The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/fxp/if_fxp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1995, David Greenman
    3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice unmodified, this list of conditions, and the following
   11  *    disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/6.4/sys/dev/fxp/if_fxp.c 168629 2007-04-11 17:13:16Z remko $");
   32 
   33 /*
   34  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
   35  */
   36 
   37 #ifdef HAVE_KERNEL_OPTION_HEADERS
   38 #include "opt_device_polling.h"
   39 #endif
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/endian.h>
   44 #include <sys/mbuf.h>
   45                 /* #include <sys/mutex.h> */
   46 #include <sys/kernel.h>
   47 #include <sys/module.h>
   48 #include <sys/socket.h>
   49 #include <sys/sysctl.h>
   50 
   51 #include <net/if.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_media.h>
   54 
   55 #include <net/bpf.h>
   56 #include <sys/sockio.h>
   57 #include <sys/bus.h>
   58 #include <machine/bus.h>
   59 #include <sys/rman.h>
   60 #include <machine/resource.h>
   61 
   62 #include <net/ethernet.h>
   63 #include <net/if_arp.h>
   64 
   65 #include <machine/clock.h>      /* for DELAY */
   66 
   67 #include <net/if_types.h>
   68 #include <net/if_vlan_var.h>
   69 
   70 #ifdef FXP_IP_CSUM_WAR
   71 #include <netinet/in.h>
   72 #include <netinet/in_systm.h>
   73 #include <netinet/ip.h>
   74 #include <machine/in_cksum.h>
   75 #endif
   76 
   77 #include <dev/pci/pcivar.h>
   78 #include <dev/pci/pcireg.h>             /* for PCIM_CMD_xxx */
   79 
   80 #include <dev/mii/mii.h>
   81 #include <dev/mii/miivar.h>
   82 
   83 #include <dev/fxp/if_fxpreg.h>
   84 #include <dev/fxp/if_fxpvar.h>
   85 #include <dev/fxp/rcvbundl.h>
   86 
   87 MODULE_DEPEND(fxp, pci, 1, 1, 1);
   88 MODULE_DEPEND(fxp, ether, 1, 1, 1);
   89 MODULE_DEPEND(fxp, miibus, 1, 1, 1);
   90 #include "miibus_if.h"
   91 
   92 /*
   93  * NOTE!  On the Alpha, we have an alignment constraint.  The
   94  * card DMAs the packet immediately following the RFA.  However,
   95  * the first thing in the packet is a 14-byte Ethernet header.
   96  * This means that the packet is misaligned.  To compensate,
   97  * we actually offset the RFA 2 bytes into the cluster.  This
   98  * alignes the packet after the Ethernet header at a 32-bit
   99  * boundary.  HOWEVER!  This means that the RFA is misaligned!
  100  */
  101 #define RFA_ALIGNMENT_FUDGE     2
  102 
  103 /*
  104  * Set initial transmit threshold at 64 (512 bytes). This is
  105  * increased by 64 (512 bytes) at a time, to maximum of 192
  106  * (1536 bytes), if an underrun occurs.
  107  */
  108 static int tx_threshold = 64;
  109 
  110 /*
  111  * The configuration byte map has several undefined fields which
  112  * must be one or must be zero.  Set up a template for these bits
  113  * only, (assuming a 82557 chip) leaving the actual configuration
  114  * to fxp_init.
  115  *
  116  * See struct fxp_cb_config for the bit definitions.
  117  */
  118 static u_char fxp_cb_config_template[] = {
  119         0x0, 0x0,               /* cb_status */
  120         0x0, 0x0,               /* cb_command */
  121         0x0, 0x0, 0x0, 0x0,     /* link_addr */
  122         0x0,    /*  0 */
  123         0x0,    /*  1 */
  124         0x0,    /*  2 */
  125         0x0,    /*  3 */
  126         0x0,    /*  4 */
  127         0x0,    /*  5 */
  128         0x32,   /*  6 */
  129         0x0,    /*  7 */
  130         0x0,    /*  8 */
  131         0x0,    /*  9 */
  132         0x6,    /* 10 */
  133         0x0,    /* 11 */
  134         0x0,    /* 12 */
  135         0x0,    /* 13 */
  136         0xf2,   /* 14 */
  137         0x48,   /* 15 */
  138         0x0,    /* 16 */
  139         0x40,   /* 17 */
  140         0xf0,   /* 18 */
  141         0x0,    /* 19 */
  142         0x3f,   /* 20 */
  143         0x5     /* 21 */
  144 };
  145 
  146 struct fxp_ident {
  147         uint16_t        devid;
  148         int16_t         revid;          /* -1 matches anything */
  149         char            *name;
  150 };
  151 
  152 /*
  153  * Claim various Intel PCI device identifiers for this driver.  The
  154  * sub-vendor and sub-device field are extensively used to identify
  155  * particular variants, but we don't currently differentiate between
  156  * them.
  157  */
  158 static struct fxp_ident fxp_ident_table[] = {
  159     { 0x1029,   -1,     "Intel 82559 PCI/CardBus Pro/100" },
  160     { 0x1030,   -1,     "Intel 82559 Pro/100 Ethernet" },
  161     { 0x1031,   -1,     "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
  162     { 0x1032,   -1,     "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
  163     { 0x1033,   -1,     "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
  164     { 0x1034,   -1,     "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
  165     { 0x1035,   -1,     "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
  166     { 0x1036,   -1,     "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
  167     { 0x1037,   -1,     "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
  168     { 0x1038,   -1,     "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
  169     { 0x1039,   -1,     "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
  170     { 0x103A,   -1,     "Intel 82801DB (ICH4) Pro/100 Ethernet" },
  171     { 0x103B,   -1,     "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
  172     { 0x103C,   -1,     "Intel 82801DB (ICH4) Pro/100 Ethernet" },
  173     { 0x103D,   -1,     "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
  174     { 0x103E,   -1,     "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
  175     { 0x1050,   -1,     "Intel 82801BA (D865) Pro/100 VE Ethernet" },
  176     { 0x1051,   -1,     "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
  177     { 0x1059,   -1,     "Intel 82551QM Pro/100 M Mobile Connection" },
  178     { 0x1064,   -1,     "Intel 82562EZ (ICH6)" },
  179     { 0x1065,   -1,     "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
  180     { 0x1068,   -1,     "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
  181     { 0x1069,   -1,     "Intel 82562EM/EX/GX Pro/100 Ethernet" },
  182     { 0x1091,   -1,     "Intel 82562GX Pro/100 Ethernet" },
  183     { 0x1092,   -1,     "Intel Pro/100 VE Network Connection" },
  184     { 0x1093,   -1,     "Intel Pro/100 VM Network Connection" },
  185     { 0x1094,   -1,     "Intel Pro/100 946GZ (ICH7) Network Connection" },
  186     { 0x1209,   -1,     "Intel 82559ER Embedded 10/100 Ethernet" },
  187     { 0x1229,   0x01,   "Intel 82557 Pro/100 Ethernet" },
  188     { 0x1229,   0x02,   "Intel 82557 Pro/100 Ethernet" },
  189     { 0x1229,   0x03,   "Intel 82557 Pro/100 Ethernet" },
  190     { 0x1229,   0x04,   "Intel 82558 Pro/100 Ethernet" },
  191     { 0x1229,   0x05,   "Intel 82558 Pro/100 Ethernet" },
  192     { 0x1229,   0x06,   "Intel 82559 Pro/100 Ethernet" },
  193     { 0x1229,   0x07,   "Intel 82559 Pro/100 Ethernet" },
  194     { 0x1229,   0x08,   "Intel 82559 Pro/100 Ethernet" },
  195     { 0x1229,   0x09,   "Intel 82559ER Pro/100 Ethernet" },
  196     { 0x1229,   0x0c,   "Intel 82550 Pro/100 Ethernet" },
  197     { 0x1229,   0x0d,   "Intel 82550 Pro/100 Ethernet" },
  198     { 0x1229,   0x0e,   "Intel 82550 Pro/100 Ethernet" },
  199     { 0x1229,   0x0f,   "Intel 82551 Pro/100 Ethernet" },
  200     { 0x1229,   0x10,   "Intel 82551 Pro/100 Ethernet" },
  201     { 0x1229,   -1,     "Intel 82557/8/9 Pro/100 Ethernet" },
  202     { 0x2449,   -1,     "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
  203     { 0x27dc,   -1,     "Intel 82801GB (ICH7) 10/100 Ethernet" },
  204     { 0,        -1,     NULL },
  205 };
  206 
  207 #ifdef FXP_IP_CSUM_WAR
  208 #define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
  209 #else
  210 #define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
  211 #endif
  212 
  213 static int              fxp_probe(device_t dev);
  214 static int              fxp_attach(device_t dev);
  215 static int              fxp_detach(device_t dev);
  216 static int              fxp_shutdown(device_t dev);
  217 static int              fxp_suspend(device_t dev);
  218 static int              fxp_resume(device_t dev);
  219 
  220 static void             fxp_intr(void *xsc);
  221 static void             fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
  222                             uint8_t statack, int count);
  223 static void             fxp_init(void *xsc);
  224 static void             fxp_init_body(struct fxp_softc *sc);
  225 static void             fxp_tick(void *xsc);
  226 static void             fxp_start(struct ifnet *ifp);
  227 static void             fxp_start_body(struct ifnet *ifp);
  228 static int              fxp_encap(struct fxp_softc *sc, struct mbuf *m_head);
  229 static void             fxp_stop(struct fxp_softc *sc);
  230 static void             fxp_release(struct fxp_softc *sc);
  231 static int              fxp_ioctl(struct ifnet *ifp, u_long command,
  232                             caddr_t data);
  233 static void             fxp_watchdog(struct ifnet *ifp);
  234 static int              fxp_add_rfabuf(struct fxp_softc *sc,
  235                             struct fxp_rx *rxp);
  236 static int              fxp_mc_addrs(struct fxp_softc *sc);
  237 static void             fxp_mc_setup(struct fxp_softc *sc);
  238 static uint16_t         fxp_eeprom_getword(struct fxp_softc *sc, int offset,
  239                             int autosize);
  240 static void             fxp_eeprom_putword(struct fxp_softc *sc, int offset,
  241                             uint16_t data);
  242 static void             fxp_autosize_eeprom(struct fxp_softc *sc);
  243 static void             fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
  244                             int offset, int words);
  245 static void             fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
  246                             int offset, int words);
  247 static int              fxp_ifmedia_upd(struct ifnet *ifp);
  248 static void             fxp_ifmedia_sts(struct ifnet *ifp,
  249                             struct ifmediareq *ifmr);
  250 static int              fxp_serial_ifmedia_upd(struct ifnet *ifp);
  251 static void             fxp_serial_ifmedia_sts(struct ifnet *ifp,
  252                             struct ifmediareq *ifmr);
  253 static volatile int     fxp_miibus_readreg(device_t dev, int phy, int reg);
  254 static void             fxp_miibus_writereg(device_t dev, int phy, int reg,
  255                             int value);
  256 static void             fxp_load_ucode(struct fxp_softc *sc);
  257 static int              sysctl_int_range(SYSCTL_HANDLER_ARGS,
  258                             int low, int high);
  259 static int              sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
  260 static int              sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
  261 static void             fxp_scb_wait(struct fxp_softc *sc);
  262 static void             fxp_scb_cmd(struct fxp_softc *sc, int cmd);
  263 static void             fxp_dma_wait(struct fxp_softc *sc,
  264                             volatile uint16_t *status, bus_dma_tag_t dmat,
  265                             bus_dmamap_t map);
  266 
  267 static device_method_t fxp_methods[] = {
  268         /* Device interface */
  269         DEVMETHOD(device_probe,         fxp_probe),
  270         DEVMETHOD(device_attach,        fxp_attach),
  271         DEVMETHOD(device_detach,        fxp_detach),
  272         DEVMETHOD(device_shutdown,      fxp_shutdown),
  273         DEVMETHOD(device_suspend,       fxp_suspend),
  274         DEVMETHOD(device_resume,        fxp_resume),
  275 
  276         /* MII interface */
  277         DEVMETHOD(miibus_readreg,       fxp_miibus_readreg),
  278         DEVMETHOD(miibus_writereg,      fxp_miibus_writereg),
  279 
  280         { 0, 0 }
  281 };
  282 
  283 static driver_t fxp_driver = {
  284         "fxp",
  285         fxp_methods,
  286         sizeof(struct fxp_softc),
  287 };
  288 
  289 static devclass_t fxp_devclass;
  290 
  291 DRIVER_MODULE(fxp, pci, fxp_driver, fxp_devclass, 0, 0);
  292 DRIVER_MODULE(fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
  293 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
  294 
  295 /*
  296  * Wait for the previous command to be accepted (but not necessarily
  297  * completed).
  298  */
  299 static void
  300 fxp_scb_wait(struct fxp_softc *sc)
  301 {
  302         union {
  303                 uint16_t w;
  304                 uint8_t b[2];
  305         } flowctl;
  306         int i = 10000;
  307 
  308         while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
  309                 DELAY(2);
  310         if (i == 0) {
  311                 flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL);
  312                 flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FLOWCONTROL + 1);
  313                 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
  314                     CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
  315                     CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
  316                     CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
  317         }
  318 }
  319 
  320 static void
  321 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
  322 {
  323 
  324         if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
  325                 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
  326                 fxp_scb_wait(sc);
  327         }
  328         CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
  329 }
  330 
  331 static void
  332 fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
  333     bus_dma_tag_t dmat, bus_dmamap_t map)
  334 {
  335         int i = 10000;
  336 
  337         bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
  338         while (!(le16toh(*status) & FXP_CB_STATUS_C) && --i) {
  339                 DELAY(2);
  340                 bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD);
  341         }
  342         if (i == 0)
  343                 device_printf(sc->dev, "DMA timeout\n");
  344 }
  345 
  346 /*
  347  * Return identification string if this device is ours.
  348  */
  349 static int
  350 fxp_probe(device_t dev)
  351 {
  352         uint16_t devid;
  353         uint8_t revid;
  354         struct fxp_ident *ident;
  355 
  356         if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
  357                 devid = pci_get_device(dev);
  358                 revid = pci_get_revid(dev);
  359                 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
  360                         if (ident->devid == devid &&
  361                             (ident->revid == revid || ident->revid == -1)) {
  362                                 device_set_desc(dev, ident->name);
  363                                 return (BUS_PROBE_DEFAULT);
  364                         }
  365                 }
  366         }
  367         return (ENXIO);
  368 }
  369 
  370 static void
  371 fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  372 {
  373         uint32_t *addr;
  374 
  375         if (error)
  376                 return;
  377 
  378         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
  379         addr = arg;
  380         *addr = segs->ds_addr;
  381 }
  382 
  383 static int
  384 fxp_attach(device_t dev)
  385 {
  386         struct fxp_softc *sc;
  387         struct fxp_cb_tx *tcbp;
  388         struct fxp_tx *txp;
  389         struct fxp_rx *rxp;
  390         struct ifnet *ifp;
  391         uint32_t val;
  392         uint16_t data, myea[ETHER_ADDR_LEN / 2];
  393         u_char eaddr[ETHER_ADDR_LEN];
  394         int i, rid, m1, m2, prefer_iomap;
  395         int error;
  396 
  397         error = 0;
  398         sc = device_get_softc(dev);
  399         sc->dev = dev;
  400         mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  401             MTX_DEF);
  402         callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
  403         ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
  404             fxp_serial_ifmedia_sts);
  405 
  406         ifp = sc->ifp = if_alloc(IFT_ETHER);
  407         if (ifp == NULL) {
  408                 device_printf(dev, "can not if_alloc()\n");
  409                 error = ENOSPC;
  410                 goto fail;
  411         }
  412 
  413         /*
  414          * Enable bus mastering.
  415          */
  416         pci_enable_busmaster(dev);
  417         val = pci_read_config(dev, PCIR_COMMAND, 2);
  418 
  419         /*
  420          * Figure out which we should try first - memory mapping or i/o mapping?
  421          * We default to memory mapping. Then we accept an override from the
  422          * command line. Then we check to see which one is enabled.
  423          */
  424         m1 = PCIM_CMD_MEMEN;
  425         m2 = PCIM_CMD_PORTEN;
  426         prefer_iomap = 0;
  427         if (resource_int_value(device_get_name(dev), device_get_unit(dev),
  428             "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
  429                 m1 = PCIM_CMD_PORTEN;
  430                 m2 = PCIM_CMD_MEMEN;
  431         }
  432 
  433         sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
  434         sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
  435         sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE);
  436         if (sc->mem == NULL) {
  437                 sc->rtp =
  438                     (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
  439                 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
  440                 sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
  441                                             RF_ACTIVE);
  442         }
  443 
  444         if (!sc->mem) {
  445                 error = ENXIO;
  446                 goto fail;
  447         }
  448         if (bootverbose) {
  449                 device_printf(dev, "using %s space register mapping\n",
  450                    sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
  451         }
  452 
  453         sc->sc_st = rman_get_bustag(sc->mem);
  454         sc->sc_sh = rman_get_bushandle(sc->mem);
  455 
  456         /*
  457          * Allocate our interrupt.
  458          */
  459         rid = 0;
  460         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
  461                                  RF_SHAREABLE | RF_ACTIVE);
  462         if (sc->irq == NULL) {
  463                 device_printf(dev, "could not map interrupt\n");
  464                 error = ENXIO;
  465                 goto fail;
  466         }
  467 
  468         /*
  469          * Reset to a stable state.
  470          */
  471         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
  472         DELAY(10);
  473 
  474         /*
  475          * Find out how large of an SEEPROM we have.
  476          */
  477         fxp_autosize_eeprom(sc);
  478 
  479         /*
  480          * Find out the chip revision; lump all 82557 revs together.
  481          */
  482         fxp_read_eeprom(sc, &data, 5, 1);
  483         if ((data >> 8) == 1)
  484                 sc->revision = FXP_REV_82557;
  485         else
  486                 sc->revision = pci_get_revid(dev);
  487 
  488         /*
  489          * Determine whether we must use the 503 serial interface.
  490          */
  491         fxp_read_eeprom(sc, &data, 6, 1);
  492         if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
  493             && (data & FXP_PHY_SERIAL_ONLY))
  494                 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
  495 
  496         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
  497             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  498             OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
  499             &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
  500             "FXP driver receive interrupt microcode bundling delay");
  501         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
  502             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  503             OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
  504             &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
  505             "FXP driver receive interrupt microcode bundle size limit");
  506         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
  507             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  508             OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
  509             "FXP RNR events");
  510         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
  511             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
  512             OID_AUTO, "noflow", CTLFLAG_RW, &sc->tunable_noflow, 0,
  513             "FXP flow control disabled");
  514 
  515         /*
  516          * Pull in device tunables.
  517          */
  518         sc->tunable_int_delay = TUNABLE_INT_DELAY;
  519         sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
  520         sc->tunable_noflow = 1;
  521         (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
  522             "int_delay", &sc->tunable_int_delay);
  523         (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
  524             "bundle_max", &sc->tunable_bundle_max);
  525         (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
  526             "noflow", &sc->tunable_noflow);
  527         sc->rnr = 0;
  528 
  529         /*
  530          * Enable workarounds for certain chip revision deficiencies.
  531          *
  532          * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
  533          * some systems based a normal 82559 design, have a defect where
  534          * the chip can cause a PCI protocol violation if it receives
  535          * a CU_RESUME command when it is entering the IDLE state.  The 
  536          * workaround is to disable Dynamic Standby Mode, so the chip never
  537          * deasserts CLKRUN#, and always remains in an active state.
  538          *
  539          * See Intel 82801BA/82801BAM Specification Update, Errata #30.
  540          */
  541         i = pci_get_device(dev);
  542         if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
  543             sc->revision >= FXP_REV_82559_A0) {
  544                 fxp_read_eeprom(sc, &data, 10, 1);
  545                 if (data & 0x02) {                      /* STB enable */
  546                         uint16_t cksum;
  547                         int i;
  548 
  549                         device_printf(dev,
  550                             "Disabling dynamic standby mode in EEPROM\n");
  551                         data &= ~0x02;
  552                         fxp_write_eeprom(sc, &data, 10, 1);
  553                         device_printf(dev, "New EEPROM ID: 0x%x\n", data);
  554                         cksum = 0;
  555                         for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
  556                                 fxp_read_eeprom(sc, &data, i, 1);
  557                                 cksum += data;
  558                         }
  559                         i = (1 << sc->eeprom_size) - 1;
  560                         cksum = 0xBABA - cksum;
  561                         fxp_read_eeprom(sc, &data, i, 1);
  562                         fxp_write_eeprom(sc, &cksum, i, 1);
  563                         device_printf(dev,
  564                             "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
  565                             i, data, cksum);
  566 #if 1
  567                         /*
  568                          * If the user elects to continue, try the software
  569                          * workaround, as it is better than nothing.
  570                          */
  571                         sc->flags |= FXP_FLAG_CU_RESUME_BUG;
  572 #endif
  573                 }
  574         }
  575 
  576         /*
  577          * If we are not a 82557 chip, we can enable extended features.
  578          */
  579         if (sc->revision != FXP_REV_82557) {
  580                 /*
  581                  * If MWI is enabled in the PCI configuration, and there
  582                  * is a valid cacheline size (8 or 16 dwords), then tell
  583                  * the board to turn on MWI.
  584                  */
  585                 if (val & PCIM_CMD_MWRICEN &&
  586                     pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
  587                         sc->flags |= FXP_FLAG_MWI_ENABLE;
  588 
  589                 /* turn on the extended TxCB feature */
  590                 sc->flags |= FXP_FLAG_EXT_TXCB;
  591 
  592                 /* enable reception of long frames for VLAN */
  593                 sc->flags |= FXP_FLAG_LONG_PKT_EN;
  594         } else {
  595                 /* a hack to get long VLAN frames on a 82557 */
  596                 sc->flags |= FXP_FLAG_SAVE_BAD;
  597         }
  598 
  599         /*
  600          * Enable use of extended RFDs and TCBs for 82550
  601          * and later chips. Note: we need extended TXCB support
  602          * too, but that's already enabled by the code above.
  603          * Be careful to do this only on the right devices.
  604          */
  605         if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
  606             sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
  607             || sc->revision == FXP_REV_82551_10) {
  608                 sc->rfa_size = sizeof (struct fxp_rfa);
  609                 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
  610                 sc->flags |= FXP_FLAG_EXT_RFA;
  611         } else {
  612                 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
  613                 sc->tx_cmd = FXP_CB_COMMAND_XMIT;
  614         }
  615 
  616         /*
  617          * Allocate DMA tags and DMA safe memory.
  618          */
  619         sc->maxtxseg = FXP_NTXSEG;
  620         if (sc->flags & FXP_FLAG_EXT_RFA)
  621                 sc->maxtxseg--;
  622         error = bus_dma_tag_create(NULL, 2, 0, BUS_SPACE_MAXADDR_32BIT,
  623             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * sc->maxtxseg,
  624             sc->maxtxseg, MCLBYTES, 0, busdma_lock_mutex, &Giant,
  625             &sc->fxp_mtag);
  626         if (error) {
  627                 device_printf(dev, "could not allocate dma tag\n");
  628                 goto fail;
  629         }
  630 
  631         error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
  632             BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1,
  633             sizeof(struct fxp_stats), 0, busdma_lock_mutex, &Giant,
  634             &sc->fxp_stag);
  635         if (error) {
  636                 device_printf(dev, "could not allocate dma tag\n");
  637                 goto fail;
  638         }
  639 
  640         error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
  641             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fxp_smap);
  642         if (error)
  643                 goto fail;
  644         error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
  645             sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, 0);
  646         if (error) {
  647                 device_printf(dev, "could not map the stats buffer\n");
  648                 goto fail;
  649         }
  650 
  651         error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
  652             BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1,
  653             FXP_TXCB_SZ, 0, busdma_lock_mutex, &Giant, &sc->cbl_tag);
  654         if (error) {
  655                 device_printf(dev, "could not allocate dma tag\n");
  656                 goto fail;
  657         }
  658 
  659         error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
  660             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->cbl_map);
  661         if (error)
  662                 goto fail;
  663 
  664         error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
  665             sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
  666             &sc->fxp_desc.cbl_addr, 0);
  667         if (error) {
  668                 device_printf(dev, "could not map DMA memory\n");
  669                 goto fail;
  670         }
  671 
  672         error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
  673             BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1,
  674             sizeof(struct fxp_cb_mcs), 0, busdma_lock_mutex, &Giant,
  675             &sc->mcs_tag);
  676         if (error) {
  677                 device_printf(dev, "could not allocate dma tag\n");
  678                 goto fail;
  679         }
  680 
  681         error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
  682             BUS_DMA_NOWAIT, &sc->mcs_map);
  683         if (error)
  684                 goto fail;
  685         error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
  686             sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, 0);
  687         if (error) {
  688                 device_printf(dev, "can't map the multicast setup command\n");
  689                 goto fail;
  690         }
  691 
  692         /*
  693          * Pre-allocate the TX DMA maps and setup the pointers to
  694          * the TX command blocks.
  695          */
  696         txp = sc->fxp_desc.tx_list;
  697         tcbp = sc->fxp_desc.cbl_list;
  698         for (i = 0; i < FXP_NTXCB; i++) {
  699                 txp[i].tx_cb = tcbp + i;
  700                 error = bus_dmamap_create(sc->fxp_mtag, 0, &txp[i].tx_map);
  701                 if (error) {
  702                         device_printf(dev, "can't create DMA map for TX\n");
  703                         goto fail;
  704                 }
  705         }
  706         error = bus_dmamap_create(sc->fxp_mtag, 0, &sc->spare_map);
  707         if (error) {
  708                 device_printf(dev, "can't create spare DMA map\n");
  709                 goto fail;
  710         }
  711 
  712         /*
  713          * Pre-allocate our receive buffers.
  714          */
  715         sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
  716         for (i = 0; i < FXP_NRFABUFS; i++) {
  717                 rxp = &sc->fxp_desc.rx_list[i];
  718                 error = bus_dmamap_create(sc->fxp_mtag, 0, &rxp->rx_map);
  719                 if (error) {
  720                         device_printf(dev, "can't create DMA map for RX\n");
  721                         goto fail;
  722                 }
  723                 if (fxp_add_rfabuf(sc, rxp) != 0) {
  724                         error = ENOMEM;
  725                         goto fail;
  726                 }
  727         }
  728 
  729         /*
  730          * Read MAC address.
  731          */
  732         fxp_read_eeprom(sc, myea, 0, 3);
  733         eaddr[0] = myea[0] & 0xff;
  734         eaddr[1] = myea[0] >> 8;
  735         eaddr[2] = myea[1] & 0xff;
  736         eaddr[3] = myea[1] >> 8;
  737         eaddr[4] = myea[2] & 0xff;
  738         eaddr[5] = myea[2] >> 8;
  739         if (bootverbose) {
  740                 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
  741                     pci_get_vendor(dev), pci_get_device(dev),
  742                     pci_get_subvendor(dev), pci_get_subdevice(dev),
  743                     pci_get_revid(dev));
  744                 fxp_read_eeprom(sc, &data, 10, 1);
  745                 device_printf(dev, "Dynamic Standby mode is %s\n",
  746                     data & 0x02 ? "enabled" : "disabled");
  747         }
  748 
  749         /*
  750          * If this is only a 10Mbps device, then there is no MII, and
  751          * the PHY will use a serial interface instead.
  752          *
  753          * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
  754          * doesn't have a programming interface of any sort.  The
  755          * media is sensed automatically based on how the link partner
  756          * is configured.  This is, in essence, manual configuration.
  757          */
  758         if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
  759                 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
  760                 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
  761         } else {
  762                 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
  763                     fxp_ifmedia_sts)) {
  764                         device_printf(dev, "MII without any PHY!\n");
  765                         error = ENXIO;
  766                         goto fail;
  767                 }
  768         }
  769 
  770         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  771         ifp->if_init = fxp_init;
  772         ifp->if_softc = sc;
  773         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  774         ifp->if_ioctl = fxp_ioctl;
  775         ifp->if_start = fxp_start;
  776         ifp->if_watchdog = fxp_watchdog;
  777 
  778         ifp->if_capabilities = ifp->if_capenable = 0;
  779 
  780         /* Enable checksum offload for 82550 or better chips */
  781         if (sc->flags & FXP_FLAG_EXT_RFA) {
  782                 ifp->if_hwassist = FXP_CSUM_FEATURES;
  783                 ifp->if_capabilities |= IFCAP_HWCSUM;
  784                 ifp->if_capenable |= IFCAP_HWCSUM;
  785         }
  786 
  787 #ifdef DEVICE_POLLING
  788         /* Inform the world we support polling. */
  789         ifp->if_capabilities |= IFCAP_POLLING;
  790 #endif
  791 
  792         /*
  793          * Attach the interface.
  794          */
  795         ether_ifattach(ifp, eaddr);
  796 
  797         /*
  798          * Tell the upper layer(s) we support long frames.
  799          * Must appear after the call to ether_ifattach() because
  800          * ether_ifattach() sets ifi_hdrlen to the default value.
  801          */
  802         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  803         ifp->if_capabilities |= IFCAP_VLAN_MTU;
  804         ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
  805 
  806         /*
  807          * Let the system queue as many packets as we have available
  808          * TX descriptors.
  809          */
  810         IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
  811         ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
  812         IFQ_SET_READY(&ifp->if_snd);
  813 
  814         /* 
  815          * Hook our interrupt after all initialization is complete.
  816          */
  817         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
  818                                fxp_intr, sc, &sc->ih);
  819         if (error) {
  820                 device_printf(dev, "could not setup irq\n");
  821                 ether_ifdetach(sc->ifp);
  822                 goto fail;
  823         }
  824 
  825 fail:
  826         if (error)
  827                 fxp_release(sc);
  828         return (error);
  829 }
  830 
  831 /*
  832  * Release all resources.  The softc lock should not be held and the
  833  * interrupt should already be torn down.
  834  */
  835 static void
  836 fxp_release(struct fxp_softc *sc)
  837 {
  838         struct fxp_rx *rxp;
  839         struct fxp_tx *txp;
  840         int i;
  841 
  842         FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
  843         KASSERT(sc->ih == NULL,
  844             ("fxp_release() called with intr handle still active"));
  845         if (sc->miibus)
  846                 device_delete_child(sc->dev, sc->miibus);
  847         bus_generic_detach(sc->dev);
  848         ifmedia_removeall(&sc->sc_media);
  849         if (sc->fxp_desc.cbl_list) {
  850                 bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
  851                 bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
  852                     sc->cbl_map);
  853         }
  854         if (sc->fxp_stats) {
  855                 bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
  856                 bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
  857         }
  858         if (sc->mcsp) {
  859                 bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
  860                 bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
  861         }
  862         if (sc->irq)
  863                 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
  864         if (sc->mem)
  865                 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
  866         if (sc->fxp_mtag) {
  867                 for (i = 0; i < FXP_NRFABUFS; i++) {
  868                         rxp = &sc->fxp_desc.rx_list[i];
  869                         if (rxp->rx_mbuf != NULL) {
  870                                 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
  871                                     BUS_DMASYNC_POSTREAD);
  872                                 bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
  873                                 m_freem(rxp->rx_mbuf);
  874                         }
  875                         bus_dmamap_destroy(sc->fxp_mtag, rxp->rx_map);
  876                 }
  877                 bus_dmamap_destroy(sc->fxp_mtag, sc->spare_map);
  878                 for (i = 0; i < FXP_NTXCB; i++) {
  879                         txp = &sc->fxp_desc.tx_list[i];
  880                         if (txp->tx_mbuf != NULL) {
  881                                 bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
  882                                     BUS_DMASYNC_POSTWRITE);
  883                                 bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
  884                                 m_freem(txp->tx_mbuf);
  885                         }
  886                         bus_dmamap_destroy(sc->fxp_mtag, txp->tx_map);
  887                 }
  888                 bus_dma_tag_destroy(sc->fxp_mtag);
  889         }
  890         if (sc->fxp_stag)
  891                 bus_dma_tag_destroy(sc->fxp_stag);
  892         if (sc->cbl_tag)
  893                 bus_dma_tag_destroy(sc->cbl_tag);
  894         if (sc->mcs_tag)
  895                 bus_dma_tag_destroy(sc->mcs_tag);
  896         if (sc->ifp)
  897                 if_free(sc->ifp);
  898 
  899         mtx_destroy(&sc->sc_mtx);
  900 }
  901 
  902 /*
  903  * Detach interface.
  904  */
  905 static int
  906 fxp_detach(device_t dev)
  907 {
  908         struct fxp_softc *sc = device_get_softc(dev);
  909 
  910 #ifdef DEVICE_POLLING
  911         if (sc->ifp->if_capenable & IFCAP_POLLING)   
  912                 ether_poll_deregister(sc->ifp);
  913 #endif
  914 
  915         FXP_LOCK(sc);
  916         sc->suspended = 1;      /* Do same thing as we do for suspend */
  917         /*
  918          * Stop DMA and drop transmit queue, but disable interrupts first.
  919          */
  920         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
  921         fxp_stop(sc);
  922         FXP_UNLOCK(sc);
  923         callout_drain(&sc->stat_ch);
  924 
  925         /*
  926          * Close down routes etc.
  927          */
  928         ether_ifdetach(sc->ifp);
  929 
  930         /*
  931          * Unhook interrupt before dropping lock. This is to prevent
  932          * races with fxp_intr().
  933          */
  934         bus_teardown_intr(sc->dev, sc->irq, sc->ih);
  935         sc->ih = NULL;
  936 
  937         /* Release our allocated resources. */
  938         fxp_release(sc);
  939         return (0);
  940 }
  941 
  942 /*
  943  * Device shutdown routine. Called at system shutdown after sync. The
  944  * main purpose of this routine is to shut off receiver DMA so that
  945  * kernel memory doesn't get clobbered during warmboot.
  946  */
  947 static int
  948 fxp_shutdown(device_t dev)
  949 {
  950         struct fxp_softc *sc = device_get_softc(dev);
  951 
  952         /*
  953          * Make sure that DMA is disabled prior to reboot. Not doing
  954          * do could allow DMA to corrupt kernel memory during the
  955          * reboot before the driver initializes.
  956          */
  957         FXP_LOCK(sc);
  958         fxp_stop(sc);
  959         FXP_UNLOCK(sc);
  960         return (0);
  961 }
  962 
  963 /*
  964  * Device suspend routine.  Stop the interface and save some PCI
  965  * settings in case the BIOS doesn't restore them properly on
  966  * resume.
  967  */
  968 static int
  969 fxp_suspend(device_t dev)
  970 {
  971         struct fxp_softc *sc = device_get_softc(dev);
  972 
  973         FXP_LOCK(sc);
  974 
  975         fxp_stop(sc);
  976         
  977         sc->suspended = 1;
  978 
  979         FXP_UNLOCK(sc);
  980         return (0);
  981 }
  982 
  983 /*
  984  * Device resume routine. re-enable busmastering, and restart the interface if
  985  * appropriate.
  986  */
  987 static int
  988 fxp_resume(device_t dev)
  989 {
  990         struct fxp_softc *sc = device_get_softc(dev);
  991         struct ifnet *ifp = sc->ifp;
  992 
  993         FXP_LOCK(sc);
  994 
  995         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
  996         DELAY(10);
  997 
  998         /* reinitialize interface if necessary */
  999         if (ifp->if_flags & IFF_UP)
 1000                 fxp_init_body(sc);
 1001 
 1002         sc->suspended = 0;
 1003 
 1004         FXP_UNLOCK(sc);
 1005         return (0);
 1006 }
 1007 
 1008 static void 
 1009 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
 1010 {
 1011         uint16_t reg;
 1012         int x;
 1013 
 1014         /*
 1015          * Shift in data.
 1016          */
 1017         for (x = 1 << (length - 1); x; x >>= 1) {
 1018                 if (data & x)
 1019                         reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
 1020                 else
 1021                         reg = FXP_EEPROM_EECS;
 1022                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
 1023                 DELAY(1);
 1024                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
 1025                 DELAY(1);
 1026                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
 1027                 DELAY(1);
 1028         }
 1029 }
 1030 
 1031 /*
 1032  * Read from the serial EEPROM. Basically, you manually shift in
 1033  * the read opcode (one bit at a time) and then shift in the address,
 1034  * and then you shift out the data (all of this one bit at a time).
 1035  * The word size is 16 bits, so you have to provide the address for
 1036  * every 16 bits of data.
 1037  */
 1038 static uint16_t
 1039 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
 1040 {
 1041         uint16_t reg, data;
 1042         int x;
 1043 
 1044         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
 1045         /*
 1046          * Shift in read opcode.
 1047          */
 1048         fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
 1049         /*
 1050          * Shift in address.
 1051          */
 1052         data = 0;
 1053         for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
 1054                 if (offset & x)
 1055                         reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
 1056                 else
 1057                         reg = FXP_EEPROM_EECS;
 1058                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
 1059                 DELAY(1);
 1060                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
 1061                 DELAY(1);
 1062                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
 1063                 DELAY(1);
 1064                 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
 1065                 data++;
 1066                 if (autosize && reg == 0) {
 1067                         sc->eeprom_size = data;
 1068                         break;
 1069                 }
 1070         }
 1071         /*
 1072          * Shift out data.
 1073          */
 1074         data = 0;
 1075         reg = FXP_EEPROM_EECS;
 1076         for (x = 1 << 15; x; x >>= 1) {
 1077                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
 1078                 DELAY(1);
 1079                 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
 1080                         data |= x;
 1081                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
 1082                 DELAY(1);
 1083         }
 1084         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
 1085         DELAY(1);
 1086 
 1087         return (data);
 1088 }
 1089 
 1090 static void
 1091 fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
 1092 {
 1093         int i;
 1094 
 1095         /*
 1096          * Erase/write enable.
 1097          */
 1098         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
 1099         fxp_eeprom_shiftin(sc, 0x4, 3);
 1100         fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
 1101         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
 1102         DELAY(1);
 1103         /*
 1104          * Shift in write opcode, address, data.
 1105          */
 1106         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
 1107         fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
 1108         fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
 1109         fxp_eeprom_shiftin(sc, data, 16);
 1110         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
 1111         DELAY(1);
 1112         /*
 1113          * Wait for EEPROM to finish up.
 1114          */
 1115         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
 1116         DELAY(1);
 1117         for (i = 0; i < 1000; i++) {
 1118                 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
 1119                         break;
 1120                 DELAY(50);
 1121         }
 1122         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
 1123         DELAY(1);
 1124         /*
 1125          * Erase/write disable.
 1126          */
 1127         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
 1128         fxp_eeprom_shiftin(sc, 0x4, 3);
 1129         fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
 1130         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
 1131         DELAY(1);
 1132 }
 1133 
 1134 /*
 1135  * From NetBSD:
 1136  *
 1137  * Figure out EEPROM size.
 1138  *
 1139  * 559's can have either 64-word or 256-word EEPROMs, the 558
 1140  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
 1141  * talks about the existance of 16 to 256 word EEPROMs.
 1142  *
 1143  * The only known sizes are 64 and 256, where the 256 version is used
 1144  * by CardBus cards to store CIS information.
 1145  *
 1146  * The address is shifted in msb-to-lsb, and after the last
 1147  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
 1148  * after which follows the actual data. We try to detect this zero, by
 1149  * probing the data-out bit in the EEPROM control register just after
 1150  * having shifted in a bit. If the bit is zero, we assume we've
 1151  * shifted enough address bits. The data-out should be tri-state,
 1152  * before this, which should translate to a logical one.
 1153  */
 1154 static void
 1155 fxp_autosize_eeprom(struct fxp_softc *sc)
 1156 {
 1157 
 1158         /* guess maximum size of 256 words */
 1159         sc->eeprom_size = 8;
 1160 
 1161         /* autosize */
 1162         (void) fxp_eeprom_getword(sc, 0, 1);
 1163 }
 1164 
 1165 static void
 1166 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
 1167 {
 1168         int i;
 1169 
 1170         for (i = 0; i < words; i++)
 1171                 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
 1172 }
 1173 
 1174 static void
 1175 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
 1176 {
 1177         int i;
 1178 
 1179         for (i = 0; i < words; i++)
 1180                 fxp_eeprom_putword(sc, offset + i, data[i]);
 1181 }
 1182 
 1183 /*
 1184  * Grab the softc lock and call the real fxp_start_body() routine
 1185  */
 1186 static void
 1187 fxp_start(struct ifnet *ifp)
 1188 {
 1189         struct fxp_softc *sc = ifp->if_softc;
 1190 
 1191         FXP_LOCK(sc);
 1192         fxp_start_body(ifp);
 1193         FXP_UNLOCK(sc);
 1194 }
 1195 
 1196 /*
 1197  * Start packet transmission on the interface.  
 1198  * This routine must be called with the softc lock held, and is an
 1199  * internal entry point only.
 1200  */
 1201 static void
 1202 fxp_start_body(struct ifnet *ifp)
 1203 {
 1204         struct fxp_softc *sc = ifp->if_softc;
 1205         struct mbuf *mb_head;
 1206         int error, txqueued;
 1207 
 1208         FXP_LOCK_ASSERT(sc, MA_OWNED);
 1209 
 1210         /*
 1211          * See if we need to suspend xmit until the multicast filter
 1212          * has been reprogrammed (which can only be done at the head
 1213          * of the command chain).
 1214          */
 1215         if (sc->need_mcsetup)
 1216                 return;
 1217 
 1218         /*
 1219          * We're finished if there is nothing more to add to the list or if
 1220          * we're all filled up with buffers to transmit.
 1221          * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
 1222          *       a NOP command when needed.
 1223          */
 1224         txqueued = 0;
 1225         while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 1226             sc->tx_queued < FXP_NTXCB - 1) {
 1227 
 1228                 /*
 1229                  * Grab a packet to transmit.
 1230                  */
 1231                 IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
 1232                 if (mb_head == NULL)
 1233                         break;
 1234 
 1235                 error = fxp_encap(sc, mb_head);
 1236                 if (error)
 1237                         break;
 1238                 txqueued = 1;
 1239         }
 1240         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
 1241 
 1242         /*
 1243          * We're finished. If we added to the list, issue a RESUME to get DMA
 1244          * going again if suspended.
 1245          */
 1246         if (txqueued) {
 1247                 fxp_scb_wait(sc);
 1248                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
 1249         }
 1250 }
 1251 
 1252 static int
 1253 fxp_encap(struct fxp_softc *sc, struct mbuf *m_head)
 1254 {
 1255         struct ifnet *ifp;
 1256         struct mbuf *m;
 1257         struct fxp_tx *txp;
 1258         struct fxp_cb_tx *cbp;
 1259         bus_dma_segment_t segs[FXP_NTXSEG];
 1260         int chainlen, error, i, nseg;
 1261 
 1262         FXP_LOCK_ASSERT(sc, MA_OWNED);
 1263         ifp = sc->ifp;
 1264 
 1265         /*
 1266          * Get pointer to next available tx desc.
 1267          */
 1268         txp = sc->fxp_desc.tx_last->tx_next;
 1269 
 1270         /*
 1271          * A note in Appendix B of the Intel 8255x 10/100 Mbps
 1272          * Ethernet Controller Family Open Source Software
 1273          * Developer Manual says:
 1274          *   Using software parsing is only allowed with legal
 1275          *   TCP/IP or UDP/IP packets.
 1276          *   ...
 1277          *   For all other datagrams, hardware parsing must
 1278          *   be used.
 1279          * Software parsing appears to truncate ICMP and
 1280          * fragmented UDP packets that contain one to three
 1281          * bytes in the second (and final) mbuf of the packet.
 1282          */
 1283         if (sc->flags & FXP_FLAG_EXT_RFA)
 1284                 txp->tx_cb->ipcb_ip_activation_high =
 1285                     FXP_IPCB_HARDWAREPARSING_ENABLE;
 1286 
 1287         /*
 1288          * Deal with TCP/IP checksum offload. Note that
 1289          * in order for TCP checksum offload to work,
 1290          * the pseudo header checksum must have already
 1291          * been computed and stored in the checksum field
 1292          * in the TCP header. The stack should have
 1293          * already done this for us.
 1294          */
 1295         if (m_head->m_pkthdr.csum_flags) {
 1296                 if (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 1297                         txp->tx_cb->ipcb_ip_schedule =
 1298                             FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
 1299                         if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
 1300                                 txp->tx_cb->ipcb_ip_schedule |=
 1301                                     FXP_IPCB_TCP_PACKET;
 1302                 }
 1303 
 1304 #ifdef FXP_IP_CSUM_WAR
 1305                 /*
 1306                  * XXX The 82550 chip appears to have trouble
 1307                  * dealing with IP header checksums in very small
 1308                  * datagrams, namely fragments from 1 to 3 bytes
 1309                  * in size. For example, say you want to transmit
 1310                  * a UDP packet of 1473 bytes. The packet will be
 1311                  * fragmented over two IP datagrams, the latter
 1312                  * containing only one byte of data. The 82550 will
 1313                  * botch the header checksum on the 1-byte fragment.
 1314                  * As long as the datagram contains 4 or more bytes
 1315                  * of data, you're ok.
 1316                  *
 1317                  * The following code attempts to work around this
 1318                  * problem: if the datagram is less than 38 bytes
 1319                  * in size (14 bytes ether header, 20 bytes IP header,
 1320                  * plus 4 bytes of data), we punt and compute the IP
 1321                  * header checksum by hand. This workaround doesn't
 1322                  * work very well, however, since it can be fooled
 1323                  * by things like VLAN tags and IP options that make
 1324                  * the header sizes/offsets vary.
 1325                  */
 1326 
 1327                 if (m_head->m_pkthdr.csum_flags & CSUM_IP) {
 1328                         if (m_head->m_pkthdr.len < 38) {
 1329                                 struct ip *ip;
 1330                                 m_head->m_data += ETHER_HDR_LEN;
 1331                                 ip = mtod(mb_head, struct ip *);
 1332                                 ip->ip_sum = in_cksum(mb_head, ip->ip_hl << 2);
 1333                                 m_head->m_data -= ETHER_HDR_LEN;
 1334                         } else {
 1335                                 txp->tx_cb->ipcb_ip_activation_high =
 1336                                     FXP_IPCB_HARDWAREPARSING_ENABLE;
 1337                                 txp->tx_cb->ipcb_ip_schedule |=
 1338                                     FXP_IPCB_IP_CHECKSUM_ENABLE;
 1339                         }
 1340                 }
 1341 #endif
 1342         }
 1343 
 1344         chainlen = 0;
 1345         for (m = m_head; m != NULL && chainlen <= sc->maxtxseg; m = m->m_next)
 1346                 chainlen++;
 1347         if (chainlen > sc->maxtxseg) {
 1348                 struct mbuf *mn;
 1349 
 1350                 /*
 1351                  * We ran out of segments. We have to recopy this
 1352                  * mbuf chain first. Bail out if we can't get the
 1353                  * new buffers.
 1354                  */
 1355                 mn = m_defrag(m_head, M_DONTWAIT);
 1356                 if (mn == NULL) {
 1357                         m_freem(m_head);
 1358                         return (-1);
 1359                 } else {
 1360                         m_head = mn;
 1361                 }
 1362         }
 1363 
 1364         /*
 1365          * Go through each of the mbufs in the chain and initialize
 1366          * the transmit buffer descriptors with the physical address
 1367          * and size of the mbuf.
 1368          */
 1369         error = bus_dmamap_load_mbuf_sg(sc->fxp_mtag, txp->tx_map,
 1370             m_head, segs, &nseg, 0);
 1371         if (error) {
 1372                 device_printf(sc->dev, "can't map mbuf (error %d)\n", error);
 1373                 m_freem(m_head);
 1374                 return (-1);
 1375         }
 1376 
 1377         KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
 1378 
 1379         cbp = txp->tx_cb;
 1380         for (i = 0; i < nseg; i++) {
 1381                 KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
 1382                 /*
 1383                  * If this is an 82550/82551, then we're using extended
 1384                  * TxCBs _and_ we're using checksum offload. This means
 1385                  * that the TxCB is really an IPCB. One major difference
 1386                  * between the two is that with plain extended TxCBs,
 1387                  * the bottom half of the TxCB contains two entries from
 1388                  * the TBD array, whereas IPCBs contain just one entry:
 1389                  * one entry (8 bytes) has been sacrificed for the TCP/IP
 1390                  * checksum offload control bits. So to make things work
 1391                  * right, we have to start filling in the TBD array
 1392                  * starting from a different place depending on whether
 1393                  * the chip is an 82550/82551 or not.
 1394                  */
 1395                 if (sc->flags & FXP_FLAG_EXT_RFA) {
 1396                         cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
 1397                         cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
 1398                 } else {
 1399                         cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
 1400                         cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
 1401                 }
 1402         }
 1403         cbp->tbd_number = nseg;
 1404 
 1405         bus_dmamap_sync(sc->fxp_mtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
 1406         txp->tx_mbuf = m_head;
 1407         txp->tx_cb->cb_status = 0;
 1408         txp->tx_cb->byte_count = 0;
 1409         if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
 1410                 txp->tx_cb->cb_command =
 1411                     htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
 1412                     FXP_CB_COMMAND_S);
 1413         } else {
 1414                 txp->tx_cb->cb_command =
 1415                     htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
 1416                     FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
 1417                 /*
 1418                  * Set a 5 second timer just in case we don't hear
 1419                  * from the card again.
 1420                  */
 1421                 ifp->if_timer = 5;
 1422         }
 1423         txp->tx_cb->tx_threshold = tx_threshold;
 1424 
 1425         /*
 1426          * Advance the end of list forward.
 1427          */
 1428 
 1429 #ifdef __alpha__
 1430         /*
 1431          * On platforms which can't access memory in 16-bit
 1432          * granularities, we must prevent the card from DMA'ing
 1433          * up the status while we update the command field.
 1434          * This could cause us to overwrite the completion status.
 1435          * XXX This is probably bogus and we're _not_ looking
 1436          * for atomicity here.
 1437          */
 1438         atomic_clear_16(&sc->fxp_desc.tx_last->tx_cb->cb_command,
 1439             htole16(FXP_CB_COMMAND_S));
 1440 #else
 1441         sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
 1442 #endif /*__alpha__*/
 1443         sc->fxp_desc.tx_last = txp;
 1444 
 1445         /*
 1446          * Advance the beginning of the list forward if there are
 1447          * no other packets queued (when nothing is queued, tx_first
 1448          * sits on the last TxCB that was sent out).
 1449          */
 1450         if (sc->tx_queued == 0)
 1451                 sc->fxp_desc.tx_first = txp;
 1452 
 1453         sc->tx_queued++;
 1454 
 1455         /*
 1456          * Pass packet to bpf if there is a listener.
 1457          */
 1458         BPF_MTAP(ifp, m_head);
 1459         return (0);
 1460 }
 1461 
 1462 #ifdef DEVICE_POLLING
 1463 static poll_handler_t fxp_poll;
 1464 
 1465 static void
 1466 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 1467 {
 1468         struct fxp_softc *sc = ifp->if_softc;
 1469         uint8_t statack;
 1470 
 1471         FXP_LOCK(sc);
 1472         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 1473                 FXP_UNLOCK(sc);
 1474                 return;
 1475         }
 1476 
 1477         statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
 1478             FXP_SCB_STATACK_FR;
 1479         if (cmd == POLL_AND_CHECK_STATUS) {
 1480                 uint8_t tmp;
 1481 
 1482                 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
 1483                 if (tmp == 0xff || tmp == 0) {
 1484                         FXP_UNLOCK(sc);
 1485                         return; /* nothing to do */
 1486                 }
 1487                 tmp &= ~statack;
 1488                 /* ack what we can */
 1489                 if (tmp != 0)
 1490                         CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
 1491                 statack |= tmp;
 1492         }
 1493         fxp_intr_body(sc, ifp, statack, count);
 1494         FXP_UNLOCK(sc);
 1495 }
 1496 #endif /* DEVICE_POLLING */
 1497 
 1498 /*
 1499  * Process interface interrupts.
 1500  */
 1501 static void
 1502 fxp_intr(void *xsc)
 1503 {
 1504         struct fxp_softc *sc = xsc;
 1505         struct ifnet *ifp = sc->ifp;
 1506         uint8_t statack;
 1507 
 1508         FXP_LOCK(sc);
 1509         if (sc->suspended) {
 1510                 FXP_UNLOCK(sc);
 1511                 return;
 1512         }
 1513 
 1514 #ifdef DEVICE_POLLING
 1515         if (ifp->if_capenable & IFCAP_POLLING) {
 1516                 FXP_UNLOCK(sc);
 1517                 return;
 1518         }
 1519 #endif
 1520         while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
 1521                 /*
 1522                  * It should not be possible to have all bits set; the
 1523                  * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If 
 1524                  * all bits are set, this may indicate that the card has
 1525                  * been physically ejected, so ignore it.
 1526                  */  
 1527                 if (statack == 0xff) {
 1528                         FXP_UNLOCK(sc);
 1529                         return;
 1530                 }
 1531 
 1532                 /*
 1533                  * First ACK all the interrupts in this pass.
 1534                  */
 1535                 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
 1536                 fxp_intr_body(sc, ifp, statack, -1);
 1537         }
 1538         FXP_UNLOCK(sc);
 1539 }
 1540 
 1541 static void
 1542 fxp_txeof(struct fxp_softc *sc)
 1543 {
 1544         struct fxp_tx *txp;
 1545 
 1546         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD);
 1547         for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
 1548             (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
 1549             txp = txp->tx_next) {
 1550                 if (txp->tx_mbuf != NULL) {
 1551                         bus_dmamap_sync(sc->fxp_mtag, txp->tx_map,
 1552                             BUS_DMASYNC_POSTWRITE);
 1553                         bus_dmamap_unload(sc->fxp_mtag, txp->tx_map);
 1554                         m_freem(txp->tx_mbuf);
 1555                         txp->tx_mbuf = NULL;
 1556                         /* clear this to reset csum offload bits */
 1557                         txp->tx_cb->tbd[0].tb_addr = 0;
 1558                 }
 1559                 sc->tx_queued--;
 1560         }
 1561         sc->fxp_desc.tx_first = txp;
 1562         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
 1563 }
 1564 
 1565 static void
 1566 fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
 1567     int count)
 1568 {
 1569         struct mbuf *m;
 1570         struct fxp_rx *rxp;
 1571         struct fxp_rfa *rfa;
 1572         int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
 1573         int fxp_rc = 0;
 1574 
 1575         FXP_LOCK_ASSERT(sc, MA_OWNED);
 1576         if (rnr)
 1577                 sc->rnr++;
 1578 #ifdef DEVICE_POLLING
 1579         /* Pick up a deferred RNR condition if `count' ran out last time. */
 1580         if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
 1581                 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
 1582                 rnr = 1;
 1583         }
 1584 #endif
 1585 
 1586         /*
 1587          * Free any finished transmit mbuf chains.
 1588          *
 1589          * Handle the CNA event likt a CXTNO event. It used to
 1590          * be that this event (control unit not ready) was not
 1591          * encountered, but it is now with the SMPng modifications.
 1592          * The exact sequence of events that occur when the interface
 1593          * is brought up are different now, and if this event
 1594          * goes unhandled, the configuration/rxfilter setup sequence
 1595          * can stall for several seconds. The result is that no
 1596          * packets go out onto the wire for about 5 to 10 seconds
 1597          * after the interface is ifconfig'ed for the first time.
 1598          */
 1599         if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
 1600                 fxp_txeof(sc);
 1601 
 1602                 ifp->if_timer = 0;
 1603                 if (sc->tx_queued == 0) {
 1604                         if (sc->need_mcsetup)
 1605                                 fxp_mc_setup(sc);
 1606                 }
 1607                 /*
 1608                  * Try to start more packets transmitting.
 1609                  */
 1610                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1611                         fxp_start_body(ifp);
 1612         }
 1613 
 1614         /*
 1615          * Just return if nothing happened on the receive side.
 1616          */
 1617         if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
 1618                 return;
 1619 
 1620         /*
 1621          * Process receiver interrupts. If a no-resource (RNR)
 1622          * condition exists, get whatever packets we can and
 1623          * re-start the receiver.
 1624          *
 1625          * When using polling, we do not process the list to completion,
 1626          * so when we get an RNR interrupt we must defer the restart
 1627          * until we hit the last buffer with the C bit set.
 1628          * If we run out of cycles and rfa_headm has the C bit set,
 1629          * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
 1630          * that the info will be used in the subsequent polling cycle.
 1631          */
 1632         for (;;) {
 1633                 rxp = sc->fxp_desc.rx_head;
 1634                 m = rxp->rx_mbuf;
 1635                 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
 1636                     RFA_ALIGNMENT_FUDGE);
 1637                 bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
 1638                     BUS_DMASYNC_POSTREAD);
 1639 
 1640 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
 1641                 if (count >= 0 && count-- == 0) {
 1642                         if (rnr) {
 1643                                 /* Defer RNR processing until the next time. */
 1644                                 sc->flags |= FXP_FLAG_DEFERRED_RNR;
 1645                                 rnr = 0;
 1646                         }
 1647                         break;
 1648                 }
 1649 #endif /* DEVICE_POLLING */
 1650 
 1651                 if ((le16toh(rfa->rfa_status) & FXP_RFA_STATUS_C) == 0)
 1652                         break;
 1653 
 1654                 /*
 1655                  * Advance head forward.
 1656                  */
 1657                 sc->fxp_desc.rx_head = rxp->rx_next;
 1658 
 1659                 /*
 1660                  * Add a new buffer to the receive chain.
 1661                  * If this fails, the old buffer is recycled
 1662                  * instead.
 1663                  */
 1664                 fxp_rc = fxp_add_rfabuf(sc, rxp);
 1665                 if (fxp_rc == 0) {
 1666                         int total_len;
 1667 
 1668                         /*
 1669                          * Fetch packet length (the top 2 bits of
 1670                          * actual_size are flags set by the controller
 1671                          * upon completion), and drop the packet in case
 1672                          * of bogus length or CRC errors.
 1673                          */
 1674                         total_len = le16toh(rfa->actual_size) & 0x3fff;
 1675                         if (total_len < sizeof(struct ether_header) ||
 1676                             total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
 1677                                 sc->rfa_size ||
 1678                             le16toh(rfa->rfa_status) & FXP_RFA_STATUS_CRC) {
 1679                                 m_freem(m);
 1680                                 continue;
 1681                         }
 1682 
 1683                         /* Do IP checksum checking. */
 1684                         if (le16toh(rfa->rfa_status) & FXP_RFA_STATUS_PARSE) {
 1685                                 if (rfa->rfax_csum_sts &
 1686                                     FXP_RFDX_CS_IP_CSUM_BIT_VALID)
 1687                                         m->m_pkthdr.csum_flags |=
 1688                                             CSUM_IP_CHECKED;
 1689                                 if (rfa->rfax_csum_sts &
 1690                                     FXP_RFDX_CS_IP_CSUM_VALID)
 1691                                         m->m_pkthdr.csum_flags |=
 1692                                             CSUM_IP_VALID;
 1693                                 if ((rfa->rfax_csum_sts &
 1694                                     FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
 1695                                     (rfa->rfax_csum_sts &
 1696                                     FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
 1697                                         m->m_pkthdr.csum_flags |=
 1698                                             CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
 1699                                         m->m_pkthdr.csum_data = 0xffff;
 1700                                 }
 1701                         }
 1702 
 1703                         m->m_pkthdr.len = m->m_len = total_len;
 1704                         m->m_pkthdr.rcvif = ifp;
 1705 
 1706                         /*
 1707                          * Drop locks before calling if_input() since it
 1708                          * may re-enter fxp_start() in the netisr case.
 1709                          * This would result in a lock reversal.  Better
 1710                          * performance might be obtained by chaining all
 1711                          * packets received, dropping the lock, and then
 1712                          * calling if_input() on each one.
 1713                          */
 1714                         FXP_UNLOCK(sc);
 1715                         (*ifp->if_input)(ifp, m);
 1716                         FXP_LOCK(sc);
 1717                 } else if (fxp_rc == ENOBUFS) {
 1718                         rnr = 0;
 1719                         break;
 1720                 }
 1721         }
 1722         if (rnr) {
 1723                 fxp_scb_wait(sc);
 1724                 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
 1725                     sc->fxp_desc.rx_head->rx_addr);
 1726                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
 1727         }
 1728 }
 1729 
 1730 /*
 1731  * Update packet in/out/collision statistics. The i82557 doesn't
 1732  * allow you to access these counters without doing a fairly
 1733  * expensive DMA to get _all_ of the statistics it maintains, so
 1734  * we do this operation here only once per second. The statistics
 1735  * counters in the kernel are updated from the previous dump-stats
 1736  * DMA and then a new dump-stats DMA is started. The on-chip
 1737  * counters are zeroed when the DMA completes. If we can't start
 1738  * the DMA immediately, we don't wait - we just prepare to read
 1739  * them again next time.
 1740  */
 1741 static void
 1742 fxp_tick(void *xsc)
 1743 {
 1744         struct fxp_softc *sc = xsc;
 1745         struct ifnet *ifp = sc->ifp;
 1746         struct fxp_stats *sp = sc->fxp_stats;
 1747 
 1748         FXP_LOCK_ASSERT(sc, MA_OWNED);
 1749         bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD);
 1750         ifp->if_opackets += le32toh(sp->tx_good);
 1751         ifp->if_collisions += le32toh(sp->tx_total_collisions);
 1752         if (sp->rx_good) {
 1753                 ifp->if_ipackets += le32toh(sp->rx_good);
 1754                 sc->rx_idle_secs = 0;
 1755         } else {
 1756                 /*
 1757                  * Receiver's been idle for another second.
 1758                  */
 1759                 sc->rx_idle_secs++;
 1760         }
 1761         ifp->if_ierrors +=
 1762             le32toh(sp->rx_crc_errors) +
 1763             le32toh(sp->rx_alignment_errors) +
 1764             le32toh(sp->rx_rnr_errors) +
 1765             le32toh(sp->rx_overrun_errors);
 1766         /*
 1767          * If any transmit underruns occured, bump up the transmit
 1768          * threshold by another 512 bytes (64 * 8).
 1769          */
 1770         if (sp->tx_underruns) {
 1771                 ifp->if_oerrors += le32toh(sp->tx_underruns);
 1772                 if (tx_threshold < 192)
 1773                         tx_threshold += 64;
 1774         }
 1775 
 1776         /*
 1777          * Release any xmit buffers that have completed DMA. This isn't
 1778          * strictly necessary to do here, but it's advantagous for mbufs
 1779          * with external storage to be released in a timely manner rather
 1780          * than being defered for a potentially long time. This limits
 1781          * the delay to a maximum of one second.
 1782          */ 
 1783         fxp_txeof(sc);
 1784 
 1785         /*
 1786          * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
 1787          * then assume the receiver has locked up and attempt to clear
 1788          * the condition by reprogramming the multicast filter. This is
 1789          * a work-around for a bug in the 82557 where the receiver locks
 1790          * up if it gets certain types of garbage in the syncronization
 1791          * bits prior to the packet header. This bug is supposed to only
 1792          * occur in 10Mbps mode, but has been seen to occur in 100Mbps
 1793          * mode as well (perhaps due to a 10/100 speed transition).
 1794          */
 1795         if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
 1796                 sc->rx_idle_secs = 0;
 1797                 fxp_mc_setup(sc);
 1798         }
 1799         /*
 1800          * If there is no pending command, start another stats
 1801          * dump. Otherwise punt for now.
 1802          */
 1803         if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
 1804                 /*
 1805                  * Start another stats dump.
 1806                  */
 1807                 bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
 1808                     BUS_DMASYNC_PREREAD);
 1809                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
 1810         } else {
 1811                 /*
 1812                  * A previous command is still waiting to be accepted.
 1813                  * Just zero our copy of the stats and wait for the
 1814                  * next timer event to update them.
 1815                  */
 1816                 sp->tx_good = 0;
 1817                 sp->tx_underruns = 0;
 1818                 sp->tx_total_collisions = 0;
 1819 
 1820                 sp->rx_good = 0;
 1821                 sp->rx_crc_errors = 0;
 1822                 sp->rx_alignment_errors = 0;
 1823                 sp->rx_rnr_errors = 0;
 1824                 sp->rx_overrun_errors = 0;
 1825         }
 1826         if (sc->miibus != NULL)
 1827                 mii_tick(device_get_softc(sc->miibus));
 1828 
 1829         /*
 1830          * Schedule another timeout one second from now.
 1831          */
 1832         callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
 1833 }
 1834 
 1835 /*
 1836  * Stop the interface. Cancels the statistics updater and resets
 1837  * the interface.
 1838  */
 1839 static void
 1840 fxp_stop(struct fxp_softc *sc)
 1841 {
 1842         struct ifnet *ifp = sc->ifp;
 1843         struct fxp_tx *txp;
 1844         int i;
 1845 
 1846         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 1847         ifp->if_timer = 0;
 1848 
 1849         /*
 1850          * Cancel stats updater.
 1851          */
 1852         callout_stop(&sc->stat_ch);
 1853 
 1854         /*
 1855          * Issue software reset, which also unloads the microcode.
 1856          */
 1857         sc->flags &= ~FXP_FLAG_UCODE;
 1858         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
 1859         DELAY(50);
 1860 
 1861         /*
 1862          * Release any xmit buffers.
 1863          */
 1864         txp = sc->fxp_desc.tx_list;
 1865         if (txp != NULL) {
 1866                 for (i = 0; i < FXP_NTXCB; i++) {
 1867                         if (txp[i].tx_mbuf != NULL) {
 1868                                 bus_dmamap_sync(sc->fxp_mtag, txp[i].tx_map,
 1869                                     BUS_DMASYNC_POSTWRITE);
 1870                                 bus_dmamap_unload(sc->fxp_mtag, txp[i].tx_map);
 1871                                 m_freem(txp[i].tx_mbuf);
 1872                                 txp[i].tx_mbuf = NULL;
 1873                                 /* clear this to reset csum offload bits */
 1874                                 txp[i].tx_cb->tbd[0].tb_addr = 0;
 1875                         }
 1876                 }
 1877         }
 1878         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
 1879         sc->tx_queued = 0;
 1880 }
 1881 
 1882 /*
 1883  * Watchdog/transmission transmit timeout handler. Called when a
 1884  * transmission is started on the interface, but no interrupt is
 1885  * received before the timeout. This usually indicates that the
 1886  * card has wedged for some reason.
 1887  */
 1888 static void
 1889 fxp_watchdog(struct ifnet *ifp)
 1890 {
 1891         struct fxp_softc *sc = ifp->if_softc;
 1892 
 1893         FXP_LOCK(sc);
 1894         device_printf(sc->dev, "device timeout\n");
 1895         ifp->if_oerrors++;
 1896 
 1897         fxp_init_body(sc);
 1898         FXP_UNLOCK(sc);
 1899 }
 1900 
 1901 /*
 1902  * Acquire locks and then call the real initialization function.  This
 1903  * is necessary because ether_ioctl() calls if_init() and this would
 1904  * result in mutex recursion if the mutex was held.
 1905  */
 1906 static void
 1907 fxp_init(void *xsc)
 1908 {
 1909         struct fxp_softc *sc = xsc;
 1910 
 1911         FXP_LOCK(sc);
 1912         fxp_init_body(sc);
 1913         FXP_UNLOCK(sc);
 1914 }
 1915 
 1916 /*
 1917  * Perform device initialization. This routine must be called with the
 1918  * softc lock held.
 1919  */
 1920 static void
 1921 fxp_init_body(struct fxp_softc *sc)
 1922 {
 1923         struct ifnet *ifp = sc->ifp;
 1924         struct fxp_cb_config *cbp;
 1925         struct fxp_cb_ias *cb_ias;
 1926         struct fxp_cb_tx *tcbp;
 1927         struct fxp_tx *txp;
 1928         struct fxp_cb_mcs *mcsp;
 1929         int i, prm;
 1930 
 1931         FXP_LOCK_ASSERT(sc, MA_OWNED);
 1932         /*
 1933          * Cancel any pending I/O
 1934          */
 1935         fxp_stop(sc);
 1936 
 1937         prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
 1938 
 1939         /*
 1940          * Initialize base of CBL and RFA memory. Loading with zero
 1941          * sets it up for regular linear addressing.
 1942          */
 1943         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
 1944         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
 1945 
 1946         fxp_scb_wait(sc);
 1947         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
 1948 
 1949         /*
 1950          * Initialize base of dump-stats buffer.
 1951          */
 1952         fxp_scb_wait(sc);
 1953         bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD);
 1954         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
 1955         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
 1956 
 1957         /*
 1958          * Attempt to load microcode if requested.
 1959          */
 1960         if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
 1961                 fxp_load_ucode(sc);
 1962 
 1963         /*
 1964          * Initialize the multicast address list.
 1965          */
 1966         if (fxp_mc_addrs(sc)) {
 1967                 mcsp = sc->mcsp;
 1968                 mcsp->cb_status = 0;
 1969                 mcsp->cb_command =
 1970                     htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
 1971                 mcsp->link_addr = 0xffffffff;
 1972                 /*
 1973                  * Start the multicast setup command.
 1974                  */
 1975                 fxp_scb_wait(sc);
 1976                 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
 1977                 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
 1978                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1979                 /* ...and wait for it to complete. */
 1980                 fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
 1981                 bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
 1982                     BUS_DMASYNC_POSTWRITE);
 1983         }
 1984 
 1985         /*
 1986          * We temporarily use memory that contains the TxCB list to
 1987          * construct the config CB. The TxCB list memory is rebuilt
 1988          * later.
 1989          */
 1990         cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
 1991 
 1992         /*
 1993          * This bcopy is kind of disgusting, but there are a bunch of must be
 1994          * zero and must be one bits in this structure and this is the easiest
 1995          * way to initialize them all to proper values.
 1996          */
 1997         bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
 1998 
 1999         cbp->cb_status =        0;
 2000         cbp->cb_command =       htole16(FXP_CB_COMMAND_CONFIG |
 2001             FXP_CB_COMMAND_EL);
 2002         cbp->link_addr =        0xffffffff;     /* (no) next command */
 2003         cbp->byte_count =       sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
 2004         cbp->rx_fifo_limit =    8;      /* rx fifo threshold (32 bytes) */
 2005         cbp->tx_fifo_limit =    0;      /* tx fifo threshold (0 bytes) */
 2006         cbp->adaptive_ifs =     0;      /* (no) adaptive interframe spacing */
 2007         cbp->mwi_enable =       sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
 2008         cbp->type_enable =      0;      /* actually reserved */
 2009         cbp->read_align_en =    sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
 2010         cbp->end_wr_on_cl =     sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
 2011         cbp->rx_dma_bytecount = 0;      /* (no) rx DMA max */
 2012         cbp->tx_dma_bytecount = 0;      /* (no) tx DMA max */
 2013         cbp->dma_mbce =         0;      /* (disable) dma max counters */
 2014         cbp->late_scb =         0;      /* (don't) defer SCB update */
 2015         cbp->direct_dma_dis =   1;      /* disable direct rcv dma mode */
 2016         cbp->tno_int_or_tco_en =0;      /* (disable) tx not okay interrupt */
 2017         cbp->ci_int =           1;      /* interrupt on CU idle */
 2018         cbp->ext_txcb_dis =     sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
 2019         cbp->ext_stats_dis =    1;      /* disable extended counters */
 2020         cbp->keep_overrun_rx =  0;      /* don't pass overrun frames to host */
 2021         cbp->save_bf =          sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
 2022         cbp->disc_short_rx =    !prm;   /* discard short packets */
 2023         cbp->underrun_retry =   1;      /* retry mode (once) on DMA underrun */
 2024         cbp->two_frames =       0;      /* do not limit FIFO to 2 frames */
 2025         cbp->dyn_tbd =          0;      /* (no) dynamic TBD mode */
 2026         cbp->ext_rfa =          sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
 2027         cbp->mediatype =        sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
 2028         cbp->csma_dis =         0;      /* (don't) disable link */
 2029         cbp->tcp_udp_cksum =    0;      /* (don't) enable checksum */
 2030         cbp->vlan_tco =         0;      /* (don't) enable vlan wakeup */
 2031         cbp->link_wake_en =     0;      /* (don't) assert PME# on link change */
 2032         cbp->arp_wake_en =      0;      /* (don't) assert PME# on arp */
 2033         cbp->mc_wake_en =       0;      /* (don't) enable PME# on mcmatch */
 2034         cbp->nsai =             1;      /* (don't) disable source addr insert */
 2035         cbp->preamble_length =  2;      /* (7 byte) preamble */
 2036         cbp->loopback =         0;      /* (don't) loopback */
 2037         cbp->linear_priority =  0;      /* (normal CSMA/CD operation) */
 2038         cbp->linear_pri_mode =  0;      /* (wait after xmit only) */
 2039         cbp->interfrm_spacing = 6;      /* (96 bits of) interframe spacing */
 2040         cbp->promiscuous =      prm;    /* promiscuous mode */
 2041         cbp->bcast_disable =    0;      /* (don't) disable broadcasts */
 2042         cbp->wait_after_win =   0;      /* (don't) enable modified backoff alg*/
 2043         cbp->ignore_ul =        0;      /* consider U/L bit in IA matching */
 2044         cbp->crc16_en =         0;      /* (don't) enable crc-16 algorithm */
 2045         cbp->crscdt =           sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
 2046 
 2047         cbp->stripping =        !prm;   /* truncate rx packet to byte count */
 2048         cbp->padding =          1;      /* (do) pad short tx packets */
 2049         cbp->rcv_crc_xfer =     0;      /* (don't) xfer CRC to host */
 2050         cbp->long_rx_en =       sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
 2051         cbp->ia_wake_en =       0;      /* (don't) wake up on address match */
 2052         cbp->magic_pkt_dis =    0;      /* (don't) disable magic packet */
 2053                                         /* must set wake_en in PMCSR also */
 2054         cbp->force_fdx =        0;      /* (don't) force full duplex */
 2055         cbp->fdx_pin_en =       1;      /* (enable) FDX# pin */
 2056         cbp->multi_ia =         0;      /* (don't) accept multiple IAs */
 2057         cbp->mc_all =           sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
 2058         cbp->gamla_rx =         sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
 2059 
 2060         if (sc->tunable_noflow || sc->revision == FXP_REV_82557) {
 2061                 /*
 2062                  * The 82557 has no hardware flow control, the values
 2063                  * below are the defaults for the chip.
 2064                  */
 2065                 cbp->fc_delay_lsb =     0;
 2066                 cbp->fc_delay_msb =     0x40;
 2067                 cbp->pri_fc_thresh =    3;
 2068                 cbp->tx_fc_dis =        0;
 2069                 cbp->rx_fc_restop =     0;
 2070                 cbp->rx_fc_restart =    0;
 2071                 cbp->fc_filter =        0;
 2072                 cbp->pri_fc_loc =       1;
 2073         } else {
 2074                 cbp->fc_delay_lsb =     0x1f;
 2075                 cbp->fc_delay_msb =     0x01;
 2076                 cbp->pri_fc_thresh =    3;
 2077                 cbp->tx_fc_dis =        0;      /* enable transmit FC */
 2078                 cbp->rx_fc_restop =     1;      /* enable FC restop frames */
 2079                 cbp->rx_fc_restart =    1;      /* enable FC restart frames */
 2080                 cbp->fc_filter =        !prm;   /* drop FC frames to host */
 2081                 cbp->pri_fc_loc =       1;      /* FC pri location (byte31) */
 2082         }
 2083 
 2084         /*
 2085          * Start the config command/DMA.
 2086          */
 2087         fxp_scb_wait(sc);
 2088         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
 2089         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
 2090         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2091         /* ...and wait for it to complete. */
 2092         fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
 2093         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
 2094 
 2095         /*
 2096          * Now initialize the station address. Temporarily use the TxCB
 2097          * memory area like we did above for the config CB.
 2098          */
 2099         cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
 2100         cb_ias->cb_status = 0;
 2101         cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
 2102         cb_ias->link_addr = 0xffffffff;
 2103         bcopy(IFP2ENADDR(sc->ifp), cb_ias->macaddr,
 2104             sizeof(IFP2ENADDR(sc->ifp)));
 2105 
 2106         /*
 2107          * Start the IAS (Individual Address Setup) command/DMA.
 2108          */
 2109         fxp_scb_wait(sc);
 2110         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
 2111         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2112         /* ...and wait for it to complete. */
 2113         fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
 2114         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
 2115 
 2116         /*
 2117          * Initialize transmit control block (TxCB) list.
 2118          */
 2119         txp = sc->fxp_desc.tx_list;
 2120         tcbp = sc->fxp_desc.cbl_list;
 2121         bzero(tcbp, FXP_TXCB_SZ);
 2122         for (i = 0; i < FXP_NTXCB; i++) {
 2123                 txp[i].tx_mbuf = NULL;
 2124                 tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
 2125                 tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
 2126                 tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
 2127                     (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
 2128                 if (sc->flags & FXP_FLAG_EXT_TXCB)
 2129                         tcbp[i].tbd_array_addr =
 2130                             htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
 2131                 else
 2132                         tcbp[i].tbd_array_addr =
 2133                             htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
 2134                 txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
 2135         }
 2136         /*
 2137          * Set the suspend flag on the first TxCB and start the control
 2138          * unit. It will execute the NOP and then suspend.
 2139          */
 2140         tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
 2141         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
 2142         sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
 2143         sc->tx_queued = 1;
 2144 
 2145         fxp_scb_wait(sc);
 2146         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2147 
 2148         /*
 2149          * Initialize receiver buffer area - RFA.
 2150          */
 2151         fxp_scb_wait(sc);
 2152         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
 2153         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
 2154 
 2155         /*
 2156          * Set current media.
 2157          */
 2158         if (sc->miibus != NULL)
 2159                 mii_mediachg(device_get_softc(sc->miibus));
 2160 
 2161         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2162         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2163 
 2164         /*
 2165          * Enable interrupts.
 2166          */
 2167 #ifdef DEVICE_POLLING
 2168         /*
 2169          * ... but only do that if we are not polling. And because (presumably)
 2170          * the default is interrupts on, we need to disable them explicitly!
 2171          */
 2172         if (ifp->if_capenable & IFCAP_POLLING )
 2173                 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
 2174         else
 2175 #endif /* DEVICE_POLLING */
 2176         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
 2177 
 2178         /*
 2179          * Start stats updater.
 2180          */
 2181         callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
 2182 }
 2183 
 2184 static int
 2185 fxp_serial_ifmedia_upd(struct ifnet *ifp)
 2186 {
 2187 
 2188         return (0);
 2189 }
 2190 
 2191 static void
 2192 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 2193 {
 2194 
 2195         ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
 2196 }
 2197 
 2198 /*
 2199  * Change media according to request.
 2200  */
 2201 static int
 2202 fxp_ifmedia_upd(struct ifnet *ifp)
 2203 {
 2204         struct fxp_softc *sc = ifp->if_softc;
 2205         struct mii_data *mii;
 2206 
 2207         mii = device_get_softc(sc->miibus);
 2208         FXP_LOCK(sc);
 2209         mii_mediachg(mii);
 2210         FXP_UNLOCK(sc);
 2211         return (0);
 2212 }
 2213 
 2214 /*
 2215  * Notify the world which media we're using.
 2216  */
 2217 static void
 2218 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 2219 {
 2220         struct fxp_softc *sc = ifp->if_softc;
 2221         struct mii_data *mii;
 2222 
 2223         mii = device_get_softc(sc->miibus);
 2224         FXP_LOCK(sc);
 2225         mii_pollstat(mii);
 2226         ifmr->ifm_active = mii->mii_media_active;
 2227         ifmr->ifm_status = mii->mii_media_status;
 2228 
 2229         if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
 2230                 sc->cu_resume_bug = 1;
 2231         else
 2232                 sc->cu_resume_bug = 0;
 2233         FXP_UNLOCK(sc);
 2234 }
 2235 
 2236 /*
 2237  * Add a buffer to the end of the RFA buffer list.
 2238  * Return 0 if successful, 1 for failure. A failure results in
 2239  * adding the 'oldm' (if non-NULL) on to the end of the list -
 2240  * tossing out its old contents and recycling it.
 2241  * The RFA struct is stuck at the beginning of mbuf cluster and the
 2242  * data pointer is fixed up to point just past it.
 2243  */
 2244 static int
 2245 fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
 2246 {
 2247         struct mbuf *m;
 2248         struct fxp_rfa *rfa, *p_rfa;
 2249         struct fxp_rx *p_rx;
 2250         bus_dmamap_t tmp_map;
 2251         int error;
 2252 
 2253         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 2254         if (m == NULL)
 2255                 return (ENOBUFS);
 2256 
 2257         /*
 2258          * Move the data pointer up so that the incoming data packet
 2259          * will be 32-bit aligned.
 2260          */
 2261         m->m_data += RFA_ALIGNMENT_FUDGE;
 2262 
 2263         /*
 2264          * Get a pointer to the base of the mbuf cluster and move
 2265          * data start past it.
 2266          */
 2267         rfa = mtod(m, struct fxp_rfa *);
 2268         m->m_data += sc->rfa_size;
 2269         rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
 2270 
 2271         rfa->rfa_status = 0;
 2272         rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
 2273         rfa->actual_size = 0;
 2274 
 2275         /*
 2276          * Initialize the rest of the RFA.  Note that since the RFA
 2277          * is misaligned, we cannot store values directly.  We're thus
 2278          * using the le32enc() function which handles endianness and
 2279          * is also alignment-safe.
 2280          */
 2281         le32enc(&rfa->link_addr, 0xffffffff);
 2282         le32enc(&rfa->rbd_addr, 0xffffffff);
 2283 
 2284         /* Map the RFA into DMA memory. */
 2285         error = bus_dmamap_load(sc->fxp_mtag, sc->spare_map, rfa,
 2286             MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
 2287             &rxp->rx_addr, 0);
 2288         if (error) {
 2289                 m_freem(m);
 2290                 return (error);
 2291         }
 2292 
 2293         bus_dmamap_unload(sc->fxp_mtag, rxp->rx_map);
 2294         tmp_map = sc->spare_map;
 2295         sc->spare_map = rxp->rx_map;
 2296         rxp->rx_map = tmp_map;
 2297         rxp->rx_mbuf = m;
 2298 
 2299         bus_dmamap_sync(sc->fxp_mtag, rxp->rx_map,
 2300             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2301 
 2302         /*
 2303          * If there are other buffers already on the list, attach this
 2304          * one to the end by fixing up the tail to point to this one.
 2305          */
 2306         if (sc->fxp_desc.rx_head != NULL) {
 2307                 p_rx = sc->fxp_desc.rx_tail;
 2308                 p_rfa = (struct fxp_rfa *)
 2309                     (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
 2310                 p_rx->rx_next = rxp;
 2311                 le32enc(&p_rfa->link_addr, rxp->rx_addr);
 2312                 p_rfa->rfa_control = 0;
 2313                 bus_dmamap_sync(sc->fxp_mtag, p_rx->rx_map,
 2314                     BUS_DMASYNC_PREWRITE);
 2315         } else {
 2316                 rxp->rx_next = NULL;
 2317                 sc->fxp_desc.rx_head = rxp;
 2318         }
 2319         sc->fxp_desc.rx_tail = rxp;
 2320         return (0);
 2321 }
 2322 
 2323 static volatile int
 2324 fxp_miibus_readreg(device_t dev, int phy, int reg)
 2325 {
 2326         struct fxp_softc *sc = device_get_softc(dev);
 2327         int count = 10000;
 2328         int value;
 2329 
 2330         CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
 2331             (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
 2332 
 2333         while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
 2334             && count--)
 2335                 DELAY(10);
 2336 
 2337         if (count <= 0)
 2338                 device_printf(dev, "fxp_miibus_readreg: timed out\n");
 2339 
 2340         return (value & 0xffff);
 2341 }
 2342 
 2343 static void
 2344 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
 2345 {
 2346         struct fxp_softc *sc = device_get_softc(dev);
 2347         int count = 10000;
 2348 
 2349         CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
 2350             (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
 2351             (value & 0xffff));
 2352 
 2353         while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
 2354             count--)
 2355                 DELAY(10);
 2356 
 2357         if (count <= 0)
 2358                 device_printf(dev, "fxp_miibus_writereg: timed out\n");
 2359 }
 2360 
 2361 static int
 2362 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 2363 {
 2364         struct fxp_softc *sc = ifp->if_softc;
 2365         struct ifreq *ifr = (struct ifreq *)data;
 2366         struct mii_data *mii;
 2367         int flag, mask, error = 0;
 2368 
 2369         switch (command) {
 2370         case SIOCSIFFLAGS:
 2371                 FXP_LOCK(sc);
 2372                 if (ifp->if_flags & IFF_ALLMULTI)
 2373                         sc->flags |= FXP_FLAG_ALL_MCAST;
 2374                 else
 2375                         sc->flags &= ~FXP_FLAG_ALL_MCAST;
 2376 
 2377                 /*
 2378                  * If interface is marked up and not running, then start it.
 2379                  * If it is marked down and running, stop it.
 2380                  * XXX If it's up then re-initialize it. This is so flags
 2381                  * such as IFF_PROMISC are handled.
 2382                  */
 2383                 if (ifp->if_flags & IFF_UP) {
 2384                         fxp_init_body(sc);
 2385                 } else {
 2386                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 2387                                 fxp_stop(sc);
 2388                 }
 2389                 FXP_UNLOCK(sc);
 2390                 break;
 2391 
 2392         case SIOCADDMULTI:
 2393         case SIOCDELMULTI:
 2394                 FXP_LOCK(sc);
 2395                 if (ifp->if_flags & IFF_ALLMULTI)
 2396                         sc->flags |= FXP_FLAG_ALL_MCAST;
 2397                 else
 2398                         sc->flags &= ~FXP_FLAG_ALL_MCAST;
 2399                 /*
 2400                  * Multicast list has changed; set the hardware filter
 2401                  * accordingly.
 2402                  */
 2403                 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
 2404                         fxp_mc_setup(sc);
 2405                 /*
 2406                  * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
 2407                  * again rather than else {}.
 2408                  */
 2409                 if (sc->flags & FXP_FLAG_ALL_MCAST)
 2410                         fxp_init_body(sc);
 2411                 FXP_UNLOCK(sc);
 2412                 error = 0;
 2413                 break;
 2414 
 2415         case SIOCSIFMEDIA:
 2416         case SIOCGIFMEDIA:
 2417                 if (sc->miibus != NULL) {
 2418                         mii = device_get_softc(sc->miibus);
 2419                         error = ifmedia_ioctl(ifp, ifr,
 2420                             &mii->mii_media, command);
 2421                 } else {
 2422                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
 2423                 }
 2424                 break;
 2425 
 2426         case SIOCSIFCAP:
 2427                 mask = ifp->if_capenable ^ ifr->ifr_reqcap;
 2428 #ifdef DEVICE_POLLING
 2429                 if (mask & IFCAP_POLLING) {
 2430                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 2431                                 error = ether_poll_register(fxp_poll, ifp);
 2432                                 if (error)
 2433                                         return(error);
 2434                                 FXP_LOCK(sc);
 2435                                 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
 2436                                     FXP_SCB_INTR_DISABLE);
 2437                                 ifp->if_capenable |= IFCAP_POLLING;
 2438                                 FXP_UNLOCK(sc);
 2439                         } else {
 2440                                 error = ether_poll_deregister(ifp);
 2441                                 /* Enable interrupts in any case */
 2442                                 FXP_LOCK(sc);
 2443                                 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
 2444                                 ifp->if_capenable &= ~IFCAP_POLLING;
 2445                                 FXP_UNLOCK(sc);
 2446                         }
 2447                 }
 2448 #endif
 2449                 if (mask & IFCAP_VLAN_MTU) {
 2450                         FXP_LOCK(sc);
 2451                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
 2452                         if (sc->revision != FXP_REV_82557)
 2453                                 flag = FXP_FLAG_LONG_PKT_EN;
 2454                         else /* a hack to get long frames on the old chip */
 2455                                 flag = FXP_FLAG_SAVE_BAD;
 2456                         sc->flags ^= flag;
 2457                         if (ifp->if_flags & IFF_UP)
 2458                                 fxp_init_body(sc);
 2459                         FXP_UNLOCK(sc);
 2460                 }
 2461                 break;
 2462 
 2463         default:
 2464                 error = ether_ioctl(ifp, command, data);
 2465         }
 2466         return (error);
 2467 }
 2468 
 2469 /*
 2470  * Fill in the multicast address list and return number of entries.
 2471  */
 2472 static int
 2473 fxp_mc_addrs(struct fxp_softc *sc)
 2474 {
 2475         struct fxp_cb_mcs *mcsp = sc->mcsp;
 2476         struct ifnet *ifp = sc->ifp;
 2477         struct ifmultiaddr *ifma;
 2478         int nmcasts;
 2479 
 2480         nmcasts = 0;
 2481         if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
 2482                 IF_ADDR_LOCK(ifp);
 2483                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 2484                         if (ifma->ifma_addr->sa_family != AF_LINK)
 2485                                 continue;
 2486                         if (nmcasts >= MAXMCADDR) {
 2487                                 sc->flags |= FXP_FLAG_ALL_MCAST;
 2488                                 nmcasts = 0;
 2489                                 break;
 2490                         }
 2491                         bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
 2492                             &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
 2493                         nmcasts++;
 2494                 }
 2495                 IF_ADDR_UNLOCK(ifp);
 2496         }
 2497         mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
 2498         return (nmcasts);
 2499 }
 2500 
 2501 /*
 2502  * Program the multicast filter.
 2503  *
 2504  * We have an artificial restriction that the multicast setup command
 2505  * must be the first command in the chain, so we take steps to ensure
 2506  * this. By requiring this, it allows us to keep up the performance of
 2507  * the pre-initialized command ring (esp. link pointers) by not actually
 2508  * inserting the mcsetup command in the ring - i.e. its link pointer
 2509  * points to the TxCB ring, but the mcsetup descriptor itself is not part
 2510  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
 2511  * lead into the regular TxCB ring when it completes.
 2512  *
 2513  * This function must be called at splimp.
 2514  */
 2515 static void
 2516 fxp_mc_setup(struct fxp_softc *sc)
 2517 {
 2518         struct fxp_cb_mcs *mcsp = sc->mcsp;
 2519         struct ifnet *ifp = sc->ifp;
 2520         struct fxp_tx *txp;
 2521         int count;
 2522 
 2523         FXP_LOCK_ASSERT(sc, MA_OWNED);
 2524         /*
 2525          * If there are queued commands, we must wait until they are all
 2526          * completed. If we are already waiting, then add a NOP command
 2527          * with interrupt option so that we're notified when all commands
 2528          * have been completed - fxp_start() ensures that no additional
 2529          * TX commands will be added when need_mcsetup is true.
 2530          */
 2531         if (sc->tx_queued) {
 2532                 /*
 2533                  * need_mcsetup will be true if we are already waiting for the
 2534                  * NOP command to be completed (see below). In this case, bail.
 2535                  */
 2536                 if (sc->need_mcsetup)
 2537                         return;
 2538                 sc->need_mcsetup = 1;
 2539 
 2540                 /*
 2541                  * Add a NOP command with interrupt so that we are notified
 2542                  * when all TX commands have been processed.
 2543                  */
 2544                 txp = sc->fxp_desc.tx_last->tx_next;
 2545                 txp->tx_mbuf = NULL;
 2546                 txp->tx_cb->cb_status = 0;
 2547                 txp->tx_cb->cb_command = htole16(FXP_CB_COMMAND_NOP |
 2548                     FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
 2549                 /*
 2550                  * Advance the end of list forward.
 2551                  */
 2552                 sc->fxp_desc.tx_last->tx_cb->cb_command &=
 2553                     htole16(~FXP_CB_COMMAND_S);
 2554                 bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
 2555                 sc->fxp_desc.tx_last = txp;
 2556                 sc->tx_queued++;
 2557                 /*
 2558                  * Issue a resume in case the CU has just suspended.
 2559                  */
 2560                 fxp_scb_wait(sc);
 2561                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
 2562                 /*
 2563                  * Set a 5 second timer just in case we don't hear from the
 2564                  * card again.
 2565                  */
 2566                 ifp->if_timer = 5;
 2567 
 2568                 return;
 2569         }
 2570         sc->need_mcsetup = 0;
 2571 
 2572         /*
 2573          * Initialize multicast setup descriptor.
 2574          */
 2575         mcsp->cb_status = 0;
 2576         mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS |
 2577             FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
 2578         mcsp->link_addr = htole32(sc->fxp_desc.cbl_addr);
 2579         txp = &sc->fxp_desc.mcs_tx;
 2580         txp->tx_mbuf = NULL;
 2581         txp->tx_cb = (struct fxp_cb_tx *)sc->mcsp;
 2582         txp->tx_next = sc->fxp_desc.tx_list;
 2583         (void) fxp_mc_addrs(sc);
 2584         sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
 2585         sc->tx_queued = 1;
 2586 
 2587         /*
 2588          * Wait until command unit is not active. This should never
 2589          * be the case when nothing is queued, but make sure anyway.
 2590          */
 2591         count = 100;
 2592         while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
 2593             FXP_SCB_CUS_ACTIVE && --count)
 2594                 DELAY(10);
 2595         if (count == 0) {
 2596                 device_printf(sc->dev, "command queue timeout\n");
 2597                 return;
 2598         }
 2599 
 2600         /*
 2601          * Start the multicast setup command.
 2602          */
 2603         fxp_scb_wait(sc);
 2604         bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREWRITE);
 2605         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
 2606         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2607 
 2608         ifp->if_timer = 2;
 2609         return;
 2610 }
 2611 
 2612 static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
 2613 static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
 2614 static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
 2615 static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
 2616 static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
 2617 static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
 2618 static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
 2619 
 2620 #define UCODE(x)        x, sizeof(x)/sizeof(uint32_t)
 2621 
 2622 struct ucode {
 2623         uint32_t        revision;
 2624         uint32_t        *ucode;
 2625         int             length;
 2626         u_short         int_delay_offset;
 2627         u_short         bundle_max_offset;
 2628 } ucode_table[] = {
 2629         { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
 2630         { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
 2631         { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
 2632             D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
 2633         { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
 2634             D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
 2635         { FXP_REV_82550, UCODE(fxp_ucode_d102),
 2636             D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
 2637         { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
 2638             D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
 2639         { FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
 2640             D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
 2641         { 0, NULL, 0, 0, 0 }
 2642 };
 2643 
 2644 static void
 2645 fxp_load_ucode(struct fxp_softc *sc)
 2646 {
 2647         struct ucode *uc;
 2648         struct fxp_cb_ucode *cbp;
 2649         int i;
 2650 
 2651         for (uc = ucode_table; uc->ucode != NULL; uc++)
 2652                 if (sc->revision == uc->revision)
 2653                         break;
 2654         if (uc->ucode == NULL)
 2655                 return;
 2656         cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
 2657         cbp->cb_status = 0;
 2658         cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
 2659         cbp->link_addr = 0xffffffff;            /* (no) next command */
 2660         for (i = 0; i < uc->length; i++)
 2661                 cbp->ucode[i] = htole32(uc->ucode[i]);
 2662         if (uc->int_delay_offset)
 2663                 *(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
 2664                     htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
 2665         if (uc->bundle_max_offset)
 2666                 *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
 2667                     htole16(sc->tunable_bundle_max);
 2668         /*
 2669          * Download the ucode to the chip.
 2670          */
 2671         fxp_scb_wait(sc);
 2672         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREWRITE);
 2673         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
 2674         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2675         /* ...and wait for it to complete. */
 2676         fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
 2677         bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTWRITE);
 2678         device_printf(sc->dev,
 2679             "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
 2680             sc->tunable_int_delay, 
 2681             uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
 2682         sc->flags |= FXP_FLAG_UCODE;
 2683 }
 2684 
 2685 static int
 2686 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 2687 {
 2688         int error, value;
 2689 
 2690         value = *(int *)arg1;
 2691         error = sysctl_handle_int(oidp, &value, 0, req);
 2692         if (error || !req->newptr)
 2693                 return (error);
 2694         if (value < low || value > high)
 2695                 return (EINVAL);
 2696         *(int *)arg1 = value;
 2697         return (0);
 2698 }
 2699 
 2700 /*
 2701  * Interrupt delay is expressed in microseconds, a multiplier is used
 2702  * to convert this to the appropriate clock ticks before using. 
 2703  */
 2704 static int
 2705 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
 2706 {
 2707         return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
 2708 }
 2709 
 2710 static int
 2711 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
 2712 {
 2713         return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
 2714 }

Cache object: 8f58712d630b655cccc0c2e887831484


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.