The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ena/ena_datapath.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause
    3  *
    4  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  *
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  *
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "opt_rss.h"
   34 #include "ena.h"
   35 #include "ena_datapath.h"
   36 #ifdef DEV_NETMAP
   37 #include "ena_netmap.h"
   38 #endif /* DEV_NETMAP */
   39 
   40 /*********************************************************************
   41  *  Static functions prototypes
   42  *********************************************************************/
   43 
   44 static int      ena_tx_cleanup(struct ena_ring *);
   45 static int      ena_rx_cleanup(struct ena_ring *);
   46 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
   47 static void     ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
   48     struct mbuf *);
   49 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
   50     struct ena_com_rx_ctx *, uint16_t *);
   51 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
   52     struct mbuf *);
   53 static void     ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool);
   54 static int      ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
   55     struct mbuf **mbuf);
   56 static int      ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
   57 static void     ena_start_xmit(struct ena_ring *);
   58 
   59 /*********************************************************************
   60  *  Global functions
   61  *********************************************************************/
   62 
   63 void
   64 ena_cleanup(void *arg, int pending)
   65 {
   66         struct ena_que  *que = arg;
   67         struct ena_adapter *adapter = que->adapter;
   68         if_t ifp = adapter->ifp;
   69         struct ena_ring *tx_ring;
   70         struct ena_ring *rx_ring;
   71         struct ena_com_io_cq* io_cq;
   72         struct ena_eth_io_intr_reg intr_reg;
   73         int qid, ena_qid;
   74         int txc, rxc, i;
   75 
   76         if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
   77                 return;
   78 
   79         ena_trace(NULL, ENA_DBG, "MSI-X TX/RX routine\n");
   80 
   81         tx_ring = que->tx_ring;
   82         rx_ring = que->rx_ring;
   83         qid = que->id;
   84         ena_qid = ENA_IO_TXQ_IDX(qid);
   85         io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   86 
   87         tx_ring->first_interrupt = true;
   88         rx_ring->first_interrupt = true;
   89 
   90         for (i = 0; i < CLEAN_BUDGET; ++i) {
   91                 rxc = ena_rx_cleanup(rx_ring);
   92                 txc = ena_tx_cleanup(tx_ring);
   93 
   94                 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
   95                         return;
   96 
   97                 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
   98                        break;
   99         }
  100 
  101         /* Signal that work is done and unmask interrupt */
  102         ena_com_update_intr_reg(&intr_reg,
  103             RX_IRQ_INTERVAL,
  104             TX_IRQ_INTERVAL,
  105             true);
  106         ena_com_unmask_intr(io_cq, &intr_reg);
  107 }
  108 
  109 void
  110 ena_deferred_mq_start(void *arg, int pending)
  111 {
  112         struct ena_ring *tx_ring = (struct ena_ring *)arg;
  113         struct ifnet *ifp = tx_ring->adapter->ifp;
  114 
  115         while (!drbr_empty(ifp, tx_ring->br) &&
  116             tx_ring->running &&
  117             (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
  118                 ENA_RING_MTX_LOCK(tx_ring);
  119                 ena_start_xmit(tx_ring);
  120                 ENA_RING_MTX_UNLOCK(tx_ring);
  121         }
  122 }
  123 
  124 int
  125 ena_mq_start(if_t ifp, struct mbuf *m)
  126 {
  127         struct ena_adapter *adapter = ifp->if_softc;
  128         struct ena_ring *tx_ring;
  129         int ret, is_drbr_empty;
  130         uint32_t i;
  131 
  132         if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
  133                 return (ENODEV);
  134 
  135         /* Which queue to use */
  136         /*
  137          * If everything is setup correctly, it should be the
  138          * same bucket that the current CPU we're on is.
  139          * It should improve performance.
  140          */
  141         if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
  142                 i = m->m_pkthdr.flowid % adapter->num_io_queues;
  143         } else {
  144                 i = curcpu % adapter->num_io_queues;
  145         }
  146         tx_ring = &adapter->tx_ring[i];
  147 
  148         /* Check if drbr is empty before putting packet */
  149         is_drbr_empty = drbr_empty(ifp, tx_ring->br);
  150         ret = drbr_enqueue(ifp, tx_ring->br, m);
  151         if (unlikely(ret != 0)) {
  152                 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
  153                 return (ret);
  154         }
  155 
  156         if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
  157                 ena_start_xmit(tx_ring);
  158                 ENA_RING_MTX_UNLOCK(tx_ring);
  159         } else {
  160                 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
  161         }
  162 
  163         return (0);
  164 }
  165 
  166 void
  167 ena_qflush(if_t ifp)
  168 {
  169         struct ena_adapter *adapter = ifp->if_softc;
  170         struct ena_ring *tx_ring = adapter->tx_ring;
  171         int i;
  172 
  173         for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
  174                 if (!drbr_empty(ifp, tx_ring->br)) {
  175                         ENA_RING_MTX_LOCK(tx_ring);
  176                         drbr_flush(ifp, tx_ring->br);
  177                         ENA_RING_MTX_UNLOCK(tx_ring);
  178                 }
  179 
  180         if_qflush(ifp);
  181 }
  182 
  183 /*********************************************************************
  184  *  Static functions
  185  *********************************************************************/
  186 
  187 static inline int
  188 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
  189 {
  190         struct ena_adapter *adapter = tx_ring->adapter;
  191         struct ena_tx_buffer *tx_info = NULL;
  192 
  193         if (likely(req_id < tx_ring->ring_size)) {
  194                 tx_info = &tx_ring->tx_buffer_info[req_id];
  195                 if (tx_info->mbuf != NULL)
  196                         return (0);
  197                 device_printf(adapter->pdev,
  198                     "tx_info doesn't have valid mbuf\n");
  199         }
  200 
  201         device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id);
  202         counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
  203 
  204         /* Trigger device reset */
  205         ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
  206 
  207         return (EFAULT);
  208 }
  209 
  210 /**
  211  * ena_tx_cleanup - clear sent packets and corresponding descriptors
  212  * @tx_ring: ring for which we want to clean packets
  213  *
  214  * Once packets are sent, we ask the device in a loop for no longer used
  215  * descriptors. We find the related mbuf chain in a map (index in an array)
  216  * and free it, then update ring state.
  217  * This is performed in "endless" loop, updating ring pointers every
  218  * TX_COMMIT. The first check of free descriptor is performed before the actual
  219  * loop, then repeated at the loop end.
  220  **/
  221 static int
  222 ena_tx_cleanup(struct ena_ring *tx_ring)
  223 {
  224         struct ena_adapter *adapter;
  225         struct ena_com_io_cq* io_cq;
  226         uint16_t next_to_clean;
  227         uint16_t req_id;
  228         uint16_t ena_qid;
  229         unsigned int total_done = 0;
  230         int rc;
  231         int commit = TX_COMMIT;
  232         int budget = TX_BUDGET;
  233         int work_done;
  234         bool above_thresh;
  235 
  236         adapter = tx_ring->que->adapter;
  237         ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
  238         io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
  239         next_to_clean = tx_ring->next_to_clean;
  240 
  241 #ifdef DEV_NETMAP
  242         if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
  243                 return (0);
  244 #endif /* DEV_NETMAP */
  245 
  246         do {
  247                 struct ena_tx_buffer *tx_info;
  248                 struct mbuf *mbuf;
  249 
  250                 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
  251                 if (unlikely(rc != 0))
  252                         break;
  253 
  254                 rc = validate_tx_req_id(tx_ring, req_id);
  255                 if (unlikely(rc != 0))
  256                         break;
  257 
  258                 tx_info = &tx_ring->tx_buffer_info[req_id];
  259 
  260                 mbuf = tx_info->mbuf;
  261 
  262                 tx_info->mbuf = NULL;
  263                 bintime_clear(&tx_info->timestamp);
  264 
  265                 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
  266                     BUS_DMASYNC_POSTWRITE);
  267                 bus_dmamap_unload(adapter->tx_buf_tag,
  268                     tx_info->dmamap);
  269 
  270                 ena_trace(NULL, ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed\n",
  271                     tx_ring->qid, mbuf);
  272 
  273                 m_freem(mbuf);
  274 
  275                 total_done += tx_info->tx_descs;
  276 
  277                 tx_ring->free_tx_ids[next_to_clean] = req_id;
  278                 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
  279                     tx_ring->ring_size);
  280 
  281                 if (unlikely(--commit == 0)) {
  282                         commit = TX_COMMIT;
  283                         /* update ring state every TX_COMMIT descriptor */
  284                         tx_ring->next_to_clean = next_to_clean;
  285                         ena_com_comp_ack(
  286                             &adapter->ena_dev->io_sq_queues[ena_qid],
  287                             total_done);
  288                         ena_com_update_dev_comp_head(io_cq);
  289                         total_done = 0;
  290                 }
  291         } while (likely(--budget));
  292 
  293         work_done = TX_BUDGET - budget;
  294 
  295         ena_trace(NULL, ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d\n",
  296         tx_ring->qid, work_done);
  297 
  298         /* If there is still something to commit update ring state */
  299         if (likely(commit != TX_COMMIT)) {
  300                 tx_ring->next_to_clean = next_to_clean;
  301                 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
  302                     total_done);
  303                 ena_com_update_dev_comp_head(io_cq);
  304         }
  305 
  306         /*
  307          * Need to make the rings circular update visible to
  308          * ena_xmit_mbuf() before checking for tx_ring->running.
  309          */
  310         mb();
  311 
  312         above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
  313             ENA_TX_RESUME_THRESH);
  314         if (unlikely(!tx_ring->running && above_thresh)) {
  315                 ENA_RING_MTX_LOCK(tx_ring);
  316                 above_thresh =
  317                     ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
  318                     ENA_TX_RESUME_THRESH);
  319                 if (!tx_ring->running && above_thresh) {
  320                         tx_ring->running = true;
  321                         counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
  322                         taskqueue_enqueue(tx_ring->enqueue_tq,
  323                             &tx_ring->enqueue_task);
  324                 }
  325                 ENA_RING_MTX_UNLOCK(tx_ring);
  326         }
  327 
  328         return (work_done);
  329 }
  330 
  331 static void
  332 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
  333     struct mbuf *mbuf)
  334 {
  335         struct ena_adapter *adapter = rx_ring->adapter;
  336 
  337         if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
  338                 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
  339 
  340 #ifdef RSS
  341                 /*
  342                  * Hardware and software RSS are in agreement only when both are
  343                  * configured to Toeplitz algorithm.  This driver configures
  344                  * that algorithm only when software RSS is enabled and uses it.
  345                  */
  346                 if (adapter->ena_dev->rss.hash_func != ENA_ADMIN_TOEPLITZ &&
  347                     ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN) {
  348                         M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
  349                         return;
  350                 }
  351 #endif
  352 
  353                 if (ena_rx_ctx->frag &&
  354                     (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
  355                         M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
  356                         return;
  357                 }
  358 
  359                 switch (ena_rx_ctx->l3_proto) {
  360                 case ENA_ETH_IO_L3_PROTO_IPV4:
  361                         switch (ena_rx_ctx->l4_proto) {
  362                         case ENA_ETH_IO_L4_PROTO_TCP:
  363                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
  364                                 break;
  365                         case ENA_ETH_IO_L4_PROTO_UDP:
  366                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
  367                                 break;
  368                         default:
  369                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
  370                         }
  371                         break;
  372                 case ENA_ETH_IO_L3_PROTO_IPV6:
  373                         switch (ena_rx_ctx->l4_proto) {
  374                         case ENA_ETH_IO_L4_PROTO_TCP:
  375                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
  376                                 break;
  377                         case ENA_ETH_IO_L4_PROTO_UDP:
  378                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
  379                                 break;
  380                         default:
  381                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
  382                         }
  383                         break;
  384                 case ENA_ETH_IO_L3_PROTO_UNKNOWN:
  385                         M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
  386                         break;
  387                 default:
  388                         M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
  389                 }
  390         } else {
  391                 mbuf->m_pkthdr.flowid = rx_ring->qid;
  392                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
  393         }
  394 }
  395 
  396 /**
  397  * ena_rx_mbuf - assemble mbuf from descriptors
  398  * @rx_ring: ring for which we want to clean packets
  399  * @ena_bufs: buffer info
  400  * @ena_rx_ctx: metadata for this packet(s)
  401  * @next_to_clean: ring pointer, will be updated only upon success
  402  *
  403  **/
  404 static struct mbuf*
  405 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
  406     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
  407 {
  408         struct mbuf *mbuf;
  409         struct ena_rx_buffer *rx_info;
  410         struct ena_adapter *adapter;
  411         unsigned int descs = ena_rx_ctx->descs;
  412         uint16_t ntc, len, req_id, buf = 0;
  413 
  414         ntc = *next_to_clean;
  415         adapter = rx_ring->adapter;
  416 
  417         len = ena_bufs[buf].len;
  418         req_id = ena_bufs[buf].req_id;
  419         rx_info = &rx_ring->rx_buffer_info[req_id];
  420         if (unlikely(rx_info->mbuf == NULL)) {
  421                 device_printf(adapter->pdev, "NULL mbuf in rx_info");
  422                 return (NULL);
  423         }
  424 
  425         ena_trace(NULL, ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx\n",
  426             rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
  427 
  428         bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
  429             BUS_DMASYNC_POSTREAD);
  430         mbuf = rx_info->mbuf;
  431         mbuf->m_flags |= M_PKTHDR;
  432         mbuf->m_pkthdr.len = len;
  433         mbuf->m_len = len;
  434         // Only for the first segment the data starts at specific offset
  435         mbuf->m_data = mtodo(mbuf, ena_rx_ctx->pkt_offset);
  436         ena_trace(NULL, ENA_DBG | ENA_RXPTH,
  437                 "Mbuf data offset=%u\n", ena_rx_ctx->pkt_offset);
  438         mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
  439 
  440         /* Fill mbuf with hash key and it's interpretation for optimization */
  441         ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
  442 
  443         ena_trace(NULL, ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d\n",
  444             mbuf, mbuf->m_flags, mbuf->m_pkthdr.len);
  445 
  446         /* DMA address is not needed anymore, unmap it */
  447         bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
  448 
  449         rx_info->mbuf = NULL;
  450         rx_ring->free_rx_ids[ntc] = req_id;
  451         ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
  452 
  453         /*
  454          * While we have more than 1 descriptors for one rcvd packet, append
  455          * other mbufs to the main one
  456          */
  457         while (--descs) {
  458                 ++buf;
  459                 len = ena_bufs[buf].len;
  460                 req_id = ena_bufs[buf].req_id;
  461                 rx_info = &rx_ring->rx_buffer_info[req_id];
  462 
  463                 if (unlikely(rx_info->mbuf == NULL)) {
  464                         device_printf(adapter->pdev, "NULL mbuf in rx_info");
  465                         /*
  466                          * If one of the required mbufs was not allocated yet,
  467                          * we can break there.
  468                          * All earlier used descriptors will be reallocated
  469                          * later and not used mbufs can be reused.
  470                          * The next_to_clean pointer will not be updated in case
  471                          * of an error, so caller should advance it manually
  472                          * in error handling routine to keep it up to date
  473                          * with hw ring.
  474                          */
  475                         m_freem(mbuf);
  476                         return (NULL);
  477                 }
  478 
  479                 bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
  480                     BUS_DMASYNC_POSTREAD);
  481                 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
  482                         counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
  483                         ena_trace(NULL, ENA_WARNING, "Failed to append Rx mbuf %p\n",
  484                             mbuf);
  485                 }
  486 
  487                 ena_trace(NULL, ENA_DBG | ENA_RXPTH,
  488                     "rx mbuf updated. len %d\n", mbuf->m_pkthdr.len);
  489 
  490                 /* Free already appended mbuf, it won't be useful anymore */
  491                 bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
  492                 m_freem(rx_info->mbuf);
  493                 rx_info->mbuf = NULL;
  494 
  495                 rx_ring->free_rx_ids[ntc] = req_id;
  496                 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
  497         }
  498 
  499         *next_to_clean = ntc;
  500 
  501         return (mbuf);
  502 }
  503 
  504 /**
  505  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
  506  **/
  507 static inline void
  508 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
  509     struct mbuf *mbuf)
  510 {
  511 
  512         /* if IP and error */
  513         if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
  514             ena_rx_ctx->l3_csum_err)) {
  515                 /* ipv4 checksum error */
  516                 mbuf->m_pkthdr.csum_flags = 0;
  517                 counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
  518                 ena_trace(NULL, ENA_DBG, "RX IPv4 header checksum error\n");
  519                 return;
  520         }
  521 
  522         /* if TCP/UDP */
  523         if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
  524             (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
  525                 if (ena_rx_ctx->l4_csum_err) {
  526                         /* TCP/UDP checksum error */
  527                         mbuf->m_pkthdr.csum_flags = 0;
  528                         counter_u64_add(rx_ring->rx_stats.bad_csum, 1);
  529                         ena_trace(NULL, ENA_DBG, "RX L4 checksum error\n");
  530                 } else {
  531                         mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
  532                         mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
  533                 }
  534         }
  535 }
  536 
  537 /**
  538  * ena_rx_cleanup - handle rx irq
  539  * @arg: ring for which irq is being handled
  540  **/
  541 static int
  542 ena_rx_cleanup(struct ena_ring *rx_ring)
  543 {
  544         struct ena_adapter *adapter;
  545         struct mbuf *mbuf;
  546         struct ena_com_rx_ctx ena_rx_ctx;
  547         struct ena_com_io_cq* io_cq;
  548         struct ena_com_io_sq* io_sq;
  549         enum ena_regs_reset_reason_types reset_reason;
  550         if_t ifp;
  551         uint16_t ena_qid;
  552         uint16_t next_to_clean;
  553         uint32_t refill_required;
  554         uint32_t refill_threshold;
  555         uint32_t do_if_input = 0;
  556         unsigned int qid;
  557         int rc, i;
  558         int budget = RX_BUDGET;
  559 #ifdef DEV_NETMAP
  560         int done;
  561 #endif /* DEV_NETMAP */
  562 
  563         adapter = rx_ring->que->adapter;
  564         ifp = adapter->ifp;
  565         qid = rx_ring->que->id;
  566         ena_qid = ENA_IO_RXQ_IDX(qid);
  567         io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
  568         io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
  569         next_to_clean = rx_ring->next_to_clean;
  570 
  571 #ifdef DEV_NETMAP
  572         if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
  573                 return (0);
  574 #endif /* DEV_NETMAP */
  575 
  576         ena_trace(NULL, ENA_DBG, "rx: qid %d\n", qid);
  577 
  578         do {
  579                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
  580                 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
  581                 ena_rx_ctx.descs = 0;
  582                 ena_rx_ctx.pkt_offset = 0;
  583 
  584                 bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
  585                     io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
  586                 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
  587                 if (unlikely(rc != 0)) {
  588                         if (rc == ENA_COM_NO_SPACE) {
  589                                 counter_u64_add(rx_ring->rx_stats.bad_desc_num,
  590                                     1);
  591                                 reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
  592                         } else {
  593                                 counter_u64_add(rx_ring->rx_stats.bad_req_id,
  594                                     1);
  595                                 reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
  596                         }
  597                         ena_trigger_reset(adapter, reset_reason);
  598                         return (0);
  599                 }
  600 
  601                 if (unlikely(ena_rx_ctx.descs == 0))
  602                         break;
  603 
  604                 ena_trace(NULL, ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. "
  605                     "descs #: %d l3 proto %d l4 proto %d hash: %x\n",
  606                     rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
  607                     ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
  608 
  609                 /* Receive mbuf from the ring */
  610                 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
  611                     &ena_rx_ctx, &next_to_clean);
  612                 bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
  613                     io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
  614                 /* Exit if we failed to retrieve a buffer */
  615                 if (unlikely(mbuf == NULL)) {
  616                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
  617                                 rx_ring->free_rx_ids[next_to_clean] =
  618                                     rx_ring->ena_bufs[i].req_id;
  619                                 next_to_clean =
  620                                     ENA_RX_RING_IDX_NEXT(next_to_clean,
  621                                     rx_ring->ring_size);
  622 
  623                         }
  624                         break;
  625                 }
  626 
  627                 if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
  628                     ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
  629                         ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
  630                 }
  631 
  632                 counter_enter();
  633                 counter_u64_add_protected(rx_ring->rx_stats.bytes,
  634                     mbuf->m_pkthdr.len);
  635                 counter_u64_add_protected(adapter->hw_stats.rx_bytes,
  636                     mbuf->m_pkthdr.len);
  637                 counter_exit();
  638                 /*
  639                  * LRO is only for IP/TCP packets and TCP checksum of the packet
  640                  * should be computed by hardware.
  641                  */
  642                 do_if_input = 1;
  643                 if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
  644                     ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
  645                     (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
  646                         /*
  647                          * Send to the stack if:
  648                          *  - LRO not enabled, or
  649                          *  - no LRO resources, or
  650                          *  - lro enqueue fails
  651                          */
  652                         if ((rx_ring->lro.lro_cnt != 0) &&
  653                             (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
  654                                         do_if_input = 0;
  655                 }
  656                 if (do_if_input != 0) {
  657                         ena_trace(NULL, ENA_DBG | ENA_RXPTH,
  658                             "calling if_input() with mbuf %p\n", mbuf);
  659                         (*ifp->if_input)(ifp, mbuf);
  660                 }
  661 
  662                 counter_enter();
  663                 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
  664                 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
  665                 counter_exit();
  666         } while (--budget);
  667 
  668         rx_ring->next_to_clean = next_to_clean;
  669 
  670         refill_required = ena_com_free_q_entries(io_sq);
  671         refill_threshold = min_t(int,
  672             rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
  673             ENA_RX_REFILL_THRESH_PACKET);
  674 
  675         if (refill_required > refill_threshold) {
  676                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
  677                 ena_refill_rx_bufs(rx_ring, refill_required);
  678         }
  679 
  680         tcp_lro_flush_all(&rx_ring->lro);
  681 
  682         return (RX_BUDGET - budget);
  683 }
  684 
  685 static void
  686 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf,
  687     bool disable_meta_caching)
  688 {
  689         struct ena_com_tx_meta *ena_meta;
  690         struct ether_vlan_header *eh;
  691         struct mbuf *mbuf_next;
  692         u32 mss;
  693         bool offload;
  694         uint16_t etype;
  695         int ehdrlen;
  696         struct ip *ip;
  697         int iphlen;
  698         struct tcphdr *th;
  699         int offset;
  700 
  701         offload = false;
  702         ena_meta = &ena_tx_ctx->ena_meta;
  703         mss = mbuf->m_pkthdr.tso_segsz;
  704 
  705         if (mss != 0)
  706                 offload = true;
  707 
  708         if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
  709                 offload = true;
  710 
  711         if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
  712                 offload = true;
  713 
  714         if (!offload) {
  715                 if (disable_meta_caching) {
  716                         memset(ena_meta, 0, sizeof(*ena_meta));
  717                         ena_tx_ctx->meta_valid = 1;
  718                 } else {
  719                         ena_tx_ctx->meta_valid = 0;
  720                 }
  721                 return;
  722         }
  723 
  724         /* Determine where frame payload starts. */
  725         eh = mtod(mbuf, struct ether_vlan_header *);
  726         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
  727                 etype = ntohs(eh->evl_proto);
  728                 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
  729         } else {
  730                 etype = ntohs(eh->evl_encap_proto);
  731                 ehdrlen = ETHER_HDR_LEN;
  732         }
  733 
  734         mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
  735         ip = (struct ip *)(mtodo(mbuf_next, offset));
  736         iphlen = ip->ip_hl << 2;
  737 
  738         mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
  739         th = (struct tcphdr *)(mtodo(mbuf_next, offset));
  740 
  741         if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
  742                 ena_tx_ctx->l3_csum_enable = 1;
  743         }
  744         if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
  745                 ena_tx_ctx->tso_enable = 1;
  746                 ena_meta->l4_hdr_len = (th->th_off);
  747         }
  748 
  749         switch (etype) {
  750         case ETHERTYPE_IP:
  751                 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
  752                 if ((ip->ip_off & htons(IP_DF)) != 0)
  753                         ena_tx_ctx->df = 1;
  754                 break;
  755         case ETHERTYPE_IPV6:
  756                 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
  757 
  758         default:
  759                 break;
  760         }
  761 
  762         if (ip->ip_p == IPPROTO_TCP) {
  763                 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
  764                 if ((mbuf->m_pkthdr.csum_flags &
  765                     (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
  766                         ena_tx_ctx->l4_csum_enable = 1;
  767                 else
  768                         ena_tx_ctx->l4_csum_enable = 0;
  769         } else if (ip->ip_p == IPPROTO_UDP) {
  770                 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
  771                 if ((mbuf->m_pkthdr.csum_flags &
  772                     (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
  773                         ena_tx_ctx->l4_csum_enable = 1;
  774                 else
  775                         ena_tx_ctx->l4_csum_enable = 0;
  776         } else {
  777                 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
  778                 ena_tx_ctx->l4_csum_enable = 0;
  779         }
  780 
  781         ena_meta->mss = mss;
  782         ena_meta->l3_hdr_len = iphlen;
  783         ena_meta->l3_hdr_offset = ehdrlen;
  784         ena_tx_ctx->meta_valid = 1;
  785 }
  786 
  787 static int
  788 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
  789 {
  790         struct ena_adapter *adapter;
  791         struct mbuf *collapsed_mbuf;
  792         int num_frags;
  793 
  794         adapter = tx_ring->adapter;
  795         num_frags = ena_mbuf_count(*mbuf);
  796 
  797         /* One segment must be reserved for configuration descriptor. */
  798         if (num_frags < adapter->max_tx_sgl_size)
  799                 return (0);
  800         counter_u64_add(tx_ring->tx_stats.collapse, 1);
  801 
  802         collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
  803             adapter->max_tx_sgl_size - 1);
  804         if (unlikely(collapsed_mbuf == NULL)) {
  805                 counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
  806                 return (ENOMEM);
  807         }
  808 
  809         /* If mbuf was collapsed succesfully, original mbuf is released. */
  810         *mbuf = collapsed_mbuf;
  811 
  812         return (0);
  813 }
  814 
  815 static int
  816 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
  817     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
  818 {
  819         struct ena_adapter *adapter = tx_ring->adapter;
  820         struct ena_com_buf *ena_buf;
  821         bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
  822         size_t iseg = 0;
  823         uint32_t mbuf_head_len;
  824         uint16_t offset;
  825         int rc, nsegs;
  826 
  827         mbuf_head_len = mbuf->m_len;
  828         tx_info->mbuf = mbuf;
  829         ena_buf = tx_info->bufs;
  830 
  831         /*
  832          * For easier maintaining of the DMA map, map the whole mbuf even if
  833          * the LLQ is used. The descriptors will be filled using the segments.
  834          */
  835         rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
  836             segs, &nsegs, BUS_DMA_NOWAIT);
  837         if (unlikely((rc != 0) || (nsegs == 0))) {
  838                 ena_trace(NULL, ENA_WARNING,
  839                     "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
  840                 goto dma_error;
  841         }
  842 
  843         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
  844                 /*
  845                  * When the device is LLQ mode, the driver will copy
  846                  * the header into the device memory space.
  847                  * the ena_com layer assumes the header is in a linear
  848                  * memory space.
  849                  * This assumption might be wrong since part of the header
  850                  * can be in the fragmented buffers.
  851                  * First check if header fits in the mbuf. If not, copy it to
  852                  * separate buffer that will be holding linearized data.
  853                  */
  854                 *header_len = min_t(uint32_t, mbuf->m_pkthdr.len, tx_ring->tx_max_header_size);
  855 
  856                 /* If header is in linear space, just point into mbuf's data. */
  857                 if (likely(*header_len <= mbuf_head_len)) {
  858                         *push_hdr = mbuf->m_data;
  859                 /*
  860                  * Otherwise, copy whole portion of header from multiple mbufs
  861                  * to intermediate buffer.
  862                  */
  863                 } else {
  864                         m_copydata(mbuf, 0, *header_len, tx_ring->push_buf_intermediate_buf);
  865                         *push_hdr = tx_ring->push_buf_intermediate_buf;
  866 
  867                         counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
  868                 }
  869 
  870                 ena_trace(NULL, ENA_DBG | ENA_TXPTH,
  871                     "mbuf: %p header_buf->vaddr: %p push_len: %d\n",
  872                     mbuf, *push_hdr, *header_len);
  873 
  874                 /* If packet is fitted in LLQ header, no need for DMA segments. */
  875                 if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) {
  876                         return (0);
  877                 } else {
  878                         offset = tx_ring->tx_max_header_size;
  879                         /*
  880                          * As Header part is mapped to LLQ header, we can skip it and just
  881                          * map the residuum of the mbuf to DMA Segments.
  882                          */
  883                         while (offset > 0) {
  884                                 if (offset >= segs[iseg].ds_len) {
  885                                         offset -= segs[iseg].ds_len;
  886                                 } else {
  887                                         ena_buf->paddr = segs[iseg].ds_addr + offset;
  888                                         ena_buf->len = segs[iseg].ds_len - offset;
  889                                         ena_buf++;
  890                                         tx_info->num_of_bufs++;
  891                                         offset = 0;
  892                                 }
  893                                 iseg++;
  894                         }
  895                 }
  896         } else {
  897                 *push_hdr = NULL;
  898                 /*
  899                 * header_len is just a hint for the device. Because FreeBSD is not
  900                 * giving us information about packet header length and it is not
  901                 * guaranteed that all packet headers will be in the 1st mbuf, setting
  902                 * header_len to 0 is making the device ignore this value and resolve
  903                 * header on it's own.
  904                 */
  905                 *header_len = 0;
  906         }
  907 
  908         /* Map rest of the mbuf */
  909         while (iseg < nsegs) {
  910                 ena_buf->paddr = segs[iseg].ds_addr;
  911                 ena_buf->len = segs[iseg].ds_len;
  912                 ena_buf++;
  913                 iseg++;
  914                 tx_info->num_of_bufs++;
  915         }
  916 
  917         return (0);
  918 
  919 dma_error:
  920         counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
  921         tx_info->mbuf = NULL;
  922         return (rc);
  923 }
  924 
  925 static int
  926 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
  927 {
  928         struct ena_adapter *adapter;
  929         struct ena_tx_buffer *tx_info;
  930         struct ena_com_tx_ctx ena_tx_ctx;
  931         struct ena_com_dev *ena_dev;
  932         struct ena_com_io_sq* io_sq;
  933         void *push_hdr;
  934         uint16_t next_to_use;
  935         uint16_t req_id;
  936         uint16_t ena_qid;
  937         uint16_t header_len;
  938         int rc;
  939         int nb_hw_desc;
  940 
  941         ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
  942         adapter = tx_ring->que->adapter;
  943         ena_dev = adapter->ena_dev;
  944         io_sq = &ena_dev->io_sq_queues[ena_qid];
  945 
  946         rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
  947         if (unlikely(rc != 0)) {
  948                 ena_trace(NULL, ENA_WARNING,
  949                     "Failed to collapse mbuf! err: %d\n", rc);
  950                 return (rc);
  951         }
  952 
  953         ena_trace(NULL, ENA_DBG | ENA_TXPTH, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
  954 
  955         next_to_use = tx_ring->next_to_use;
  956         req_id = tx_ring->free_tx_ids[next_to_use];
  957         tx_info = &tx_ring->tx_buffer_info[req_id];
  958         tx_info->num_of_bufs = 0;
  959 
  960         rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
  961         if (unlikely(rc != 0)) {
  962                 ena_trace(NULL, ENA_WARNING, "Failed to map TX mbuf\n");
  963                 return (rc);
  964         }
  965         memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
  966         ena_tx_ctx.ena_bufs = tx_info->bufs;
  967         ena_tx_ctx.push_header = push_hdr;
  968         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
  969         ena_tx_ctx.req_id = req_id;
  970         ena_tx_ctx.header_len = header_len;
  971 
  972         /* Set flags and meta data */
  973         ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching);
  974 
  975         if (tx_ring->acum_pkts == DB_THRESHOLD ||
  976             ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
  977                 ena_trace(NULL, ENA_DBG | ENA_TXPTH,
  978                     "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
  979                     tx_ring->que->id);
  980                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
  981                 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
  982                 tx_ring->acum_pkts = 0;
  983         }
  984 
  985         /* Prepare the packet's descriptors and send them to device */
  986         rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
  987         if (unlikely(rc != 0)) {
  988                 if (likely(rc == ENA_COM_NO_MEM)) {
  989                         ena_trace(NULL, ENA_DBG | ENA_TXPTH,
  990                             "tx ring[%d] if out of space\n", tx_ring->que->id);
  991                 } else {
  992                         device_printf(adapter->pdev,
  993                             "failed to prepare tx bufs\n");
  994                 }
  995                 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
  996                 goto dma_error;
  997         }
  998 
  999         counter_enter();
 1000         counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
 1001         counter_u64_add_protected(tx_ring->tx_stats.bytes,
 1002             (*mbuf)->m_pkthdr.len);
 1003 
 1004         counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
 1005         counter_u64_add_protected(adapter->hw_stats.tx_bytes,
 1006             (*mbuf)->m_pkthdr.len);
 1007         counter_exit();
 1008 
 1009         tx_info->tx_descs = nb_hw_desc;
 1010         getbinuptime(&tx_info->timestamp);
 1011         tx_info->print_once = true;
 1012 
 1013         tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
 1014             tx_ring->ring_size);
 1015 
 1016         /* stop the queue when no more space available, the packet can have up
 1017          * to sgl_size + 2. one for the meta descriptor and one for header
 1018          * (if the header is larger than tx_max_header_size).
 1019          */
 1020         if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
 1021             adapter->max_tx_sgl_size + 2))) {
 1022                 ena_trace(NULL, ENA_DBG | ENA_TXPTH, "Stop queue %d\n",
 1023                     tx_ring->que->id);
 1024 
 1025                 tx_ring->running = false;
 1026                 counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
 1027 
 1028                 /* There is a rare condition where this function decides to
 1029                  * stop the queue but meanwhile tx_cleanup() updates
 1030                  * next_to_completion and terminates.
 1031                  * The queue will remain stopped forever.
 1032                  * To solve this issue this function performs mb(), checks
 1033                  * the wakeup condition and wakes up the queue if needed.
 1034                  */
 1035                 mb();
 1036 
 1037                 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
 1038                     ENA_TX_RESUME_THRESH)) {
 1039                         tx_ring->running = true;
 1040                         counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
 1041                 }
 1042         }
 1043 
 1044         bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
 1045             BUS_DMASYNC_PREWRITE);
 1046 
 1047         return (0);
 1048 
 1049 dma_error:
 1050         tx_info->mbuf = NULL;
 1051         bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
 1052 
 1053         return (rc);
 1054 }
 1055 
 1056 static void
 1057 ena_start_xmit(struct ena_ring *tx_ring)
 1058 {
 1059         struct mbuf *mbuf;
 1060         struct ena_adapter *adapter = tx_ring->adapter;
 1061         struct ena_com_io_sq* io_sq;
 1062         int ena_qid;
 1063         int ret = 0;
 1064 
 1065         if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
 1066                 return;
 1067 
 1068         if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
 1069                 return;
 1070 
 1071         ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
 1072         io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
 1073 
 1074         while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
 1075                 ena_trace(NULL, ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and"
 1076                     " header csum flags %#jx\n",
 1077                     mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
 1078 
 1079                 if (unlikely(!tx_ring->running)) {
 1080                         drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 1081                         break;
 1082                 }
 1083 
 1084                 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
 1085                         if (ret == ENA_COM_NO_MEM) {
 1086                                 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 1087                         } else if (ret == ENA_COM_NO_SPACE) {
 1088                                 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 1089                         } else {
 1090                                 m_freem(mbuf);
 1091                                 drbr_advance(adapter->ifp, tx_ring->br);
 1092                         }
 1093 
 1094                         break;
 1095                 }
 1096 
 1097                 drbr_advance(adapter->ifp, tx_ring->br);
 1098 
 1099                 if (unlikely((if_getdrvflags(adapter->ifp) &
 1100                     IFF_DRV_RUNNING) == 0))
 1101                         return;
 1102 
 1103                 tx_ring->acum_pkts++;
 1104 
 1105                 BPF_MTAP(adapter->ifp, mbuf);
 1106         }
 1107 
 1108         if (likely(tx_ring->acum_pkts != 0)) {
 1109                 /* Trigger the dma engine */
 1110                 ena_com_write_sq_doorbell(io_sq);
 1111                 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
 1112                 tx_ring->acum_pkts = 0;
 1113         }
 1114 
 1115         if (unlikely(!tx_ring->running))
 1116                 taskqueue_enqueue(tx_ring->que->cleanup_tq,
 1117                     &tx_ring->que->cleanup_task);
 1118 }

Cache object: 698e7589b15f47f2f867acf236df3f0b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.