FreeBSD/Linux Kernel Cross Reference
sys/dev/fxp/if_fxp.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-NetBSD
3 *
4 * Copyright (c) 1995, David Greenman
5 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 /*
36 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
37 */
38
39 #ifdef HAVE_KERNEL_OPTION_HEADERS
40 #include "opt_device_polling.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/module.h>
52 #include <sys/mutex.h>
53 #include <sys/rman.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73
74 #include <machine/bus.h>
75 #include <machine/in_cksum.h>
76 #include <machine/resource.h>
77
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */
80
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83
84 #include <dev/fxp/if_fxpreg.h>
85 #include <dev/fxp/if_fxpvar.h>
86 #include <dev/fxp/rcvbundl.h>
87
88 MODULE_DEPEND(fxp, pci, 1, 1, 1);
89 MODULE_DEPEND(fxp, ether, 1, 1, 1);
90 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
91 #include "miibus_if.h"
92
93 /*
94 * NOTE! On !x86 we typically have an alignment constraint. The
95 * card DMAs the packet immediately following the RFA. However,
96 * the first thing in the packet is a 14-byte Ethernet header.
97 * This means that the packet is misaligned. To compensate,
98 * we actually offset the RFA 2 bytes into the cluster. This
99 * alignes the packet after the Ethernet header at a 32-bit
100 * boundary. HOWEVER! This means that the RFA is misaligned!
101 */
102 #define RFA_ALIGNMENT_FUDGE 2
103
104 /*
105 * Set initial transmit threshold at 64 (512 bytes). This is
106 * increased by 64 (512 bytes) at a time, to maximum of 192
107 * (1536 bytes), if an underrun occurs.
108 */
109 static int tx_threshold = 64;
110
111 /*
112 * The configuration byte map has several undefined fields which
113 * must be one or must be zero. Set up a template for these bits.
114 * The actual configuration is performed in fxp_init_body.
115 *
116 * See struct fxp_cb_config for the bit definitions.
117 */
118 static const u_char fxp_cb_config_template[] = {
119 0x0, 0x0, /* cb_status */
120 0x0, 0x0, /* cb_command */
121 0x0, 0x0, 0x0, 0x0, /* link_addr */
122 0x0, /* 0 */
123 0x0, /* 1 */
124 0x0, /* 2 */
125 0x0, /* 3 */
126 0x0, /* 4 */
127 0x0, /* 5 */
128 0x32, /* 6 */
129 0x0, /* 7 */
130 0x0, /* 8 */
131 0x0, /* 9 */
132 0x6, /* 10 */
133 0x0, /* 11 */
134 0x0, /* 12 */
135 0x0, /* 13 */
136 0xf2, /* 14 */
137 0x48, /* 15 */
138 0x0, /* 16 */
139 0x40, /* 17 */
140 0xf0, /* 18 */
141 0x0, /* 19 */
142 0x3f, /* 20 */
143 0x5, /* 21 */
144 0x0, /* 22 */
145 0x0, /* 23 */
146 0x0, /* 24 */
147 0x0, /* 25 */
148 0x0, /* 26 */
149 0x0, /* 27 */
150 0x0, /* 28 */
151 0x0, /* 29 */
152 0x0, /* 30 */
153 0x0 /* 31 */
154 };
155
156 /*
157 * Claim various Intel PCI device identifiers for this driver. The
158 * sub-vendor and sub-device field are extensively used to identify
159 * particular variants, but we don't currently differentiate between
160 * them.
161 */
162 static const struct fxp_ident fxp_ident_table[] = {
163 { 0x8086, 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" },
164 { 0x8086, 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" },
165 { 0x8086, 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
166 { 0x8086, 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
167 { 0x8086, 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
168 { 0x8086, 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169 { 0x8086, 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
170 { 0x8086, 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
171 { 0x8086, 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
172 { 0x8086, 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
173 { 0x8086, 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174 { 0x8086, 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
175 { 0x8086, 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
176 { 0x8086, 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
177 { 0x8086, 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
178 { 0x8086, 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
179 { 0x8086, 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
180 { 0x8086, 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
181 { 0x8086, 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" },
182 { 0x8086, 0x1064, -1, 6, "Intel 82562EZ (ICH6)" },
183 { 0x8086, 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
184 { 0x8086, 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
185 { 0x8086, 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
186 { 0x8086, 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" },
187 { 0x8086, 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" },
188 { 0x8086, 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" },
189 { 0x8086, 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
190 { 0x8086, 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" },
191 { 0x8086, 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" },
192 { 0x8086, 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" },
193 { 0x8086, 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" },
194 { 0x8086, 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" },
195 { 0x8086, 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" },
196 { 0x8086, 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" },
197 { 0x8086, 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" },
198 { 0x8086, 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" },
199 { 0x8086, 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" },
200 { 0x8086, 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" },
201 { 0x8086, 0x1229, 0x0d, 0, "Intel 82550C Pro/100 Ethernet" },
202 { 0x8086, 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" },
203 { 0x8086, 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" },
204 { 0x8086, 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" },
205 { 0x8086, 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" },
206 { 0x8086, 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
207 { 0x8086, 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
208 { 0, 0, -1, 0, NULL },
209 };
210
211 #ifdef FXP_IP_CSUM_WAR
212 #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
213 #else
214 #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
215 #endif
216
217 static int fxp_probe(device_t dev);
218 static int fxp_attach(device_t dev);
219 static int fxp_detach(device_t dev);
220 static int fxp_shutdown(device_t dev);
221 static int fxp_suspend(device_t dev);
222 static int fxp_resume(device_t dev);
223
224 static const struct fxp_ident *fxp_find_ident(device_t dev);
225 static void fxp_intr(void *xsc);
226 static void fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
227 struct mbuf *m, uint16_t status, int pos);
228 static int fxp_intr_body(struct fxp_softc *sc, if_t ifp,
229 uint8_t statack, int count);
230 static void fxp_init(void *xsc);
231 static void fxp_init_body(struct fxp_softc *sc, int);
232 static void fxp_tick(void *xsc);
233 static void fxp_start(if_t ifp);
234 static void fxp_start_body(if_t ifp);
235 static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
236 static void fxp_txeof(struct fxp_softc *sc);
237 static void fxp_stop(struct fxp_softc *sc);
238 static void fxp_release(struct fxp_softc *sc);
239 static int fxp_ioctl(if_t ifp, u_long command,
240 caddr_t data);
241 static void fxp_watchdog(struct fxp_softc *sc);
242 static void fxp_add_rfabuf(struct fxp_softc *sc,
243 struct fxp_rx *rxp);
244 static void fxp_discard_rfabuf(struct fxp_softc *sc,
245 struct fxp_rx *rxp);
246 static int fxp_new_rfabuf(struct fxp_softc *sc,
247 struct fxp_rx *rxp);
248 static void fxp_mc_addrs(struct fxp_softc *sc);
249 static void fxp_mc_setup(struct fxp_softc *sc);
250 static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
251 int autosize);
252 static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
253 uint16_t data);
254 static void fxp_autosize_eeprom(struct fxp_softc *sc);
255 static void fxp_load_eeprom(struct fxp_softc *sc);
256 static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
257 int offset, int words);
258 static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
259 int offset, int words);
260 static int fxp_ifmedia_upd(if_t ifp);
261 static void fxp_ifmedia_sts(if_t ifp,
262 struct ifmediareq *ifmr);
263 static int fxp_serial_ifmedia_upd(if_t ifp);
264 static void fxp_serial_ifmedia_sts(if_t ifp,
265 struct ifmediareq *ifmr);
266 static int fxp_miibus_readreg(device_t dev, int phy, int reg);
267 static int fxp_miibus_writereg(device_t dev, int phy, int reg,
268 int value);
269 static void fxp_miibus_statchg(device_t dev);
270 static void fxp_load_ucode(struct fxp_softc *sc);
271 static void fxp_update_stats(struct fxp_softc *sc);
272 static void fxp_sysctl_node(struct fxp_softc *sc);
273 static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
274 int low, int high);
275 static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
276 static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
277 static void fxp_scb_wait(struct fxp_softc *sc);
278 static void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
279 static void fxp_dma_wait(struct fxp_softc *sc,
280 volatile uint16_t *status, bus_dma_tag_t dmat,
281 bus_dmamap_t map);
282
283 static device_method_t fxp_methods[] = {
284 /* Device interface */
285 DEVMETHOD(device_probe, fxp_probe),
286 DEVMETHOD(device_attach, fxp_attach),
287 DEVMETHOD(device_detach, fxp_detach),
288 DEVMETHOD(device_shutdown, fxp_shutdown),
289 DEVMETHOD(device_suspend, fxp_suspend),
290 DEVMETHOD(device_resume, fxp_resume),
291
292 /* MII interface */
293 DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
294 DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
295 DEVMETHOD(miibus_statchg, fxp_miibus_statchg),
296
297 DEVMETHOD_END
298 };
299
300 static driver_t fxp_driver = {
301 "fxp",
302 fxp_methods,
303 sizeof(struct fxp_softc),
304 };
305
306 DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, NULL, NULL, SI_ORDER_ANY);
307 MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table,
308 nitems(fxp_ident_table) - 1);
309 DRIVER_MODULE(miibus, fxp, miibus_driver, NULL, NULL);
310
311 static struct resource_spec fxp_res_spec_mem[] = {
312 { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE },
313 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
314 { -1, 0 }
315 };
316
317 static struct resource_spec fxp_res_spec_io[] = {
318 { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE },
319 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
320 { -1, 0 }
321 };
322
323 /*
324 * Wait for the previous command to be accepted (but not necessarily
325 * completed).
326 */
327 static void
328 fxp_scb_wait(struct fxp_softc *sc)
329 {
330 union {
331 uint16_t w;
332 uint8_t b[2];
333 } flowctl;
334 int i = 10000;
335
336 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
337 DELAY(2);
338 if (i == 0) {
339 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
340 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
341 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
342 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
343 CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
344 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
345 }
346 }
347
348 static void
349 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
350 {
351
352 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
353 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
354 fxp_scb_wait(sc);
355 }
356 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
357 }
358
359 static void
360 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
361 bus_dma_tag_t dmat, bus_dmamap_t map)
362 {
363 int i;
364
365 for (i = 10000; i > 0; i--) {
366 DELAY(2);
367 bus_dmamap_sync(dmat, map,
368 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
369 if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
370 break;
371 }
372 if (i == 0)
373 device_printf(sc->dev, "DMA timeout\n");
374 }
375
376 static const struct fxp_ident *
377 fxp_find_ident(device_t dev)
378 {
379 uint16_t vendor;
380 uint16_t device;
381 uint8_t revid;
382 const struct fxp_ident *ident;
383
384 vendor = pci_get_vendor(dev);
385 device = pci_get_device(dev);
386 revid = pci_get_revid(dev);
387 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
388 if (ident->vendor == vendor && ident->device == device &&
389 (ident->revid == revid || ident->revid == -1)) {
390 return (ident);
391 }
392 }
393 return (NULL);
394 }
395
396 /*
397 * Return identification string if this device is ours.
398 */
399 static int
400 fxp_probe(device_t dev)
401 {
402 const struct fxp_ident *ident;
403
404 ident = fxp_find_ident(dev);
405 if (ident != NULL) {
406 device_set_desc(dev, ident->name);
407 return (BUS_PROBE_DEFAULT);
408 }
409 return (ENXIO);
410 }
411
412 static void
413 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
414 {
415 uint32_t *addr;
416
417 if (error)
418 return;
419
420 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
421 addr = arg;
422 *addr = segs->ds_addr;
423 }
424
425 static int
426 fxp_attach(device_t dev)
427 {
428 struct fxp_softc *sc;
429 struct fxp_cb_tx *tcbp;
430 struct fxp_tx *txp;
431 struct fxp_rx *rxp;
432 if_t ifp;
433 uint32_t val;
434 uint16_t data;
435 u_char eaddr[ETHER_ADDR_LEN];
436 int error, flags, i, pmc, prefer_iomap;
437
438 error = 0;
439 sc = device_get_softc(dev);
440 sc->dev = dev;
441 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
442 MTX_DEF);
443 callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
444 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
445 fxp_serial_ifmedia_sts);
446
447 ifp = sc->ifp = if_gethandle(IFT_ETHER);
448 if (ifp == (void *)NULL) {
449 device_printf(dev, "can not if_alloc()\n");
450 error = ENOSPC;
451 goto fail;
452 }
453
454 /*
455 * Enable bus mastering.
456 */
457 pci_enable_busmaster(dev);
458
459 /*
460 * Figure out which we should try first - memory mapping or i/o mapping?
461 * We default to memory mapping. Then we accept an override from the
462 * command line. Then we check to see which one is enabled.
463 */
464 prefer_iomap = 0;
465 resource_int_value(device_get_name(dev), device_get_unit(dev),
466 "prefer_iomap", &prefer_iomap);
467 if (prefer_iomap)
468 sc->fxp_spec = fxp_res_spec_io;
469 else
470 sc->fxp_spec = fxp_res_spec_mem;
471
472 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
473 if (error) {
474 if (sc->fxp_spec == fxp_res_spec_mem)
475 sc->fxp_spec = fxp_res_spec_io;
476 else
477 sc->fxp_spec = fxp_res_spec_mem;
478 error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
479 }
480 if (error) {
481 device_printf(dev, "could not allocate resources\n");
482 error = ENXIO;
483 goto fail;
484 }
485
486 if (bootverbose) {
487 device_printf(dev, "using %s space register mapping\n",
488 sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
489 }
490
491 /*
492 * Put CU/RU idle state and prepare full reset.
493 */
494 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
495 DELAY(10);
496 /* Full reset and disable interrupts. */
497 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
498 DELAY(10);
499 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
500
501 /*
502 * Find out how large of an SEEPROM we have.
503 */
504 fxp_autosize_eeprom(sc);
505 fxp_load_eeprom(sc);
506
507 /*
508 * Find out the chip revision; lump all 82557 revs together.
509 */
510 sc->ident = fxp_find_ident(dev);
511 if (sc->ident->ich > 0) {
512 /* Assume ICH controllers are 82559. */
513 sc->revision = FXP_REV_82559_A0;
514 } else {
515 data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
516 if ((data >> 8) == 1)
517 sc->revision = FXP_REV_82557;
518 else
519 sc->revision = pci_get_revid(dev);
520 }
521
522 /*
523 * Check availability of WOL. 82559ER does not support WOL.
524 */
525 if (sc->revision >= FXP_REV_82558_A4 &&
526 sc->revision != FXP_REV_82559S_A) {
527 data = sc->eeprom[FXP_EEPROM_MAP_ID];
528 if ((data & 0x20) != 0 &&
529 pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
530 sc->flags |= FXP_FLAG_WOLCAP;
531 }
532
533 if (sc->revision == FXP_REV_82550_C) {
534 /*
535 * 82550C with server extension requires microcode to
536 * receive fragmented UDP datagrams. However if the
537 * microcode is used for client-only featured 82550C
538 * it locks up controller.
539 */
540 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
541 if ((data & 0x0400) == 0)
542 sc->flags |= FXP_FLAG_NO_UCODE;
543 }
544
545 /* Receiver lock-up workaround detection. */
546 if (sc->revision < FXP_REV_82558_A4) {
547 data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
548 if ((data & 0x03) != 0x03) {
549 sc->flags |= FXP_FLAG_RXBUG;
550 device_printf(dev, "Enabling Rx lock-up workaround\n");
551 }
552 }
553
554 /*
555 * Determine whether we must use the 503 serial interface.
556 */
557 data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
558 if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
559 && (data & FXP_PHY_SERIAL_ONLY))
560 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
561
562 fxp_sysctl_node(sc);
563 /*
564 * Enable workarounds for certain chip revision deficiencies.
565 *
566 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
567 * some systems based a normal 82559 design, have a defect where
568 * the chip can cause a PCI protocol violation if it receives
569 * a CU_RESUME command when it is entering the IDLE state. The
570 * workaround is to disable Dynamic Standby Mode, so the chip never
571 * deasserts CLKRUN#, and always remains in an active state.
572 *
573 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
574 */
575 if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
576 (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
577 data = sc->eeprom[FXP_EEPROM_MAP_ID];
578 if (data & 0x02) { /* STB enable */
579 uint16_t cksum;
580 int i;
581
582 device_printf(dev,
583 "Disabling dynamic standby mode in EEPROM\n");
584 data &= ~0x02;
585 sc->eeprom[FXP_EEPROM_MAP_ID] = data;
586 fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
587 device_printf(dev, "New EEPROM ID: 0x%x\n", data);
588 cksum = 0;
589 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
590 cksum += sc->eeprom[i];
591 i = (1 << sc->eeprom_size) - 1;
592 cksum = 0xBABA - cksum;
593 fxp_write_eeprom(sc, &cksum, i, 1);
594 device_printf(dev,
595 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
596 i, sc->eeprom[i], cksum);
597 sc->eeprom[i] = cksum;
598 /*
599 * If the user elects to continue, try the software
600 * workaround, as it is better than nothing.
601 */
602 sc->flags |= FXP_FLAG_CU_RESUME_BUG;
603 }
604 }
605
606 /*
607 * If we are not a 82557 chip, we can enable extended features.
608 */
609 if (sc->revision != FXP_REV_82557) {
610 /*
611 * If MWI is enabled in the PCI configuration, and there
612 * is a valid cacheline size (8 or 16 dwords), then tell
613 * the board to turn on MWI.
614 */
615 val = pci_read_config(dev, PCIR_COMMAND, 2);
616 if (val & PCIM_CMD_MWRICEN &&
617 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
618 sc->flags |= FXP_FLAG_MWI_ENABLE;
619
620 /* turn on the extended TxCB feature */
621 sc->flags |= FXP_FLAG_EXT_TXCB;
622
623 /* enable reception of long frames for VLAN */
624 sc->flags |= FXP_FLAG_LONG_PKT_EN;
625 } else {
626 /* a hack to get long VLAN frames on a 82557 */
627 sc->flags |= FXP_FLAG_SAVE_BAD;
628 }
629
630 /* For 82559 or later chips, Rx checksum offload is supported. */
631 if (sc->revision >= FXP_REV_82559_A0) {
632 /* 82559ER does not support Rx checksum offloading. */
633 if (sc->ident->device != 0x1209)
634 sc->flags |= FXP_FLAG_82559_RXCSUM;
635 }
636 /*
637 * Enable use of extended RFDs and TCBs for 82550
638 * and later chips. Note: we need extended TXCB support
639 * too, but that's already enabled by the code above.
640 * Be careful to do this only on the right devices.
641 */
642 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
643 sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
644 || sc->revision == FXP_REV_82551_10) {
645 sc->rfa_size = sizeof (struct fxp_rfa);
646 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
647 sc->flags |= FXP_FLAG_EXT_RFA;
648 /* Use extended RFA instead of 82559 checksum mode. */
649 sc->flags &= ~FXP_FLAG_82559_RXCSUM;
650 } else {
651 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
652 sc->tx_cmd = FXP_CB_COMMAND_XMIT;
653 }
654
655 /*
656 * Allocate DMA tags and DMA safe memory.
657 */
658 sc->maxtxseg = FXP_NTXSEG;
659 sc->maxsegsize = MCLBYTES;
660 if (sc->flags & FXP_FLAG_EXT_RFA) {
661 sc->maxtxseg--;
662 sc->maxsegsize = FXP_TSO_SEGSIZE;
663 }
664 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
665 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
666 sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
667 sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag);
668 if (error) {
669 device_printf(dev, "could not create TX DMA tag\n");
670 goto fail;
671 }
672
673 error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
674 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
675 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag);
676 if (error) {
677 device_printf(dev, "could not create RX DMA tag\n");
678 goto fail;
679 }
680
681 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
682 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
683 sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
684 NULL, NULL, &sc->fxp_stag);
685 if (error) {
686 device_printf(dev, "could not create stats DMA tag\n");
687 goto fail;
688 }
689
690 error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
691 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
692 if (error) {
693 device_printf(dev, "could not allocate stats DMA memory\n");
694 goto fail;
695 }
696 error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
697 sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
698 BUS_DMA_NOWAIT);
699 if (error) {
700 device_printf(dev, "could not load the stats DMA buffer\n");
701 goto fail;
702 }
703
704 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
705 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
706 FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag);
707 if (error) {
708 device_printf(dev, "could not create TxCB DMA tag\n");
709 goto fail;
710 }
711
712 error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
713 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
714 if (error) {
715 device_printf(dev, "could not allocate TxCB DMA memory\n");
716 goto fail;
717 }
718
719 error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
720 sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
721 &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
722 if (error) {
723 device_printf(dev, "could not load TxCB DMA buffer\n");
724 goto fail;
725 }
726
727 error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
728 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
729 sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
730 NULL, NULL, &sc->mcs_tag);
731 if (error) {
732 device_printf(dev,
733 "could not create multicast setup DMA tag\n");
734 goto fail;
735 }
736
737 error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
738 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
739 if (error) {
740 device_printf(dev,
741 "could not allocate multicast setup DMA memory\n");
742 goto fail;
743 }
744 error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
745 sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
746 BUS_DMA_NOWAIT);
747 if (error) {
748 device_printf(dev,
749 "can't load the multicast setup DMA buffer\n");
750 goto fail;
751 }
752
753 /*
754 * Pre-allocate the TX DMA maps and setup the pointers to
755 * the TX command blocks.
756 */
757 txp = sc->fxp_desc.tx_list;
758 tcbp = sc->fxp_desc.cbl_list;
759 for (i = 0; i < FXP_NTXCB; i++) {
760 txp[i].tx_cb = tcbp + i;
761 error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
762 if (error) {
763 device_printf(dev, "can't create DMA map for TX\n");
764 goto fail;
765 }
766 }
767 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
768 if (error) {
769 device_printf(dev, "can't create spare DMA map\n");
770 goto fail;
771 }
772
773 /*
774 * Pre-allocate our receive buffers.
775 */
776 sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
777 for (i = 0; i < FXP_NRFABUFS; i++) {
778 rxp = &sc->fxp_desc.rx_list[i];
779 error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
780 if (error) {
781 device_printf(dev, "can't create DMA map for RX\n");
782 goto fail;
783 }
784 if (fxp_new_rfabuf(sc, rxp) != 0) {
785 error = ENOMEM;
786 goto fail;
787 }
788 fxp_add_rfabuf(sc, rxp);
789 }
790
791 /*
792 * Read MAC address.
793 */
794 eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
795 eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
796 eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
797 eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
798 eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
799 eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
800 if (bootverbose) {
801 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
802 pci_get_vendor(dev), pci_get_device(dev),
803 pci_get_subvendor(dev), pci_get_subdevice(dev),
804 pci_get_revid(dev));
805 device_printf(dev, "Dynamic Standby mode is %s\n",
806 sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
807 "disabled");
808 }
809
810 /*
811 * If this is only a 10Mbps device, then there is no MII, and
812 * the PHY will use a serial interface instead.
813 *
814 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
815 * doesn't have a programming interface of any sort. The
816 * media is sensed automatically based on how the link partner
817 * is configured. This is, in essence, manual configuration.
818 */
819 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
820 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
821 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
822 } else {
823 /*
824 * i82557 wedge when isolating all of their PHYs.
825 */
826 flags = MIIF_NOISOLATE;
827 if (sc->revision >= FXP_REV_82558_A4)
828 flags |= MIIF_DOPAUSE;
829 error = mii_attach(dev, &sc->miibus, ifp,
830 (ifm_change_cb_t)fxp_ifmedia_upd,
831 (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
832 MII_PHY_ANY, MII_OFFSET_ANY, flags);
833 if (error != 0) {
834 device_printf(dev, "attaching PHYs failed\n");
835 goto fail;
836 }
837 }
838
839 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
840 if_setdev(ifp, dev);
841 if_setinitfn(ifp, fxp_init);
842 if_setsoftc(ifp, sc);
843 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
844 if_setioctlfn(ifp, fxp_ioctl);
845 if_setstartfn(ifp, fxp_start);
846
847 if_setcapabilities(ifp, 0);
848 if_setcapenable(ifp, 0);
849
850 /* Enable checksum offload/TSO for 82550 or better chips */
851 if (sc->flags & FXP_FLAG_EXT_RFA) {
852 if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
853 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
854 if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
855 }
856
857 if (sc->flags & FXP_FLAG_82559_RXCSUM) {
858 if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
859 if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
860 }
861
862 if (sc->flags & FXP_FLAG_WOLCAP) {
863 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
864 if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
865 }
866
867 #ifdef DEVICE_POLLING
868 /* Inform the world we support polling. */
869 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
870 #endif
871
872 /*
873 * Attach the interface.
874 */
875 ether_ifattach(ifp, eaddr);
876
877 /*
878 * Tell the upper layer(s) we support long frames.
879 * Must appear after the call to ether_ifattach() because
880 * ether_ifattach() sets ifi_hdrlen to the default value.
881 */
882 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
883 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
884 if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
885 if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
886 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
887 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
888 if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
889 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
890 }
891
892 /*
893 * Let the system queue as many packets as we have available
894 * TX descriptors.
895 */
896 if_setsendqlen(ifp, FXP_NTXCB - 1);
897 if_setsendqready(ifp);
898
899 /*
900 * Hook our interrupt after all initialization is complete.
901 */
902 error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
903 NULL, fxp_intr, sc, &sc->ih);
904 if (error) {
905 device_printf(dev, "could not setup irq\n");
906 ether_ifdetach(sc->ifp);
907 goto fail;
908 }
909
910 /*
911 * Configure hardware to reject magic frames otherwise
912 * system will hang on recipt of magic frames.
913 */
914 if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
915 FXP_LOCK(sc);
916 /* Clear wakeup events. */
917 CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
918 fxp_init_body(sc, 0);
919 fxp_stop(sc);
920 FXP_UNLOCK(sc);
921 }
922
923 fail:
924 if (error)
925 fxp_release(sc);
926 return (error);
927 }
928
929 /*
930 * Release all resources. The softc lock should not be held and the
931 * interrupt should already be torn down.
932 */
933 static void
934 fxp_release(struct fxp_softc *sc)
935 {
936 struct fxp_rx *rxp;
937 struct fxp_tx *txp;
938 int i;
939
940 FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
941 KASSERT(sc->ih == NULL,
942 ("fxp_release() called with intr handle still active"));
943 if (sc->miibus)
944 device_delete_child(sc->dev, sc->miibus);
945 bus_generic_detach(sc->dev);
946 ifmedia_removeall(&sc->sc_media);
947 if (sc->fxp_desc.cbl_list) {
948 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
949 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
950 sc->cbl_map);
951 }
952 if (sc->fxp_stats) {
953 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
954 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
955 }
956 if (sc->mcsp) {
957 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
958 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
959 }
960 bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
961 if (sc->fxp_rxmtag) {
962 for (i = 0; i < FXP_NRFABUFS; i++) {
963 rxp = &sc->fxp_desc.rx_list[i];
964 if (rxp->rx_mbuf != NULL) {
965 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
966 BUS_DMASYNC_POSTREAD);
967 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
968 m_freem(rxp->rx_mbuf);
969 }
970 bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
971 }
972 bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
973 bus_dma_tag_destroy(sc->fxp_rxmtag);
974 }
975 if (sc->fxp_txmtag) {
976 for (i = 0; i < FXP_NTXCB; i++) {
977 txp = &sc->fxp_desc.tx_list[i];
978 if (txp->tx_mbuf != NULL) {
979 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
980 BUS_DMASYNC_POSTWRITE);
981 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
982 m_freem(txp->tx_mbuf);
983 }
984 bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
985 }
986 bus_dma_tag_destroy(sc->fxp_txmtag);
987 }
988 if (sc->fxp_stag)
989 bus_dma_tag_destroy(sc->fxp_stag);
990 if (sc->cbl_tag)
991 bus_dma_tag_destroy(sc->cbl_tag);
992 if (sc->mcs_tag)
993 bus_dma_tag_destroy(sc->mcs_tag);
994 if (sc->ifp)
995 if_free(sc->ifp);
996
997 mtx_destroy(&sc->sc_mtx);
998 }
999
1000 /*
1001 * Detach interface.
1002 */
1003 static int
1004 fxp_detach(device_t dev)
1005 {
1006 struct fxp_softc *sc = device_get_softc(dev);
1007
1008 #ifdef DEVICE_POLLING
1009 if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
1010 ether_poll_deregister(sc->ifp);
1011 #endif
1012
1013 FXP_LOCK(sc);
1014 /*
1015 * Stop DMA and drop transmit queue, but disable interrupts first.
1016 */
1017 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1018 fxp_stop(sc);
1019 FXP_UNLOCK(sc);
1020 callout_drain(&sc->stat_ch);
1021
1022 /*
1023 * Close down routes etc.
1024 */
1025 ether_ifdetach(sc->ifp);
1026
1027 /*
1028 * Unhook interrupt before dropping lock. This is to prevent
1029 * races with fxp_intr().
1030 */
1031 bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1032 sc->ih = NULL;
1033
1034 /* Release our allocated resources. */
1035 fxp_release(sc);
1036 return (0);
1037 }
1038
1039 /*
1040 * Device shutdown routine. Called at system shutdown after sync. The
1041 * main purpose of this routine is to shut off receiver DMA so that
1042 * kernel memory doesn't get clobbered during warmboot.
1043 */
1044 static int
1045 fxp_shutdown(device_t dev)
1046 {
1047
1048 /*
1049 * Make sure that DMA is disabled prior to reboot. Not doing
1050 * do could allow DMA to corrupt kernel memory during the
1051 * reboot before the driver initializes.
1052 */
1053 return (fxp_suspend(dev));
1054 }
1055
1056 /*
1057 * Device suspend routine. Stop the interface and save some PCI
1058 * settings in case the BIOS doesn't restore them properly on
1059 * resume.
1060 */
1061 static int
1062 fxp_suspend(device_t dev)
1063 {
1064 struct fxp_softc *sc = device_get_softc(dev);
1065 if_t ifp;
1066 int pmc;
1067 uint16_t pmstat;
1068
1069 FXP_LOCK(sc);
1070
1071 ifp = sc->ifp;
1072 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1073 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1074 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1075 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1076 /* Request PME. */
1077 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1078 sc->flags |= FXP_FLAG_WOL;
1079 /* Reconfigure hardware to accept magic frames. */
1080 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1081 fxp_init_body(sc, 0);
1082 }
1083 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1084 }
1085 fxp_stop(sc);
1086
1087 sc->suspended = 1;
1088
1089 FXP_UNLOCK(sc);
1090 return (0);
1091 }
1092
1093 /*
1094 * Device resume routine. re-enable busmastering, and restart the interface if
1095 * appropriate.
1096 */
1097 static int
1098 fxp_resume(device_t dev)
1099 {
1100 struct fxp_softc *sc = device_get_softc(dev);
1101 if_t ifp = sc->ifp;
1102 int pmc;
1103 uint16_t pmstat;
1104
1105 FXP_LOCK(sc);
1106
1107 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1108 sc->flags &= ~FXP_FLAG_WOL;
1109 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1110 /* Disable PME and clear PME status. */
1111 pmstat &= ~PCIM_PSTAT_PMEENABLE;
1112 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1113 if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1114 CSR_WRITE_1(sc, FXP_CSR_PMDR,
1115 CSR_READ_1(sc, FXP_CSR_PMDR));
1116 }
1117
1118 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1119 DELAY(10);
1120
1121 /* reinitialize interface if necessary */
1122 if (if_getflags(ifp) & IFF_UP)
1123 fxp_init_body(sc, 1);
1124
1125 sc->suspended = 0;
1126
1127 FXP_UNLOCK(sc);
1128 return (0);
1129 }
1130
1131 static void
1132 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1133 {
1134 uint16_t reg;
1135 int x;
1136
1137 /*
1138 * Shift in data.
1139 */
1140 for (x = 1 << (length - 1); x; x >>= 1) {
1141 if (data & x)
1142 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1143 else
1144 reg = FXP_EEPROM_EECS;
1145 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1146 DELAY(1);
1147 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1148 DELAY(1);
1149 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1150 DELAY(1);
1151 }
1152 }
1153
1154 /*
1155 * Read from the serial EEPROM. Basically, you manually shift in
1156 * the read opcode (one bit at a time) and then shift in the address,
1157 * and then you shift out the data (all of this one bit at a time).
1158 * The word size is 16 bits, so you have to provide the address for
1159 * every 16 bits of data.
1160 */
1161 static uint16_t
1162 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1163 {
1164 uint16_t reg, data;
1165 int x;
1166
1167 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1168 /*
1169 * Shift in read opcode.
1170 */
1171 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1172 /*
1173 * Shift in address.
1174 */
1175 data = 0;
1176 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1177 if (offset & x)
1178 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1179 else
1180 reg = FXP_EEPROM_EECS;
1181 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1182 DELAY(1);
1183 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1184 DELAY(1);
1185 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1186 DELAY(1);
1187 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1188 data++;
1189 if (autosize && reg == 0) {
1190 sc->eeprom_size = data;
1191 break;
1192 }
1193 }
1194 /*
1195 * Shift out data.
1196 */
1197 data = 0;
1198 reg = FXP_EEPROM_EECS;
1199 for (x = 1 << 15; x; x >>= 1) {
1200 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1201 DELAY(1);
1202 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1203 data |= x;
1204 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1205 DELAY(1);
1206 }
1207 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1208 DELAY(1);
1209
1210 return (data);
1211 }
1212
1213 static void
1214 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1215 {
1216 int i;
1217
1218 /*
1219 * Erase/write enable.
1220 */
1221 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1222 fxp_eeprom_shiftin(sc, 0x4, 3);
1223 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1224 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1225 DELAY(1);
1226 /*
1227 * Shift in write opcode, address, data.
1228 */
1229 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1230 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1231 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1232 fxp_eeprom_shiftin(sc, data, 16);
1233 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1234 DELAY(1);
1235 /*
1236 * Wait for EEPROM to finish up.
1237 */
1238 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1239 DELAY(1);
1240 for (i = 0; i < 1000; i++) {
1241 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1242 break;
1243 DELAY(50);
1244 }
1245 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1246 DELAY(1);
1247 /*
1248 * Erase/write disable.
1249 */
1250 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1251 fxp_eeprom_shiftin(sc, 0x4, 3);
1252 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1253 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1254 DELAY(1);
1255 }
1256
1257 /*
1258 * From NetBSD:
1259 *
1260 * Figure out EEPROM size.
1261 *
1262 * 559's can have either 64-word or 256-word EEPROMs, the 558
1263 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1264 * talks about the existence of 16 to 256 word EEPROMs.
1265 *
1266 * The only known sizes are 64 and 256, where the 256 version is used
1267 * by CardBus cards to store CIS information.
1268 *
1269 * The address is shifted in msb-to-lsb, and after the last
1270 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1271 * after which follows the actual data. We try to detect this zero, by
1272 * probing the data-out bit in the EEPROM control register just after
1273 * having shifted in a bit. If the bit is zero, we assume we've
1274 * shifted enough address bits. The data-out should be tri-state,
1275 * before this, which should translate to a logical one.
1276 */
1277 static void
1278 fxp_autosize_eeprom(struct fxp_softc *sc)
1279 {
1280
1281 /* guess maximum size of 256 words */
1282 sc->eeprom_size = 8;
1283
1284 /* autosize */
1285 (void) fxp_eeprom_getword(sc, 0, 1);
1286 }
1287
1288 static void
1289 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1290 {
1291 int i;
1292
1293 for (i = 0; i < words; i++)
1294 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1295 }
1296
1297 static void
1298 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1299 {
1300 int i;
1301
1302 for (i = 0; i < words; i++)
1303 fxp_eeprom_putword(sc, offset + i, data[i]);
1304 }
1305
1306 static void
1307 fxp_load_eeprom(struct fxp_softc *sc)
1308 {
1309 int i;
1310 uint16_t cksum;
1311
1312 fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1313 cksum = 0;
1314 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1315 cksum += sc->eeprom[i];
1316 cksum = 0xBABA - cksum;
1317 if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1318 device_printf(sc->dev,
1319 "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1320 cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1321 }
1322
1323 /*
1324 * Grab the softc lock and call the real fxp_start_body() routine
1325 */
1326 static void
1327 fxp_start(if_t ifp)
1328 {
1329 struct fxp_softc *sc = if_getsoftc(ifp);
1330
1331 FXP_LOCK(sc);
1332 fxp_start_body(ifp);
1333 FXP_UNLOCK(sc);
1334 }
1335
1336 /*
1337 * Start packet transmission on the interface.
1338 * This routine must be called with the softc lock held, and is an
1339 * internal entry point only.
1340 */
1341 static void
1342 fxp_start_body(if_t ifp)
1343 {
1344 struct fxp_softc *sc = if_getsoftc(ifp);
1345 struct mbuf *mb_head;
1346 int txqueued;
1347
1348 FXP_LOCK_ASSERT(sc, MA_OWNED);
1349
1350 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1351 IFF_DRV_RUNNING)
1352 return;
1353
1354 if (sc->tx_queued > FXP_NTXCB_HIWAT)
1355 fxp_txeof(sc);
1356 /*
1357 * We're finished if there is nothing more to add to the list or if
1358 * we're all filled up with buffers to transmit.
1359 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1360 * a NOP command when needed.
1361 */
1362 txqueued = 0;
1363 while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
1364
1365 /*
1366 * Grab a packet to transmit.
1367 */
1368 mb_head = if_dequeue(ifp);
1369 if (mb_head == NULL)
1370 break;
1371
1372 if (fxp_encap(sc, &mb_head)) {
1373 if (mb_head == NULL)
1374 break;
1375 if_sendq_prepend(ifp, mb_head);
1376 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1377 }
1378 txqueued++;
1379 /*
1380 * Pass packet to bpf if there is a listener.
1381 */
1382 if_bpfmtap(ifp, mb_head);
1383 }
1384
1385 /*
1386 * We're finished. If we added to the list, issue a RESUME to get DMA
1387 * going again if suspended.
1388 */
1389 if (txqueued > 0) {
1390 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1391 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1392 fxp_scb_wait(sc);
1393 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1394 /*
1395 * Set a 5 second timer just in case we don't hear
1396 * from the card again.
1397 */
1398 sc->watchdog_timer = 5;
1399 }
1400 }
1401
1402 static int
1403 fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1404 {
1405 struct mbuf *m;
1406 struct fxp_tx *txp;
1407 struct fxp_cb_tx *cbp;
1408 struct tcphdr *tcp;
1409 bus_dma_segment_t segs[FXP_NTXSEG];
1410 int error, i, nseg, tcp_payload;
1411
1412 FXP_LOCK_ASSERT(sc, MA_OWNED);
1413
1414 tcp_payload = 0;
1415 tcp = NULL;
1416 /*
1417 * Get pointer to next available tx desc.
1418 */
1419 txp = sc->fxp_desc.tx_last->tx_next;
1420
1421 /*
1422 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1423 * Ethernet Controller Family Open Source Software
1424 * Developer Manual says:
1425 * Using software parsing is only allowed with legal
1426 * TCP/IP or UDP/IP packets.
1427 * ...
1428 * For all other datagrams, hardware parsing must
1429 * be used.
1430 * Software parsing appears to truncate ICMP and
1431 * fragmented UDP packets that contain one to three
1432 * bytes in the second (and final) mbuf of the packet.
1433 */
1434 if (sc->flags & FXP_FLAG_EXT_RFA)
1435 txp->tx_cb->ipcb_ip_activation_high =
1436 FXP_IPCB_HARDWAREPARSING_ENABLE;
1437
1438 m = *m_head;
1439 if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1440 /*
1441 * 82550/82551 requires ethernet/IP/TCP headers must be
1442 * contained in the first active transmit buffer.
1443 */
1444 struct ether_header *eh;
1445 struct ip *ip;
1446 uint32_t ip_off, poff;
1447
1448 if (M_WRITABLE(*m_head) == 0) {
1449 /* Get a writable copy. */
1450 m = m_dup(*m_head, M_NOWAIT);
1451 m_freem(*m_head);
1452 if (m == NULL) {
1453 *m_head = NULL;
1454 return (ENOBUFS);
1455 }
1456 *m_head = m;
1457 }
1458 ip_off = sizeof(struct ether_header);
1459 m = m_pullup(*m_head, ip_off);
1460 if (m == NULL) {
1461 *m_head = NULL;
1462 return (ENOBUFS);
1463 }
1464 eh = mtod(m, struct ether_header *);
1465 /* Check the existence of VLAN tag. */
1466 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1467 ip_off = sizeof(struct ether_vlan_header);
1468 m = m_pullup(m, ip_off);
1469 if (m == NULL) {
1470 *m_head = NULL;
1471 return (ENOBUFS);
1472 }
1473 }
1474 m = m_pullup(m, ip_off + sizeof(struct ip));
1475 if (m == NULL) {
1476 *m_head = NULL;
1477 return (ENOBUFS);
1478 }
1479 ip = (struct ip *)(mtod(m, char *) + ip_off);
1480 poff = ip_off + (ip->ip_hl << 2);
1481 m = m_pullup(m, poff + sizeof(struct tcphdr));
1482 if (m == NULL) {
1483 *m_head = NULL;
1484 return (ENOBUFS);
1485 }
1486 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1487 m = m_pullup(m, poff + (tcp->th_off << 2));
1488 if (m == NULL) {
1489 *m_head = NULL;
1490 return (ENOBUFS);
1491 }
1492
1493 /*
1494 * Since 82550/82551 doesn't modify IP length and pseudo
1495 * checksum in the first frame driver should compute it.
1496 */
1497 ip = (struct ip *)(mtod(m, char *) + ip_off);
1498 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1499 ip->ip_sum = 0;
1500 ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1501 (tcp->th_off << 2));
1502 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1503 htons(IPPROTO_TCP + (tcp->th_off << 2) +
1504 m->m_pkthdr.tso_segsz));
1505 /* Compute total TCP payload. */
1506 tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1507 tcp_payload -= tcp->th_off << 2;
1508 *m_head = m;
1509 } else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1510 /*
1511 * Deal with TCP/IP checksum offload. Note that
1512 * in order for TCP checksum offload to work,
1513 * the pseudo header checksum must have already
1514 * been computed and stored in the checksum field
1515 * in the TCP header. The stack should have
1516 * already done this for us.
1517 */
1518 txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1519 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1520 txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1521
1522 #ifdef FXP_IP_CSUM_WAR
1523 /*
1524 * XXX The 82550 chip appears to have trouble
1525 * dealing with IP header checksums in very small
1526 * datagrams, namely fragments from 1 to 3 bytes
1527 * in size. For example, say you want to transmit
1528 * a UDP packet of 1473 bytes. The packet will be
1529 * fragmented over two IP datagrams, the latter
1530 * containing only one byte of data. The 82550 will
1531 * botch the header checksum on the 1-byte fragment.
1532 * As long as the datagram contains 4 or more bytes
1533 * of data, you're ok.
1534 *
1535 * The following code attempts to work around this
1536 * problem: if the datagram is less than 38 bytes
1537 * in size (14 bytes ether header, 20 bytes IP header,
1538 * plus 4 bytes of data), we punt and compute the IP
1539 * header checksum by hand. This workaround doesn't
1540 * work very well, however, since it can be fooled
1541 * by things like VLAN tags and IP options that make
1542 * the header sizes/offsets vary.
1543 */
1544
1545 if (m->m_pkthdr.csum_flags & CSUM_IP) {
1546 if (m->m_pkthdr.len < 38) {
1547 struct ip *ip;
1548 m->m_data += ETHER_HDR_LEN;
1549 ip = mtod(m, struct ip *);
1550 ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1551 m->m_data -= ETHER_HDR_LEN;
1552 m->m_pkthdr.csum_flags &= ~CSUM_IP;
1553 } else {
1554 txp->tx_cb->ipcb_ip_activation_high =
1555 FXP_IPCB_HARDWAREPARSING_ENABLE;
1556 txp->tx_cb->ipcb_ip_schedule |=
1557 FXP_IPCB_IP_CHECKSUM_ENABLE;
1558 }
1559 }
1560 #endif
1561 }
1562
1563 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1564 segs, &nseg, 0);
1565 if (error == EFBIG) {
1566 m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
1567 if (m == NULL) {
1568 m_freem(*m_head);
1569 *m_head = NULL;
1570 return (ENOMEM);
1571 }
1572 *m_head = m;
1573 error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1574 *m_head, segs, &nseg, 0);
1575 if (error != 0) {
1576 m_freem(*m_head);
1577 *m_head = NULL;
1578 return (ENOMEM);
1579 }
1580 } else if (error != 0)
1581 return (error);
1582 if (nseg == 0) {
1583 m_freem(*m_head);
1584 *m_head = NULL;
1585 return (EIO);
1586 }
1587
1588 KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1589 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1590
1591 cbp = txp->tx_cb;
1592 for (i = 0; i < nseg; i++) {
1593 /*
1594 * If this is an 82550/82551, then we're using extended
1595 * TxCBs _and_ we're using checksum offload. This means
1596 * that the TxCB is really an IPCB. One major difference
1597 * between the two is that with plain extended TxCBs,
1598 * the bottom half of the TxCB contains two entries from
1599 * the TBD array, whereas IPCBs contain just one entry:
1600 * one entry (8 bytes) has been sacrificed for the TCP/IP
1601 * checksum offload control bits. So to make things work
1602 * right, we have to start filling in the TBD array
1603 * starting from a different place depending on whether
1604 * the chip is an 82550/82551 or not.
1605 */
1606 if (sc->flags & FXP_FLAG_EXT_RFA) {
1607 cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1608 cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1609 } else {
1610 cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1611 cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1612 }
1613 }
1614 if (sc->flags & FXP_FLAG_EXT_RFA) {
1615 /* Configure dynamic TBD for 82550/82551. */
1616 cbp->tbd_number = 0xFF;
1617 cbp->tbd[nseg].tb_size |= htole32(0x8000);
1618 } else
1619 cbp->tbd_number = nseg;
1620 /* Configure TSO. */
1621 if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1622 cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1623 cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1624 cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1625 FXP_IPCB_IP_CHECKSUM_ENABLE |
1626 FXP_IPCB_TCP_PACKET |
1627 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1628 }
1629 /* Configure VLAN hardware tag insertion. */
1630 if ((m->m_flags & M_VLANTAG) != 0) {
1631 cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1632 txp->tx_cb->ipcb_ip_activation_high |=
1633 FXP_IPCB_INSERTVLAN_ENABLE;
1634 }
1635
1636 txp->tx_mbuf = m;
1637 txp->tx_cb->cb_status = 0;
1638 txp->tx_cb->byte_count = 0;
1639 if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1640 txp->tx_cb->cb_command =
1641 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1642 FXP_CB_COMMAND_S);
1643 else
1644 txp->tx_cb->cb_command =
1645 htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1646 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1647 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1648 txp->tx_cb->tx_threshold = tx_threshold;
1649
1650 /*
1651 * Advance the end of list forward.
1652 */
1653 sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1654 sc->fxp_desc.tx_last = txp;
1655
1656 /*
1657 * Advance the beginning of the list forward if there are
1658 * no other packets queued (when nothing is queued, tx_first
1659 * sits on the last TxCB that was sent out).
1660 */
1661 if (sc->tx_queued == 0)
1662 sc->fxp_desc.tx_first = txp;
1663
1664 sc->tx_queued++;
1665
1666 return (0);
1667 }
1668
1669 #ifdef DEVICE_POLLING
1670 static poll_handler_t fxp_poll;
1671
1672 static int
1673 fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
1674 {
1675 struct fxp_softc *sc = if_getsoftc(ifp);
1676 uint8_t statack;
1677 int rx_npkts = 0;
1678
1679 FXP_LOCK(sc);
1680 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
1681 FXP_UNLOCK(sc);
1682 return (rx_npkts);
1683 }
1684
1685 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1686 FXP_SCB_STATACK_FR;
1687 if (cmd == POLL_AND_CHECK_STATUS) {
1688 uint8_t tmp;
1689
1690 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1691 if (tmp == 0xff || tmp == 0) {
1692 FXP_UNLOCK(sc);
1693 return (rx_npkts); /* nothing to do */
1694 }
1695 tmp &= ~statack;
1696 /* ack what we can */
1697 if (tmp != 0)
1698 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1699 statack |= tmp;
1700 }
1701 rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1702 FXP_UNLOCK(sc);
1703 return (rx_npkts);
1704 }
1705 #endif /* DEVICE_POLLING */
1706
1707 /*
1708 * Process interface interrupts.
1709 */
1710 static void
1711 fxp_intr(void *xsc)
1712 {
1713 struct fxp_softc *sc = xsc;
1714 if_t ifp = sc->ifp;
1715 uint8_t statack;
1716
1717 FXP_LOCK(sc);
1718 if (sc->suspended) {
1719 FXP_UNLOCK(sc);
1720 return;
1721 }
1722
1723 #ifdef DEVICE_POLLING
1724 if (if_getcapenable(ifp) & IFCAP_POLLING) {
1725 FXP_UNLOCK(sc);
1726 return;
1727 }
1728 #endif
1729 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1730 /*
1731 * It should not be possible to have all bits set; the
1732 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If
1733 * all bits are set, this may indicate that the card has
1734 * been physically ejected, so ignore it.
1735 */
1736 if (statack == 0xff) {
1737 FXP_UNLOCK(sc);
1738 return;
1739 }
1740
1741 /*
1742 * First ACK all the interrupts in this pass.
1743 */
1744 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1745 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1746 fxp_intr_body(sc, ifp, statack, -1);
1747 }
1748 FXP_UNLOCK(sc);
1749 }
1750
1751 static void
1752 fxp_txeof(struct fxp_softc *sc)
1753 {
1754 if_t ifp;
1755 struct fxp_tx *txp;
1756
1757 ifp = sc->ifp;
1758 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1759 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1760 for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1761 (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1762 txp = txp->tx_next) {
1763 if (txp->tx_mbuf != NULL) {
1764 bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1765 BUS_DMASYNC_POSTWRITE);
1766 bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1767 m_freem(txp->tx_mbuf);
1768 txp->tx_mbuf = NULL;
1769 /* clear this to reset csum offload bits */
1770 txp->tx_cb->tbd[0].tb_addr = 0;
1771 }
1772 sc->tx_queued--;
1773 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1774 }
1775 sc->fxp_desc.tx_first = txp;
1776 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1777 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1778 if (sc->tx_queued == 0)
1779 sc->watchdog_timer = 0;
1780 }
1781
1782 static void
1783 fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
1784 uint16_t status, int pos)
1785 {
1786 struct ether_header *eh;
1787 struct ip *ip;
1788 struct udphdr *uh;
1789 int32_t hlen, len, pktlen, temp32;
1790 uint16_t csum, *opts;
1791
1792 if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1793 if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1794 if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1795 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1796 if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1797 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1798 if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1799 (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1800 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1801 CSUM_PSEUDO_HDR;
1802 m->m_pkthdr.csum_data = 0xffff;
1803 }
1804 }
1805 return;
1806 }
1807
1808 pktlen = m->m_pkthdr.len;
1809 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1810 return;
1811 eh = mtod(m, struct ether_header *);
1812 if (eh->ether_type != htons(ETHERTYPE_IP))
1813 return;
1814 ip = (struct ip *)(eh + 1);
1815 if (ip->ip_v != IPVERSION)
1816 return;
1817
1818 hlen = ip->ip_hl << 2;
1819 pktlen -= sizeof(struct ether_header);
1820 if (hlen < sizeof(struct ip))
1821 return;
1822 if (ntohs(ip->ip_len) < hlen)
1823 return;
1824 if (ntohs(ip->ip_len) != pktlen)
1825 return;
1826 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1827 return; /* can't handle fragmented packet */
1828
1829 switch (ip->ip_p) {
1830 case IPPROTO_TCP:
1831 if (pktlen < (hlen + sizeof(struct tcphdr)))
1832 return;
1833 break;
1834 case IPPROTO_UDP:
1835 if (pktlen < (hlen + sizeof(struct udphdr)))
1836 return;
1837 uh = (struct udphdr *)((caddr_t)ip + hlen);
1838 if (uh->uh_sum == 0)
1839 return; /* no checksum */
1840 break;
1841 default:
1842 return;
1843 }
1844 /* Extract computed checksum. */
1845 csum = be16dec(mtod(m, char *) + pos);
1846 /* checksum fixup for IP options */
1847 len = hlen - sizeof(struct ip);
1848 if (len > 0) {
1849 opts = (uint16_t *)(ip + 1);
1850 for (; len > 0; len -= sizeof(uint16_t), opts++) {
1851 temp32 = csum - *opts;
1852 temp32 = (temp32 >> 16) + (temp32 & 65535);
1853 csum = temp32 & 65535;
1854 }
1855 }
1856 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1857 m->m_pkthdr.csum_data = csum;
1858 }
1859
1860 static int
1861 fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
1862 int count)
1863 {
1864 struct mbuf *m;
1865 struct fxp_rx *rxp;
1866 struct fxp_rfa *rfa;
1867 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1868 int rx_npkts;
1869 uint16_t status;
1870
1871 rx_npkts = 0;
1872 FXP_LOCK_ASSERT(sc, MA_OWNED);
1873
1874 if (rnr)
1875 sc->rnr++;
1876 #ifdef DEVICE_POLLING
1877 /* Pick up a deferred RNR condition if `count' ran out last time. */
1878 if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1879 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1880 rnr = 1;
1881 }
1882 #endif
1883
1884 /*
1885 * Free any finished transmit mbuf chains.
1886 *
1887 * Handle the CNA event likt a CXTNO event. It used to
1888 * be that this event (control unit not ready) was not
1889 * encountered, but it is now with the SMPng modifications.
1890 * The exact sequence of events that occur when the interface
1891 * is brought up are different now, and if this event
1892 * goes unhandled, the configuration/rxfilter setup sequence
1893 * can stall for several seconds. The result is that no
1894 * packets go out onto the wire for about 5 to 10 seconds
1895 * after the interface is ifconfig'ed for the first time.
1896 */
1897 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1898 fxp_txeof(sc);
1899
1900 /*
1901 * Try to start more packets transmitting.
1902 */
1903 if (!if_sendq_empty(ifp))
1904 fxp_start_body(ifp);
1905
1906 /*
1907 * Just return if nothing happened on the receive side.
1908 */
1909 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1910 return (rx_npkts);
1911
1912 /*
1913 * Process receiver interrupts. If a no-resource (RNR)
1914 * condition exists, get whatever packets we can and
1915 * re-start the receiver.
1916 *
1917 * When using polling, we do not process the list to completion,
1918 * so when we get an RNR interrupt we must defer the restart
1919 * until we hit the last buffer with the C bit set.
1920 * If we run out of cycles and rfa_headm has the C bit set,
1921 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1922 * that the info will be used in the subsequent polling cycle.
1923 */
1924 for (;;) {
1925 rxp = sc->fxp_desc.rx_head;
1926 m = rxp->rx_mbuf;
1927 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1928 RFA_ALIGNMENT_FUDGE);
1929 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1930 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1931
1932 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1933 if (count >= 0 && count-- == 0) {
1934 if (rnr) {
1935 /* Defer RNR processing until the next time. */
1936 sc->flags |= FXP_FLAG_DEFERRED_RNR;
1937 rnr = 0;
1938 }
1939 break;
1940 }
1941 #endif /* DEVICE_POLLING */
1942
1943 status = le16toh(rfa->rfa_status);
1944 if ((status & FXP_RFA_STATUS_C) == 0)
1945 break;
1946
1947 if ((status & FXP_RFA_STATUS_RNR) != 0)
1948 rnr++;
1949 /*
1950 * Advance head forward.
1951 */
1952 sc->fxp_desc.rx_head = rxp->rx_next;
1953
1954 /*
1955 * Add a new buffer to the receive chain.
1956 * If this fails, the old buffer is recycled
1957 * instead.
1958 */
1959 if (fxp_new_rfabuf(sc, rxp) == 0) {
1960 int total_len;
1961
1962 /*
1963 * Fetch packet length (the top 2 bits of
1964 * actual_size are flags set by the controller
1965 * upon completion), and drop the packet in case
1966 * of bogus length or CRC errors.
1967 */
1968 total_len = le16toh(rfa->actual_size) & 0x3fff;
1969 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1970 (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1971 /* Adjust for appended checksum bytes. */
1972 total_len -= 2;
1973 }
1974 if (total_len < (int)sizeof(struct ether_header) ||
1975 total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1976 sc->rfa_size) ||
1977 status & (FXP_RFA_STATUS_CRC |
1978 FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1979 m_freem(m);
1980 fxp_add_rfabuf(sc, rxp);
1981 continue;
1982 }
1983
1984 m->m_pkthdr.len = m->m_len = total_len;
1985 if_setrcvif(m, ifp);
1986
1987 /* Do IP checksum checking. */
1988 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1989 fxp_rxcsum(sc, ifp, m, status, total_len);
1990 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
1991 (status & FXP_RFA_STATUS_VLAN) != 0) {
1992 m->m_pkthdr.ether_vtag =
1993 ntohs(rfa->rfax_vlan_id);
1994 m->m_flags |= M_VLANTAG;
1995 }
1996 /*
1997 * Drop locks before calling if_input() since it
1998 * may re-enter fxp_start() in the netisr case.
1999 * This would result in a lock reversal. Better
2000 * performance might be obtained by chaining all
2001 * packets received, dropping the lock, and then
2002 * calling if_input() on each one.
2003 */
2004 FXP_UNLOCK(sc);
2005 if_input(ifp, m);
2006 FXP_LOCK(sc);
2007 rx_npkts++;
2008 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2009 return (rx_npkts);
2010 } else {
2011 /* Reuse RFA and loaded DMA map. */
2012 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2013 fxp_discard_rfabuf(sc, rxp);
2014 }
2015 fxp_add_rfabuf(sc, rxp);
2016 }
2017 if (rnr) {
2018 fxp_scb_wait(sc);
2019 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2020 sc->fxp_desc.rx_head->rx_addr);
2021 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2022 }
2023 return (rx_npkts);
2024 }
2025
2026 static void
2027 fxp_update_stats(struct fxp_softc *sc)
2028 {
2029 if_t ifp = sc->ifp;
2030 struct fxp_stats *sp = sc->fxp_stats;
2031 struct fxp_hwstats *hsp;
2032 uint32_t *status;
2033
2034 FXP_LOCK_ASSERT(sc, MA_OWNED);
2035
2036 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2037 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2038 /* Update statistical counters. */
2039 if (sc->revision >= FXP_REV_82559_A0)
2040 status = &sp->completion_status;
2041 else if (sc->revision >= FXP_REV_82558_A4)
2042 status = (uint32_t *)&sp->tx_tco;
2043 else
2044 status = &sp->tx_pause;
2045 if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2046 hsp = &sc->fxp_hwstats;
2047 hsp->tx_good += le32toh(sp->tx_good);
2048 hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2049 hsp->tx_latecols += le32toh(sp->tx_latecols);
2050 hsp->tx_underruns += le32toh(sp->tx_underruns);
2051 hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2052 hsp->tx_deffered += le32toh(sp->tx_deffered);
2053 hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2054 hsp->tx_multiple_collisions +=
2055 le32toh(sp->tx_multiple_collisions);
2056 hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2057 hsp->rx_good += le32toh(sp->rx_good);
2058 hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2059 hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2060 hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2061 hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2062 hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2063 hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2064 hsp->tx_pause += le32toh(sp->tx_pause);
2065 hsp->rx_pause += le32toh(sp->rx_pause);
2066 hsp->rx_controls += le32toh(sp->rx_controls);
2067 hsp->tx_tco += le16toh(sp->tx_tco);
2068 hsp->rx_tco += le16toh(sp->rx_tco);
2069
2070 if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
2071 if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2072 le32toh(sp->tx_total_collisions));
2073 if (sp->rx_good) {
2074 if_inc_counter(ifp, IFCOUNTER_IPACKETS,
2075 le32toh(sp->rx_good));
2076 sc->rx_idle_secs = 0;
2077 } else if (sc->flags & FXP_FLAG_RXBUG) {
2078 /*
2079 * Receiver's been idle for another second.
2080 */
2081 sc->rx_idle_secs++;
2082 }
2083 if_inc_counter(ifp, IFCOUNTER_IERRORS,
2084 le32toh(sp->rx_crc_errors) +
2085 le32toh(sp->rx_alignment_errors) +
2086 le32toh(sp->rx_rnr_errors) +
2087 le32toh(sp->rx_overrun_errors));
2088 /*
2089 * If any transmit underruns occurred, bump up the transmit
2090 * threshold by another 512 bytes (64 * 8).
2091 */
2092 if (sp->tx_underruns) {
2093 if_inc_counter(ifp, IFCOUNTER_OERRORS,
2094 le32toh(sp->tx_underruns));
2095 if (tx_threshold < 192)
2096 tx_threshold += 64;
2097 }
2098 *status = 0;
2099 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2100 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2101 }
2102 }
2103
2104 /*
2105 * Update packet in/out/collision statistics. The i82557 doesn't
2106 * allow you to access these counters without doing a fairly
2107 * expensive DMA to get _all_ of the statistics it maintains, so
2108 * we do this operation here only once per second. The statistics
2109 * counters in the kernel are updated from the previous dump-stats
2110 * DMA and then a new dump-stats DMA is started. The on-chip
2111 * counters are zeroed when the DMA completes. If we can't start
2112 * the DMA immediately, we don't wait - we just prepare to read
2113 * them again next time.
2114 */
2115 static void
2116 fxp_tick(void *xsc)
2117 {
2118 struct fxp_softc *sc = xsc;
2119 if_t ifp = sc->ifp;
2120
2121 FXP_LOCK_ASSERT(sc, MA_OWNED);
2122
2123 /* Update statistical counters. */
2124 fxp_update_stats(sc);
2125
2126 /*
2127 * Release any xmit buffers that have completed DMA. This isn't
2128 * strictly necessary to do here, but it's advantagous for mbufs
2129 * with external storage to be released in a timely manner rather
2130 * than being defered for a potentially long time. This limits
2131 * the delay to a maximum of one second.
2132 */
2133 fxp_txeof(sc);
2134
2135 /*
2136 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2137 * then assume the receiver has locked up and attempt to clear
2138 * the condition by reprogramming the multicast filter. This is
2139 * a work-around for a bug in the 82557 where the receiver locks
2140 * up if it gets certain types of garbage in the synchronization
2141 * bits prior to the packet header. This bug is supposed to only
2142 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2143 * mode as well (perhaps due to a 10/100 speed transition).
2144 */
2145 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2146 sc->rx_idle_secs = 0;
2147 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2148 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2149 fxp_init_body(sc, 1);
2150 }
2151 return;
2152 }
2153 /*
2154 * If there is no pending command, start another stats
2155 * dump. Otherwise punt for now.
2156 */
2157 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2158 /*
2159 * Start another stats dump.
2160 */
2161 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2162 }
2163 if (sc->miibus != NULL)
2164 mii_tick(device_get_softc(sc->miibus));
2165
2166 /*
2167 * Check that chip hasn't hung.
2168 */
2169 fxp_watchdog(sc);
2170
2171 /*
2172 * Schedule another timeout one second from now.
2173 */
2174 callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2175 }
2176
2177 /*
2178 * Stop the interface. Cancels the statistics updater and resets
2179 * the interface.
2180 */
2181 static void
2182 fxp_stop(struct fxp_softc *sc)
2183 {
2184 if_t ifp = sc->ifp;
2185 struct fxp_tx *txp;
2186 int i;
2187
2188 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2189 sc->watchdog_timer = 0;
2190
2191 /*
2192 * Cancel stats updater.
2193 */
2194 callout_stop(&sc->stat_ch);
2195
2196 /*
2197 * Preserve PCI configuration, configure, IA/multicast
2198 * setup and put RU and CU into idle state.
2199 */
2200 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2201 DELAY(50);
2202 /* Disable interrupts. */
2203 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2204
2205 fxp_update_stats(sc);
2206
2207 /*
2208 * Release any xmit buffers.
2209 */
2210 txp = sc->fxp_desc.tx_list;
2211 for (i = 0; i < FXP_NTXCB; i++) {
2212 if (txp[i].tx_mbuf != NULL) {
2213 bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2214 BUS_DMASYNC_POSTWRITE);
2215 bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
2216 m_freem(txp[i].tx_mbuf);
2217 txp[i].tx_mbuf = NULL;
2218 /* clear this to reset csum offload bits */
2219 txp[i].tx_cb->tbd[0].tb_addr = 0;
2220 }
2221 }
2222 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2223 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2224 sc->tx_queued = 0;
2225 }
2226
2227 /*
2228 * Watchdog/transmission transmit timeout handler. Called when a
2229 * transmission is started on the interface, but no interrupt is
2230 * received before the timeout. This usually indicates that the
2231 * card has wedged for some reason.
2232 */
2233 static void
2234 fxp_watchdog(struct fxp_softc *sc)
2235 {
2236 if_t ifp = sc->ifp;
2237
2238 FXP_LOCK_ASSERT(sc, MA_OWNED);
2239
2240 if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2241 return;
2242
2243 device_printf(sc->dev, "device timeout\n");
2244 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2245
2246 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2247 fxp_init_body(sc, 1);
2248 }
2249
2250 /*
2251 * Acquire locks and then call the real initialization function. This
2252 * is necessary because ether_ioctl() calls if_init() and this would
2253 * result in mutex recursion if the mutex was held.
2254 */
2255 static void
2256 fxp_init(void *xsc)
2257 {
2258 struct fxp_softc *sc = xsc;
2259
2260 FXP_LOCK(sc);
2261 fxp_init_body(sc, 1);
2262 FXP_UNLOCK(sc);
2263 }
2264
2265 /*
2266 * Perform device initialization. This routine must be called with the
2267 * softc lock held.
2268 */
2269 static void
2270 fxp_init_body(struct fxp_softc *sc, int setmedia)
2271 {
2272 if_t ifp = sc->ifp;
2273 struct mii_data *mii;
2274 struct fxp_cb_config *cbp;
2275 struct fxp_cb_ias *cb_ias;
2276 struct fxp_cb_tx *tcbp;
2277 struct fxp_tx *txp;
2278 int i, prm;
2279
2280 FXP_LOCK_ASSERT(sc, MA_OWNED);
2281
2282 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2283 return;
2284
2285 /*
2286 * Cancel any pending I/O
2287 */
2288 fxp_stop(sc);
2289
2290 /*
2291 * Issue software reset, which also unloads the microcode.
2292 */
2293 sc->flags &= ~FXP_FLAG_UCODE;
2294 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2295 DELAY(50);
2296
2297 prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
2298
2299 /*
2300 * Initialize base of CBL and RFA memory. Loading with zero
2301 * sets it up for regular linear addressing.
2302 */
2303 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2304 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2305
2306 fxp_scb_wait(sc);
2307 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2308
2309 /*
2310 * Initialize base of dump-stats buffer.
2311 */
2312 fxp_scb_wait(sc);
2313 bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2314 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2315 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2316 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2317 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2318
2319 /*
2320 * Attempt to load microcode if requested.
2321 * For ICH based controllers do not load microcode.
2322 */
2323 if (sc->ident->ich == 0) {
2324 if (if_getflags(ifp) & IFF_LINK0 &&
2325 (sc->flags & FXP_FLAG_UCODE) == 0)
2326 fxp_load_ucode(sc);
2327 }
2328
2329 /*
2330 * Set IFF_ALLMULTI status. It's needed in configure action
2331 * command.
2332 */
2333 fxp_mc_addrs(sc);
2334
2335 /*
2336 * We temporarily use memory that contains the TxCB list to
2337 * construct the config CB. The TxCB list memory is rebuilt
2338 * later.
2339 */
2340 cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2341
2342 /*
2343 * This bcopy is kind of disgusting, but there are a bunch of must be
2344 * zero and must be one bits in this structure and this is the easiest
2345 * way to initialize them all to proper values.
2346 */
2347 bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2348
2349 cbp->cb_status = 0;
2350 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
2351 FXP_CB_COMMAND_EL);
2352 cbp->link_addr = 0xffffffff; /* (no) next command */
2353 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2354 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
2355 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
2356 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
2357 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2358 cbp->type_enable = 0; /* actually reserved */
2359 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2360 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2361 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
2362 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
2363 cbp->dma_mbce = 0; /* (disable) dma max counters */
2364 cbp->late_scb = 0; /* (don't) defer SCB update */
2365 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
2366 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
2367 cbp->ci_int = 1; /* interrupt on CU idle */
2368 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2369 cbp->ext_stats_dis = 1; /* disable extended counters */
2370 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
2371 cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2372 cbp->disc_short_rx = !prm; /* discard short packets */
2373 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
2374 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
2375 cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2376 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2377 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2378 cbp->csma_dis = 0; /* (don't) disable link */
2379 cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2380 (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
2381 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
2382 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
2383 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
2384 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
2385 cbp->nsai = 1; /* (don't) disable source addr insert */
2386 cbp->preamble_length = 2; /* (7 byte) preamble */
2387 cbp->loopback = 0; /* (don't) loopback */
2388 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
2389 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
2390 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
2391 cbp->promiscuous = prm; /* promiscuous mode */
2392 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
2393 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
2394 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
2395 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
2396 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2397
2398 cbp->stripping = !prm; /* truncate rx packet to byte count */
2399 cbp->padding = 1; /* (do) pad short tx packets */
2400 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
2401 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2402 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
2403 cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1;
2404 cbp->force_fdx = 0; /* (don't) force full duplex */
2405 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
2406 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
2407 cbp->mc_all = if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
2408 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2409 cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2410 (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2411
2412 if (sc->revision == FXP_REV_82557) {
2413 /*
2414 * The 82557 has no hardware flow control, the values
2415 * below are the defaults for the chip.
2416 */
2417 cbp->fc_delay_lsb = 0;
2418 cbp->fc_delay_msb = 0x40;
2419 cbp->pri_fc_thresh = 3;
2420 cbp->tx_fc_dis = 0;
2421 cbp->rx_fc_restop = 0;
2422 cbp->rx_fc_restart = 0;
2423 cbp->fc_filter = 0;
2424 cbp->pri_fc_loc = 1;
2425 } else {
2426 /* Set pause RX FIFO threshold to 1KB. */
2427 CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2428 /* Set pause time. */
2429 cbp->fc_delay_lsb = 0xff;
2430 cbp->fc_delay_msb = 0xff;
2431 cbp->pri_fc_thresh = 3;
2432 mii = device_get_softc(sc->miibus);
2433 if ((IFM_OPTIONS(mii->mii_media_active) &
2434 IFM_ETH_TXPAUSE) != 0)
2435 /* enable transmit FC */
2436 cbp->tx_fc_dis = 0;
2437 else
2438 /* disable transmit FC */
2439 cbp->tx_fc_dis = 1;
2440 if ((IFM_OPTIONS(mii->mii_media_active) &
2441 IFM_ETH_RXPAUSE) != 0) {
2442 /* enable FC restart/restop frames */
2443 cbp->rx_fc_restart = 1;
2444 cbp->rx_fc_restop = 1;
2445 } else {
2446 /* disable FC restart/restop frames */
2447 cbp->rx_fc_restart = 0;
2448 cbp->rx_fc_restop = 0;
2449 }
2450 cbp->fc_filter = !prm; /* drop FC frames to host */
2451 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
2452 }
2453
2454 /* Enable 82558 and 82559 extended statistics functionality. */
2455 if (sc->revision >= FXP_REV_82558_A4) {
2456 if (sc->revision >= FXP_REV_82559_A0) {
2457 /*
2458 * Extend configuration table size to 32
2459 * to include TCO configuration.
2460 */
2461 cbp->byte_count = 32;
2462 cbp->ext_stats_dis = 1;
2463 /* Enable TCO stats. */
2464 cbp->tno_int_or_tco_en = 1;
2465 cbp->gamla_rx = 1;
2466 } else
2467 cbp->ext_stats_dis = 0;
2468 }
2469
2470 /*
2471 * Start the config command/DMA.
2472 */
2473 fxp_scb_wait(sc);
2474 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2475 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2476 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2477 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2478 /* ...and wait for it to complete. */
2479 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2480
2481 /*
2482 * Now initialize the station address. Temporarily use the TxCB
2483 * memory area like we did above for the config CB.
2484 */
2485 cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2486 cb_ias->cb_status = 0;
2487 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2488 cb_ias->link_addr = 0xffffffff;
2489 bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2490
2491 /*
2492 * Start the IAS (Individual Address Setup) command/DMA.
2493 */
2494 fxp_scb_wait(sc);
2495 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2496 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2497 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2498 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2499 /* ...and wait for it to complete. */
2500 fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2501
2502 /*
2503 * Initialize the multicast address list.
2504 */
2505 fxp_mc_setup(sc);
2506
2507 /*
2508 * Initialize transmit control block (TxCB) list.
2509 */
2510 txp = sc->fxp_desc.tx_list;
2511 tcbp = sc->fxp_desc.cbl_list;
2512 bzero(tcbp, FXP_TXCB_SZ);
2513 for (i = 0; i < FXP_NTXCB; i++) {
2514 txp[i].tx_mbuf = NULL;
2515 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2516 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2517 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2518 (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2519 if (sc->flags & FXP_FLAG_EXT_TXCB)
2520 tcbp[i].tbd_array_addr =
2521 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2522 else
2523 tcbp[i].tbd_array_addr =
2524 htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2525 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2526 }
2527 /*
2528 * Set the suspend flag on the first TxCB and start the control
2529 * unit. It will execute the NOP and then suspend.
2530 */
2531 tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2532 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2533 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2534 sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2535 sc->tx_queued = 1;
2536
2537 fxp_scb_wait(sc);
2538 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2539 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2540
2541 /*
2542 * Initialize receiver buffer area - RFA.
2543 */
2544 fxp_scb_wait(sc);
2545 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2546 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2547
2548 if (sc->miibus != NULL && setmedia != 0)
2549 mii_mediachg(device_get_softc(sc->miibus));
2550
2551 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2552
2553 /*
2554 * Enable interrupts.
2555 */
2556 #ifdef DEVICE_POLLING
2557 /*
2558 * ... but only do that if we are not polling. And because (presumably)
2559 * the default is interrupts on, we need to disable them explicitly!
2560 */
2561 if (if_getcapenable(ifp) & IFCAP_POLLING )
2562 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2563 else
2564 #endif /* DEVICE_POLLING */
2565 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2566
2567 /*
2568 * Start stats updater.
2569 */
2570 callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2571 }
2572
2573 static int
2574 fxp_serial_ifmedia_upd(if_t ifp)
2575 {
2576
2577 return (0);
2578 }
2579
2580 static void
2581 fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2582 {
2583
2584 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2585 }
2586
2587 /*
2588 * Change media according to request.
2589 */
2590 static int
2591 fxp_ifmedia_upd(if_t ifp)
2592 {
2593 struct fxp_softc *sc = if_getsoftc(ifp);
2594 struct mii_data *mii;
2595 struct mii_softc *miisc;
2596
2597 mii = device_get_softc(sc->miibus);
2598 FXP_LOCK(sc);
2599 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2600 PHY_RESET(miisc);
2601 mii_mediachg(mii);
2602 FXP_UNLOCK(sc);
2603 return (0);
2604 }
2605
2606 /*
2607 * Notify the world which media we're using.
2608 */
2609 static void
2610 fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2611 {
2612 struct fxp_softc *sc = if_getsoftc(ifp);
2613 struct mii_data *mii;
2614
2615 mii = device_get_softc(sc->miibus);
2616 FXP_LOCK(sc);
2617 mii_pollstat(mii);
2618 ifmr->ifm_active = mii->mii_media_active;
2619 ifmr->ifm_status = mii->mii_media_status;
2620 FXP_UNLOCK(sc);
2621 }
2622
2623 /*
2624 * Add a buffer to the end of the RFA buffer list.
2625 * Return 0 if successful, 1 for failure. A failure results in
2626 * reusing the RFA buffer.
2627 * The RFA struct is stuck at the beginning of mbuf cluster and the
2628 * data pointer is fixed up to point just past it.
2629 */
2630 static int
2631 fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2632 {
2633 struct mbuf *m;
2634 struct fxp_rfa *rfa;
2635 bus_dmamap_t tmp_map;
2636 int error;
2637
2638 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2639 if (m == NULL)
2640 return (ENOBUFS);
2641
2642 /*
2643 * Move the data pointer up so that the incoming data packet
2644 * will be 32-bit aligned.
2645 */
2646 m->m_data += RFA_ALIGNMENT_FUDGE;
2647
2648 /*
2649 * Get a pointer to the base of the mbuf cluster and move
2650 * data start past it.
2651 */
2652 rfa = mtod(m, struct fxp_rfa *);
2653 m->m_data += sc->rfa_size;
2654 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2655
2656 rfa->rfa_status = 0;
2657 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2658 rfa->actual_size = 0;
2659 m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2660 sc->rfa_size;
2661
2662 /*
2663 * Initialize the rest of the RFA. Note that since the RFA
2664 * is misaligned, we cannot store values directly. We're thus
2665 * using the le32enc() function which handles endianness and
2666 * is also alignment-safe.
2667 */
2668 le32enc(&rfa->link_addr, 0xffffffff);
2669 le32enc(&rfa->rbd_addr, 0xffffffff);
2670
2671 /* Map the RFA into DMA memory. */
2672 error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2673 MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2674 &rxp->rx_addr, BUS_DMA_NOWAIT);
2675 if (error) {
2676 m_freem(m);
2677 return (error);
2678 }
2679
2680 if (rxp->rx_mbuf != NULL)
2681 bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2682 tmp_map = sc->spare_map;
2683 sc->spare_map = rxp->rx_map;
2684 rxp->rx_map = tmp_map;
2685 rxp->rx_mbuf = m;
2686
2687 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2688 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2689 return (0);
2690 }
2691
2692 static void
2693 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2694 {
2695 struct fxp_rfa *p_rfa;
2696 struct fxp_rx *p_rx;
2697
2698 /*
2699 * If there are other buffers already on the list, attach this
2700 * one to the end by fixing up the tail to point to this one.
2701 */
2702 if (sc->fxp_desc.rx_head != NULL) {
2703 p_rx = sc->fxp_desc.rx_tail;
2704 p_rfa = (struct fxp_rfa *)
2705 (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2706 p_rx->rx_next = rxp;
2707 le32enc(&p_rfa->link_addr, rxp->rx_addr);
2708 p_rfa->rfa_control = 0;
2709 bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2710 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2711 } else {
2712 rxp->rx_next = NULL;
2713 sc->fxp_desc.rx_head = rxp;
2714 }
2715 sc->fxp_desc.rx_tail = rxp;
2716 }
2717
2718 static void
2719 fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2720 {
2721 struct mbuf *m;
2722 struct fxp_rfa *rfa;
2723
2724 m = rxp->rx_mbuf;
2725 m->m_data = m->m_ext.ext_buf;
2726 /*
2727 * Move the data pointer up so that the incoming data packet
2728 * will be 32-bit aligned.
2729 */
2730 m->m_data += RFA_ALIGNMENT_FUDGE;
2731
2732 /*
2733 * Get a pointer to the base of the mbuf cluster and move
2734 * data start past it.
2735 */
2736 rfa = mtod(m, struct fxp_rfa *);
2737 m->m_data += sc->rfa_size;
2738 rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2739
2740 rfa->rfa_status = 0;
2741 rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2742 rfa->actual_size = 0;
2743
2744 /*
2745 * Initialize the rest of the RFA. Note that since the RFA
2746 * is misaligned, we cannot store values directly. We're thus
2747 * using the le32enc() function which handles endianness and
2748 * is also alignment-safe.
2749 */
2750 le32enc(&rfa->link_addr, 0xffffffff);
2751 le32enc(&rfa->rbd_addr, 0xffffffff);
2752
2753 bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2754 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2755 }
2756
2757 static int
2758 fxp_miibus_readreg(device_t dev, int phy, int reg)
2759 {
2760 struct fxp_softc *sc = device_get_softc(dev);
2761 int count = 10000;
2762 int value;
2763
2764 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2765 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2766
2767 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2768 && count--)
2769 DELAY(10);
2770
2771 if (count <= 0)
2772 device_printf(dev, "fxp_miibus_readreg: timed out\n");
2773
2774 return (value & 0xffff);
2775 }
2776
2777 static int
2778 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2779 {
2780 struct fxp_softc *sc = device_get_softc(dev);
2781 int count = 10000;
2782
2783 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2784 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2785 (value & 0xffff));
2786
2787 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2788 count--)
2789 DELAY(10);
2790
2791 if (count <= 0)
2792 device_printf(dev, "fxp_miibus_writereg: timed out\n");
2793 return (0);
2794 }
2795
2796 static void
2797 fxp_miibus_statchg(device_t dev)
2798 {
2799 struct fxp_softc *sc;
2800 struct mii_data *mii;
2801 if_t ifp;
2802
2803 sc = device_get_softc(dev);
2804 mii = device_get_softc(sc->miibus);
2805 ifp = sc->ifp;
2806 if (mii == NULL || ifp == (void *)NULL ||
2807 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
2808 (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2809 (IFM_AVALID | IFM_ACTIVE))
2810 return;
2811
2812 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2813 sc->flags & FXP_FLAG_CU_RESUME_BUG)
2814 sc->cu_resume_bug = 1;
2815 else
2816 sc->cu_resume_bug = 0;
2817 /*
2818 * Call fxp_init_body in order to adjust the flow control settings.
2819 * Note that the 82557 doesn't support hardware flow control.
2820 */
2821 if (sc->revision == FXP_REV_82557)
2822 return;
2823 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2824 fxp_init_body(sc, 0);
2825 }
2826
2827 static int
2828 fxp_ioctl(if_t ifp, u_long command, caddr_t data)
2829 {
2830 struct fxp_softc *sc = if_getsoftc(ifp);
2831 struct ifreq *ifr = (struct ifreq *)data;
2832 struct mii_data *mii;
2833 int flag, mask, error = 0, reinit;
2834
2835 switch (command) {
2836 case SIOCSIFFLAGS:
2837 FXP_LOCK(sc);
2838 /*
2839 * If interface is marked up and not running, then start it.
2840 * If it is marked down and running, stop it.
2841 * XXX If it's up then re-initialize it. This is so flags
2842 * such as IFF_PROMISC are handled.
2843 */
2844 if (if_getflags(ifp) & IFF_UP) {
2845 if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
2846 ((if_getflags(ifp) ^ sc->if_flags) &
2847 (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
2848 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2849 fxp_init_body(sc, 0);
2850 } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2851 fxp_init_body(sc, 1);
2852 } else {
2853 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2854 fxp_stop(sc);
2855 }
2856 sc->if_flags = if_getflags(ifp);
2857 FXP_UNLOCK(sc);
2858 break;
2859
2860 case SIOCADDMULTI:
2861 case SIOCDELMULTI:
2862 FXP_LOCK(sc);
2863 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2864 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2865 fxp_init_body(sc, 0);
2866 }
2867 FXP_UNLOCK(sc);
2868 break;
2869
2870 case SIOCSIFMEDIA:
2871 case SIOCGIFMEDIA:
2872 if (sc->miibus != NULL) {
2873 mii = device_get_softc(sc->miibus);
2874 error = ifmedia_ioctl(ifp, ifr,
2875 &mii->mii_media, command);
2876 } else {
2877 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2878 }
2879 break;
2880
2881 case SIOCSIFCAP:
2882 reinit = 0;
2883 mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2884 #ifdef DEVICE_POLLING
2885 if (mask & IFCAP_POLLING) {
2886 if (ifr->ifr_reqcap & IFCAP_POLLING) {
2887 error = ether_poll_register(fxp_poll, ifp);
2888 if (error)
2889 return(error);
2890 FXP_LOCK(sc);
2891 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2892 FXP_SCB_INTR_DISABLE);
2893 if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2894 FXP_UNLOCK(sc);
2895 } else {
2896 error = ether_poll_deregister(ifp);
2897 /* Enable interrupts in any case */
2898 FXP_LOCK(sc);
2899 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2900 if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2901 FXP_UNLOCK(sc);
2902 }
2903 }
2904 #endif
2905 FXP_LOCK(sc);
2906 if ((mask & IFCAP_TXCSUM) != 0 &&
2907 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2908 if_togglecapenable(ifp, IFCAP_TXCSUM);
2909 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2910 if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
2911 else
2912 if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
2913 }
2914 if ((mask & IFCAP_RXCSUM) != 0 &&
2915 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
2916 if_togglecapenable(ifp, IFCAP_RXCSUM);
2917 if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2918 reinit++;
2919 }
2920 if ((mask & IFCAP_TSO4) != 0 &&
2921 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
2922 if_togglecapenable(ifp, IFCAP_TSO4);
2923 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
2924 if_sethwassistbits(ifp, CSUM_TSO, 0);
2925 else
2926 if_sethwassistbits(ifp, 0, CSUM_TSO);
2927 }
2928 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2929 (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2930 if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2931 if ((mask & IFCAP_VLAN_MTU) != 0 &&
2932 (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
2933 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2934 if (sc->revision != FXP_REV_82557)
2935 flag = FXP_FLAG_LONG_PKT_EN;
2936 else /* a hack to get long frames on the old chip */
2937 flag = FXP_FLAG_SAVE_BAD;
2938 sc->flags ^= flag;
2939 if (if_getflags(ifp) & IFF_UP)
2940 reinit++;
2941 }
2942 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2943 (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2944 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2945 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2946 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2947 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2948 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2949 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
2950 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2951 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
2952 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
2953 IFCAP_VLAN_HWCSUM);
2954 reinit++;
2955 }
2956 if (reinit > 0 &&
2957 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2958 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2959 fxp_init_body(sc, 0);
2960 }
2961 FXP_UNLOCK(sc);
2962 if_vlancap(ifp);
2963 break;
2964
2965 default:
2966 error = ether_ioctl(ifp, command, data);
2967 }
2968 return (error);
2969 }
2970
2971 static u_int
2972 fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2973 {
2974 struct fxp_softc *sc = arg;
2975 struct fxp_cb_mcs *mcsp = sc->mcsp;
2976
2977 if (mcsp->mc_cnt < MAXMCADDR)
2978 bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN],
2979 ETHER_ADDR_LEN);
2980 mcsp->mc_cnt++;
2981 return (1);
2982 }
2983
2984 /*
2985 * Fill in the multicast address list and return number of entries.
2986 */
2987 static void
2988 fxp_mc_addrs(struct fxp_softc *sc)
2989 {
2990 struct fxp_cb_mcs *mcsp = sc->mcsp;
2991 if_t ifp = sc->ifp;
2992
2993 if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
2994 mcsp->mc_cnt = 0;
2995 if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc);
2996 if (mcsp->mc_cnt >= MAXMCADDR) {
2997 if_setflagbits(ifp, IFF_ALLMULTI, 0);
2998 mcsp->mc_cnt = 0;
2999 }
3000 }
3001 mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN);
3002 }
3003
3004 /*
3005 * Program the multicast filter.
3006 *
3007 * We have an artificial restriction that the multicast setup command
3008 * must be the first command in the chain, so we take steps to ensure
3009 * this. By requiring this, it allows us to keep up the performance of
3010 * the pre-initialized command ring (esp. link pointers) by not actually
3011 * inserting the mcsetup command in the ring - i.e. its link pointer
3012 * points to the TxCB ring, but the mcsetup descriptor itself is not part
3013 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
3014 * lead into the regular TxCB ring when it completes.
3015 */
3016 static void
3017 fxp_mc_setup(struct fxp_softc *sc)
3018 {
3019 struct fxp_cb_mcs *mcsp;
3020 int count;
3021
3022 FXP_LOCK_ASSERT(sc, MA_OWNED);
3023
3024 mcsp = sc->mcsp;
3025 mcsp->cb_status = 0;
3026 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3027 mcsp->link_addr = 0xffffffff;
3028 fxp_mc_addrs(sc);
3029
3030 /*
3031 * Wait until command unit is idle. This should never be the
3032 * case when nothing is queued, but make sure anyway.
3033 */
3034 count = 100;
3035 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3036 FXP_SCB_CUS_IDLE && --count)
3037 DELAY(10);
3038 if (count == 0) {
3039 device_printf(sc->dev, "command queue timeout\n");
3040 return;
3041 }
3042
3043 /*
3044 * Start the multicast setup command.
3045 */
3046 fxp_scb_wait(sc);
3047 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3048 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3049 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3050 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3051 /* ...and wait for it to complete. */
3052 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3053 }
3054
3055 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3056 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3057 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3058 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3059 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3060 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3061 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3062
3063 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
3064
3065 static const struct ucode {
3066 uint32_t revision;
3067 uint32_t *ucode;
3068 int length;
3069 u_short int_delay_offset;
3070 u_short bundle_max_offset;
3071 } ucode_table[] = {
3072 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3073 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3074 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3075 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3076 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3077 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3078 { FXP_REV_82550, UCODE(fxp_ucode_d102),
3079 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3080 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3081 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3082 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3083 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3084 { FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3085 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3086 { 0, NULL, 0, 0, 0 }
3087 };
3088
3089 static void
3090 fxp_load_ucode(struct fxp_softc *sc)
3091 {
3092 const struct ucode *uc;
3093 struct fxp_cb_ucode *cbp;
3094 int i;
3095
3096 if (sc->flags & FXP_FLAG_NO_UCODE)
3097 return;
3098
3099 for (uc = ucode_table; uc->ucode != NULL; uc++)
3100 if (sc->revision == uc->revision)
3101 break;
3102 if (uc->ucode == NULL)
3103 return;
3104 cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3105 cbp->cb_status = 0;
3106 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3107 cbp->link_addr = 0xffffffff; /* (no) next command */
3108 for (i = 0; i < uc->length; i++)
3109 cbp->ucode[i] = htole32(uc->ucode[i]);
3110 if (uc->int_delay_offset)
3111 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3112 htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3113 if (uc->bundle_max_offset)
3114 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3115 htole16(sc->tunable_bundle_max);
3116 /*
3117 * Download the ucode to the chip.
3118 */
3119 fxp_scb_wait(sc);
3120 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3121 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3122 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3123 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3124 /* ...and wait for it to complete. */
3125 fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3126 device_printf(sc->dev,
3127 "Microcode loaded, int_delay: %d usec bundle_max: %d\n",
3128 sc->tunable_int_delay,
3129 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3130 sc->flags |= FXP_FLAG_UCODE;
3131 bzero(cbp, FXP_TXCB_SZ);
3132 }
3133
3134 #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \
3135 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3136
3137 static void
3138 fxp_sysctl_node(struct fxp_softc *sc)
3139 {
3140 struct sysctl_ctx_list *ctx;
3141 struct sysctl_oid_list *child, *parent;
3142 struct sysctl_oid *tree;
3143 struct fxp_hwstats *hsp;
3144
3145 ctx = device_get_sysctl_ctx(sc->dev);
3146 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3147
3148 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay",
3149 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3150 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3151 "FXP driver receive interrupt microcode bundling delay");
3152 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max",
3153 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
3154 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3155 "FXP driver receive interrupt microcode bundle size limit");
3156 SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3157 "FXP RNR events");
3158
3159 /*
3160 * Pull in device tunables.
3161 */
3162 sc->tunable_int_delay = TUNABLE_INT_DELAY;
3163 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3164 (void) resource_int_value(device_get_name(sc->dev),
3165 device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3166 (void) resource_int_value(device_get_name(sc->dev),
3167 device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3168 sc->rnr = 0;
3169
3170 hsp = &sc->fxp_hwstats;
3171 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
3172 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics");
3173 parent = SYSCTL_CHILDREN(tree);
3174
3175 /* Rx MAC statistics. */
3176 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
3177 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
3178 child = SYSCTL_CHILDREN(tree);
3179 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3180 &hsp->rx_good, "Good frames");
3181 FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3182 &hsp->rx_crc_errors, "CRC errors");
3183 FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3184 &hsp->rx_alignment_errors, "Alignment errors");
3185 FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3186 &hsp->rx_rnr_errors, "RNR errors");
3187 FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3188 &hsp->rx_overrun_errors, "Overrun errors");
3189 FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3190 &hsp->rx_cdt_errors, "Collision detect errors");
3191 FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3192 &hsp->rx_shortframes, "Short frame errors");
3193 if (sc->revision >= FXP_REV_82558_A4) {
3194 FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3195 &hsp->rx_pause, "Pause frames");
3196 FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3197 &hsp->rx_controls, "Unsupported control frames");
3198 }
3199 if (sc->revision >= FXP_REV_82559_A0)
3200 FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3201 &hsp->rx_tco, "TCO frames");
3202
3203 /* Tx MAC statistics. */
3204 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
3205 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
3206 child = SYSCTL_CHILDREN(tree);
3207 FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3208 &hsp->tx_good, "Good frames");
3209 FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3210 &hsp->tx_maxcols, "Maximum collisions errors");
3211 FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3212 &hsp->tx_latecols, "Late collisions errors");
3213 FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3214 &hsp->tx_underruns, "Underrun errors");
3215 FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3216 &hsp->tx_lostcrs, "Lost carrier sense");
3217 FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3218 &hsp->tx_deffered, "Deferred");
3219 FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3220 &hsp->tx_single_collisions, "Single collisions");
3221 FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3222 &hsp->tx_multiple_collisions, "Multiple collisions");
3223 FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3224 &hsp->tx_total_collisions, "Total collisions");
3225 if (sc->revision >= FXP_REV_82558_A4)
3226 FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3227 &hsp->tx_pause, "Pause frames");
3228 if (sc->revision >= FXP_REV_82559_A0)
3229 FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3230 &hsp->tx_tco, "TCO frames");
3231 }
3232
3233 #undef FXP_SYSCTL_STAT_ADD
3234
3235 static int
3236 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3237 {
3238 int error, value;
3239
3240 value = *(int *)arg1;
3241 error = sysctl_handle_int(oidp, &value, 0, req);
3242 if (error || !req->newptr)
3243 return (error);
3244 if (value < low || value > high)
3245 return (EINVAL);
3246 *(int *)arg1 = value;
3247 return (0);
3248 }
3249
3250 /*
3251 * Interrupt delay is expressed in microseconds, a multiplier is used
3252 * to convert this to the appropriate clock ticks before using.
3253 */
3254 static int
3255 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3256 {
3257
3258 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3259 }
3260
3261 static int
3262 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3263 {
3264
3265 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3266 }
Cache object: ecdf21fd57cb816ac8bc03bb5e5160d6
|