The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/fxp/if_fxp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1995, David Greenman
    3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice unmodified, this list of conditions, and the following
   11  *    disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  * $FreeBSD: releng/5.0/sys/dev/fxp/if_fxp.c 106937 2002-11-14 23:54:55Z sam $
   29  */
   30 
   31 /*
   32  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
   33  */
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/mbuf.h>
   38 #include <sys/malloc.h>
   39                 /* #include <sys/mutex.h> */
   40 #include <sys/kernel.h>
   41 #include <sys/socket.h>
   42 #include <sys/sysctl.h>
   43 
   44 #include <net/if.h>
   45 #include <net/if_dl.h>
   46 #include <net/if_media.h>
   47 
   48 #ifdef NS
   49 #include <netns/ns.h>
   50 #include <netns/ns_if.h>
   51 #endif
   52 
   53 #include <net/bpf.h>
   54 #include <sys/sockio.h>
   55 #include <sys/bus.h>
   56 #include <machine/bus.h>
   57 #include <sys/rman.h>
   58 #include <machine/resource.h>
   59 
   60 #include <net/ethernet.h>
   61 #include <net/if_arp.h>
   62 
   63 #include <vm/vm.h>              /* for vtophys */
   64 #include <vm/pmap.h>            /* for vtophys */
   65 #include <machine/clock.h>      /* for DELAY */
   66 
   67 #include <net/if_types.h>
   68 #include <net/if_vlan_var.h>
   69 
   70 #include <pci/pcivar.h>
   71 #include <pci/pcireg.h>         /* for PCIM_CMD_xxx */
   72 
   73 #include <dev/mii/mii.h>
   74 #include <dev/mii/miivar.h>
   75 
   76 #include <dev/fxp/if_fxpreg.h>
   77 #include <dev/fxp/if_fxpvar.h>
   78 #include <dev/fxp/rcvbundl.h>
   79 
   80 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
   81 #include "miibus_if.h"
   82 
   83 /*
   84  * NOTE!  On the Alpha, we have an alignment constraint.  The
   85  * card DMAs the packet immediately following the RFA.  However,
   86  * the first thing in the packet is a 14-byte Ethernet header.
   87  * This means that the packet is misaligned.  To compensate,
   88  * we actually offset the RFA 2 bytes into the cluster.  This
   89  * alignes the packet after the Ethernet header at a 32-bit
   90  * boundary.  HOWEVER!  This means that the RFA is misaligned!
   91  */
   92 #define RFA_ALIGNMENT_FUDGE     2
   93 
   94 /*
   95  * Set initial transmit threshold at 64 (512 bytes). This is
   96  * increased by 64 (512 bytes) at a time, to maximum of 192
   97  * (1536 bytes), if an underrun occurs.
   98  */
   99 static int tx_threshold = 64;
  100 
  101 /*
  102  * The configuration byte map has several undefined fields which
  103  * must be one or must be zero.  Set up a template for these bits
  104  * only, (assuming a 82557 chip) leaving the actual configuration
  105  * to fxp_init.
  106  *
  107  * See struct fxp_cb_config for the bit definitions.
  108  */
  109 static u_char fxp_cb_config_template[] = {
  110         0x0, 0x0,               /* cb_status */
  111         0x0, 0x0,               /* cb_command */
  112         0x0, 0x0, 0x0, 0x0,     /* link_addr */
  113         0x0,    /*  0 */
  114         0x0,    /*  1 */
  115         0x0,    /*  2 */
  116         0x0,    /*  3 */
  117         0x0,    /*  4 */
  118         0x0,    /*  5 */
  119         0x32,   /*  6 */
  120         0x0,    /*  7 */
  121         0x0,    /*  8 */
  122         0x0,    /*  9 */
  123         0x6,    /* 10 */
  124         0x0,    /* 11 */
  125         0x0,    /* 12 */
  126         0x0,    /* 13 */
  127         0xf2,   /* 14 */
  128         0x48,   /* 15 */
  129         0x0,    /* 16 */
  130         0x40,   /* 17 */
  131         0xf0,   /* 18 */
  132         0x0,    /* 19 */
  133         0x3f,   /* 20 */
  134         0x5     /* 21 */
  135 };
  136 
  137 struct fxp_ident {
  138         u_int16_t       devid;
  139         char            *name;
  140 };
  141 
  142 /*
  143  * Claim various Intel PCI device identifiers for this driver.  The
  144  * sub-vendor and sub-device field are extensively used to identify
  145  * particular variants, but we don't currently differentiate between
  146  * them.
  147  */
  148 static struct fxp_ident fxp_ident_table[] = {
  149     { 0x1229,           "Intel Pro 10/100B/100+ Ethernet" },
  150     { 0x2449,           "Intel Pro/100 Ethernet" },
  151     { 0x1209,           "Intel Embedded 10/100 Ethernet" },
  152     { 0x1029,           "Intel Pro/100 Ethernet" },
  153     { 0x1030,           "Intel Pro/100 Ethernet" },
  154     { 0x1031,           "Intel Pro/100 Ethernet" },
  155     { 0x1032,           "Intel Pro/100 Ethernet" },
  156     { 0x1033,           "Intel Pro/100 Ethernet" },
  157     { 0x1034,           "Intel Pro/100 Ethernet" },
  158     { 0x1035,           "Intel Pro/100 Ethernet" },
  159     { 0x1036,           "Intel Pro/100 Ethernet" },
  160     { 0x1037,           "Intel Pro/100 Ethernet" },
  161     { 0x1038,           "Intel Pro/100 Ethernet" },
  162     { 0x1039,           "Intel Pro/100 Ethernet" },
  163     { 0x103A,           "Intel Pro/100 Ethernet" },
  164     { 0x103B,           "Intel Pro/100 Ethernet" },
  165     { 0x103C,           "Intel Pro/100 Ethernet" },
  166     { 0x103D,           "Intel Pro/100 Ethernet" },
  167     { 0x103E,           "Intel Pro/100 Ethernet" },
  168     { 0,                NULL },
  169 };
  170 
  171 static int              fxp_probe(device_t dev);
  172 static int              fxp_attach(device_t dev);
  173 static int              fxp_detach(device_t dev);
  174 static int              fxp_shutdown(device_t dev);
  175 static int              fxp_suspend(device_t dev);
  176 static int              fxp_resume(device_t dev);
  177 
  178 static void             fxp_intr(void *xsc);
  179 static void             fxp_init(void *xsc);
  180 static void             fxp_tick(void *xsc);
  181 static void             fxp_powerstate_d0(device_t dev);
  182 static void             fxp_start(struct ifnet *ifp);
  183 static void             fxp_stop(struct fxp_softc *sc);
  184 static void             fxp_release(struct fxp_softc *sc);
  185 static int              fxp_ioctl(struct ifnet *ifp, u_long command,
  186                             caddr_t data);
  187 static void             fxp_watchdog(struct ifnet *ifp);
  188 static int              fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
  189 static int              fxp_mc_addrs(struct fxp_softc *sc);
  190 static void             fxp_mc_setup(struct fxp_softc *sc);
  191 static u_int16_t        fxp_eeprom_getword(struct fxp_softc *sc, int offset,
  192                             int autosize);
  193 static void             fxp_eeprom_putword(struct fxp_softc *sc, int offset,
  194                             u_int16_t data);
  195 static void             fxp_autosize_eeprom(struct fxp_softc *sc);
  196 static void             fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
  197                             int offset, int words);
  198 static void             fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
  199                             int offset, int words);
  200 static int              fxp_ifmedia_upd(struct ifnet *ifp);
  201 static void             fxp_ifmedia_sts(struct ifnet *ifp,
  202                             struct ifmediareq *ifmr);
  203 static int              fxp_serial_ifmedia_upd(struct ifnet *ifp);
  204 static void             fxp_serial_ifmedia_sts(struct ifnet *ifp,
  205                             struct ifmediareq *ifmr);
  206 static volatile int     fxp_miibus_readreg(device_t dev, int phy, int reg);
  207 static void             fxp_miibus_writereg(device_t dev, int phy, int reg,
  208                             int value);
  209 static void             fxp_load_ucode(struct fxp_softc *sc);
  210 static int              sysctl_int_range(SYSCTL_HANDLER_ARGS,
  211                             int low, int high);
  212 static int              sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
  213 static int              sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
  214 static __inline void    fxp_lwcopy(volatile u_int32_t *src,
  215                             volatile u_int32_t *dst);
  216 static __inline void    fxp_scb_wait(struct fxp_softc *sc);
  217 static __inline void    fxp_scb_cmd(struct fxp_softc *sc, int cmd);
  218 static __inline void    fxp_dma_wait(volatile u_int16_t *status,
  219                             struct fxp_softc *sc);
  220 
  221 static device_method_t fxp_methods[] = {
  222         /* Device interface */
  223         DEVMETHOD(device_probe,         fxp_probe),
  224         DEVMETHOD(device_attach,        fxp_attach),
  225         DEVMETHOD(device_detach,        fxp_detach),
  226         DEVMETHOD(device_shutdown,      fxp_shutdown),
  227         DEVMETHOD(device_suspend,       fxp_suspend),
  228         DEVMETHOD(device_resume,        fxp_resume),
  229 
  230         /* MII interface */
  231         DEVMETHOD(miibus_readreg,       fxp_miibus_readreg),
  232         DEVMETHOD(miibus_writereg,      fxp_miibus_writereg),
  233 
  234         { 0, 0 }
  235 };
  236 
  237 static driver_t fxp_driver = {
  238         "fxp",
  239         fxp_methods,
  240         sizeof(struct fxp_softc),
  241 };
  242 
  243 static devclass_t fxp_devclass;
  244 
  245 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
  246 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
  247 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
  248 
  249 static int fxp_rnr;
  250 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
  251 
  252 /*
  253  * Inline function to copy a 16-bit aligned 32-bit quantity.
  254  */
  255 static __inline void
  256 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
  257 {
  258 #ifdef __i386__
  259         *dst = *src;
  260 #else
  261         volatile u_int16_t *a = (volatile u_int16_t *)src;
  262         volatile u_int16_t *b = (volatile u_int16_t *)dst;
  263 
  264         b[0] = a[0];
  265         b[1] = a[1];
  266 #endif
  267 }
  268 
  269 /*
  270  * Wait for the previous command to be accepted (but not necessarily
  271  * completed).
  272  */
  273 static __inline void
  274 fxp_scb_wait(struct fxp_softc *sc)
  275 {
  276         int i = 10000;
  277 
  278         while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
  279                 DELAY(2);
  280         if (i == 0)
  281                 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
  282                     CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
  283                     CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
  284                     CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
  285                     CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
  286 }
  287 
  288 static __inline void
  289 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
  290 {
  291 
  292         if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
  293                 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
  294                 fxp_scb_wait(sc);
  295         }
  296         CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
  297 }
  298 
  299 static __inline void
  300 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
  301 {
  302         int i = 10000;
  303 
  304         while (!(*status & FXP_CB_STATUS_C) && --i)
  305                 DELAY(2);
  306         if (i == 0)
  307                 device_printf(sc->dev, "DMA timeout\n");
  308 }
  309 
  310 /*
  311  * Return identification string if this is device is ours.
  312  */
  313 static int
  314 fxp_probe(device_t dev)
  315 {
  316         u_int16_t devid;
  317         struct fxp_ident *ident;
  318 
  319         if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
  320                 devid = pci_get_device(dev);
  321                 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
  322                         if (ident->devid == devid) {
  323                                 device_set_desc(dev, ident->name);
  324                                 return (0);
  325                         }
  326                 }
  327         }
  328         return (ENXIO);
  329 }
  330 
  331 static void
  332 fxp_powerstate_d0(device_t dev)
  333 {
  334 #if __FreeBSD_version >= 430002
  335         u_int32_t iobase, membase, irq;
  336 
  337         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  338                 /* Save important PCI config data. */
  339                 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
  340                 membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
  341                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
  342 
  343                 /* Reset the power state. */
  344                 device_printf(dev, "chip is in D%d power mode "
  345                     "-- setting to D0\n", pci_get_powerstate(dev));
  346 
  347                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  348 
  349                 /* Restore PCI config data. */
  350                 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
  351                 pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
  352                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
  353         }
  354 #endif
  355 }
  356 
  357 static int
  358 fxp_attach(device_t dev)
  359 {
  360         int error = 0;
  361         struct fxp_softc *sc = device_get_softc(dev);
  362         struct ifnet *ifp;
  363         u_int32_t val;
  364         u_int16_t data;
  365         int i, rid, m1, m2, prefer_iomap;
  366         int s;
  367 
  368         bzero(sc, sizeof(*sc));
  369         sc->dev = dev;
  370         callout_handle_init(&sc->stat_ch);
  371         sysctl_ctx_init(&sc->sysctl_ctx);
  372         mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  373             MTX_DEF | MTX_RECURSE);
  374 
  375         s = splimp(); 
  376 
  377         /*
  378          * Enable bus mastering. Enable memory space too, in case
  379          * BIOS/Prom forgot about it.
  380          */
  381         val = pci_read_config(dev, PCIR_COMMAND, 2);
  382         val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
  383         pci_write_config(dev, PCIR_COMMAND, val, 2);
  384         val = pci_read_config(dev, PCIR_COMMAND, 2);
  385 
  386         fxp_powerstate_d0(dev);
  387 
  388         /*
  389          * Figure out which we should try first - memory mapping or i/o mapping?
  390          * We default to memory mapping. Then we accept an override from the
  391          * command line. Then we check to see which one is enabled.
  392          */
  393         m1 = PCIM_CMD_MEMEN;
  394         m2 = PCIM_CMD_PORTEN;
  395         prefer_iomap = 0;
  396         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
  397             "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
  398                 m1 = PCIM_CMD_PORTEN;
  399                 m2 = PCIM_CMD_MEMEN;
  400         }
  401 
  402         if (val & m1) {
  403                 sc->rtp =
  404                     (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
  405                 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
  406                 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
  407                                              0, ~0, 1, RF_ACTIVE);
  408         }
  409         if (sc->mem == NULL && (val & m2)) {
  410                 sc->rtp =
  411                     (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
  412                 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
  413                 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
  414                                             0, ~0, 1, RF_ACTIVE);
  415         }
  416 
  417         if (!sc->mem) {
  418                 device_printf(dev, "could not map device registers\n");
  419                 error = ENXIO;
  420                 goto fail;
  421         }
  422         if (bootverbose) {
  423                 device_printf(dev, "using %s space register mapping\n",
  424                    sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
  425         }
  426 
  427         sc->sc_st = rman_get_bustag(sc->mem);
  428         sc->sc_sh = rman_get_bushandle(sc->mem);
  429 
  430         /*
  431          * Allocate our interrupt.
  432          */
  433         rid = 0;
  434         sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
  435                                  RF_SHAREABLE | RF_ACTIVE);
  436         if (sc->irq == NULL) {
  437                 device_printf(dev, "could not map interrupt\n");
  438                 error = ENXIO;
  439                 goto fail;
  440         }
  441 
  442         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
  443                                fxp_intr, sc, &sc->ih);
  444         if (error) {
  445                 device_printf(dev, "could not setup irq\n");
  446                 goto fail;
  447         }
  448 
  449         /*
  450          * Reset to a stable state.
  451          */
  452         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
  453         DELAY(10);
  454 
  455         sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
  456             M_DEVBUF, M_NOWAIT | M_ZERO);
  457         if (sc->cbl_base == NULL)
  458                 goto failmem;
  459 
  460         sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
  461             M_NOWAIT | M_ZERO);
  462         if (sc->fxp_stats == NULL)
  463                 goto failmem;
  464 
  465         sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
  466         if (sc->mcsp == NULL)
  467                 goto failmem;
  468 
  469         /*
  470          * Pre-allocate our receive buffers.
  471          */
  472         for (i = 0; i < FXP_NRFABUFS; i++) {
  473                 if (fxp_add_rfabuf(sc, NULL) != 0) {
  474                         goto failmem;
  475                 }
  476         }
  477 
  478         /*
  479          * Find out how large of an SEEPROM we have.
  480          */
  481         fxp_autosize_eeprom(sc);
  482 
  483         /*
  484          * Determine whether we must use the 503 serial interface.
  485          */
  486         fxp_read_eeprom(sc, &data, 6, 1);
  487         if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
  488             (data & FXP_PHY_SERIAL_ONLY))
  489                 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
  490 
  491         /*
  492          * Create the sysctl tree
  493          */
  494         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
  495             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
  496             device_get_nameunit(dev), CTLFLAG_RD, 0, "");
  497         if (sc->sysctl_tree == NULL)
  498                 goto fail;
  499         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
  500             OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
  501             &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
  502             "FXP driver receive interrupt microcode bundling delay");
  503         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
  504             OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
  505             &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
  506             "FXP driver receive interrupt microcode bundle size limit");
  507 
  508         /*
  509          * Pull in device tunables.
  510          */
  511         sc->tunable_int_delay = TUNABLE_INT_DELAY;
  512         sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
  513         (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
  514             "int_delay", &sc->tunable_int_delay);
  515         (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
  516             "bundle_max", &sc->tunable_bundle_max);
  517 
  518         /*
  519          * Find out the chip revision; lump all 82557 revs together.
  520          */
  521         fxp_read_eeprom(sc, &data, 5, 1);
  522         if ((data >> 8) == 1)
  523                 sc->revision = FXP_REV_82557;
  524         else
  525                 sc->revision = pci_get_revid(dev);
  526 
  527         /*
  528          * Enable workarounds for certain chip revision deficiencies.
  529          *
  530          * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
  531          * some systems based a normal 82559 design, have a defect where
  532          * the chip can cause a PCI protocol violation if it receives
  533          * a CU_RESUME command when it is entering the IDLE state.  The 
  534          * workaround is to disable Dynamic Standby Mode, so the chip never
  535          * deasserts CLKRUN#, and always remains in an active state.
  536          *
  537          * See Intel 82801BA/82801BAM Specification Update, Errata #30.
  538          */
  539         i = pci_get_device(dev);
  540         if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
  541             sc->revision >= FXP_REV_82559_A0) {
  542                 fxp_read_eeprom(sc, &data, 10, 1);
  543                 if (data & 0x02) {                      /* STB enable */
  544                         u_int16_t cksum;
  545                         int i;
  546 
  547                         device_printf(dev,
  548                             "Disabling dynamic standby mode in EEPROM\n");
  549                         data &= ~0x02;
  550                         fxp_write_eeprom(sc, &data, 10, 1);
  551                         device_printf(dev, "New EEPROM ID: 0x%x\n", data);
  552                         cksum = 0;
  553                         for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
  554                                 fxp_read_eeprom(sc, &data, i, 1);
  555                                 cksum += data;
  556                         }
  557                         i = (1 << sc->eeprom_size) - 1;
  558                         cksum = 0xBABA - cksum;
  559                         fxp_read_eeprom(sc, &data, i, 1);
  560                         fxp_write_eeprom(sc, &cksum, i, 1);
  561                         device_printf(dev,
  562                             "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
  563                             i, data, cksum);
  564 #if 1
  565                         /*
  566                          * If the user elects to continue, try the software
  567                          * workaround, as it is better than nothing.
  568                          */
  569                         sc->flags |= FXP_FLAG_CU_RESUME_BUG;
  570 #endif
  571                 }
  572         }
  573 
  574         /*
  575          * If we are not a 82557 chip, we can enable extended features.
  576          */
  577         if (sc->revision != FXP_REV_82557) {
  578                 /*
  579                  * If MWI is enabled in the PCI configuration, and there
  580                  * is a valid cacheline size (8 or 16 dwords), then tell
  581                  * the board to turn on MWI.
  582                  */
  583                 if (val & PCIM_CMD_MWRICEN &&
  584                     pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
  585                         sc->flags |= FXP_FLAG_MWI_ENABLE;
  586 
  587                 /* turn on the extended TxCB feature */
  588                 sc->flags |= FXP_FLAG_EXT_TXCB;
  589 
  590                 /* enable reception of long frames for VLAN */
  591                 sc->flags |= FXP_FLAG_LONG_PKT_EN;
  592         }
  593 
  594         /*
  595          * Read MAC address.
  596          */
  597         fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
  598         device_printf(dev, "Ethernet address %6D%s\n",
  599             sc->arpcom.ac_enaddr, ":",
  600             sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
  601         if (bootverbose) {
  602                 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
  603                     pci_get_vendor(dev), pci_get_device(dev),
  604                     pci_get_subvendor(dev), pci_get_subdevice(dev),
  605                     pci_get_revid(dev));
  606                 fxp_read_eeprom(sc, &data, 10, 1);
  607                 device_printf(dev, "Dynamic Standby mode is %s\n",
  608                     data & 0x02 ? "enabled" : "disabled");
  609         }
  610 
  611         /*
  612          * If this is only a 10Mbps device, then there is no MII, and
  613          * the PHY will use a serial interface instead.
  614          *
  615          * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
  616          * doesn't have a programming interface of any sort.  The
  617          * media is sensed automatically based on how the link partner
  618          * is configured.  This is, in essence, manual configuration.
  619          */
  620         if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
  621                 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
  622                     fxp_serial_ifmedia_sts);
  623                 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
  624                 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
  625         } else {
  626                 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
  627                     fxp_ifmedia_sts)) {
  628                         device_printf(dev, "MII without any PHY!\n");
  629                         error = ENXIO;
  630                         goto fail;
  631                 }
  632         }
  633 
  634         ifp = &sc->arpcom.ac_if;
  635         ifp->if_unit = device_get_unit(dev);
  636         ifp->if_name = "fxp";
  637         ifp->if_output = ether_output;
  638         ifp->if_baudrate = 100000000;
  639         ifp->if_init = fxp_init;
  640         ifp->if_softc = sc;
  641         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  642         ifp->if_ioctl = fxp_ioctl;
  643         ifp->if_start = fxp_start;
  644         ifp->if_watchdog = fxp_watchdog;
  645 
  646         /*
  647          * Attach the interface.
  648          */
  649         ether_ifattach(ifp, sc->arpcom.ac_enaddr);
  650 
  651         /*
  652          * Tell the upper layer(s) we support long frames.
  653          */
  654         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  655         ifp->if_capabilities |= IFCAP_VLAN_MTU;
  656 
  657         /*
  658          * Let the system queue as many packets as we have available
  659          * TX descriptors.
  660          */
  661         ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
  662 
  663         splx(s);
  664         return (0);
  665 
  666 failmem:
  667         device_printf(dev, "Failed to malloc memory\n");
  668         error = ENOMEM;
  669 fail:
  670         splx(s);
  671         fxp_release(sc);
  672         return (error);
  673 }
  674 
  675 /*
  676  * release all resources
  677  */
  678 static void
  679 fxp_release(struct fxp_softc *sc)
  680 {
  681 
  682         bus_generic_detach(sc->dev);
  683         if (sc->miibus)
  684                 device_delete_child(sc->dev, sc->miibus);
  685 
  686         if (sc->cbl_base)
  687                 free(sc->cbl_base, M_DEVBUF);
  688         if (sc->fxp_stats)
  689                 free(sc->fxp_stats, M_DEVBUF);
  690         if (sc->mcsp)
  691                 free(sc->mcsp, M_DEVBUF);
  692         if (sc->rfa_headm)
  693                 m_freem(sc->rfa_headm);
  694 
  695         if (sc->ih)
  696                 bus_teardown_intr(sc->dev, sc->irq, sc->ih);
  697         if (sc->irq)
  698                 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
  699         if (sc->mem)
  700                 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
  701 
  702         sysctl_ctx_free(&sc->sysctl_ctx);
  703 
  704         mtx_destroy(&sc->sc_mtx);
  705 }
  706 
  707 /*
  708  * Detach interface.
  709  */
  710 static int
  711 fxp_detach(device_t dev)
  712 {
  713         struct fxp_softc *sc = device_get_softc(dev);
  714         int s;
  715 
  716         /* disable interrupts */
  717         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
  718 
  719         s = splimp();
  720 
  721         /*
  722          * Stop DMA and drop transmit queue.
  723          */
  724         fxp_stop(sc);
  725 
  726         /*
  727          * Close down routes etc.
  728          */
  729         ether_ifdetach(&sc->arpcom.ac_if);
  730 
  731         /*
  732          * Free all media structures.
  733          */
  734         ifmedia_removeall(&sc->sc_media);
  735 
  736         splx(s);
  737 
  738         /* Release our allocated resources. */
  739         fxp_release(sc);
  740 
  741         return (0);
  742 }
  743 
  744 /*
  745  * Device shutdown routine. Called at system shutdown after sync. The
  746  * main purpose of this routine is to shut off receiver DMA so that
  747  * kernel memory doesn't get clobbered during warmboot.
  748  */
  749 static int
  750 fxp_shutdown(device_t dev)
  751 {
  752         /*
  753          * Make sure that DMA is disabled prior to reboot. Not doing
  754          * do could allow DMA to corrupt kernel memory during the
  755          * reboot before the driver initializes.
  756          */
  757         fxp_stop((struct fxp_softc *) device_get_softc(dev));
  758         return (0);
  759 }
  760 
  761 /*
  762  * Device suspend routine.  Stop the interface and save some PCI
  763  * settings in case the BIOS doesn't restore them properly on
  764  * resume.
  765  */
  766 static int
  767 fxp_suspend(device_t dev)
  768 {
  769         struct fxp_softc *sc = device_get_softc(dev);
  770         int i, s;
  771 
  772         s = splimp();
  773 
  774         fxp_stop(sc);
  775         
  776         for (i = 0; i < 5; i++)
  777                 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
  778         sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
  779         sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
  780         sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
  781         sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
  782 
  783         sc->suspended = 1;
  784 
  785         splx(s);
  786         return (0);
  787 }
  788 
  789 /*
  790  * Device resume routine.  Restore some PCI settings in case the BIOS
  791  * doesn't, re-enable busmastering, and restart the interface if
  792  * appropriate.
  793  */
  794 static int
  795 fxp_resume(device_t dev)
  796 {
  797         struct fxp_softc *sc = device_get_softc(dev);
  798         struct ifnet *ifp = &sc->sc_if;
  799         u_int16_t pci_command;
  800         int i, s;
  801 
  802         s = splimp();
  803 
  804         fxp_powerstate_d0(dev);
  805 
  806         /* better way to do this? */
  807         for (i = 0; i < 5; i++)
  808                 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
  809         pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
  810         pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
  811         pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
  812         pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
  813 
  814         /* reenable busmastering */
  815         pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
  816         pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
  817         pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
  818 
  819         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
  820         DELAY(10);
  821 
  822         /* reinitialize interface if necessary */
  823         if (ifp->if_flags & IFF_UP)
  824                 fxp_init(sc);
  825 
  826         sc->suspended = 0;
  827 
  828         splx(s);
  829         return (0);
  830 }
  831 
  832 static void 
  833 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
  834 {
  835         u_int16_t reg;
  836         int x;
  837 
  838         /*
  839          * Shift in data.
  840          */
  841         for (x = 1 << (length - 1); x; x >>= 1) {
  842                 if (data & x)
  843                         reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
  844                 else
  845                         reg = FXP_EEPROM_EECS;
  846                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  847                 DELAY(1);
  848                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
  849                 DELAY(1);
  850                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  851                 DELAY(1);
  852         }
  853 }
  854 
  855 /*
  856  * Read from the serial EEPROM. Basically, you manually shift in
  857  * the read opcode (one bit at a time) and then shift in the address,
  858  * and then you shift out the data (all of this one bit at a time).
  859  * The word size is 16 bits, so you have to provide the address for
  860  * every 16 bits of data.
  861  */
  862 static u_int16_t
  863 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
  864 {
  865         u_int16_t reg, data;
  866         int x;
  867 
  868         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  869         /*
  870          * Shift in read opcode.
  871          */
  872         fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
  873         /*
  874          * Shift in address.
  875          */
  876         data = 0;
  877         for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
  878                 if (offset & x)
  879                         reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
  880                 else
  881                         reg = FXP_EEPROM_EECS;
  882                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  883                 DELAY(1);
  884                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
  885                 DELAY(1);
  886                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  887                 DELAY(1);
  888                 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
  889                 data++;
  890                 if (autosize && reg == 0) {
  891                         sc->eeprom_size = data;
  892                         break;
  893                 }
  894         }
  895         /*
  896          * Shift out data.
  897          */
  898         data = 0;
  899         reg = FXP_EEPROM_EECS;
  900         for (x = 1 << 15; x; x >>= 1) {
  901                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
  902                 DELAY(1);
  903                 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
  904                         data |= x;
  905                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  906                 DELAY(1);
  907         }
  908         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  909         DELAY(1);
  910 
  911         return (data);
  912 }
  913 
  914 static void
  915 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
  916 {
  917         int i;
  918 
  919         /*
  920          * Erase/write enable.
  921          */
  922         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  923         fxp_eeprom_shiftin(sc, 0x4, 3);
  924         fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
  925         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  926         DELAY(1);
  927         /*
  928          * Shift in write opcode, address, data.
  929          */
  930         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  931         fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
  932         fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
  933         fxp_eeprom_shiftin(sc, data, 16);
  934         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  935         DELAY(1);
  936         /*
  937          * Wait for EEPROM to finish up.
  938          */
  939         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  940         DELAY(1);
  941         for (i = 0; i < 1000; i++) {
  942                 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
  943                         break;
  944                 DELAY(50);
  945         }
  946         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  947         DELAY(1);
  948         /*
  949          * Erase/write disable.
  950          */
  951         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  952         fxp_eeprom_shiftin(sc, 0x4, 3);
  953         fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
  954         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  955         DELAY(1);
  956 }
  957 
  958 /*
  959  * From NetBSD:
  960  *
  961  * Figure out EEPROM size.
  962  *
  963  * 559's can have either 64-word or 256-word EEPROMs, the 558
  964  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
  965  * talks about the existance of 16 to 256 word EEPROMs.
  966  *
  967  * The only known sizes are 64 and 256, where the 256 version is used
  968  * by CardBus cards to store CIS information.
  969  *
  970  * The address is shifted in msb-to-lsb, and after the last
  971  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
  972  * after which follows the actual data. We try to detect this zero, by
  973  * probing the data-out bit in the EEPROM control register just after
  974  * having shifted in a bit. If the bit is zero, we assume we've
  975  * shifted enough address bits. The data-out should be tri-state,
  976  * before this, which should translate to a logical one.
  977  */
  978 static void
  979 fxp_autosize_eeprom(struct fxp_softc *sc)
  980 {
  981 
  982         /* guess maximum size of 256 words */
  983         sc->eeprom_size = 8;
  984 
  985         /* autosize */
  986         (void) fxp_eeprom_getword(sc, 0, 1);
  987 }
  988 
  989 static void
  990 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
  991 {
  992         int i;
  993 
  994         for (i = 0; i < words; i++)
  995                 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
  996 }
  997 
  998 static void
  999 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
 1000 {
 1001         int i;
 1002 
 1003         for (i = 0; i < words; i++)
 1004                 fxp_eeprom_putword(sc, offset + i, data[i]);
 1005 }
 1006 
 1007 /*
 1008  * Start packet transmission on the interface.
 1009  */
 1010 static void
 1011 fxp_start(struct ifnet *ifp)
 1012 {
 1013         struct fxp_softc *sc = ifp->if_softc;
 1014         struct fxp_cb_tx *txp;
 1015 
 1016         /*
 1017          * See if we need to suspend xmit until the multicast filter
 1018          * has been reprogrammed (which can only be done at the head
 1019          * of the command chain).
 1020          */
 1021         if (sc->need_mcsetup) {
 1022                 return;
 1023         }
 1024 
 1025         txp = NULL;
 1026 
 1027         /*
 1028          * We're finished if there is nothing more to add to the list or if
 1029          * we're all filled up with buffers to transmit.
 1030          * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
 1031          *       a NOP command when needed.
 1032          */
 1033         while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
 1034                 struct mbuf *m, *mb_head;
 1035                 int segment;
 1036 
 1037                 /*
 1038                  * Grab a packet to transmit.
 1039                  */
 1040                 IF_DEQUEUE(&ifp->if_snd, mb_head);
 1041 
 1042                 /*
 1043                  * Get pointer to next available tx desc.
 1044                  */
 1045                 txp = sc->cbl_last->next;
 1046 
 1047                 /*
 1048                  * Go through each of the mbufs in the chain and initialize
 1049                  * the transmit buffer descriptors with the physical address
 1050                  * and size of the mbuf.
 1051                  */
 1052 tbdinit:
 1053                 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
 1054                         if (m->m_len != 0) {
 1055                                 if (segment == FXP_NTXSEG)
 1056                                         break;
 1057                                 txp->tbd[segment].tb_addr =
 1058                                     vtophys(mtod(m, vm_offset_t));
 1059                                 txp->tbd[segment].tb_size = m->m_len;
 1060                                 segment++;
 1061                         }
 1062                 }
 1063                 if (m != NULL) {
 1064                         struct mbuf *mn;
 1065 
 1066                         /*
 1067                          * We ran out of segments. We have to recopy this
 1068                          * mbuf chain first. Bail out if we can't get the
 1069                          * new buffers.
 1070                          */
 1071                         MGETHDR(mn, M_DONTWAIT, MT_DATA);
 1072                         if (mn == NULL) {
 1073                                 m_freem(mb_head);
 1074                                 break;
 1075                         }
 1076                         if (mb_head->m_pkthdr.len > MHLEN) {
 1077                                 MCLGET(mn, M_DONTWAIT);
 1078                                 if ((mn->m_flags & M_EXT) == 0) {
 1079                                         m_freem(mn);
 1080                                         m_freem(mb_head);
 1081                                         break;
 1082                                 }
 1083                         }
 1084                         m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
 1085                             mtod(mn, caddr_t));
 1086                         mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
 1087                         m_freem(mb_head);
 1088                         mb_head = mn;
 1089                         goto tbdinit;
 1090                 }
 1091 
 1092                 txp->tbd_number = segment;
 1093                 txp->mb_head = mb_head;
 1094                 txp->cb_status = 0;
 1095                 if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
 1096                         txp->cb_command =
 1097                             FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
 1098                             FXP_CB_COMMAND_S;
 1099                 } else {
 1100                         txp->cb_command =
 1101                             FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
 1102                             FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
 1103                         /*
 1104                          * Set a 5 second timer just in case we don't hear
 1105                          * from the card again.
 1106                          */
 1107                         ifp->if_timer = 5;
 1108                 }
 1109                 txp->tx_threshold = tx_threshold;
 1110         
 1111                 /*
 1112                  * Advance the end of list forward.
 1113                  */
 1114 
 1115 #ifdef __alpha__
 1116                 /*
 1117                  * On platforms which can't access memory in 16-bit
 1118                  * granularities, we must prevent the card from DMA'ing
 1119                  * up the status while we update the command field.
 1120                  * This could cause us to overwrite the completion status.
 1121                  */
 1122                 atomic_clear_short(&sc->cbl_last->cb_command,
 1123                     FXP_CB_COMMAND_S);
 1124 #else
 1125                 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
 1126 #endif /*__alpha__*/
 1127                 sc->cbl_last = txp;
 1128 
 1129                 /*
 1130                  * Advance the beginning of the list forward if there are
 1131                  * no other packets queued (when nothing is queued, cbl_first
 1132                  * sits on the last TxCB that was sent out).
 1133                  */
 1134                 if (sc->tx_queued == 0)
 1135                         sc->cbl_first = txp;
 1136 
 1137                 sc->tx_queued++;
 1138 
 1139                 /*
 1140                  * Pass packet to bpf if there is a listener.
 1141                  */
 1142                 BPF_MTAP(ifp, mb_head);
 1143         }
 1144 
 1145         /*
 1146          * We're finished. If we added to the list, issue a RESUME to get DMA
 1147          * going again if suspended.
 1148          */
 1149         if (txp != NULL) {
 1150                 fxp_scb_wait(sc);
 1151                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
 1152         }
 1153 }
 1154 
 1155 static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
 1156 
 1157 #ifdef DEVICE_POLLING
 1158 static poll_handler_t fxp_poll;
 1159 
 1160 static void
 1161 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1162 {
 1163         struct fxp_softc *sc = ifp->if_softc;
 1164         u_int8_t statack;
 1165 
 1166         if (cmd == POLL_DEREGISTER) {   /* final call, enable interrupts */
 1167                 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
 1168                 return;
 1169         }
 1170         statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
 1171             FXP_SCB_STATACK_FR;
 1172         if (cmd == POLL_AND_CHECK_STATUS) {
 1173                 u_int8_t tmp;
 1174 
 1175                 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
 1176                 if (tmp == 0xff || tmp == 0)
 1177                         return; /* nothing to do */
 1178                 tmp &= ~statack;
 1179                 /* ack what we can */
 1180                 if (tmp != 0)
 1181                         CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
 1182                 statack |= tmp;
 1183         }
 1184         fxp_intr_body(sc, statack, count);
 1185 }
 1186 #endif /* DEVICE_POLLING */
 1187 
 1188 /*
 1189  * Process interface interrupts.
 1190  */
 1191 static void
 1192 fxp_intr(void *xsc)
 1193 {
 1194         struct fxp_softc *sc = xsc;
 1195         u_int8_t statack;
 1196 
 1197 #ifdef DEVICE_POLLING
 1198         struct ifnet *ifp = &sc->sc_if;
 1199 
 1200         if (ifp->if_flags & IFF_POLLING)
 1201                 return;
 1202         if (ether_poll_register(fxp_poll, ifp)) {
 1203                 /* disable interrupts */
 1204                 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
 1205                 fxp_poll(ifp, 0, 1);
 1206                 return;
 1207         }
 1208 #endif
 1209 
 1210         if (sc->suspended) {
 1211                 return;
 1212         }
 1213 
 1214         while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
 1215                 /*
 1216                  * It should not be possible to have all bits set; the
 1217                  * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If 
 1218                  * all bits are set, this may indicate that the card has
 1219                  * been physically ejected, so ignore it.
 1220                  */  
 1221                 if (statack == 0xff) 
 1222                         return;
 1223 
 1224                 /*
 1225                  * First ACK all the interrupts in this pass.
 1226                  */
 1227                 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
 1228                 fxp_intr_body(sc, statack, -1);
 1229         }
 1230 }
 1231 
 1232 static void
 1233 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
 1234 {
 1235         struct ifnet *ifp = &sc->sc_if;
 1236         struct mbuf *m;
 1237         struct fxp_rfa *rfa;
 1238         int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
 1239 
 1240         if (rnr)
 1241                 fxp_rnr++;
 1242 #ifdef DEVICE_POLLING
 1243         /* Pick up a deferred RNR condition if `count' ran out last time. */
 1244         if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
 1245                 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
 1246                 rnr = 1;
 1247         }
 1248 #endif
 1249 
 1250         /*
 1251          * Free any finished transmit mbuf chains.
 1252          *
 1253          * Handle the CNA event likt a CXTNO event. It used to
 1254          * be that this event (control unit not ready) was not
 1255          * encountered, but it is now with the SMPng modifications.
 1256          * The exact sequence of events that occur when the interface
 1257          * is brought up are different now, and if this event
 1258          * goes unhandled, the configuration/rxfilter setup sequence
 1259          * can stall for several seconds. The result is that no
 1260          * packets go out onto the wire for about 5 to 10 seconds
 1261          * after the interface is ifconfig'ed for the first time.
 1262          */
 1263         if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
 1264                 struct fxp_cb_tx *txp;
 1265 
 1266                 for (txp = sc->cbl_first; sc->tx_queued &&
 1267                     (txp->cb_status & FXP_CB_STATUS_C) != 0;
 1268                     txp = txp->next) {
 1269                         if (txp->mb_head != NULL) {
 1270                                 m_freem(txp->mb_head);
 1271                                 txp->mb_head = NULL;
 1272                         }
 1273                         sc->tx_queued--;
 1274                 }
 1275                 sc->cbl_first = txp;
 1276                 ifp->if_timer = 0;
 1277                 if (sc->tx_queued == 0) {
 1278                         if (sc->need_mcsetup)
 1279                                 fxp_mc_setup(sc);
 1280                 }
 1281                 /*
 1282                  * Try to start more packets transmitting.
 1283                  */
 1284                 if (ifp->if_snd.ifq_head != NULL)
 1285                         fxp_start(ifp);
 1286         }
 1287 
 1288         /*
 1289          * Just return if nothing happened on the receive side.
 1290          */
 1291         if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
 1292                 return;
 1293 
 1294         /*
 1295          * Process receiver interrupts. If a no-resource (RNR)
 1296          * condition exists, get whatever packets we can and
 1297          * re-start the receiver.
 1298          *
 1299          * When using polling, we do not process the list to completion,
 1300          * so when we get an RNR interrupt we must defer the restart
 1301          * until we hit the last buffer with the C bit set.
 1302          * If we run out of cycles and rfa_headm has the C bit set,
 1303          * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
 1304          * that the info will be used in the subsequent polling cycle.
 1305          */
 1306         for (;;) {
 1307                 m = sc->rfa_headm;
 1308                 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
 1309                     RFA_ALIGNMENT_FUDGE);
 1310 
 1311 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
 1312                 if (count >= 0 && count-- == 0) {
 1313                         if (rnr) {
 1314                                 /* Defer RNR processing until the next time. */
 1315                                 sc->flags |= FXP_FLAG_DEFERRED_RNR;
 1316                                 rnr = 0;
 1317                         }
 1318                         break;
 1319                 }
 1320 #endif /* DEVICE_POLLING */
 1321 
 1322                 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
 1323                         break;
 1324 
 1325                 /*
 1326                  * Remove first packet from the chain.
 1327                  */
 1328                 sc->rfa_headm = m->m_next;
 1329                 m->m_next = NULL;
 1330 
 1331                 /*
 1332                  * Add a new buffer to the receive chain.
 1333                  * If this fails, the old buffer is recycled
 1334                  * instead.
 1335                  */
 1336                 if (fxp_add_rfabuf(sc, m) == 0) {
 1337                         int total_len;
 1338 
 1339                         /*
 1340                          * Fetch packet length (the top 2 bits of
 1341                          * actual_size are flags set by the controller
 1342                          * upon completion), and drop the packet in case
 1343                          * of bogus length or CRC errors.
 1344                          */
 1345                         total_len = rfa->actual_size & 0x3fff;
 1346                         if (total_len < sizeof(struct ether_header) ||
 1347                             total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
 1348                                 sizeof(struct fxp_rfa) ||
 1349                             rfa->rfa_status & FXP_RFA_STATUS_CRC) {
 1350                                 m_freem(m);
 1351                                 continue;
 1352                         }
 1353 
 1354                         m->m_pkthdr.len = m->m_len = total_len;
 1355                         m->m_pkthdr.rcvif = ifp;
 1356 
 1357                         (*ifp->if_input)(ifp, m);
 1358                 }
 1359         }
 1360         if (rnr) {
 1361                 fxp_scb_wait(sc);
 1362                 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
 1363                     vtophys(sc->rfa_headm->m_ext.ext_buf) +
 1364                     RFA_ALIGNMENT_FUDGE);
 1365                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
 1366         }
 1367 }
 1368 
 1369 /*
 1370  * Update packet in/out/collision statistics. The i82557 doesn't
 1371  * allow you to access these counters without doing a fairly
 1372  * expensive DMA to get _all_ of the statistics it maintains, so
 1373  * we do this operation here only once per second. The statistics
 1374  * counters in the kernel are updated from the previous dump-stats
 1375  * DMA and then a new dump-stats DMA is started. The on-chip
 1376  * counters are zeroed when the DMA completes. If we can't start
 1377  * the DMA immediately, we don't wait - we just prepare to read
 1378  * them again next time.
 1379  */
 1380 static void
 1381 fxp_tick(void *xsc)
 1382 {
 1383         struct fxp_softc *sc = xsc;
 1384         struct ifnet *ifp = &sc->sc_if;
 1385         struct fxp_stats *sp = sc->fxp_stats;
 1386         struct fxp_cb_tx *txp;
 1387         int s;
 1388 
 1389         ifp->if_opackets += sp->tx_good;
 1390         ifp->if_collisions += sp->tx_total_collisions;
 1391         if (sp->rx_good) {
 1392                 ifp->if_ipackets += sp->rx_good;
 1393                 sc->rx_idle_secs = 0;
 1394         } else {
 1395                 /*
 1396                  * Receiver's been idle for another second.
 1397                  */
 1398                 sc->rx_idle_secs++;
 1399         }
 1400         ifp->if_ierrors +=
 1401             sp->rx_crc_errors +
 1402             sp->rx_alignment_errors +
 1403             sp->rx_rnr_errors +
 1404             sp->rx_overrun_errors;
 1405         /*
 1406          * If any transmit underruns occured, bump up the transmit
 1407          * threshold by another 512 bytes (64 * 8).
 1408          */
 1409         if (sp->tx_underruns) {
 1410                 ifp->if_oerrors += sp->tx_underruns;
 1411                 if (tx_threshold < 192)
 1412                         tx_threshold += 64;
 1413         }
 1414         s = splimp();
 1415         /*
 1416          * Release any xmit buffers that have completed DMA. This isn't
 1417          * strictly necessary to do here, but it's advantagous for mbufs
 1418          * with external storage to be released in a timely manner rather
 1419          * than being defered for a potentially long time. This limits
 1420          * the delay to a maximum of one second.
 1421          */ 
 1422         for (txp = sc->cbl_first; sc->tx_queued &&
 1423             (txp->cb_status & FXP_CB_STATUS_C) != 0;
 1424             txp = txp->next) {
 1425                 if (txp->mb_head != NULL) {
 1426                         m_freem(txp->mb_head);
 1427                         txp->mb_head = NULL;
 1428                 }
 1429                 sc->tx_queued--;
 1430         }
 1431         sc->cbl_first = txp;
 1432         /*
 1433          * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
 1434          * then assume the receiver has locked up and attempt to clear
 1435          * the condition by reprogramming the multicast filter. This is
 1436          * a work-around for a bug in the 82557 where the receiver locks
 1437          * up if it gets certain types of garbage in the syncronization
 1438          * bits prior to the packet header. This bug is supposed to only
 1439          * occur in 10Mbps mode, but has been seen to occur in 100Mbps
 1440          * mode as well (perhaps due to a 10/100 speed transition).
 1441          */
 1442         if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
 1443                 sc->rx_idle_secs = 0;
 1444                 fxp_mc_setup(sc);
 1445         }
 1446         /*
 1447          * If there is no pending command, start another stats
 1448          * dump. Otherwise punt for now.
 1449          */
 1450         if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
 1451                 /*
 1452                  * Start another stats dump.
 1453                  */
 1454                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
 1455         } else {
 1456                 /*
 1457                  * A previous command is still waiting to be accepted.
 1458                  * Just zero our copy of the stats and wait for the
 1459                  * next timer event to update them.
 1460                  */
 1461                 sp->tx_good = 0;
 1462                 sp->tx_underruns = 0;
 1463                 sp->tx_total_collisions = 0;
 1464 
 1465                 sp->rx_good = 0;
 1466                 sp->rx_crc_errors = 0;
 1467                 sp->rx_alignment_errors = 0;
 1468                 sp->rx_rnr_errors = 0;
 1469                 sp->rx_overrun_errors = 0;
 1470         }
 1471         if (sc->miibus != NULL)
 1472                 mii_tick(device_get_softc(sc->miibus));
 1473         splx(s);
 1474         /*
 1475          * Schedule another timeout one second from now.
 1476          */
 1477         sc->stat_ch = timeout(fxp_tick, sc, hz);
 1478 }
 1479 
 1480 /*
 1481  * Stop the interface. Cancels the statistics updater and resets
 1482  * the interface.
 1483  */
 1484 static void
 1485 fxp_stop(struct fxp_softc *sc)
 1486 {
 1487         struct ifnet *ifp = &sc->sc_if;
 1488         struct fxp_cb_tx *txp;
 1489         int i;
 1490 
 1491         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 1492         ifp->if_timer = 0;
 1493 
 1494 #ifdef DEVICE_POLLING
 1495         ether_poll_deregister(ifp);
 1496 #endif
 1497         /*
 1498          * Cancel stats updater.
 1499          */
 1500         untimeout(fxp_tick, sc, sc->stat_ch);
 1501 
 1502         /*
 1503          * Issue software reset, which also unloads the microcode.
 1504          */
 1505         sc->flags &= ~FXP_FLAG_UCODE;
 1506         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
 1507         DELAY(50);
 1508 
 1509         /*
 1510          * Release any xmit buffers.
 1511          */
 1512         txp = sc->cbl_base;
 1513         if (txp != NULL) {
 1514                 for (i = 0; i < FXP_NTXCB; i++) {
 1515                         if (txp[i].mb_head != NULL) {
 1516                                 m_freem(txp[i].mb_head);
 1517                                 txp[i].mb_head = NULL;
 1518                         }
 1519                 }
 1520         }
 1521         sc->tx_queued = 0;
 1522 
 1523         /*
 1524          * Free all the receive buffers then reallocate/reinitialize
 1525          */
 1526         if (sc->rfa_headm != NULL)
 1527                 m_freem(sc->rfa_headm);
 1528         sc->rfa_headm = NULL;
 1529         sc->rfa_tailm = NULL;
 1530         for (i = 0; i < FXP_NRFABUFS; i++) {
 1531                 if (fxp_add_rfabuf(sc, NULL) != 0) {
 1532                         /*
 1533                          * This "can't happen" - we're at splimp()
 1534                          * and we just freed all the buffers we need
 1535                          * above.
 1536                          */
 1537                         panic("fxp_stop: no buffers!");
 1538                 }
 1539         }
 1540 }
 1541 
 1542 /*
 1543  * Watchdog/transmission transmit timeout handler. Called when a
 1544  * transmission is started on the interface, but no interrupt is
 1545  * received before the timeout. This usually indicates that the
 1546  * card has wedged for some reason.
 1547  */
 1548 static void
 1549 fxp_watchdog(struct ifnet *ifp)
 1550 {
 1551         struct fxp_softc *sc = ifp->if_softc;
 1552 
 1553         device_printf(sc->dev, "device timeout\n");
 1554         ifp->if_oerrors++;
 1555 
 1556         fxp_init(sc);
 1557 }
 1558 
 1559 static void
 1560 fxp_init(void *xsc)
 1561 {
 1562         struct fxp_softc *sc = xsc;
 1563         struct ifnet *ifp = &sc->sc_if;
 1564         struct fxp_cb_config *cbp;
 1565         struct fxp_cb_ias *cb_ias;
 1566         struct fxp_cb_tx *txp;
 1567         struct fxp_cb_mcs *mcsp;
 1568         int i, prm, s;
 1569 
 1570         s = splimp();
 1571         /*
 1572          * Cancel any pending I/O
 1573          */
 1574         fxp_stop(sc);
 1575 
 1576         prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
 1577 
 1578         /*
 1579          * Initialize base of CBL and RFA memory. Loading with zero
 1580          * sets it up for regular linear addressing.
 1581          */
 1582         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
 1583         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
 1584 
 1585         fxp_scb_wait(sc);
 1586         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
 1587 
 1588         /*
 1589          * Initialize base of dump-stats buffer.
 1590          */
 1591         fxp_scb_wait(sc);
 1592         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
 1593         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
 1594 
 1595         /*
 1596          * Attempt to load microcode if requested.
 1597          */
 1598         if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
 1599                 fxp_load_ucode(sc);
 1600 
 1601         /*
 1602          * Initialize the multicast address list.
 1603          */
 1604         if (fxp_mc_addrs(sc)) {
 1605                 mcsp = sc->mcsp;
 1606                 mcsp->cb_status = 0;
 1607                 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
 1608                 mcsp->link_addr = -1;
 1609                 /*
 1610                  * Start the multicast setup command.
 1611                  */
 1612                 fxp_scb_wait(sc);
 1613                 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
 1614                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1615                 /* ...and wait for it to complete. */
 1616                 fxp_dma_wait(&mcsp->cb_status, sc);
 1617         }
 1618 
 1619         /*
 1620          * We temporarily use memory that contains the TxCB list to
 1621          * construct the config CB. The TxCB list memory is rebuilt
 1622          * later.
 1623          */
 1624         cbp = (struct fxp_cb_config *) sc->cbl_base;
 1625 
 1626         /*
 1627          * This bcopy is kind of disgusting, but there are a bunch of must be
 1628          * zero and must be one bits in this structure and this is the easiest
 1629          * way to initialize them all to proper values.
 1630          */
 1631         bcopy(fxp_cb_config_template,
 1632                 (void *)(uintptr_t)(volatile void *)&cbp->cb_status,
 1633                 sizeof(fxp_cb_config_template));
 1634 
 1635         cbp->cb_status =        0;
 1636         cbp->cb_command =       FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
 1637         cbp->link_addr =        -1;     /* (no) next command */
 1638         cbp->byte_count =       22;     /* (22) bytes to config */
 1639         cbp->rx_fifo_limit =    8;      /* rx fifo threshold (32 bytes) */
 1640         cbp->tx_fifo_limit =    0;      /* tx fifo threshold (0 bytes) */
 1641         cbp->adaptive_ifs =     0;      /* (no) adaptive interframe spacing */
 1642         cbp->mwi_enable =       sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
 1643         cbp->type_enable =      0;      /* actually reserved */
 1644         cbp->read_align_en =    sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
 1645         cbp->end_wr_on_cl =     sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
 1646         cbp->rx_dma_bytecount = 0;      /* (no) rx DMA max */
 1647         cbp->tx_dma_bytecount = 0;      /* (no) tx DMA max */
 1648         cbp->dma_mbce =         0;      /* (disable) dma max counters */
 1649         cbp->late_scb =         0;      /* (don't) defer SCB update */
 1650         cbp->direct_dma_dis =   1;      /* disable direct rcv dma mode */
 1651         cbp->tno_int_or_tco_en =0;      /* (disable) tx not okay interrupt */
 1652         cbp->ci_int =           1;      /* interrupt on CU idle */
 1653         cbp->ext_txcb_dis =     sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
 1654         cbp->ext_stats_dis =    1;      /* disable extended counters */
 1655         cbp->keep_overrun_rx =  0;      /* don't pass overrun frames to host */
 1656         cbp->save_bf =          sc->revision == FXP_REV_82557 ? 1 : prm;
 1657         cbp->disc_short_rx =    !prm;   /* discard short packets */
 1658         cbp->underrun_retry =   1;      /* retry mode (once) on DMA underrun */
 1659         cbp->two_frames =       0;      /* do not limit FIFO to 2 frames */
 1660         cbp->dyn_tbd =          0;      /* (no) dynamic TBD mode */
 1661         cbp->mediatype =        sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
 1662         cbp->csma_dis =         0;      /* (don't) disable link */
 1663         cbp->tcp_udp_cksum =    0;      /* (don't) enable checksum */
 1664         cbp->vlan_tco =         0;      /* (don't) enable vlan wakeup */
 1665         cbp->link_wake_en =     0;      /* (don't) assert PME# on link change */
 1666         cbp->arp_wake_en =      0;      /* (don't) assert PME# on arp */
 1667         cbp->mc_wake_en =       0;      /* (don't) enable PME# on mcmatch */
 1668         cbp->nsai =             1;      /* (don't) disable source addr insert */
 1669         cbp->preamble_length =  2;      /* (7 byte) preamble */
 1670         cbp->loopback =         0;      /* (don't) loopback */
 1671         cbp->linear_priority =  0;      /* (normal CSMA/CD operation) */
 1672         cbp->linear_pri_mode =  0;      /* (wait after xmit only) */
 1673         cbp->interfrm_spacing = 6;      /* (96 bits of) interframe spacing */
 1674         cbp->promiscuous =      prm;    /* promiscuous mode */
 1675         cbp->bcast_disable =    0;      /* (don't) disable broadcasts */
 1676         cbp->wait_after_win =   0;      /* (don't) enable modified backoff alg*/
 1677         cbp->ignore_ul =        0;      /* consider U/L bit in IA matching */
 1678         cbp->crc16_en =         0;      /* (don't) enable crc-16 algorithm */
 1679         cbp->crscdt =           sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
 1680 
 1681         cbp->stripping =        !prm;   /* truncate rx packet to byte count */
 1682         cbp->padding =          1;      /* (do) pad short tx packets */
 1683         cbp->rcv_crc_xfer =     0;      /* (don't) xfer CRC to host */
 1684         cbp->long_rx_en =       sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
 1685         cbp->ia_wake_en =       0;      /* (don't) wake up on address match */
 1686         cbp->magic_pkt_dis =    0;      /* (don't) disable magic packet */
 1687                                         /* must set wake_en in PMCSR also */
 1688         cbp->force_fdx =        0;      /* (don't) force full duplex */
 1689         cbp->fdx_pin_en =       1;      /* (enable) FDX# pin */
 1690         cbp->multi_ia =         0;      /* (don't) accept multiple IAs */
 1691         cbp->mc_all =           sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
 1692 
 1693         if (sc->revision == FXP_REV_82557) {
 1694                 /*
 1695                  * The 82557 has no hardware flow control, the values
 1696                  * below are the defaults for the chip.
 1697                  */
 1698                 cbp->fc_delay_lsb =     0;
 1699                 cbp->fc_delay_msb =     0x40;
 1700                 cbp->pri_fc_thresh =    3;
 1701                 cbp->tx_fc_dis =        0;
 1702                 cbp->rx_fc_restop =     0;
 1703                 cbp->rx_fc_restart =    0;
 1704                 cbp->fc_filter =        0;
 1705                 cbp->pri_fc_loc =       1;
 1706         } else {
 1707                 cbp->fc_delay_lsb =     0x1f;
 1708                 cbp->fc_delay_msb =     0x01;
 1709                 cbp->pri_fc_thresh =    3;
 1710                 cbp->tx_fc_dis =        0;      /* enable transmit FC */
 1711                 cbp->rx_fc_restop =     1;      /* enable FC restop frames */
 1712                 cbp->rx_fc_restart =    1;      /* enable FC restart frames */
 1713                 cbp->fc_filter =        !prm;   /* drop FC frames to host */
 1714                 cbp->pri_fc_loc =       1;      /* FC pri location (byte31) */
 1715         }
 1716 
 1717         /*
 1718          * Start the config command/DMA.
 1719          */
 1720         fxp_scb_wait(sc);
 1721         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
 1722         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1723         /* ...and wait for it to complete. */
 1724         fxp_dma_wait(&cbp->cb_status, sc);
 1725 
 1726         /*
 1727          * Now initialize the station address. Temporarily use the TxCB
 1728          * memory area like we did above for the config CB.
 1729          */
 1730         cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
 1731         cb_ias->cb_status = 0;
 1732         cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
 1733         cb_ias->link_addr = -1;
 1734         bcopy(sc->arpcom.ac_enaddr,
 1735             (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
 1736             sizeof(sc->arpcom.ac_enaddr));
 1737 
 1738         /*
 1739          * Start the IAS (Individual Address Setup) command/DMA.
 1740          */
 1741         fxp_scb_wait(sc);
 1742         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1743         /* ...and wait for it to complete. */
 1744         fxp_dma_wait(&cb_ias->cb_status, sc);
 1745 
 1746         /*
 1747          * Initialize transmit control block (TxCB) list.
 1748          */
 1749 
 1750         txp = sc->cbl_base;
 1751         bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
 1752         for (i = 0; i < FXP_NTXCB; i++) {
 1753                 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
 1754                 txp[i].cb_command = FXP_CB_COMMAND_NOP;
 1755                 txp[i].link_addr =
 1756                     vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
 1757                 if (sc->flags & FXP_FLAG_EXT_TXCB)
 1758                         txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
 1759                 else
 1760                         txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
 1761                 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
 1762         }
 1763         /*
 1764          * Set the suspend flag on the first TxCB and start the control
 1765          * unit. It will execute the NOP and then suspend.
 1766          */
 1767         txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
 1768         sc->cbl_first = sc->cbl_last = txp;
 1769         sc->tx_queued = 1;
 1770 
 1771         fxp_scb_wait(sc);
 1772         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1773 
 1774         /*
 1775          * Initialize receiver buffer area - RFA.
 1776          */
 1777         fxp_scb_wait(sc);
 1778         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
 1779             vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
 1780         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
 1781 
 1782         /*
 1783          * Set current media.
 1784          */
 1785         if (sc->miibus != NULL)
 1786                 mii_mediachg(device_get_softc(sc->miibus));
 1787 
 1788         ifp->if_flags |= IFF_RUNNING;
 1789         ifp->if_flags &= ~IFF_OACTIVE;
 1790 
 1791         /*
 1792          * Enable interrupts.
 1793          */
 1794 #ifdef DEVICE_POLLING
 1795         /*
 1796          * ... but only do that if we are not polling. And because (presumably)
 1797          * the default is interrupts on, we need to disable them explicitly!
 1798          */
 1799         if ( ifp->if_flags & IFF_POLLING )
 1800                 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
 1801         else
 1802 #endif /* DEVICE_POLLING */
 1803         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
 1804         splx(s);
 1805 
 1806         /*
 1807          * Start stats updater.
 1808          */
 1809         sc->stat_ch = timeout(fxp_tick, sc, hz);
 1810 }
 1811 
 1812 static int
 1813 fxp_serial_ifmedia_upd(struct ifnet *ifp)
 1814 {
 1815 
 1816         return (0);
 1817 }
 1818 
 1819 static void
 1820 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1821 {
 1822 
 1823         ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
 1824 }
 1825 
 1826 /*
 1827  * Change media according to request.
 1828  */
 1829 static int
 1830 fxp_ifmedia_upd(struct ifnet *ifp)
 1831 {
 1832         struct fxp_softc *sc = ifp->if_softc;
 1833         struct mii_data *mii;
 1834 
 1835         mii = device_get_softc(sc->miibus);
 1836         mii_mediachg(mii);
 1837         return (0);
 1838 }
 1839 
 1840 /*
 1841  * Notify the world which media we're using.
 1842  */
 1843 static void
 1844 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1845 {
 1846         struct fxp_softc *sc = ifp->if_softc;
 1847         struct mii_data *mii;
 1848 
 1849         mii = device_get_softc(sc->miibus);
 1850         mii_pollstat(mii);
 1851         ifmr->ifm_active = mii->mii_media_active;
 1852         ifmr->ifm_status = mii->mii_media_status;
 1853 
 1854         if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
 1855                 sc->cu_resume_bug = 1;
 1856         else
 1857                 sc->cu_resume_bug = 0;
 1858 }
 1859 
 1860 /*
 1861  * Add a buffer to the end of the RFA buffer list.
 1862  * Return 0 if successful, 1 for failure. A failure results in
 1863  * adding the 'oldm' (if non-NULL) on to the end of the list -
 1864  * tossing out its old contents and recycling it.
 1865  * The RFA struct is stuck at the beginning of mbuf cluster and the
 1866  * data pointer is fixed up to point just past it.
 1867  */
 1868 static int
 1869 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
 1870 {
 1871         u_int32_t v;
 1872         struct mbuf *m;
 1873         struct fxp_rfa *rfa, *p_rfa;
 1874 
 1875         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 1876         if (m == NULL) { /* try to recycle the old mbuf instead */
 1877                 if (oldm == NULL)
 1878                         return 1;
 1879                 m = oldm;
 1880                 m->m_data = m->m_ext.ext_buf;
 1881         }
 1882 
 1883         /*
 1884          * Move the data pointer up so that the incoming data packet
 1885          * will be 32-bit aligned.
 1886          */
 1887         m->m_data += RFA_ALIGNMENT_FUDGE;
 1888 
 1889         /*
 1890          * Get a pointer to the base of the mbuf cluster and move
 1891          * data start past it.
 1892          */
 1893         rfa = mtod(m, struct fxp_rfa *);
 1894         m->m_data += sizeof(struct fxp_rfa);
 1895         rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
 1896 
 1897         /*
 1898          * Initialize the rest of the RFA.  Note that since the RFA
 1899          * is misaligned, we cannot store values directly.  Instead,
 1900          * we use an optimized, inline copy.
 1901          */
 1902 
 1903         rfa->rfa_status = 0;
 1904         rfa->rfa_control = FXP_RFA_CONTROL_EL;
 1905         rfa->actual_size = 0;
 1906 
 1907         v = -1;
 1908         fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
 1909         fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
 1910 
 1911         /*
 1912          * If there are other buffers already on the list, attach this
 1913          * one to the end by fixing up the tail to point to this one.
 1914          */
 1915         if (sc->rfa_headm != NULL) {
 1916                 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
 1917                     RFA_ALIGNMENT_FUDGE);
 1918                 sc->rfa_tailm->m_next = m;
 1919                 v = vtophys(rfa);
 1920                 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
 1921                 p_rfa->rfa_control = 0;
 1922         } else {
 1923                 sc->rfa_headm = m;
 1924         }
 1925         sc->rfa_tailm = m;
 1926 
 1927         return (m == oldm);
 1928 }
 1929 
 1930 static volatile int
 1931 fxp_miibus_readreg(device_t dev, int phy, int reg)
 1932 {
 1933         struct fxp_softc *sc = device_get_softc(dev);
 1934         int count = 10000;
 1935         int value;
 1936 
 1937         CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
 1938             (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
 1939 
 1940         while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
 1941             && count--)
 1942                 DELAY(10);
 1943 
 1944         if (count <= 0)
 1945                 device_printf(dev, "fxp_miibus_readreg: timed out\n");
 1946 
 1947         return (value & 0xffff);
 1948 }
 1949 
 1950 static void
 1951 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
 1952 {
 1953         struct fxp_softc *sc = device_get_softc(dev);
 1954         int count = 10000;
 1955 
 1956         CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
 1957             (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
 1958             (value & 0xffff));
 1959 
 1960         while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
 1961             count--)
 1962                 DELAY(10);
 1963 
 1964         if (count <= 0)
 1965                 device_printf(dev, "fxp_miibus_writereg: timed out\n");
 1966 }
 1967 
 1968 static int
 1969 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1970 {
 1971         struct fxp_softc *sc = ifp->if_softc;
 1972         struct ifreq *ifr = (struct ifreq *)data;
 1973         struct mii_data *mii;
 1974         int s, error = 0;
 1975 
 1976         s = splimp();
 1977 
 1978         switch (command) {
 1979         case SIOCSIFFLAGS:
 1980                 if (ifp->if_flags & IFF_ALLMULTI)
 1981                         sc->flags |= FXP_FLAG_ALL_MCAST;
 1982                 else
 1983                         sc->flags &= ~FXP_FLAG_ALL_MCAST;
 1984 
 1985                 /*
 1986                  * If interface is marked up and not running, then start it.
 1987                  * If it is marked down and running, stop it.
 1988                  * XXX If it's up then re-initialize it. This is so flags
 1989                  * such as IFF_PROMISC are handled.
 1990                  */
 1991                 if (ifp->if_flags & IFF_UP) {
 1992                         fxp_init(sc);
 1993                 } else {
 1994                         if (ifp->if_flags & IFF_RUNNING)
 1995                                 fxp_stop(sc);
 1996                 }
 1997                 break;
 1998 
 1999         case SIOCADDMULTI:
 2000         case SIOCDELMULTI:
 2001                 if (ifp->if_flags & IFF_ALLMULTI)
 2002                         sc->flags |= FXP_FLAG_ALL_MCAST;
 2003                 else
 2004                         sc->flags &= ~FXP_FLAG_ALL_MCAST;
 2005                 /*
 2006                  * Multicast list has changed; set the hardware filter
 2007                  * accordingly.
 2008                  */
 2009                 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
 2010                         fxp_mc_setup(sc);
 2011                 /*
 2012                  * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
 2013                  * again rather than else {}.
 2014                  */
 2015                 if (sc->flags & FXP_FLAG_ALL_MCAST)
 2016                         fxp_init(sc);
 2017                 error = 0;
 2018                 break;
 2019 
 2020         case SIOCSIFMEDIA:
 2021         case SIOCGIFMEDIA:
 2022                 if (sc->miibus != NULL) {
 2023                         mii = device_get_softc(sc->miibus);
 2024                         error = ifmedia_ioctl(ifp, ifr,
 2025                             &mii->mii_media, command);
 2026                 } else {
 2027                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
 2028                 }
 2029                 break;
 2030 
 2031         default:
 2032                 error = ether_ioctl(ifp, command, data);
 2033         }
 2034         splx(s);
 2035         return (error);
 2036 }
 2037 
 2038 /*
 2039  * Fill in the multicast address list and return number of entries.
 2040  */
 2041 static int
 2042 fxp_mc_addrs(struct fxp_softc *sc)
 2043 {
 2044         struct fxp_cb_mcs *mcsp = sc->mcsp;
 2045         struct ifnet *ifp = &sc->sc_if;
 2046         struct ifmultiaddr *ifma;
 2047         int nmcasts;
 2048 
 2049         nmcasts = 0;
 2050         if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
 2051 #if __FreeBSD_version < 500000
 2052                 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 2053 #else
 2054                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 2055 #endif
 2056                         if (ifma->ifma_addr->sa_family != AF_LINK)
 2057                                 continue;
 2058                         if (nmcasts >= MAXMCADDR) {
 2059                                 sc->flags |= FXP_FLAG_ALL_MCAST;
 2060                                 nmcasts = 0;
 2061                                 break;
 2062                         }
 2063                         bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
 2064                             (void *)(uintptr_t)(volatile void *)
 2065                                 &sc->mcsp->mc_addr[nmcasts][0], 6);
 2066                         nmcasts++;
 2067                 }
 2068         }
 2069         mcsp->mc_cnt = nmcasts * 6;
 2070         return (nmcasts);
 2071 }
 2072 
 2073 /*
 2074  * Program the multicast filter.
 2075  *
 2076  * We have an artificial restriction that the multicast setup command
 2077  * must be the first command in the chain, so we take steps to ensure
 2078  * this. By requiring this, it allows us to keep up the performance of
 2079  * the pre-initialized command ring (esp. link pointers) by not actually
 2080  * inserting the mcsetup command in the ring - i.e. its link pointer
 2081  * points to the TxCB ring, but the mcsetup descriptor itself is not part
 2082  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
 2083  * lead into the regular TxCB ring when it completes.
 2084  *
 2085  * This function must be called at splimp.
 2086  */
 2087 static void
 2088 fxp_mc_setup(struct fxp_softc *sc)
 2089 {
 2090         struct fxp_cb_mcs *mcsp = sc->mcsp;
 2091         struct ifnet *ifp = &sc->sc_if;
 2092         int count;
 2093 
 2094         /*
 2095          * If there are queued commands, we must wait until they are all
 2096          * completed. If we are already waiting, then add a NOP command
 2097          * with interrupt option so that we're notified when all commands
 2098          * have been completed - fxp_start() ensures that no additional
 2099          * TX commands will be added when need_mcsetup is true.
 2100          */
 2101         if (sc->tx_queued) {
 2102                 struct fxp_cb_tx *txp;
 2103 
 2104                 /*
 2105                  * need_mcsetup will be true if we are already waiting for the
 2106                  * NOP command to be completed (see below). In this case, bail.
 2107                  */
 2108                 if (sc->need_mcsetup)
 2109                         return;
 2110                 sc->need_mcsetup = 1;
 2111 
 2112                 /*
 2113                  * Add a NOP command with interrupt so that we are notified
 2114                  * when all TX commands have been processed.
 2115                  */
 2116                 txp = sc->cbl_last->next;
 2117                 txp->mb_head = NULL;
 2118                 txp->cb_status = 0;
 2119                 txp->cb_command = FXP_CB_COMMAND_NOP |
 2120                     FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
 2121                 /*
 2122                  * Advance the end of list forward.
 2123                  */
 2124                 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
 2125                 sc->cbl_last = txp;
 2126                 sc->tx_queued++;
 2127                 /*
 2128                  * Issue a resume in case the CU has just suspended.
 2129                  */
 2130                 fxp_scb_wait(sc);
 2131                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
 2132                 /*
 2133                  * Set a 5 second timer just in case we don't hear from the
 2134                  * card again.
 2135                  */
 2136                 ifp->if_timer = 5;
 2137 
 2138                 return;
 2139         }
 2140         sc->need_mcsetup = 0;
 2141 
 2142         /*
 2143          * Initialize multicast setup descriptor.
 2144          */
 2145         mcsp->next = sc->cbl_base;
 2146         mcsp->mb_head = NULL;
 2147         mcsp->cb_status = 0;
 2148         mcsp->cb_command = FXP_CB_COMMAND_MCAS |
 2149             FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
 2150         mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
 2151         (void) fxp_mc_addrs(sc);
 2152         sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
 2153         sc->tx_queued = 1;
 2154 
 2155         /*
 2156          * Wait until command unit is not active. This should never
 2157          * be the case when nothing is queued, but make sure anyway.
 2158          */
 2159         count = 100;
 2160         while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
 2161             FXP_SCB_CUS_ACTIVE && --count)
 2162                 DELAY(10);
 2163         if (count == 0) {
 2164                 device_printf(sc->dev, "command queue timeout\n");
 2165                 return;
 2166         }
 2167 
 2168         /*
 2169          * Start the multicast setup command.
 2170          */
 2171         fxp_scb_wait(sc);
 2172         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
 2173         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2174 
 2175         ifp->if_timer = 2;
 2176         return;
 2177 }
 2178 
 2179 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
 2180 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
 2181 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
 2182 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
 2183 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
 2184 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
 2185 
 2186 #define UCODE(x)        x, sizeof(x)
 2187 
 2188 struct ucode {
 2189         u_int32_t       revision;
 2190         u_int32_t       *ucode;
 2191         int             length;
 2192         u_short         int_delay_offset;
 2193         u_short         bundle_max_offset;
 2194 } ucode_table[] = {
 2195         { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
 2196         { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
 2197         { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
 2198             D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
 2199         { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
 2200             D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
 2201         { FXP_REV_82550, UCODE(fxp_ucode_d102),
 2202             D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
 2203         { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
 2204             D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
 2205         { 0, NULL, 0, 0, 0 }
 2206 };
 2207 
 2208 static void
 2209 fxp_load_ucode(struct fxp_softc *sc)
 2210 {
 2211         struct ucode *uc;
 2212         struct fxp_cb_ucode *cbp;
 2213 
 2214         for (uc = ucode_table; uc->ucode != NULL; uc++)
 2215                 if (sc->revision == uc->revision)
 2216                         break;
 2217         if (uc->ucode == NULL)
 2218                 return;
 2219         cbp = (struct fxp_cb_ucode *)sc->cbl_base;
 2220         cbp->cb_status = 0;
 2221         cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
 2222         cbp->link_addr = -1;            /* (no) next command */
 2223         memcpy(cbp->ucode, uc->ucode, uc->length);
 2224         if (uc->int_delay_offset)
 2225                 *(u_short *)&cbp->ucode[uc->int_delay_offset] =
 2226                     sc->tunable_int_delay + sc->tunable_int_delay / 2;
 2227         if (uc->bundle_max_offset)
 2228                 *(u_short *)&cbp->ucode[uc->bundle_max_offset] =
 2229                     sc->tunable_bundle_max;
 2230         /*
 2231          * Download the ucode to the chip.
 2232          */
 2233         fxp_scb_wait(sc);
 2234         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
 2235         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2236         /* ...and wait for it to complete. */
 2237         fxp_dma_wait(&cbp->cb_status, sc);
 2238         device_printf(sc->dev,
 2239             "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
 2240             sc->tunable_int_delay, 
 2241             uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
 2242         sc->flags |= FXP_FLAG_UCODE;
 2243 }
 2244 
 2245 static int
 2246 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 2247 {
 2248         int error, value;
 2249 
 2250         value = *(int *)arg1;
 2251         error = sysctl_handle_int(oidp, &value, 0, req);
 2252         if (error || !req->newptr)
 2253                 return (error);
 2254         if (value < low || value > high)
 2255                 return (EINVAL);
 2256         *(int *)arg1 = value;
 2257         return (0);
 2258 }
 2259 
 2260 /*
 2261  * Interrupt delay is expressed in microseconds, a multiplier is used
 2262  * to convert this to the appropriate clock ticks before using. 
 2263  */
 2264 static int
 2265 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
 2266 {
 2267         return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
 2268 }
 2269 
 2270 static int
 2271 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
 2272 {
 2273         return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
 2274 }

Cache object: 43346e1e3724cbe5636a4c14f4ef36c3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.