The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ena/ena_datapath.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause
    3  *
    4  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  *
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  *
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   22  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   23  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   24  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   28  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "opt_rss.h"
   34 #include "ena.h"
   35 #include "ena_datapath.h"
   36 #ifdef DEV_NETMAP
   37 #include "ena_netmap.h"
   38 #endif /* DEV_NETMAP */
   39 #ifdef RSS
   40 #include <net/rss_config.h>
   41 #endif /* RSS */
   42 
   43 /*********************************************************************
   44  *  Static functions prototypes
   45  *********************************************************************/
   46 
   47 static int      ena_tx_cleanup(struct ena_ring *);
   48 static int      ena_rx_cleanup(struct ena_ring *);
   49 static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
   50 static void     ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
   51     struct mbuf *);
   52 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
   53     struct ena_com_rx_ctx *, uint16_t *);
   54 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
   55     struct mbuf *);
   56 static void     ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool);
   57 static int      ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
   58     struct mbuf **mbuf);
   59 static int      ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
   60 static void     ena_start_xmit(struct ena_ring *);
   61 
   62 /*********************************************************************
   63  *  Global functions
   64  *********************************************************************/
   65 
   66 void
   67 ena_cleanup(void *arg, int pending)
   68 {
   69         struct ena_que  *que = arg;
   70         struct ena_adapter *adapter = que->adapter;
   71         if_t ifp = adapter->ifp;
   72         struct ena_ring *tx_ring;
   73         struct ena_ring *rx_ring;
   74         struct ena_com_io_cq* io_cq;
   75         struct ena_eth_io_intr_reg intr_reg;
   76         int qid, ena_qid;
   77         int txc, rxc, i;
   78 
   79         if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
   80                 return;
   81 
   82         ena_log_io(adapter->pdev, DBG, "MSI-X TX/RX routine\n");
   83 
   84         tx_ring = que->tx_ring;
   85         rx_ring = que->rx_ring;
   86         qid = que->id;
   87         ena_qid = ENA_IO_TXQ_IDX(qid);
   88         io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
   89 
   90         tx_ring->first_interrupt = true;
   91         rx_ring->first_interrupt = true;
   92 
   93         for (i = 0; i < CLEAN_BUDGET; ++i) {
   94                 rxc = ena_rx_cleanup(rx_ring);
   95                 txc = ena_tx_cleanup(tx_ring);
   96 
   97                 if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
   98                         return;
   99 
  100                 if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
  101                        break;
  102         }
  103 
  104         /* Signal that work is done and unmask interrupt */
  105         ena_com_update_intr_reg(&intr_reg,
  106             RX_IRQ_INTERVAL,
  107             TX_IRQ_INTERVAL,
  108             true);
  109         counter_u64_add(tx_ring->tx_stats.unmask_interrupt_num, 1);
  110         ena_com_unmask_intr(io_cq, &intr_reg);
  111 }
  112 
  113 void
  114 ena_deferred_mq_start(void *arg, int pending)
  115 {
  116         struct ena_ring *tx_ring = (struct ena_ring *)arg;
  117         struct ifnet *ifp = tx_ring->adapter->ifp;
  118 
  119         while (!drbr_empty(ifp, tx_ring->br) &&
  120             tx_ring->running &&
  121             (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
  122                 ENA_RING_MTX_LOCK(tx_ring);
  123                 ena_start_xmit(tx_ring);
  124                 ENA_RING_MTX_UNLOCK(tx_ring);
  125         }
  126 }
  127 
  128 int
  129 ena_mq_start(if_t ifp, struct mbuf *m)
  130 {
  131         struct ena_adapter *adapter = ifp->if_softc;
  132         struct ena_ring *tx_ring;
  133         int ret, is_drbr_empty;
  134         uint32_t i;
  135 #ifdef RSS
  136         uint32_t bucket_id;
  137 #endif
  138 
  139         if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
  140                 return (ENODEV);
  141 
  142         /* Which queue to use */
  143         /*
  144          * If everything is setup correctly, it should be the
  145          * same bucket that the current CPU we're on is.
  146          * It should improve performance.
  147          */
  148         if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
  149 #ifdef RSS
  150                 if (rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m),
  151                     &bucket_id) == 0)
  152                         i = bucket_id % adapter->num_io_queues;
  153                 else
  154 #endif
  155                         i = m->m_pkthdr.flowid % adapter->num_io_queues;
  156         } else {
  157                 i = curcpu % adapter->num_io_queues;
  158         }
  159         tx_ring = &adapter->tx_ring[i];
  160 
  161         /* Check if drbr is empty before putting packet */
  162         is_drbr_empty = drbr_empty(ifp, tx_ring->br);
  163         ret = drbr_enqueue(ifp, tx_ring->br, m);
  164         if (unlikely(ret != 0)) {
  165                 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
  166                 return (ret);
  167         }
  168 
  169         if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
  170                 ena_start_xmit(tx_ring);
  171                 ENA_RING_MTX_UNLOCK(tx_ring);
  172         } else {
  173                 taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
  174         }
  175 
  176         return (0);
  177 }
  178 
  179 void
  180 ena_qflush(if_t ifp)
  181 {
  182         struct ena_adapter *adapter = ifp->if_softc;
  183         struct ena_ring *tx_ring = adapter->tx_ring;
  184         int i;
  185 
  186         for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
  187                 if (!drbr_empty(ifp, tx_ring->br)) {
  188                         ENA_RING_MTX_LOCK(tx_ring);
  189                         drbr_flush(ifp, tx_ring->br);
  190                         ENA_RING_MTX_UNLOCK(tx_ring);
  191                 }
  192 
  193         if_qflush(ifp);
  194 }
  195 
  196 /*********************************************************************
  197  *  Static functions
  198  *********************************************************************/
  199 
  200 static inline int
  201 validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
  202 {
  203         struct ena_adapter *adapter = tx_ring->adapter;
  204         struct ena_tx_buffer *tx_info = NULL;
  205 
  206         if (likely(req_id < tx_ring->ring_size)) {
  207                 tx_info = &tx_ring->tx_buffer_info[req_id];
  208                 if (tx_info->mbuf != NULL)
  209                         return (0);
  210                 ena_log(adapter->pdev, ERR,
  211                     "tx_info doesn't have valid mbuf\n");
  212         }
  213 
  214         ena_log(adapter->pdev, ERR, "Invalid req_id: %hu\n", req_id);
  215         counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
  216 
  217         /* Trigger device reset */
  218         ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
  219 
  220         return (EFAULT);
  221 }
  222 
  223 /**
  224  * ena_tx_cleanup - clear sent packets and corresponding descriptors
  225  * @tx_ring: ring for which we want to clean packets
  226  *
  227  * Once packets are sent, we ask the device in a loop for no longer used
  228  * descriptors. We find the related mbuf chain in a map (index in an array)
  229  * and free it, then update ring state.
  230  * This is performed in "endless" loop, updating ring pointers every
  231  * TX_COMMIT. The first check of free descriptor is performed before the actual
  232  * loop, then repeated at the loop end.
  233  **/
  234 static int
  235 ena_tx_cleanup(struct ena_ring *tx_ring)
  236 {
  237         struct ena_adapter *adapter;
  238         struct ena_com_io_cq* io_cq;
  239         uint16_t next_to_clean;
  240         uint16_t req_id;
  241         uint16_t ena_qid;
  242         unsigned int total_done = 0;
  243         int rc;
  244         int commit = TX_COMMIT;
  245         int budget = TX_BUDGET;
  246         int work_done;
  247         bool above_thresh;
  248 
  249         adapter = tx_ring->que->adapter;
  250         ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
  251         io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
  252         next_to_clean = tx_ring->next_to_clean;
  253 
  254 #ifdef DEV_NETMAP
  255         if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
  256                 return (0);
  257 #endif /* DEV_NETMAP */
  258 
  259         do {
  260                 struct ena_tx_buffer *tx_info;
  261                 struct mbuf *mbuf;
  262 
  263                 rc = ena_com_tx_comp_req_id_get(io_cq, &req_id);
  264                 if (unlikely(rc != 0))
  265                         break;
  266 
  267                 rc = validate_tx_req_id(tx_ring, req_id);
  268                 if (unlikely(rc != 0))
  269                         break;
  270 
  271                 tx_info = &tx_ring->tx_buffer_info[req_id];
  272 
  273                 mbuf = tx_info->mbuf;
  274 
  275                 tx_info->mbuf = NULL;
  276                 bintime_clear(&tx_info->timestamp);
  277 
  278                 bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
  279                     BUS_DMASYNC_POSTWRITE);
  280                 bus_dmamap_unload(adapter->tx_buf_tag,
  281                     tx_info->dmamap);
  282 
  283                 ena_log_io(adapter->pdev, DBG, "tx: q %d mbuf %p completed\n",
  284                     tx_ring->qid, mbuf);
  285 
  286                 m_freem(mbuf);
  287 
  288                 total_done += tx_info->tx_descs;
  289 
  290                 tx_ring->free_tx_ids[next_to_clean] = req_id;
  291                 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
  292                     tx_ring->ring_size);
  293 
  294                 if (unlikely(--commit == 0)) {
  295                         commit = TX_COMMIT;
  296                         /* update ring state every TX_COMMIT descriptor */
  297                         tx_ring->next_to_clean = next_to_clean;
  298                         ena_com_comp_ack(
  299                             &adapter->ena_dev->io_sq_queues[ena_qid],
  300                             total_done);
  301                         ena_com_update_dev_comp_head(io_cq);
  302                         total_done = 0;
  303                 }
  304         } while (likely(--budget));
  305 
  306         work_done = TX_BUDGET - budget;
  307 
  308         ena_log_io(adapter->pdev, DBG, "tx: q %d done. total pkts: %d\n",
  309             tx_ring->qid, work_done);
  310 
  311         /* If there is still something to commit update ring state */
  312         if (likely(commit != TX_COMMIT)) {
  313                 tx_ring->next_to_clean = next_to_clean;
  314                 ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
  315                     total_done);
  316                 ena_com_update_dev_comp_head(io_cq);
  317         }
  318 
  319         /*
  320          * Need to make the rings circular update visible to
  321          * ena_xmit_mbuf() before checking for tx_ring->running.
  322          */
  323         mb();
  324 
  325         above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
  326             ENA_TX_RESUME_THRESH);
  327         if (unlikely(!tx_ring->running && above_thresh)) {
  328                 ENA_RING_MTX_LOCK(tx_ring);
  329                 above_thresh =
  330                     ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
  331                     ENA_TX_RESUME_THRESH);
  332                 if (!tx_ring->running && above_thresh) {
  333                         tx_ring->running = true;
  334                         counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
  335                         taskqueue_enqueue(tx_ring->enqueue_tq,
  336                             &tx_ring->enqueue_task);
  337                 }
  338                 ENA_RING_MTX_UNLOCK(tx_ring);
  339         }
  340 
  341         return (work_done);
  342 }
  343 
  344 static void
  345 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
  346     struct mbuf *mbuf)
  347 {
  348         struct ena_adapter *adapter = rx_ring->adapter;
  349 
  350         if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
  351                 mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
  352 
  353 #ifdef RSS
  354                 /*
  355                  * Hardware and software RSS are in agreement only when both are
  356                  * configured to Toeplitz algorithm.  This driver configures
  357                  * that algorithm only when software RSS is enabled and uses it.
  358                  */
  359                 if (adapter->ena_dev->rss.hash_func != ENA_ADMIN_TOEPLITZ &&
  360                     ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN) {
  361                         M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
  362                         return;
  363                 }
  364 #endif
  365 
  366                 if (ena_rx_ctx->frag &&
  367                     (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
  368                         M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
  369                         return;
  370                 }
  371 
  372                 switch (ena_rx_ctx->l3_proto) {
  373                 case ENA_ETH_IO_L3_PROTO_IPV4:
  374                         switch (ena_rx_ctx->l4_proto) {
  375                         case ENA_ETH_IO_L4_PROTO_TCP:
  376                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
  377                                 break;
  378                         case ENA_ETH_IO_L4_PROTO_UDP:
  379                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
  380                                 break;
  381                         default:
  382                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
  383                         }
  384                         break;
  385                 case ENA_ETH_IO_L3_PROTO_IPV6:
  386                         switch (ena_rx_ctx->l4_proto) {
  387                         case ENA_ETH_IO_L4_PROTO_TCP:
  388                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
  389                                 break;
  390                         case ENA_ETH_IO_L4_PROTO_UDP:
  391                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
  392                                 break;
  393                         default:
  394                                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
  395                         }
  396                         break;
  397                 case ENA_ETH_IO_L3_PROTO_UNKNOWN:
  398                         M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
  399                         break;
  400                 default:
  401                         M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
  402                 }
  403         } else {
  404                 mbuf->m_pkthdr.flowid = rx_ring->qid;
  405                 M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
  406         }
  407 }
  408 
  409 /**
  410  * ena_rx_mbuf - assemble mbuf from descriptors
  411  * @rx_ring: ring for which we want to clean packets
  412  * @ena_bufs: buffer info
  413  * @ena_rx_ctx: metadata for this packet(s)
  414  * @next_to_clean: ring pointer, will be updated only upon success
  415  *
  416  **/
  417 static struct mbuf*
  418 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
  419     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
  420 {
  421         struct mbuf *mbuf;
  422         struct ena_rx_buffer *rx_info;
  423         struct ena_adapter *adapter;
  424         device_t pdev;
  425         unsigned int descs = ena_rx_ctx->descs;
  426         uint16_t ntc, len, req_id, buf = 0;
  427 
  428         ntc = *next_to_clean;
  429         adapter = rx_ring->adapter;
  430         pdev = adapter->pdev;
  431 
  432         len = ena_bufs[buf].len;
  433         req_id = ena_bufs[buf].req_id;
  434         rx_info = &rx_ring->rx_buffer_info[req_id];
  435         if (unlikely(rx_info->mbuf == NULL)) {
  436                 ena_log(pdev, ERR, "NULL mbuf in rx_info");
  437                 return (NULL);
  438         }
  439 
  440         ena_log_io(pdev, DBG, "rx_info %p, mbuf %p, paddr %jx\n", rx_info,
  441             rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
  442 
  443         bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
  444             BUS_DMASYNC_POSTREAD);
  445         mbuf = rx_info->mbuf;
  446         mbuf->m_flags |= M_PKTHDR;
  447         mbuf->m_pkthdr.len = len;
  448         mbuf->m_len = len;
  449         /* Only for the first segment the data starts at specific offset */
  450         mbuf->m_data = mtodo(mbuf, ena_rx_ctx->pkt_offset);
  451         ena_log_io(pdev, DBG, "Mbuf data offset=%u\n", ena_rx_ctx->pkt_offset);
  452         mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
  453 
  454         /* Fill mbuf with hash key and it's interpretation for optimization */
  455         ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
  456 
  457         ena_log_io(pdev, DBG, "rx mbuf 0x%p, flags=0x%x, len: %d\n", mbuf,
  458             mbuf->m_flags, mbuf->m_pkthdr.len);
  459 
  460         /* DMA address is not needed anymore, unmap it */
  461         bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
  462 
  463         rx_info->mbuf = NULL;
  464         rx_ring->free_rx_ids[ntc] = req_id;
  465         ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
  466 
  467         /*
  468          * While we have more than 1 descriptors for one rcvd packet, append
  469          * other mbufs to the main one
  470          */
  471         while (--descs) {
  472                 ++buf;
  473                 len = ena_bufs[buf].len;
  474                 req_id = ena_bufs[buf].req_id;
  475                 rx_info = &rx_ring->rx_buffer_info[req_id];
  476 
  477                 if (unlikely(rx_info->mbuf == NULL)) {
  478                         ena_log(pdev, ERR, "NULL mbuf in rx_info");
  479                         /*
  480                          * If one of the required mbufs was not allocated yet,
  481                          * we can break there.
  482                          * All earlier used descriptors will be reallocated
  483                          * later and not used mbufs can be reused.
  484                          * The next_to_clean pointer will not be updated in case
  485                          * of an error, so caller should advance it manually
  486                          * in error handling routine to keep it up to date
  487                          * with hw ring.
  488                          */
  489                         m_freem(mbuf);
  490                         return (NULL);
  491                 }
  492 
  493                 bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
  494                     BUS_DMASYNC_POSTREAD);
  495                 if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
  496                         counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
  497                         ena_log_io(pdev, WARN, "Failed to append Rx mbuf %p\n",
  498                             mbuf);
  499                 }
  500 
  501                 ena_log_io(pdev, DBG, "rx mbuf updated. len %d\n",
  502                     mbuf->m_pkthdr.len);
  503 
  504                 /* Free already appended mbuf, it won't be useful anymore */
  505                 bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
  506                 m_freem(rx_info->mbuf);
  507                 rx_info->mbuf = NULL;
  508 
  509                 rx_ring->free_rx_ids[ntc] = req_id;
  510                 ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
  511         }
  512 
  513         *next_to_clean = ntc;
  514 
  515         return (mbuf);
  516 }
  517 
  518 /**
  519  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
  520  **/
  521 static inline void
  522 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
  523     struct mbuf *mbuf)
  524 {
  525         device_t pdev = rx_ring->adapter->pdev;
  526 
  527         /* if IP and error */
  528         if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
  529             ena_rx_ctx->l3_csum_err)) {
  530                 /* ipv4 checksum error */
  531                 mbuf->m_pkthdr.csum_flags = 0;
  532                 counter_u64_add(rx_ring->rx_stats.csum_bad, 1);
  533                 ena_log_io(pdev, DBG, "RX IPv4 header checksum error\n");
  534                 return;
  535         }
  536 
  537         /* if TCP/UDP */
  538         if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
  539             (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
  540                 if (ena_rx_ctx->l4_csum_err) {
  541                         /* TCP/UDP checksum error */
  542                         mbuf->m_pkthdr.csum_flags = 0;
  543                         counter_u64_add(rx_ring->rx_stats.csum_bad, 1);
  544                         ena_log_io(pdev, DBG, "RX L4 checksum error\n");
  545                 } else {
  546                         mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
  547                         mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
  548                         counter_u64_add(rx_ring->rx_stats.csum_good, 1);
  549                 }
  550         }
  551 }
  552 
  553 /**
  554  * ena_rx_cleanup - handle rx irq
  555  * @arg: ring for which irq is being handled
  556  **/
  557 static int
  558 ena_rx_cleanup(struct ena_ring *rx_ring)
  559 {
  560         struct ena_adapter *adapter;
  561         device_t pdev;
  562         struct mbuf *mbuf;
  563         struct ena_com_rx_ctx ena_rx_ctx;
  564         struct ena_com_io_cq* io_cq;
  565         struct ena_com_io_sq* io_sq;
  566         enum ena_regs_reset_reason_types reset_reason;
  567         if_t ifp;
  568         uint16_t ena_qid;
  569         uint16_t next_to_clean;
  570         uint32_t refill_required;
  571         uint32_t refill_threshold;
  572         uint32_t do_if_input = 0;
  573         unsigned int qid;
  574         int rc, i;
  575         int budget = RX_BUDGET;
  576 #ifdef DEV_NETMAP
  577         int done;
  578 #endif /* DEV_NETMAP */
  579 
  580         adapter = rx_ring->que->adapter;
  581         pdev = adapter->pdev;
  582         ifp = adapter->ifp;
  583         qid = rx_ring->que->id;
  584         ena_qid = ENA_IO_RXQ_IDX(qid);
  585         io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
  586         io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
  587         next_to_clean = rx_ring->next_to_clean;
  588 
  589 #ifdef DEV_NETMAP
  590         if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
  591                 return (0);
  592 #endif /* DEV_NETMAP */
  593 
  594         ena_log_io(pdev, DBG, "rx: qid %d\n", qid);
  595 
  596         do {
  597                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
  598                 ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
  599                 ena_rx_ctx.descs = 0;
  600                 ena_rx_ctx.pkt_offset = 0;
  601 
  602                 bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
  603                     io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
  604                 rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
  605                 if (unlikely(rc != 0)) {
  606                         if (rc == ENA_COM_NO_SPACE) {
  607                                 counter_u64_add(rx_ring->rx_stats.bad_desc_num,
  608                                     1);
  609                                 reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
  610                         } else {
  611                                 counter_u64_add(rx_ring->rx_stats.bad_req_id,
  612                                     1);
  613                                 reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
  614                         }
  615                         ena_trigger_reset(adapter, reset_reason);
  616                         return (0);
  617                 }
  618 
  619                 if (unlikely(ena_rx_ctx.descs == 0))
  620                         break;
  621 
  622                 ena_log_io(pdev, DBG, "rx: q %d got packet from ena. "
  623                     "descs #: %d l3 proto %d l4 proto %d hash: %x\n",
  624                     rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
  625                     ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
  626 
  627                 /* Receive mbuf from the ring */
  628                 mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
  629                     &ena_rx_ctx, &next_to_clean);
  630                 bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
  631                     io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
  632                 /* Exit if we failed to retrieve a buffer */
  633                 if (unlikely(mbuf == NULL)) {
  634                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
  635                                 rx_ring->free_rx_ids[next_to_clean] =
  636                                     rx_ring->ena_bufs[i].req_id;
  637                                 next_to_clean =
  638                                     ENA_RX_RING_IDX_NEXT(next_to_clean,
  639                                     rx_ring->ring_size);
  640 
  641                         }
  642                         break;
  643                 }
  644 
  645                 if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
  646                     ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
  647                         ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
  648                 }
  649 
  650                 counter_enter();
  651                 counter_u64_add_protected(rx_ring->rx_stats.bytes,
  652                     mbuf->m_pkthdr.len);
  653                 counter_u64_add_protected(adapter->hw_stats.rx_bytes,
  654                     mbuf->m_pkthdr.len);
  655                 counter_exit();
  656                 /*
  657                  * LRO is only for IP/TCP packets and TCP checksum of the packet
  658                  * should be computed by hardware.
  659                  */
  660                 do_if_input = 1;
  661                 if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
  662                     ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
  663                     (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
  664                         /*
  665                          * Send to the stack if:
  666                          *  - LRO not enabled, or
  667                          *  - no LRO resources, or
  668                          *  - lro enqueue fails
  669                          */
  670                         if ((rx_ring->lro.lro_cnt != 0) &&
  671                             (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
  672                                         do_if_input = 0;
  673                 }
  674                 if (do_if_input != 0) {
  675                         ena_log_io(pdev, DBG, "calling if_input() with mbuf %p\n",
  676                             mbuf);
  677                         (*ifp->if_input)(ifp, mbuf);
  678                 }
  679 
  680                 counter_enter();
  681                 counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
  682                 counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
  683                 counter_exit();
  684         } while (--budget);
  685 
  686         rx_ring->next_to_clean = next_to_clean;
  687 
  688         refill_required = ena_com_free_q_entries(io_sq);
  689         refill_threshold = min_t(int,
  690             rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
  691             ENA_RX_REFILL_THRESH_PACKET);
  692 
  693         if (refill_required > refill_threshold) {
  694                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
  695                 ena_refill_rx_bufs(rx_ring, refill_required);
  696         }
  697 
  698         tcp_lro_flush_all(&rx_ring->lro);
  699 
  700         return (RX_BUDGET - budget);
  701 }
  702 
  703 static void
  704 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf,
  705     bool disable_meta_caching)
  706 {
  707         struct ena_com_tx_meta *ena_meta;
  708         struct ether_vlan_header *eh;
  709         struct mbuf *mbuf_next;
  710         u32 mss;
  711         bool offload;
  712         uint16_t etype;
  713         int ehdrlen;
  714         struct ip *ip;
  715         int iphlen;
  716         struct tcphdr *th;
  717         int offset;
  718 
  719         offload = false;
  720         ena_meta = &ena_tx_ctx->ena_meta;
  721         mss = mbuf->m_pkthdr.tso_segsz;
  722 
  723         if (mss != 0)
  724                 offload = true;
  725 
  726         if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
  727                 offload = true;
  728 
  729         if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
  730                 offload = true;
  731 
  732         if (!offload) {
  733                 if (disable_meta_caching) {
  734                         memset(ena_meta, 0, sizeof(*ena_meta));
  735                         ena_tx_ctx->meta_valid = 1;
  736                 } else {
  737                         ena_tx_ctx->meta_valid = 0;
  738                 }
  739                 return;
  740         }
  741 
  742         /* Determine where frame payload starts. */
  743         eh = mtod(mbuf, struct ether_vlan_header *);
  744         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
  745                 etype = ntohs(eh->evl_proto);
  746                 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
  747         } else {
  748                 etype = ntohs(eh->evl_encap_proto);
  749                 ehdrlen = ETHER_HDR_LEN;
  750         }
  751 
  752         mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
  753         ip = (struct ip *)(mtodo(mbuf_next, offset));
  754         iphlen = ip->ip_hl << 2;
  755 
  756         mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
  757         th = (struct tcphdr *)(mtodo(mbuf_next, offset));
  758 
  759         if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
  760                 ena_tx_ctx->l3_csum_enable = 1;
  761         }
  762         if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
  763                 ena_tx_ctx->tso_enable = 1;
  764                 ena_meta->l4_hdr_len = (th->th_off);
  765         }
  766 
  767         switch (etype) {
  768         case ETHERTYPE_IP:
  769                 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
  770                 if ((ip->ip_off & htons(IP_DF)) != 0)
  771                         ena_tx_ctx->df = 1;
  772                 break;
  773         case ETHERTYPE_IPV6:
  774                 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
  775 
  776         default:
  777                 break;
  778         }
  779 
  780         if (ip->ip_p == IPPROTO_TCP) {
  781                 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
  782                 if ((mbuf->m_pkthdr.csum_flags &
  783                     (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
  784                         ena_tx_ctx->l4_csum_enable = 1;
  785                 else
  786                         ena_tx_ctx->l4_csum_enable = 0;
  787         } else if (ip->ip_p == IPPROTO_UDP) {
  788                 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
  789                 if ((mbuf->m_pkthdr.csum_flags &
  790                     (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
  791                         ena_tx_ctx->l4_csum_enable = 1;
  792                 else
  793                         ena_tx_ctx->l4_csum_enable = 0;
  794         } else {
  795                 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
  796                 ena_tx_ctx->l4_csum_enable = 0;
  797         }
  798 
  799         ena_meta->mss = mss;
  800         ena_meta->l3_hdr_len = iphlen;
  801         ena_meta->l3_hdr_offset = ehdrlen;
  802         ena_tx_ctx->meta_valid = 1;
  803 }
  804 
  805 static int
  806 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
  807 {
  808         struct ena_adapter *adapter;
  809         struct mbuf *collapsed_mbuf;
  810         int num_frags;
  811 
  812         adapter = tx_ring->adapter;
  813         num_frags = ena_mbuf_count(*mbuf);
  814 
  815         /* One segment must be reserved for configuration descriptor. */
  816         if (num_frags < adapter->max_tx_sgl_size)
  817                 return (0);
  818 
  819         if ((num_frags == adapter->max_tx_sgl_size) &&
  820             ((*mbuf)->m_pkthdr.len < tx_ring->tx_max_header_size))
  821                 return (0);
  822 
  823         counter_u64_add(tx_ring->tx_stats.collapse, 1);
  824 
  825         collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
  826             adapter->max_tx_sgl_size - 1);
  827         if (unlikely(collapsed_mbuf == NULL)) {
  828                 counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
  829                 return (ENOMEM);
  830         }
  831 
  832         /* If mbuf was collapsed succesfully, original mbuf is released. */
  833         *mbuf = collapsed_mbuf;
  834 
  835         return (0);
  836 }
  837 
  838 static int
  839 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
  840     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
  841 {
  842         struct ena_adapter *adapter = tx_ring->adapter;
  843         struct ena_com_buf *ena_buf;
  844         bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
  845         size_t iseg = 0;
  846         uint32_t mbuf_head_len;
  847         uint16_t offset;
  848         int rc, nsegs;
  849 
  850         mbuf_head_len = mbuf->m_len;
  851         tx_info->mbuf = mbuf;
  852         ena_buf = tx_info->bufs;
  853 
  854         /*
  855          * For easier maintaining of the DMA map, map the whole mbuf even if
  856          * the LLQ is used. The descriptors will be filled using the segments.
  857          */
  858         rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
  859             segs, &nsegs, BUS_DMA_NOWAIT);
  860         if (unlikely((rc != 0) || (nsegs == 0))) {
  861                 ena_log_io(adapter->pdev, WARN,
  862                     "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
  863                 goto dma_error;
  864         }
  865 
  866         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
  867                 /*
  868                  * When the device is LLQ mode, the driver will copy
  869                  * the header into the device memory space.
  870                  * the ena_com layer assumes the header is in a linear
  871                  * memory space.
  872                  * This assumption might be wrong since part of the header
  873                  * can be in the fragmented buffers.
  874                  * First check if header fits in the mbuf. If not, copy it to
  875                  * separate buffer that will be holding linearized data.
  876                  */
  877                 *header_len = min_t(uint32_t, mbuf->m_pkthdr.len, tx_ring->tx_max_header_size);
  878 
  879                 /* If header is in linear space, just point into mbuf's data. */
  880                 if (likely(*header_len <= mbuf_head_len)) {
  881                         *push_hdr = mbuf->m_data;
  882                 /*
  883                  * Otherwise, copy whole portion of header from multiple mbufs
  884                  * to intermediate buffer.
  885                  */
  886                 } else {
  887                         m_copydata(mbuf, 0, *header_len, tx_ring->push_buf_intermediate_buf);
  888                         *push_hdr = tx_ring->push_buf_intermediate_buf;
  889 
  890                         counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
  891                 }
  892 
  893                 ena_log_io(adapter->pdev, DBG, "mbuf: %p ""header_buf->vaddr: %p "
  894                     "push_len: %d\n", mbuf, *push_hdr, *header_len);
  895 
  896                 /* If packet is fitted in LLQ header, no need for DMA segments. */
  897                 if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) {
  898                         return (0);
  899                 } else {
  900                         offset = tx_ring->tx_max_header_size;
  901                         /*
  902                          * As Header part is mapped to LLQ header, we can skip it and just
  903                          * map the residuum of the mbuf to DMA Segments.
  904                          */
  905                         while (offset > 0) {
  906                                 if (offset >= segs[iseg].ds_len) {
  907                                         offset -= segs[iseg].ds_len;
  908                                 } else {
  909                                         ena_buf->paddr = segs[iseg].ds_addr + offset;
  910                                         ena_buf->len = segs[iseg].ds_len - offset;
  911                                         ena_buf++;
  912                                         tx_info->num_of_bufs++;
  913                                         offset = 0;
  914                                 }
  915                                 iseg++;
  916                         }
  917                 }
  918         } else {
  919                 *push_hdr = NULL;
  920                 /*
  921                 * header_len is just a hint for the device. Because FreeBSD is not
  922                 * giving us information about packet header length and it is not
  923                 * guaranteed that all packet headers will be in the 1st mbuf, setting
  924                 * header_len to 0 is making the device ignore this value and resolve
  925                 * header on it's own.
  926                 */
  927                 *header_len = 0;
  928         }
  929 
  930         /* Map rest of the mbuf */
  931         while (iseg < nsegs) {
  932                 ena_buf->paddr = segs[iseg].ds_addr;
  933                 ena_buf->len = segs[iseg].ds_len;
  934                 ena_buf++;
  935                 iseg++;
  936                 tx_info->num_of_bufs++;
  937         }
  938 
  939         return (0);
  940 
  941 dma_error:
  942         counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
  943         tx_info->mbuf = NULL;
  944         return (rc);
  945 }
  946 
  947 static int
  948 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
  949 {
  950         struct ena_adapter *adapter;
  951         device_t pdev;
  952         struct ena_tx_buffer *tx_info;
  953         struct ena_com_tx_ctx ena_tx_ctx;
  954         struct ena_com_dev *ena_dev;
  955         struct ena_com_io_sq* io_sq;
  956         void *push_hdr;
  957         uint16_t next_to_use;
  958         uint16_t req_id;
  959         uint16_t ena_qid;
  960         uint16_t header_len;
  961         int rc;
  962         int nb_hw_desc;
  963 
  964         ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
  965         adapter = tx_ring->que->adapter;
  966         pdev = adapter->pdev;
  967         ena_dev = adapter->ena_dev;
  968         io_sq = &ena_dev->io_sq_queues[ena_qid];
  969 
  970         rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
  971         if (unlikely(rc != 0)) {
  972                 ena_log_io(pdev, WARN, "Failed to collapse mbuf! err: %d\n",
  973                     rc);
  974                 return (rc);
  975         }
  976 
  977         ena_log_io(pdev, DBG, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
  978 
  979         next_to_use = tx_ring->next_to_use;
  980         req_id = tx_ring->free_tx_ids[next_to_use];
  981         tx_info = &tx_ring->tx_buffer_info[req_id];
  982         tx_info->num_of_bufs = 0;
  983 
  984         ENA_WARN(tx_info->mbuf != NULL, adapter->ena_dev,
  985             "mbuf isn't NULL for req_id %d\n", req_id);
  986 
  987         rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
  988         if (unlikely(rc != 0)) {
  989                 ena_log_io(pdev, WARN, "Failed to map TX mbuf\n");
  990                 return (rc);
  991         }
  992         memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
  993         ena_tx_ctx.ena_bufs = tx_info->bufs;
  994         ena_tx_ctx.push_header = push_hdr;
  995         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
  996         ena_tx_ctx.req_id = req_id;
  997         ena_tx_ctx.header_len = header_len;
  998 
  999         /* Set flags and meta data */
 1000         ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching);
 1001 
 1002         if (tx_ring->acum_pkts == DB_THRESHOLD ||
 1003             ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
 1004                 ena_log_io(pdev, DBG,
 1005                     "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
 1006                     tx_ring->que->id);
 1007                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
 1008                 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
 1009                 tx_ring->acum_pkts = 0;
 1010         }
 1011 
 1012         /* Prepare the packet's descriptors and send them to device */
 1013         rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
 1014         if (unlikely(rc != 0)) {
 1015                 if (likely(rc == ENA_COM_NO_MEM)) {
 1016                         ena_log_io(pdev, DBG, "tx ring[%d] is out of space\n",
 1017                             tx_ring->que->id);
 1018                 } else {
 1019                         ena_log(pdev, ERR, "failed to prepare tx bufs\n");
 1020                         ena_trigger_reset(adapter,
 1021                             ENA_REGS_RESET_DRIVER_INVALID_STATE);
 1022                 }
 1023                 counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
 1024                 goto dma_error;
 1025         }
 1026 
 1027         counter_enter();
 1028         counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
 1029         counter_u64_add_protected(tx_ring->tx_stats.bytes,
 1030             (*mbuf)->m_pkthdr.len);
 1031 
 1032         counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
 1033         counter_u64_add_protected(adapter->hw_stats.tx_bytes,
 1034             (*mbuf)->m_pkthdr.len);
 1035         counter_exit();
 1036 
 1037         tx_info->tx_descs = nb_hw_desc;
 1038         getbinuptime(&tx_info->timestamp);
 1039         tx_info->print_once = true;
 1040 
 1041         tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
 1042             tx_ring->ring_size);
 1043 
 1044         /* stop the queue when no more space available, the packet can have up
 1045          * to sgl_size + 2. one for the meta descriptor and one for header
 1046          * (if the header is larger than tx_max_header_size).
 1047          */
 1048         if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
 1049             adapter->max_tx_sgl_size + 2))) {
 1050                 ena_log_io(pdev, DBG, "Stop queue %d\n", tx_ring->que->id);
 1051 
 1052                 tx_ring->running = false;
 1053                 counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
 1054 
 1055                 /* There is a rare condition where this function decides to
 1056                  * stop the queue but meanwhile tx_cleanup() updates
 1057                  * next_to_completion and terminates.
 1058                  * The queue will remain stopped forever.
 1059                  * To solve this issue this function performs mb(), checks
 1060                  * the wakeup condition and wakes up the queue if needed.
 1061                  */
 1062                 mb();
 1063 
 1064                 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
 1065                     ENA_TX_RESUME_THRESH)) {
 1066                         tx_ring->running = true;
 1067                         counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
 1068                 }
 1069         }
 1070 
 1071         bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
 1072             BUS_DMASYNC_PREWRITE);
 1073 
 1074         return (0);
 1075 
 1076 dma_error:
 1077         tx_info->mbuf = NULL;
 1078         bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
 1079 
 1080         return (rc);
 1081 }
 1082 
 1083 static void
 1084 ena_start_xmit(struct ena_ring *tx_ring)
 1085 {
 1086         struct mbuf *mbuf;
 1087         struct ena_adapter *adapter = tx_ring->adapter;
 1088         struct ena_com_io_sq* io_sq;
 1089         int ena_qid;
 1090         int ret = 0;
 1091 
 1092         ENA_RING_MTX_ASSERT(tx_ring);
 1093 
 1094         if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
 1095                 return;
 1096 
 1097         if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
 1098                 return;
 1099 
 1100         ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
 1101         io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
 1102 
 1103         while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
 1104                 ena_log_io(adapter->pdev, DBG,
 1105                     "\ndequeued mbuf %p with flags %#x and header csum flags %#jx\n",
 1106                     mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
 1107 
 1108                 if (unlikely(!tx_ring->running)) {
 1109                         drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 1110                         break;
 1111                 }
 1112 
 1113                 if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
 1114                         if (ret == ENA_COM_NO_MEM) {
 1115                                 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 1116                         } else if (ret == ENA_COM_NO_SPACE) {
 1117                                 drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 1118                         } else {
 1119                                 m_freem(mbuf);
 1120                                 drbr_advance(adapter->ifp, tx_ring->br);
 1121                         }
 1122 
 1123                         break;
 1124                 }
 1125 
 1126                 drbr_advance(adapter->ifp, tx_ring->br);
 1127 
 1128                 if (unlikely((if_getdrvflags(adapter->ifp) &
 1129                     IFF_DRV_RUNNING) == 0))
 1130                         return;
 1131 
 1132                 tx_ring->acum_pkts++;
 1133 
 1134                 BPF_MTAP(adapter->ifp, mbuf);
 1135         }
 1136 
 1137         if (likely(tx_ring->acum_pkts != 0)) {
 1138                 /* Trigger the dma engine */
 1139                 ena_com_write_sq_doorbell(io_sq);
 1140                 counter_u64_add(tx_ring->tx_stats.doorbells, 1);
 1141                 tx_ring->acum_pkts = 0;
 1142         }
 1143 
 1144         if (unlikely(!tx_ring->running))
 1145                 taskqueue_enqueue(tx_ring->que->cleanup_tq,
 1146                     &tx_ring->que->cleanup_task);
 1147 }

Cache object: a58fe71aeda2cae45f7fca3414333567


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.