = E1000_MRQC_ENABLE_RSS_MQ;
 2836 
 2837 #ifdef RSS
 2838         /* XXX ew typecasting */
 2839         rss_getkey((uint8_t *) &rss_key);
 2840 #else
 2841         arc4rand(&rss_key, sizeof(rss_key), 0);
 2842 #endif
 2843         for (i = 0; i < 10; i++)
 2844                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
 2845 
 2846         /*
 2847          * Configure the RSS fields to hash upon.
 2848          */
 2849         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
 2850             E1000_MRQC_RSS_FIELD_IPV4_TCP);
 2851         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
 2852             E1000_MRQC_RSS_FIELD_IPV6_TCP);
 2853         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
 2854             E1000_MRQC_RSS_FIELD_IPV6_UDP);
 2855         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
 2856             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
 2857 
 2858         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
 2859 }
 2860 
 2861 /*********************************************************************
 2862  *
 2863  *  Setup networking device structure and register interface media.
 2864  *
 2865  **********************************************************************/
 2866 static int
 2867 em_setup_interface(if_ctx_t ctx)
 2868 {
 2869         if_t ifp = iflib_get_ifp(ctx);
 2870         struct e1000_softc *sc = iflib_get_softc(ctx);
 2871         if_softc_ctx_t scctx = sc->shared;
 2872 
 2873         INIT_DEBUGOUT("em_setup_interface: begin");
 2874 
 2875         /* Single Queue */
 2876         if (sc->tx_num_queues == 1) {
 2877                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
 2878                 if_setsendqready(ifp);
 2879         }
 2880 
 2881         /*
 2882          * Specify the media types supported by this adapter and register
 2883          * callbacks to update media and link information
 2884          */
 2885         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
 2886             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
 2887                 u_char fiber_type = IFM_1000_SX;        /* default type */
 2888 
 2889                 if (sc->hw.mac.type == e1000_82545)
 2890                         fiber_type = IFM_1000_LX;
 2891                 ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
 2892                 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
 2893         } else {
 2894                 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
 2895                 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
 2896                 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
 2897                 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
 2898                 if (sc->hw.phy.type != e1000_phy_ife) {
 2899                         ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
 2900                         ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
 2901                 }
 2902         }
 2903         ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
 2904         ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
 2905         return (0);
 2906 }
 2907 
 2908 static int
 2909 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
 2910 {
 2911         struct e1000_softc *sc = iflib_get_softc(ctx);
 2912         if_softc_ctx_t scctx = sc->shared;
 2913         int error = E1000_SUCCESS;
 2914         struct em_tx_queue *que;
 2915         int i, j;
 2916 
 2917         MPASS(sc->tx_num_queues > 0);
 2918         MPASS(sc->tx_num_queues == ntxqsets);
 2919 
 2920         /* First allocate the top level queue structs */
 2921         if (!(sc->tx_queues =
 2922             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
 2923             sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
 2924                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
 2925                 return(ENOMEM);
 2926         }
 2927 
 2928         for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
 2929                 /* Set up some basics */
 2930 
 2931                 struct tx_ring *txr = &que->txr;
 2932                 txr->sc = que->sc = sc;
 2933                 que->me = txr->me =  i;
 2934 
 2935                 /* Allocate report status array */
 2936                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
 2937                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
 2938                         error = ENOMEM;
 2939                         goto fail;
 2940                 }
 2941                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
 2942                         txr->tx_rsq[j] = QIDX_INVALID;
 2943                 /* get the virtual and physical address of the hardware queues */
 2944                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
 2945                 txr->tx_paddr = paddrs[i*ntxqs];
 2946         }
 2947 
 2948         if (bootverbose)
 2949                 device_printf(iflib_get_dev(ctx),
 2950                     "allocated for %d tx_queues\n", sc->tx_num_queues);
 2951         return (0);
 2952 fail:
 2953         em_if_queues_free(ctx);
 2954         return (error);
 2955 }
 2956 
 2957 static int
 2958 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
 2959 {
 2960         struct e1000_softc *sc = iflib_get_softc(ctx);
 2961         int error = E1000_SUCCESS;
 2962         struct em_rx_queue *que;
 2963         int i;
 2964 
 2965         MPASS(sc->rx_num_queues > 0);
 2966         MPASS(sc->rx_num_queues == nrxqsets);
 2967 
 2968         /* First allocate the top level queue structs */
 2969         if (!(sc->rx_queues =
 2970             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
 2971             sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
 2972                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
 2973                 error = ENOMEM;
 2974                 goto fail;
 2975         }
 2976 
 2977         for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
 2978                 /* Set up some basics */
 2979                 struct rx_ring *rxr = &que->rxr;
 2980                 rxr->sc = que->sc = sc;
 2981                 rxr->que = que;
 2982                 que->me = rxr->me =  i;
 2983 
 2984                 /* get the virtual and physical address of the hardware queues */
 2985                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
 2986                 rxr->rx_paddr = paddrs[i*nrxqs];
 2987         }
 2988  
 2989         if (bootverbose)
 2990                 device_printf(iflib_get_dev(ctx),
 2991                     "allocated for %d rx_queues\n", sc->rx_num_queues);
 2992 
 2993         return (0);
 2994 fail:
 2995         em_if_queues_free(ctx);
 2996         return (error);
 2997 }
 2998 
 2999 static void
 3000 em_if_queues_free(if_ctx_t ctx)
 3001 {
 3002         struct e1000_softc *sc = iflib_get_softc(ctx);
 3003         struct em_tx_queue *tx_que = sc->tx_queues;
 3004         struct em_rx_queue *rx_que = sc->rx_queues;
 3005 
 3006         if (tx_que != NULL) {
 3007                 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
 3008                         struct tx_ring *txr = &tx_que->txr;
 3009                         if (txr->tx_rsq == NULL)
 3010                                 break;
 3011 
 3012                         free(txr->tx_rsq, M_DEVBUF);
 3013                         txr->tx_rsq = NULL;
 3014                 }
 3015                 free(sc->tx_queues, M_DEVBUF);
 3016                 sc->tx_queues = NULL;
 3017         }
 3018 
 3019         if (rx_que != NULL) {
 3020                 free(sc->rx_queues, M_DEVBUF);
 3021                 sc->rx_queues = NULL;
 3022         }
 3023 }
 3024 
 3025 /*********************************************************************
 3026  *
 3027  *  Enable transmit unit.
 3028  *
 3029  **********************************************************************/
 3030 static void
 3031 em_initialize_transmit_unit(if_ctx_t ctx)
 3032 {
 3033         struct e1000_softc *sc = iflib_get_softc(ctx);
 3034         if_softc_ctx_t scctx = sc->shared;
 3035         struct em_tx_queue *que;
 3036         struct tx_ring  *txr;
 3037         struct e1000_hw *hw = &sc->hw;
 3038         u32 tctl, txdctl = 0, tarc, tipg = 0;
 3039 
 3040         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
 3041 
 3042         for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
 3043                 u64 bus_addr;
 3044                 caddr_t offp, endp;
 3045 
 3046                 que = &sc->tx_queues[i];
 3047                 txr = &que->txr;
 3048                 bus_addr = txr->tx_paddr;
 3049 
 3050                 /* Clear checksum offload context. */
 3051                 offp = (caddr_t)&txr->csum_flags;
 3052                 endp = (caddr_t)(txr + 1);
 3053                 bzero(offp, endp - offp);
 3054 
 3055                 /* Base and Len of TX Ring */
 3056                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
 3057                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
 3058                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
 3059                     (u32)(bus_addr >> 32));
 3060                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
 3061                     (u32)bus_addr);
 3062                 /* Init the HEAD/TAIL indices */
 3063                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
 3064                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
 3065 
 3066                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
 3067                     E1000_READ_REG(hw, E1000_TDBAL(i)),
 3068                     E1000_READ_REG(hw, E1000_TDLEN(i)));
 3069 
 3070                 txdctl = 0; /* clear txdctl */
 3071                 txdctl |= 0x1f; /* PTHRESH */
 3072                 txdctl |= 1 << 8; /* HTHRESH */
 3073                 txdctl |= 1 << 16;/* WTHRESH */
 3074                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
 3075                 txdctl |= E1000_TXDCTL_GRAN;
 3076                 txdctl |= 1 << 25; /* LWTHRESH */
 3077 
 3078                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
 3079         }
 3080 
 3081         /* Set the default values for the Tx Inter Packet Gap timer */
 3082         switch (hw->mac.type) {
 3083         case e1000_80003es2lan:
 3084                 tipg = DEFAULT_82543_TIPG_IPGR1;
 3085                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
 3086                     E1000_TIPG_IPGR2_SHIFT;
 3087                 break;
 3088         case e1000_82542:
 3089                 tipg = DEFAULT_82542_TIPG_IPGT;
 3090                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
 3091                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
 3092                 break;
 3093         default:
 3094                 if (hw->phy.media_type == e1000_media_type_fiber ||
 3095                     hw->phy.media_type == e1000_media_type_internal_serdes)
 3096                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
 3097                 else
 3098                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
 3099                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
 3100                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
 3101         }
 3102 
 3103         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
 3104         E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
 3105 
 3106         if(hw->mac.type >= e1000_82540)
 3107                 E1000_WRITE_REG(hw, E1000_TADV,
 3108                     sc->tx_abs_int_delay.value);
 3109 
 3110         if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
 3111                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
 3112                 tarc |= TARC_SPEED_MODE_BIT;
 3113                 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
 3114         } else if (hw->mac.type == e1000_80003es2lan) {
 3115                 /* errata: program both queues to unweighted RR */
 3116                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
 3117                 tarc |= 1;
 3118                 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
 3119                 tarc = E1000_READ_REG(hw, E1000_TARC(1));
 3120                 tarc |= 1;
 3121                 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
 3122         } else if (hw->mac.type == e1000_82574) {
 3123                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
 3124                 tarc |= TARC_ERRATA_BIT;
 3125                 if ( sc->tx_num_queues > 1) {
 3126                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
 3127                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
 3128                         E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
 3129                 } else
 3130                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
 3131         }
 3132 
 3133         if (sc->tx_int_delay.value > 0)
 3134                 sc->txd_cmd |= E1000_TXD_CMD_IDE;
 3135 
 3136         /* Program the Transmit Control Register */
 3137         tctl = E1000_READ_REG(hw, E1000_TCTL);
 3138         tctl &= ~E1000_TCTL_CT;
 3139         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
 3140                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
 3141 
 3142         if (hw->mac.type >= e1000_82571)
 3143                 tctl |= E1000_TCTL_MULR;
 3144 
 3145         /* This write will effectively turn on the transmit unit. */
 3146         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
 3147 
 3148         /* SPT and KBL errata workarounds */
 3149         if (hw->mac.type == e1000_pch_spt) {
 3150                 u32 reg;
 3151                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
 3152                 reg |= E1000_RCTL_RDMTS_HEX;
 3153                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
 3154                 /* i218-i219 Specification Update 1.5.4.5 */
 3155                 reg = E1000_READ_REG(hw, E1000_TARC(0));
 3156                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
 3157                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
 3158                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
 3159         }
 3160 }
 3161 
 3162 /*********************************************************************
 3163  *
 3164  *  Enable receive unit.
 3165  *
 3166  **********************************************************************/
 3167 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
 3168 
 3169 static void
 3170 em_initialize_receive_unit(if_ctx_t ctx)
 3171 {
 3172         struct e1000_softc *sc = iflib_get_softc(ctx);
 3173         if_softc_ctx_t scctx = sc->shared;
 3174         if_t ifp = iflib_get_ifp(ctx);
 3175         struct e1000_hw *hw = &sc->hw;
 3176         struct em_rx_queue *que;
 3177         int i;
 3178         uint32_t rctl, rxcsum;
 3179 
 3180         INIT_DEBUGOUT("em_initialize_receive_units: begin");
 3181 
 3182         /*
 3183          * Make sure receives are disabled while setting
 3184          * up the descriptor ring
 3185          */
 3186         rctl = E1000_READ_REG(hw, E1000_RCTL);
 3187         /* Do not disable if ever enabled on this hardware */
 3188         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
 3189                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
 3190 
 3191         /* Setup the Receive Control Register */
 3192         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 3193         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
 3194             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
 3195             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
 3196 
 3197         /* Do not store bad packets */
 3198         rctl &= ~E1000_RCTL_SBP;
 3199 
 3200         /* Enable Long Packet receive */
 3201         if (if_getmtu(ifp) > ETHERMTU)
 3202                 rctl |= E1000_RCTL_LPE;
 3203         else
 3204                 rctl &= ~E1000_RCTL_LPE;
 3205 
 3206         /* Strip the CRC */
 3207         if (!em_disable_crc_stripping)
 3208                 rctl |= E1000_RCTL_SECRC;
 3209 
 3210         if (hw->mac.type >= e1000_82540) {
 3211                 E1000_WRITE_REG(hw, E1000_RADV,
 3212                     sc->rx_abs_int_delay.value);
 3213 
 3214                 /*
 3215                  * Set the interrupt throttling rate. Value is calculated
 3216                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
 3217                  */
 3218                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
 3219         }
 3220         E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value);
 3221 
 3222         if (hw->mac.type >= em_mac_min) {
 3223                 uint32_t rfctl;
 3224                 /* Use extended rx descriptor formats */
 3225                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
 3226                 rfctl |= E1000_RFCTL_EXTEN;
 3227 
 3228                 /*
 3229                  * When using MSI-X interrupts we need to throttle
 3230                  * using the EITR register (82574 only)
 3231                  */
 3232                 if (hw->mac.type == e1000_82574) {
 3233                         for (int i = 0; i < 4; i++)
 3234                                 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
 3235                                     DEFAULT_ITR);
 3236                         /* Disable accelerated acknowledge */
 3237                         rfctl |= E1000_RFCTL_ACK_DIS;
 3238                 }
 3239                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
 3240         }
 3241 
 3242         /* Set up L3 and L4 csum Rx descriptor offloads */
 3243         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
 3244         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
 3245                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
 3246                 if (hw->mac.type > e1000_82575)
 3247                         rxcsum |= E1000_RXCSUM_CRCOFL;
 3248                 else if (hw->mac.type < em_mac_min &&
 3249                     if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
 3250                         rxcsum |= E1000_RXCSUM_IPV6OFL;
 3251         } else {
 3252                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
 3253                 if (hw->mac.type > e1000_82575)
 3254                         rxcsum &= ~E1000_RXCSUM_CRCOFL;
 3255                 else if (hw->mac.type < em_mac_min)
 3256                         rxcsum &= ~E1000_RXCSUM_IPV6OFL;
 3257         }
 3258 
 3259         if (sc->rx_num_queues > 1) {
 3260                 /* RSS hash needed in the Rx descriptor */
 3261                 rxcsum |= E1000_RXCSUM_PCSD;
 3262 
 3263                 if (hw->mac.type >= igb_mac_min)
 3264                         igb_initialize_rss_mapping(sc);
 3265                 else
 3266                         em_initialize_rss_mapping(sc);
 3267         }
 3268         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
 3269 
 3270         /*
 3271          * XXX TEMPORARY WORKAROUND: on some systems with 82573
 3272          * long latencies are observed, like Lenovo X60. This
 3273          * change eliminates the problem, but since having positive
 3274          * values in RDTR is a known source of problems on other
 3275          * platforms another solution is being sought.
 3276          */
 3277         if (hw->mac.type == e1000_82573)
 3278                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
 3279 
 3280         for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
 3281                 struct rx_ring *rxr = &que->rxr;
 3282                 /* Setup the Base and Length of the Rx Descriptor Ring */
 3283                 u64 bus_addr = rxr->rx_paddr;
 3284 #if 0
 3285                 u32 rdt = sc->rx_num_queues -1;  /* default */
 3286 #endif
 3287 
 3288                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
 3289                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
 3290                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
 3291                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
 3292                 /* Setup the Head and Tail Descriptor Pointers */
 3293                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
 3294                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
 3295         }
 3296 
 3297         /*
 3298          * Set PTHRESH for improved jumbo performance
 3299          * According to 10.2.5.11 of Intel 82574 Datasheet,
 3300          * RXDCTL(1) is written whenever RXDCTL(0) is written.
 3301          * Only write to RXDCTL(1) if there is a need for different
 3302          * settings.
 3303          */
 3304         if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
 3305             hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
 3306                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
 3307                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
 3308         } else if (hw->mac.type == e1000_82574) {
 3309                 for (int i = 0; i < sc->rx_num_queues; i++) {
 3310                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
 3311                         rxdctl |= 0x20; /* PTHRESH */
 3312                         rxdctl |= 4 << 8; /* HTHRESH */
 3313                         rxdctl |= 4 << 16;/* WTHRESH */
 3314                         rxdctl |= 1 << 24; /* Switch to granularity */
 3315                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
 3316                 }
 3317         } else if (hw->mac.type >= igb_mac_min) {
 3318                 u32 psize, srrctl = 0;
 3319 
 3320                 if (if_getmtu(ifp) > ETHERMTU) {
 3321                         psize = scctx->isc_max_frame_size;
 3322                         /* are we on a vlan? */
 3323                         if (if_vlantrunkinuse(ifp))
 3324                                 psize += VLAN_TAG_SIZE;
 3325 
 3326                         if (sc->vf_ifp)
 3327                                 e1000_rlpml_set_vf(hw, psize);
 3328                         else
 3329                                 E1000_WRITE_REG(hw, E1000_RLPML, psize);
 3330                 }
 3331 
 3332                 /* Set maximum packet buffer len */
 3333                 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
 3334                     E1000_SRRCTL_BSIZEPKT_SHIFT;
 3335 
 3336                 /*
 3337                  * If TX flow control is disabled and there's >1 queue defined,
 3338                  * enable DROP.
 3339                  *
 3340                  * This drops frames rather than hanging the RX MAC for all queues.
 3341                  */
 3342                 if ((sc->rx_num_queues > 1) &&
 3343                     (sc->fc == e1000_fc_none ||
 3344                      sc->fc == e1000_fc_rx_pause)) {
 3345                         srrctl |= E1000_SRRCTL_DROP_EN;
 3346                 }
 3347                         /* Setup the Base and Length of the Rx Descriptor Rings */
 3348                 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
 3349                         struct rx_ring *rxr = &que->rxr;
 3350                         u64 bus_addr = rxr->rx_paddr;
 3351                         u32 rxdctl;
 3352 
 3353 #ifdef notyet
 3354                         /* Configure for header split? -- ignore for now */
 3355                         rxr->hdr_split = igb_header_split;
 3356 #else
 3357                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
 3358 #endif
 3359 
 3360                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
 3361                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
 3362                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
 3363                                         (uint32_t)(bus_addr >> 32));
 3364                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
 3365                                         (uint32_t)bus_addr);
 3366                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
 3367                         /* Enable this Queue */
 3368                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
 3369                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
 3370                         rxdctl &= 0xFFF00000;
 3371                         rxdctl |= IGB_RX_PTHRESH;
 3372                         rxdctl |= IGB_RX_HTHRESH << 8;
 3373                         rxdctl |= IGB_RX_WTHRESH << 16;
 3374                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
 3375                 }               
 3376         } else if (hw->mac.type >= e1000_pch2lan) {
 3377                 if (if_getmtu(ifp) > ETHERMTU)
 3378                         e1000_lv_jumbo_workaround_ich8lan(hw, true);
 3379                 else
 3380                         e1000_lv_jumbo_workaround_ich8lan(hw, false);
 3381         }
 3382 
 3383         /* Make sure VLAN Filters are off */
 3384         rctl &= ~E1000_RCTL_VFE;
 3385 
 3386         /* Set up packet buffer size, overridden by per queue srrctl on igb */
 3387         if (hw->mac.type < igb_mac_min) {
 3388                 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
 3389                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
 3390                 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
 3391                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
 3392                 else if (sc->rx_mbuf_sz > 8192)
 3393                         rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
 3394                 else {
 3395                         rctl |= E1000_RCTL_SZ_2048;
 3396                         rctl &= ~E1000_RCTL_BSEX;
 3397                 }
 3398         } else
 3399                 rctl |= E1000_RCTL_SZ_2048;
 3400 
 3401         /*
 3402          * rctl bits 11:10 are as follows
 3403          * lem: reserved
 3404          * em: DTYPE
 3405          * igb: reserved
 3406          * and should be 00 on all of the above
 3407          */
 3408         rctl &= ~0x00000C00;
 3409 
 3410         /* Write out the settings */
 3411         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
 3412 
 3413         return;
 3414 }
 3415 
 3416 static void
 3417 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
 3418 {
 3419         struct e1000_softc *sc = iflib_get_softc(ctx);
 3420         u32 index, bit;
 3421 
 3422         index = (vtag >> 5) & 0x7F;
 3423         bit = vtag & 0x1F;
 3424         sc->shadow_vfta[index] |= (1 << bit);
 3425         ++sc->num_vlans;
 3426         em_if_vlan_filter_write(sc);
 3427 }
 3428 
 3429 static void
 3430 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
 3431 {
 3432         struct e1000_softc *sc = iflib_get_softc(ctx);
 3433         u32 index, bit;
 3434 
 3435         index = (vtag >> 5) & 0x7F;
 3436         bit = vtag & 0x1F;
 3437         sc->shadow_vfta[index] &= ~(1 << bit);
 3438         --sc->num_vlans;
 3439         em_if_vlan_filter_write(sc);
 3440 }
 3441 
 3442 static bool
 3443 em_if_vlan_filter_capable(if_ctx_t ctx)
 3444 {
 3445         if_t ifp = iflib_get_ifp(ctx);
 3446 
 3447         if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
 3448             !em_disable_crc_stripping)
 3449                 return (true);
 3450 
 3451         return (false);
 3452 }
 3453 
 3454 static bool
 3455 em_if_vlan_filter_used(if_ctx_t ctx)
 3456 {
 3457         struct e1000_softc *sc = iflib_get_softc(ctx);
 3458 
 3459         if (!em_if_vlan_filter_capable(ctx))
 3460                 return (false);
 3461 
 3462         for (int i = 0; i < EM_VFTA_SIZE; i++)
 3463                 if (sc->shadow_vfta[i] != 0)
 3464                         return (true);
 3465 
 3466         return (false);
 3467 }
 3468 
 3469 static void
 3470 em_if_vlan_filter_enable(struct e1000_softc *sc)
 3471 {
 3472         struct e1000_hw *hw = &sc->hw;
 3473         u32 reg;
 3474 
 3475         reg = E1000_READ_REG(hw, E1000_RCTL);
 3476         reg &= ~E1000_RCTL_CFIEN;
 3477         reg |= E1000_RCTL_VFE;
 3478         E1000_WRITE_REG(hw, E1000_RCTL, reg);
 3479 }
 3480 
 3481 static void
 3482 em_if_vlan_filter_disable(struct e1000_softc *sc)
 3483 {
 3484         struct e1000_hw *hw = &sc->hw;
 3485         u32 reg;
 3486 
 3487         reg = E1000_READ_REG(hw, E1000_RCTL);
 3488         reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
 3489         E1000_WRITE_REG(hw, E1000_RCTL, reg);
 3490 }
 3491 
 3492 static void
 3493 em_if_vlan_filter_write(struct e1000_softc *sc)
 3494 {
 3495         struct e1000_hw *hw = &sc->hw;
 3496 
 3497         if (sc->vf_ifp)
 3498                 return;
 3499 
 3500         /* Disable interrupts for lem-class devices during the filter change */
 3501         if (hw->mac.type < em_mac_min)
 3502                 em_if_intr_disable(sc->ctx);
 3503 
 3504         for (int i = 0; i < EM_VFTA_SIZE; i++)
 3505                 if (sc->shadow_vfta[i] != 0) {
 3506                         /* XXXKB: incomplete VF support, we return early above */
 3507                         if (sc->vf_ifp)
 3508                                 e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true);
 3509                         else
 3510                                 e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
 3511                 }
 3512 
 3513         /* Re-enable interrupts for lem-class devices */
 3514         if (hw->mac.type < em_mac_min)
 3515                 em_if_intr_enable(sc->ctx);
 3516 }
 3517 
 3518 static void
 3519 em_setup_vlan_hw_support(if_ctx_t ctx)
 3520 {
 3521         struct e1000_softc *sc = iflib_get_softc(ctx);
 3522         struct e1000_hw *hw = &sc->hw;
 3523         if_t ifp = iflib_get_ifp(ctx);
 3524         u32 reg;
 3525 
 3526         /* XXXKB: Return early if we are a VF until VF decap and filter management
 3527          * is ready and tested.
 3528          */
 3529         if (sc->vf_ifp)
 3530                 return;
 3531 
 3532         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
 3533             !em_disable_crc_stripping) {
 3534                 reg = E1000_READ_REG(hw, E1000_CTRL);
 3535                 reg |= E1000_CTRL_VME;
 3536                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
 3537         } else {
 3538                 reg = E1000_READ_REG(hw, E1000_CTRL);
 3539                 reg &= ~E1000_CTRL_VME;
 3540                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
 3541         }
 3542 
 3543         /* If we aren't doing HW filtering, we're done */
 3544         if (!em_if_vlan_filter_capable(ctx))  {
 3545                 em_if_vlan_filter_disable(sc);
 3546                 return;
 3547         }
 3548 
 3549         /*
 3550          * A soft reset zero's out the VFTA, so
 3551          * we need to repopulate it now.
 3552          */
 3553         em_if_vlan_filter_write(sc);
 3554 
 3555         /* Enable the Filter Table */
 3556         em_if_vlan_filter_enable(sc);
 3557 }
 3558 
 3559 static void
 3560 em_if_intr_enable(if_ctx_t ctx)
 3561 {
 3562         struct e1000_softc *sc = iflib_get_softc(ctx);
 3563         struct e1000_hw *hw = &sc->hw;
 3564         u32 ims_mask = IMS_ENABLE_MASK;
 3565 
 3566         if (sc->intr_type == IFLIB_INTR_MSIX) {
 3567                 E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
 3568                 ims_mask |= sc->ims;
 3569         }
 3570         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
 3571         E1000_WRITE_FLUSH(hw);
 3572 }
 3573 
 3574 static void
 3575 em_if_intr_disable(if_ctx_t ctx)
 3576 {
 3577         struct e1000_softc *sc = iflib_get_softc(ctx);
 3578         struct e1000_hw *hw = &sc->hw;
 3579 
 3580         if (sc->intr_type == IFLIB_INTR_MSIX)
 3581                 E1000_WRITE_REG(hw, EM_EIAC, 0);
 3582         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
 3583         E1000_WRITE_FLUSH(hw);
 3584 }
 3585 
 3586 static void
 3587 igb_if_intr_enable(if_ctx_t ctx)
 3588 {
 3589         struct e1000_softc *sc = iflib_get_softc(ctx);
 3590         struct e1000_hw *hw = &sc->hw;
 3591         u32 mask;
 3592 
 3593         if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
 3594                 mask = (sc->que_mask | sc->link_mask);
 3595                 E1000_WRITE_REG(hw, E1000_EIAC, mask);
 3596                 E1000_WRITE_REG(hw, E1000_EIAM, mask);
 3597                 E1000_WRITE_REG(hw, E1000_EIMS, mask);
 3598                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
 3599         } else
 3600                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
 3601         E1000_WRITE_FLUSH(hw);
 3602 }
 3603 
 3604 static void
 3605 igb_if_intr_disable(if_ctx_t ctx)
 3606 {
 3607         struct e1000_softc *sc = iflib_get_softc(ctx);
 3608         struct e1000_hw *hw = &sc->hw;
 3609 
 3610         if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
 3611                 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
 3612                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
 3613         }
 3614         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
 3615         E1000_WRITE_FLUSH(hw);
 3616 }
 3617 
 3618 /*
 3619  * Bit of a misnomer, what this really means is
 3620  * to enable OS management of the system... aka
 3621  * to disable special hardware management features
 3622  */
 3623 static void
 3624 em_init_manageability(struct e1000_softc *sc)
 3625 {
 3626         /* A shared code workaround */
 3627 #define E1000_82542_MANC2H E1000_MANC2H
 3628         if (sc->has_manage) {
 3629                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
 3630                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
 3631 
 3632                 /* disable hardware interception of ARP */
 3633                 manc &= ~(E1000_MANC_ARP_EN);
 3634 
 3635                 /* enable receiving management packets to the host */
 3636                 manc |= E1000_MANC_EN_MNG2HOST;
 3637 #define E1000_MNG2HOST_PORT_623 (1 << 5)
 3638 #define E1000_MNG2HOST_PORT_664 (1 << 6)
 3639                 manc2h |= E1000_MNG2HOST_PORT_623;
 3640                 manc2h |= E1000_MNG2HOST_PORT_664;
 3641                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
 3642                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
 3643         }
 3644 }
 3645 
 3646 /*
 3647  * Give control back to hardware management
 3648  * controller if there is one.
 3649  */
 3650 static void
 3651 em_release_manageability(struct e1000_softc *sc)
 3652 {
 3653         if (sc->has_manage) {
 3654                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
 3655 
 3656                 /* re-enable hardware interception of ARP */
 3657                 manc |= E1000_MANC_ARP_EN;
 3658                 manc &= ~E1000_MANC_EN_MNG2HOST;
 3659 
 3660                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
 3661         }
 3662 }
 3663 
 3664 /*
 3665  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
 3666  * For ASF and Pass Through versions of f/w this means
 3667  * that the driver is loaded. For AMT version type f/w
 3668  * this means that the network i/f is open.
 3669  */
 3670 static void
 3671 em_get_hw_control(struct e1000_softc *sc)
 3672 {
 3673         u32 ctrl_ext, swsm;
 3674 
 3675         if (sc->vf_ifp)
 3676                 return;
 3677 
 3678         if (sc->hw.mac.type == e1000_82573) {
 3679                 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
 3680                 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
 3681                     swsm | E1000_SWSM_DRV_LOAD);
 3682                 return;
 3683         }
 3684         /* else */
 3685         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
 3686         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
 3687             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
 3688 }
 3689 
 3690 /*
 3691  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
 3692  * For ASF and Pass Through versions of f/w this means that
 3693  * the driver is no longer loaded. For AMT versions of the
 3694  * f/w this means that the network i/f is closed.
 3695  */
 3696 static void
 3697 em_release_hw_control(struct e1000_softc *sc)
 3698 {
 3699         u32 ctrl_ext, swsm;
 3700 
 3701         if (!sc->has_manage)
 3702                 return;
 3703 
 3704         if (sc->hw.mac.type == e1000_82573) {
 3705                 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
 3706                 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
 3707                     swsm & ~E1000_SWSM_DRV_LOAD);
 3708                 return;
 3709         }
 3710         /* else */
 3711         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
 3712         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
 3713             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
 3714         return;
 3715 }
 3716 
 3717 static int
 3718 em_is_valid_ether_addr(u8 *addr)
 3719 {
 3720         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
 3721 
 3722         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
 3723                 return (false);
 3724         }
 3725 
 3726         return (true);
 3727 }
 3728 
 3729 /*
 3730 ** Parse the interface capabilities with regard
 3731 ** to both system management and wake-on-lan for
 3732 ** later use.
 3733 */
 3734 static void
 3735 em_get_wakeup(if_ctx_t ctx)
 3736 {
 3737         struct e1000_softc *sc = iflib_get_softc(ctx);
 3738         device_t dev = iflib_get_dev(ctx);
 3739         u16 eeprom_data = 0, device_id, apme_mask;
 3740 
 3741         sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
 3742         apme_mask = EM_EEPROM_APME;
 3743 
 3744         switch (sc->hw.mac.type) {
 3745         case e1000_82542:
 3746         case e1000_82543:
 3747                 break;
 3748         case e1000_82544:
 3749                 e1000_read_nvm(&sc->hw,
 3750                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
 3751                 apme_mask = EM_82544_APME;
 3752                 break;
 3753         case e1000_82546:
 3754         case e1000_82546_rev_3:
 3755                 if (sc->hw.bus.func == 1) {
 3756                         e1000_read_nvm(&sc->hw,
 3757                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 3758                         break;
 3759                 } else
 3760                         e1000_read_nvm(&sc->hw,
 3761                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
 3762                 break;
 3763         case e1000_82573:
 3764         case e1000_82583:
 3765                 sc->has_amt = true;
 3766                 /* FALLTHROUGH */
 3767         case e1000_82571:
 3768         case e1000_82572:
 3769         case e1000_80003es2lan:
 3770                 if (sc->hw.bus.func == 1) {
 3771                         e1000_read_nvm(&sc->hw,
 3772                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 3773                         break;
 3774                 } else
 3775                         e1000_read_nvm(&sc->hw,
 3776                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
 3777                 break;
 3778         case e1000_ich8lan:
 3779         case e1000_ich9lan:
 3780         case e1000_ich10lan:
 3781         case e1000_pchlan:
 3782         case e1000_pch2lan:
 3783         case e1000_pch_lpt:
 3784         case e1000_pch_spt:
 3785         case e1000_82575:       /* listing all igb devices */
 3786         case e1000_82576:
 3787         case e1000_82580:
 3788         case e1000_i350:
 3789         case e1000_i354:
 3790         case e1000_i210:
 3791         case e1000_i211:
 3792         case e1000_vfadapt:
 3793         case e1000_vfadapt_i350:
 3794                 apme_mask = E1000_WUC_APME;
 3795                 sc->has_amt = true;
 3796                 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
 3797                 break;
 3798         default:
 3799                 e1000_read_nvm(&sc->hw,
 3800                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
 3801                 break;
 3802         }
 3803         if (eeprom_data & apme_mask)
 3804                 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
 3805         /*
 3806          * We have the eeprom settings, now apply the special cases
 3807          * where the eeprom may be wrong or the board won't support
 3808          * wake on lan on a particular port
 3809          */
 3810         device_id = pci_get_device(dev);
 3811         switch (device_id) {
 3812         case E1000_DEV_ID_82546GB_PCIE:
 3813                 sc->wol = 0;
 3814                 break;
 3815         case E1000_DEV_ID_82546EB_FIBER:
 3816         case E1000_DEV_ID_82546GB_FIBER:
 3817                 /* Wake events only supported on port A for dual fiber
 3818                  * regardless of eeprom setting */
 3819                 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
 3820                     E1000_STATUS_FUNC_1)
 3821                         sc->wol = 0;
 3822                 break;
 3823         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 3824                 /* if quad port adapter, disable WoL on all but port A */
 3825                 if (global_quad_port_a != 0)
 3826                         sc->wol = 0;
 3827                 /* Reset for multiple quad port adapters */
 3828                 if (++global_quad_port_a == 4)
 3829                         global_quad_port_a = 0;
 3830                 break;
 3831         case E1000_DEV_ID_82571EB_FIBER:
 3832                 /* Wake events only supported on port A for dual fiber
 3833                  * regardless of eeprom setting */
 3834                 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
 3835                     E1000_STATUS_FUNC_1)
 3836                         sc->wol = 0;
 3837                 break;
 3838         case E1000_DEV_ID_82571EB_QUAD_COPPER:
 3839         case E1000_DEV_ID_82571EB_QUAD_FIBER:
 3840         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
 3841                 /* if quad port adapter, disable WoL on all but port A */
 3842                 if (global_quad_port_a != 0)
 3843                         sc->wol = 0;
 3844                 /* Reset for multiple quad port adapters */
 3845                 if (++global_quad_port_a == 4)
 3846                         global_quad_port_a = 0;
 3847                 break;
 3848         }
 3849         return;
 3850 }
 3851 
 3852 
 3853 /*
 3854  * Enable PCI Wake On Lan capability
 3855  */
 3856 static void
 3857 em_enable_wakeup(if_ctx_t ctx)
 3858 {
 3859         struct e1000_softc *sc = iflib_get_softc(ctx);
 3860         device_t dev = iflib_get_dev(ctx);
 3861         if_t ifp = iflib_get_ifp(ctx);
 3862         int error = 0;
 3863         u32 pmc, ctrl, ctrl_ext, rctl;
 3864         u16 status;
 3865 
 3866         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
 3867                 return;
 3868 
 3869         /*
 3870          * Determine type of Wakeup: note that wol
 3871          * is set with all bits on by default.
 3872          */
 3873         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
 3874                 sc->wol &= ~E1000_WUFC_MAG;
 3875 
 3876         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
 3877                 sc->wol &= ~E1000_WUFC_EX;
 3878 
 3879         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
 3880                 sc->wol &= ~E1000_WUFC_MC;
 3881         else {
 3882                 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
 3883                 rctl |= E1000_RCTL_MPE;
 3884                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
 3885         }
 3886 
 3887         if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
 3888                 goto pme;
 3889 
 3890         /* Advertise the wakeup capability */
 3891         ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
 3892         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
 3893         E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
 3894 
 3895         /* Keep the laser running on Fiber adapters */
 3896         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
 3897             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
 3898                 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
 3899                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
 3900                 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
 3901         }
 3902 
 3903         if ((sc->hw.mac.type == e1000_ich8lan) ||
 3904             (sc->hw.mac.type == e1000_pchlan) ||
 3905             (sc->hw.mac.type == e1000_ich9lan) ||
 3906             (sc->hw.mac.type == e1000_ich10lan))
 3907                 e1000_suspend_workarounds_ich8lan(&sc->hw);
 3908 
 3909         if ( sc->hw.mac.type >= e1000_pchlan) {
 3910                 error = em_enable_phy_wakeup(sc);
 3911                 if (error)
 3912                         goto pme;
 3913         } else {
 3914                 /* Enable wakeup by the MAC */
 3915                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
 3916                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
 3917         }
 3918 
 3919         if (sc->hw.phy.type == e1000_phy_igp_3)
 3920                 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
 3921 
 3922 pme:
 3923         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
 3924         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 3925         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
 3926                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 3927         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
 3928 
 3929         return;
 3930 }
 3931 
 3932 /*
 3933  * WOL in the newer chipset interfaces (pchlan)
 3934  * require thing to be copied into the phy
 3935  */
 3936 static int
 3937 em_enable_phy_wakeup(struct e1000_softc *sc)
 3938 {
 3939         struct e1000_hw *hw = &sc->hw;
 3940         u32 mreg, ret = 0;
 3941         u16 preg;
 3942 
 3943         /* copy MAC RARs to PHY RARs */
 3944         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
 3945 
 3946         /* copy MAC MTA to PHY MTA */
 3947         for (int i = 0; i < hw->mac.mta_reg_count; i++) {
 3948                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
 3949                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
 3950                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
 3951                     (u16)((mreg >> 16) & 0xFFFF));
 3952         }
 3953 
 3954         /* configure PHY Rx Control register */
 3955         e1000_read_phy_reg(hw, BM_RCTL, &preg);
 3956         mreg = E1000_READ_REG(hw, E1000_RCTL);
 3957         if (mreg & E1000_RCTL_UPE)
 3958                 preg |= BM_RCTL_UPE;
 3959         if (mreg & E1000_RCTL_MPE)
 3960                 preg |= BM_RCTL_MPE;
 3961         preg &= ~(BM_RCTL_MO_MASK);
 3962         if (mreg & E1000_RCTL_MO_3)
 3963                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
 3964                                 << BM_RCTL_MO_SHIFT);
 3965         if (mreg & E1000_RCTL_BAM)
 3966                 preg |= BM_RCTL_BAM;
 3967         if (mreg & E1000_RCTL_PMCF)
 3968                 preg |= BM_RCTL_PMCF;
 3969         mreg = E1000_READ_REG(hw, E1000_CTRL);
 3970         if (mreg & E1000_CTRL_RFCE)
 3971                 preg |= BM_RCTL_RFCE;
 3972         e1000_write_phy_reg(hw, BM_RCTL, preg);
 3973 
 3974         /* enable PHY wakeup in MAC register */
 3975         E1000_WRITE_REG(hw, E1000_WUC,
 3976             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
 3977         E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
 3978 
 3979         /* configure and enable PHY wakeup in PHY registers */
 3980         e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
 3981         e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
 3982 
 3983         /* activate PHY wakeup */
 3984         ret = hw->phy.ops.acquire(hw);
 3985         if (ret) {
 3986                 printf("Could not acquire PHY\n");
 3987                 return ret;
 3988         }
 3989         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
 3990                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
 3991         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
 3992         if (ret) {
 3993                 printf("Could not read PHY page 769\n");
 3994                 goto out;
 3995         }
 3996         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
 3997         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
 3998         if (ret)
 3999                 printf("Could not set PHY Host Wakeup bit\n");
 4000 out:
 4001         hw->phy.ops.release(hw);
 4002 
 4003         return ret;
 4004 }
 4005 
 4006 static void
 4007 em_if_led_func(if_ctx_t ctx, int onoff)
 4008 {
 4009         struct e1000_softc *sc = iflib_get_softc(ctx);
 4010 
 4011         if (onoff) {
 4012                 e1000_setup_led(&sc->hw);
 4013                 e1000_led_on(&sc->hw);
 4014         } else {
 4015                 e1000_led_off(&sc->hw);
 4016                 e1000_cleanup_led(&sc->hw);
 4017         }
 4018 }
 4019 
 4020 /*
 4021  * Disable the L0S and L1 LINK states
 4022  */
 4023 static void
 4024 em_disable_aspm(struct e1000_softc *sc)
 4025 {
 4026         int base, reg;
 4027         u16 link_cap,link_ctrl;
 4028         device_t dev = sc->dev;
 4029 
 4030         switch (sc->hw.mac.type) {
 4031         case e1000_82573:
 4032         case e1000_82574:
 4033         case e1000_82583:
 4034                 break;
 4035         default:
 4036                 return;
 4037         }
 4038         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
 4039                 return;
 4040         reg = base + PCIER_LINK_CAP;
 4041         link_cap = pci_read_config(dev, reg, 2);
 4042         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
 4043                 return;
 4044         reg = base + PCIER_LINK_CTL;
 4045         link_ctrl = pci_read_config(dev, reg, 2);
 4046         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
 4047         pci_write_config(dev, reg, link_ctrl, 2);
 4048         return;
 4049 }
 4050 
 4051 /**********************************************************************
 4052  *
 4053  *  Update the board statistics counters.
 4054  *
 4055  **********************************************************************/
 4056 static void
 4057 em_update_stats_counters(struct e1000_softc *sc)
 4058 {
 4059         u64 prev_xoffrxc = sc->stats.xoffrxc;
 4060 
 4061         if(sc->hw.phy.media_type == e1000_media_type_copper ||
 4062            (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
 4063                 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
 4064                 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
 4065         }
 4066         sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
 4067         sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
 4068         sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
 4069         sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
 4070 
 4071         sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
 4072         sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
 4073         sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
 4074         sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
 4075         sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
 4076         sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
 4077         sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
 4078         sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
 4079         /*
 4080          ** For watchdog management we need to know if we have been
 4081          ** paused during the last interval, so capture that here.
 4082         */
 4083         if (sc->stats.xoffrxc != prev_xoffrxc)
 4084                 sc->shared->isc_pause_frames = 1;
 4085         sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
 4086         sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
 4087         sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
 4088         sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
 4089         sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
 4090         sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
 4091         sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
 4092         sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
 4093         sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
 4094         sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
 4095         sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
 4096         sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
 4097 
 4098         /* For the 64-bit byte counters the low dword must be read first. */
 4099         /* Both registers clear on the read of the high dword */
 4100 
 4101         sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
 4102             ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
 4103         sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
 4104             ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
 4105 
 4106         sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
 4107         sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
 4108         sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
 4109         sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
 4110         sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
 4111 
 4112         sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
 4113         sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
 4114 
 4115         sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
 4116         sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
 4117         sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
 4118         sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
 4119         sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
 4120         sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
 4121         sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
 4122         sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
 4123         sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
 4124         sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
 4125 
 4126         /* Interrupt Counts */
 4127 
 4128         sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
 4129         sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
 4130         sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
 4131         sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
 4132         sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
 4133         sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
 4134         sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
 4135         sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
 4136         sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
 4137 
 4138         if (sc->hw.mac.type >= e1000_82543) {
 4139                 sc->stats.algnerrc +=
 4140                 E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
 4141                 sc->stats.rxerrc +=
 4142                 E1000_READ_REG(&sc->hw, E1000_RXERRC);
 4143                 sc->stats.tncrs +=
 4144                 E1000_READ_REG(&sc->hw, E1000_TNCRS);
 4145                 sc->stats.cexterr +=
 4146                 E1000_READ_REG(&sc->hw, E1000_CEXTERR);
 4147                 sc->stats.tsctc +=
 4148                 E1000_READ_REG(&sc->hw, E1000_TSCTC);
 4149                 sc->stats.tsctfc +=
 4150                 E1000_READ_REG(&sc->hw, E1000_TSCTFC);
 4151         }
 4152 }
 4153 
 4154 static uint64_t
 4155 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
 4156 {
 4157         struct e1000_softc *sc = iflib_get_softc(ctx);
 4158         if_t ifp = iflib_get_ifp(ctx);
 4159 
 4160         switch (cnt) {
 4161         case IFCOUNTER_COLLISIONS:
 4162                 return (sc->stats.colc);
 4163         case IFCOUNTER_IERRORS:
 4164                 return (sc->dropped_pkts + sc->stats.rxerrc +
 4165                     sc->stats.crcerrs + sc->stats.algnerrc +
 4166                     sc->stats.ruc + sc->stats.roc +
 4167                     sc->stats.mpc + sc->stats.cexterr);
 4168         case IFCOUNTER_OERRORS:
 4169                 return (sc->stats.ecol + sc->stats.latecol +
 4170                     sc->watchdog_events);
 4171         default:
 4172                 return (if_get_counter_default(ifp, cnt));
 4173         }
 4174 }
 4175 
 4176 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
 4177  * @ctx: iflib context
 4178  * @event: event code to check
 4179  *
 4180  * Defaults to returning true for unknown events.
 4181  *
 4182  * @returns true if iflib needs to reinit the interface
 4183  */
 4184 static bool
 4185 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
 4186 {
 4187         switch (event) {
 4188         case IFLIB_RESTART_VLAN_CONFIG:
 4189                 return (false);
 4190         default:
 4191                 return (true);
 4192         }
 4193 }
 4194 
 4195 /* Export a single 32-bit register via a read-only sysctl. */
 4196 static int
 4197 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
 4198 {
 4199         struct e1000_softc *sc;
 4200         u_int val;
 4201 
 4202         sc = oidp->oid_arg1;
 4203         val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
 4204         return (sysctl_handle_int(oidp, &val, 0, req));
 4205 }
 4206 
 4207 /*
 4208  * Add sysctl variables, one per statistic, to the system.
 4209  */
 4210 static void
 4211 em_add_hw_stats(struct e1000_softc *sc)
 4212 {
 4213         device_t dev = iflib_get_dev(sc->ctx);
 4214         struct em_tx_queue *tx_que = sc->tx_queues;
 4215         struct em_rx_queue *rx_que = sc->rx_queues;
 4216 
 4217         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
 4218         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
 4219         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
 4220         struct e1000_hw_stats *stats = &sc->stats;
 4221 
 4222         struct sysctl_oid *stat_node, *queue_node, *int_node;
 4223         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
 4224 
 4225 #define QUEUE_NAME_LEN 32
 4226         char namebuf[QUEUE_NAME_LEN];
 4227 
 4228         /* Driver Statistics */
 4229         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
 4230                         CTLFLAG_RD, &sc->dropped_pkts,
 4231                         "Driver dropped packets");
 4232         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
 4233                         CTLFLAG_RD, &sc->link_irq,
 4234                         "Link MSI-X IRQ Handled");
 4235         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
 4236                         CTLFLAG_RD, &sc->rx_overruns,
 4237                         "RX overruns");
 4238         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
 4239                         CTLFLAG_RD, &sc->watchdog_events,
 4240                         "Watchdog timeouts");
 4241         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
 4242             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 4243             sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
 4244             "Device Control Register");
 4245         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
 4246             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 4247             sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
 4248             "Receiver Control Register");
 4249         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
 4250                         CTLFLAG_RD, &sc->hw.fc.high_water, 0,
 4251                         "Flow Control High Watermark");
 4252         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
 4253                         CTLFLAG_RD, &sc->hw.fc.low_water, 0,
 4254                         "Flow Control Low Watermark");
 4255 
 4256         for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
 4257                 struct tx_ring *txr = &tx_que->txr;
 4258                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
 4259                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
 4260                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
 4261                 queue_list = SYSCTL_CHILDREN(queue_node);
 4262 
 4263                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
 4264                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
 4265                     E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
 4266                     "Transmit Descriptor Head");
 4267                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
 4268                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
 4269                     E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
 4270                     "Transmit Descriptor Tail");
 4271                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
 4272                                 CTLFLAG_RD, &txr->tx_irq,
 4273                                 "Queue MSI-X Transmit Interrupts");
 4274         }
 4275 
 4276         for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
 4277                 struct rx_ring *rxr = &rx_que->rxr;
 4278                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
 4279                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
 4280                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
 4281                 queue_list = SYSCTL_CHILDREN(queue_node);
 4282 
 4283                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
 4284                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
 4285                     E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
 4286                     "Receive Descriptor Head");
 4287                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
 4288                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
 4289                     E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
 4290                     "Receive Descriptor Tail");
 4291                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
 4292                                 CTLFLAG_RD, &rxr->rx_irq,
 4293                                 "Queue MSI-X Receive Interrupts");
 4294         }
 4295 
 4296         /* MAC stats get their own sub node */
 4297 
 4298         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
 4299             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
 4300         stat_list = SYSCTL_CHILDREN(stat_node);
 4301 
 4302         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
 4303                         CTLFLAG_RD, &stats->ecol,
 4304                         "Excessive collisions");
 4305         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
 4306                         CTLFLAG_RD, &stats->scc,
 4307                         "Single collisions");
 4308         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
 4309                         CTLFLAG_RD, &stats->mcc,
 4310                         "Multiple collisions");
 4311         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
 4312                         CTLFLAG_RD, &stats->latecol,
 4313                         "Late collisions");
 4314         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
 4315                         CTLFLAG_RD, &stats->colc,
 4316                         "Collision Count");
 4317         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
 4318                         CTLFLAG_RD, &sc->stats.symerrs,
 4319                         "Symbol Errors");
 4320         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
 4321                         CTLFLAG_RD, &sc->stats.sec,
 4322                         "Sequence Errors");
 4323         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
 4324                         CTLFLAG_RD, &sc->stats.dc,
 4325                         "Defer Count");
 4326         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
 4327                         CTLFLAG_RD, &sc->stats.mpc,
 4328                         "Missed Packets");
 4329         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
 4330                         CTLFLAG_RD, &sc->stats.rnbc,
 4331                         "Receive No Buffers");
 4332         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
 4333                         CTLFLAG_RD, &sc->stats.ruc,
 4334                         "Receive Undersize");
 4335         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
 4336                         CTLFLAG_RD, &sc->stats.rfc,
 4337                         "Fragmented Packets Received ");
 4338         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
 4339                         CTLFLAG_RD, &sc->stats.roc,
 4340                         "Oversized Packets Received");
 4341         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
 4342                         CTLFLAG_RD, &sc->stats.rjc,
 4343                         "Recevied Jabber");
 4344         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
 4345                         CTLFLAG_RD, &sc->stats.rxerrc,
 4346                         "Receive Errors");
 4347         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
 4348                         CTLFLAG_RD, &sc->stats.crcerrs,
 4349                         "CRC errors");
 4350         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
 4351                         CTLFLAG_RD, &sc->stats.algnerrc,
 4352                         "Alignment Errors");
 4353         /* On 82575 these are collision counts */
 4354         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
 4355                         CTLFLAG_RD, &sc->stats.cexterr,
 4356                         "Collision/Carrier extension errors");
 4357         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
 4358                         CTLFLAG_RD, &sc->stats.xonrxc,
 4359                         "XON Received");
 4360         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
 4361                         CTLFLAG_RD, &sc->stats.xontxc,
 4362                         "XON Transmitted");
 4363         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
 4364                         CTLFLAG_RD, &sc->stats.xoffrxc,
 4365                         "XOFF Received");
 4366         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
 4367                         CTLFLAG_RD, &sc->stats.xofftxc,
 4368                         "XOFF Transmitted");
 4369 
 4370         /* Packet Reception Stats */
 4371         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
 4372                         CTLFLAG_RD, &sc->stats.tpr,
 4373                         "Total Packets Received ");
 4374         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
 4375                         CTLFLAG_RD, &sc->stats.gprc,
 4376                         "Good Packets Received");
 4377         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
 4378                         CTLFLAG_RD, &sc->stats.bprc,
 4379                         "Broadcast Packets Received");
 4380         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
 4381                         CTLFLAG_RD, &sc->stats.mprc,
 4382                         "Multicast Packets Received");
 4383         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
 4384                         CTLFLAG_RD, &sc->stats.prc64,
 4385                         "64 byte frames received ");
 4386         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
 4387                         CTLFLAG_RD, &sc->stats.prc127,
 4388                         "65-127 byte frames received");
 4389         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
 4390                         CTLFLAG_RD, &sc->stats.prc255,
 4391                         "128-255 byte frames received");
 4392         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
 4393                         CTLFLAG_RD, &sc->stats.prc511,
 4394                         "256-511 byte frames received");
 4395         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
 4396                         CTLFLAG_RD, &sc->stats.prc1023,
 4397                         "512-1023 byte frames received");
 4398         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
 4399                         CTLFLAG_RD, &sc->stats.prc1522,
 4400                         "1023-1522 byte frames received");
 4401         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
 4402                         CTLFLAG_RD, &sc->stats.gorc,
 4403                         "Good Octets Received");
 4404 
 4405         /* Packet Transmission Stats */
 4406         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
 4407                         CTLFLAG_RD, &sc->stats.gotc,
 4408                         "Good Octets Transmitted");
 4409         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
 4410                         CTLFLAG_RD, &sc->stats.tpt,
 4411                         "Total Packets Transmitted");
 4412         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
 4413                         CTLFLAG_RD, &sc->stats.gptc,
 4414                         "Good Packets Transmitted");
 4415         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
 4416                         CTLFLAG_RD, &sc->stats.bptc,
 4417                         "Broadcast Packets Transmitted");
 4418         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
 4419                         CTLFLAG_RD, &sc->stats.mptc,
 4420                         "Multicast Packets Transmitted");
 4421         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
 4422                         CTLFLAG_RD, &sc->stats.ptc64,
 4423                         "64 byte frames transmitted ");
 4424         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
 4425                         CTLFLAG_RD, &sc->stats.ptc127,
 4426                         "65-127 byte frames transmitted");
 4427         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
 4428                         CTLFLAG_RD, &sc->stats.ptc255,
 4429                         "128-255 byte frames transmitted");
 4430         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
 4431                         CTLFLAG_RD, &sc->stats.ptc511,
 4432                         "256-511 byte frames transmitted");
 4433         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
 4434                         CTLFLAG_RD, &sc->stats.ptc1023,
 4435                         "512-1023 byte frames transmitted");
 4436         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
 4437                         CTLFLAG_RD, &sc->stats.ptc1522,
 4438                         "1024-1522 byte frames transmitted");
 4439         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
 4440                         CTLFLAG_RD, &sc->stats.tsctc,
 4441                         "TSO Contexts Transmitted");
 4442         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
 4443                         CTLFLAG_RD, &sc->stats.tsctfc,
 4444                         "TSO Contexts Failed");
 4445 
 4446 
 4447         /* Interrupt Stats */
 4448 
 4449         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
 4450             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
 4451         int_list = SYSCTL_CHILDREN(int_node);
 4452 
 4453         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
 4454                         CTLFLAG_RD, &sc->stats.iac,
 4455                         "Interrupt Assertion Count");
 4456 
 4457         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
 4458                         CTLFLAG_RD, &sc->stats.icrxptc,
 4459                         "Interrupt Cause Rx Pkt Timer Expire Count");
 4460 
 4461         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
 4462                         CTLFLAG_RD, &sc->stats.icrxatc,
 4463                         "Interrupt Cause Rx Abs Timer Expire Count");
 4464 
 4465         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
 4466                         CTLFLAG_RD, &sc->stats.ictxptc,
 4467                         "Interrupt Cause Tx Pkt Timer Expire Count");
 4468 
 4469         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
 4470                         CTLFLAG_RD, &sc->stats.ictxatc,
 4471                         "Interrupt Cause Tx Abs Timer Expire Count");
 4472 
 4473         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
 4474                         CTLFLAG_RD, &sc->stats.ictxqec,
 4475                         "Interrupt Cause Tx Queue Empty Count");
 4476 
 4477         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
 4478                         CTLFLAG_RD, &sc->stats.ictxqmtc,
 4479                         "Interrupt Cause Tx Queue Min Thresh Count");
 4480 
 4481         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
 4482                         CTLFLAG_RD, &sc->stats.icrxdmtc,
 4483                         "Interrupt Cause Rx Desc Min Thresh Count");
 4484 
 4485         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
 4486                         CTLFLAG_RD, &sc->stats.icrxoc,
 4487                         "Interrupt Cause Receiver Overrun Count");
 4488 }
 4489 
 4490 static void
 4491 em_fw_version_locked(if_ctx_t ctx)
 4492 {
 4493         struct e1000_softc *sc = iflib_get_softc(ctx);
 4494         struct e1000_hw *hw = &sc->hw;
 4495         struct e1000_fw_version *fw_ver = &sc->fw_ver;
 4496         uint16_t eep = 0;
 4497 
 4498         /*
 4499          * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the
 4500          * NVM locking model, so we do it in em_if_attach_pre() and store the
 4501          * info in the softc
 4502          */
 4503         ASSERT_CTX_LOCK_HELD(hw);
 4504 
 4505         *fw_ver = (struct e1000_fw_version){0};
 4506 
 4507         if (hw->mac.type >= igb_mac_min) {
 4508                 /*
 4509                  * Use the Shared Code for igb(4)
 4510                  */
 4511                 e1000_get_fw_version(hw, fw_ver);
 4512         } else {
 4513                 /*
 4514                  * Otherwise, EEPROM version should be present on (almost?) all
 4515                  * devices here
 4516                  */
 4517                 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
 4518                         INIT_DEBUGOUT("can't get EEPROM version");
 4519                         return;
 4520                 }
 4521 
 4522                 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
 4523                 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
 4524                 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
 4525         }
 4526 }
 4527 
 4528 static void
 4529 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
 4530 {
 4531         const char *space = "";
 4532 
 4533         if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
 4534                 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
 4535                             fw_ver->eep_minor, fw_ver->eep_build);
 4536                 space = " ";
 4537         }
 4538 
 4539         if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) {
 4540                 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
 4541                             space, fw_ver->invm_major, fw_ver->invm_minor,
 4542                             fw_ver->invm_img_type);
 4543                 space = " ";
 4544         }
 4545 
 4546         if (fw_ver->or_valid) {
 4547                 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
 4548                             space, fw_ver->or_major, fw_ver->or_build,
 4549                             fw_ver->or_patch);
 4550                 space = " ";
 4551         }
 4552 
 4553         if (fw_ver->etrack_id)
 4554                 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
 4555 }
 4556 
 4557 static void
 4558 em_print_fw_version(struct e1000_softc *sc )
 4559 {
 4560         device_t dev = sc->dev;
 4561         struct sbuf *buf;
 4562         int error = 0;
 4563 
 4564         buf = sbuf_new_auto();
 4565         if (!buf) {
 4566                 device_printf(dev, "Could not allocate sbuf for output.\n");
 4567                 return;
 4568         }
 4569 
 4570         em_sbuf_fw_version(&sc->fw_ver, buf);
 4571 
 4572         error = sbuf_finish(buf);
 4573         if (error)
 4574                 device_printf(dev, "Error finishing sbuf: %d\n", error);
 4575         else if (sbuf_len(buf))
 4576                 device_printf(dev, "%s\n", sbuf_data(buf));
 4577 
 4578         sbuf_delete(buf);
 4579 }
 4580 
 4581 static int
 4582 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
 4583 {
 4584         struct e1000_softc *sc = (struct e1000_softc *)arg1;
 4585         device_t dev = sc->dev;
 4586         struct sbuf *buf;
 4587         int error = 0;
 4588 
 4589         buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
 4590         if (!buf) {
 4591                 device_printf(dev, "Could not allocate sbuf for output.\n");
 4592                 return (ENOMEM);
 4593         }
 4594 
 4595         em_sbuf_fw_version(&sc->fw_ver, buf);
 4596 
 4597         error = sbuf_finish(buf);
 4598         if (error)
 4599                 device_printf(dev, "Error finishing sbuf: %d\n", error);
 4600 
 4601         sbuf_delete(buf);
 4602 
 4603         return (0);
 4604 }
 4605 
 4606 /**********************************************************************
 4607  *
 4608  *  This routine provides a way to dump out the adapter eeprom,
 4609  *  often a useful debug/service tool. This only dumps the first
 4610  *  32 words, stuff that matters is in that extent.
 4611  *
 4612  **********************************************************************/
 4613 static int
 4614 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
 4615 {
 4616         struct e1000_softc *sc = (struct e1000_softc *)arg1;
 4617         int error;
 4618         int result;
 4619 
 4620         result = -1;
 4621         error = sysctl_handle_int(oidp, &result, 0, req);
 4622 
 4623         if (error || !req->newptr)
 4624                 return (error);
 4625 
 4626         /*
 4627          * This value will cause a hex dump of the
 4628          * first 32 16-bit words of the EEPROM to
 4629          * the screen.
 4630          */
 4631         if (result == 1)
 4632                 em_print_nvm_info(sc);
 4633 
 4634         return (error);
 4635 }
 4636 
 4637 static void
 4638 em_print_nvm_info(struct e1000_softc *sc)
 4639 {
 4640         struct e1000_hw *hw = &sc->hw;
 4641         struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
 4642         u16 eeprom_data;
 4643         int i, j, row = 0;
 4644 
 4645         /* Its a bit crude, but it gets the job done */
 4646         printf("\nInterface EEPROM Dump:\n");
 4647         printf("Offset\n0x0000  ");
 4648 
 4649         /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
 4650         sx_xlock(iflib_ctx_lock);
 4651         ASSERT_CTX_LOCK_HELD(hw);
 4652         for (i = 0, j = 0; i < 32; i++, j++) {
 4653                 if (j == 8) { /* Make the offset block */
 4654                         j = 0; ++row;
 4655                         printf("\n0x00%x0  ",row);
 4656                 }
 4657                 e1000_read_nvm(hw, i, 1, &eeprom_data);
 4658                 printf("%04x ", eeprom_data);
 4659         }
 4660         sx_xunlock(iflib_ctx_lock);
 4661         printf("\n");
 4662 }
 4663 
 4664 static int
 4665 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
 4666 {
 4667         struct em_int_delay_info *info;
 4668         struct e1000_softc *sc;
 4669         u32 regval;
 4670         int error, usecs, ticks;
 4671 
 4672         info = (struct em_int_delay_info *) arg1;
 4673         usecs = info->value;
 4674         error = sysctl_handle_int(oidp, &usecs, 0, req);
 4675         if (error != 0 || req->newptr == NULL)
 4676                 return (error);
 4677         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
 4678                 return (EINVAL);
 4679         info->value = usecs;
 4680         ticks = EM_USECS_TO_TICKS(usecs);
 4681         if (info->offset == E1000_ITR)  /* units are 256ns here */
 4682                 ticks *= 4;
 4683 
 4684         sc = info->sc;
 4685 
 4686         regval = E1000_READ_OFFSET(&sc->hw, info->offset);
 4687         regval = (regval & ~0xffff) | (ticks & 0xffff);
 4688         /* Handle a few special cases. */
 4689         switch (info->offset) {
 4690         case E1000_RDTR:
 4691                 break;
 4692         case E1000_TIDV:
 4693                 if (ticks == 0) {
 4694                         sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
 4695                         /* Don't write 0 into the TIDV register. */
 4696                         regval++;
 4697                 } else
 4698                         sc->txd_cmd |= E1000_TXD_CMD_IDE;
 4699                 break;
 4700         }
 4701         E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
 4702         return (0);
 4703 }
 4704 
 4705 static void
 4706 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
 4707         const char *description, struct em_int_delay_info *info,
 4708         int offset, int value)
 4709 {
 4710         info->sc = sc;
 4711         info->offset = offset;
 4712         info->value = value;
 4713         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
 4714             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
 4715             OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 4716             info, 0, em_sysctl_int_delay, "I", description);
 4717 }
 4718 
 4719 /*
 4720  * Set flow control using sysctl:
 4721  * Flow control values:
 4722  *      0 - off
 4723  *      1 - rx pause
 4724  *      2 - tx pause
 4725  *      3 - full
 4726  */
 4727 static int
 4728 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
 4729 {
 4730         int error;
 4731         static int input = 3; /* default is full */
 4732         struct e1000_softc      *sc = (struct e1000_softc *) arg1;
 4733 
 4734         error = sysctl_handle_int(oidp, &input, 0, req);
 4735 
 4736         if ((error) || (req->newptr == NULL))
 4737                 return (error);
 4738 
 4739         if (input == sc->fc) /* no change? */
 4740                 return (error);
 4741 
 4742         switch (input) {
 4743         case e1000_fc_rx_pause:
 4744         case e1000_fc_tx_pause:
 4745         case e1000_fc_full:
 4746         case e1000_fc_none:
 4747                 sc->hw.fc.requested_mode = input;
 4748                 sc->fc = input;
 4749                 break;
 4750         default:
 4751                 /* Do nothing */
 4752                 return (error);
 4753         }
 4754 
 4755         sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
 4756         e1000_force_mac_fc(&sc->hw);
 4757         return (error);
 4758 }
 4759 
 4760 /*
 4761  * Manage Energy Efficient Ethernet:
 4762  * Control values:
 4763  *     0/1 - enabled/disabled
 4764  */
 4765 static int
 4766 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
 4767 {
 4768         struct e1000_softc *sc = (struct e1000_softc *) arg1;
 4769         int error, value;
 4770 
 4771         value = sc->hw.dev_spec.ich8lan.eee_disable;
 4772         error = sysctl_handle_int(oidp, &value, 0, req);
 4773         if (error || req->newptr == NULL)
 4774                 return (error);
 4775         sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
 4776         em_if_init(sc->ctx);
 4777 
 4778         return (0);
 4779 }
 4780 
 4781 static int
 4782 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
 4783 {
 4784         struct e1000_softc *sc;
 4785         int error;
 4786         int result;
 4787 
 4788         result = -1;
 4789         error = sysctl_handle_int(oidp, &result, 0, req);
 4790 
 4791         if (error || !req->newptr)
 4792                 return (error);
 4793 
 4794         if (result == 1) {
 4795                 sc = (struct e1000_softc *) arg1;
 4796                 em_print_debug_info(sc);
 4797         }
 4798 
 4799         return (error);
 4800 }
 4801 
 4802 static int
 4803 em_get_rs(SYSCTL_HANDLER_ARGS)
 4804 {
 4805         struct e1000_softc *sc = (struct e1000_softc *) arg1;
 4806         int error;
 4807         int result;
 4808 
 4809         result = 0;
 4810         error = sysctl_handle_int(oidp, &result, 0, req);
 4811 
 4812         if (error || !req->newptr || result != 1)
 4813                 return (error);
 4814         em_dump_rs(sc);
 4815 
 4816         return (error);
 4817 }
 4818 
 4819 static void
 4820 em_if_debug(if_ctx_t ctx)
 4821 {
 4822         em_dump_rs(iflib_get_softc(ctx));
 4823 }
 4824 
 4825 /*
 4826  * This routine is meant to be fluid, add whatever is
 4827  * needed for debugging a problem.  -jfv
 4828  */
 4829 static void
 4830 em_print_debug_info(struct e1000_softc *sc)
 4831 {
 4832         device_t dev = iflib_get_dev(sc->ctx);
 4833         if_t ifp = iflib_get_ifp(sc->ctx);
 4834         struct tx_ring *txr = &sc->tx_queues->txr;
 4835         struct rx_ring *rxr = &sc->rx_queues->rxr;
 4836 
 4837         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
 4838                 printf("Interface is RUNNING ");
 4839         else
 4840                 printf("Interface is NOT RUNNING\n");
 4841 
 4842         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
 4843                 printf("and INACTIVE\n");
 4844         else
 4845                 printf("and ACTIVE\n");
 4846 
 4847         for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
 4848                 device_printf(dev, "TX Queue %d ------\n", i);
 4849                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
 4850                         E1000_READ_REG(&sc->hw, E1000_TDH(i)),
 4851                         E1000_READ_REG(&sc->hw, E1000_TDT(i)));
 4852 
 4853         }
 4854         for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
 4855                 device_printf(dev, "RX Queue %d ------\n", j);
 4856                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
 4857                         E1000_READ_REG(&sc->hw, E1000_RDH(j)),
 4858                         E1000_READ_REG(&sc->hw, E1000_RDT(j)));
 4859         }
 4860 }
 4861 
 4862 /*
 4863  * 82574 only:
 4864  * Write a new value to the EEPROM increasing the number of MSI-X
 4865  * vectors from 3 to 5, for proper multiqueue support.
 4866  */
 4867 static void
 4868 em_enable_vectors_82574(if_ctx_t ctx)
 4869 {
 4870         struct e1000_softc *sc = iflib_get_softc(ctx);
 4871         struct e1000_hw *hw = &sc->hw;
 4872         device_t dev = iflib_get_dev(ctx);
 4873         u16 edata;
 4874 
 4875         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
 4876         if (bootverbose)
 4877                 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
 4878         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
 4879                 device_printf(dev, "Writing to eeprom: increasing "
 4880                     "reported MSI-X vectors from 3 to 5...\n");
 4881                 edata &= ~(EM_NVM_MSIX_N_MASK);
 4882                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
 4883                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
 4884                 e1000_update_nvm_checksum(hw);
 4885                 device_printf(dev, "Writing to eeprom: done\n");
 4886         }
 4887 }

Cache object: 233dc882204d31de4d5a9cbb71a6528b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.