The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/hme/if_hme.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999 The NetBSD Foundation, Inc.
    3  * Copyright (c) 2001-2003 Thomas Moestl <tmm@FreeBSD.org>.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to The NetBSD Foundation
    7  * by Paul Kranenburg.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *        This product includes software developed by the NetBSD
   20  *        Foundation, Inc. and its contributors.
   21  * 4. Neither the name of The NetBSD Foundation nor the names of its
   22  *    contributors may be used to endorse or promote products derived
   23  *    from this software without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   35  * POSSIBILITY OF SUCH DAMAGE.
   36  *
   37  *      from: NetBSD: hme.c,v 1.45 2005/02/18 00:22:11 heas Exp
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 /*
   44  * HME Ethernet module driver.
   45  *
   46  * The HME is e.g. part of the PCIO PCI multi function device.
   47  * It supports TX gathering and TX and RX checksum offloading.
   48  * RX buffers must be aligned at a programmable offset modulo 16. We choose 2
   49  * for this offset: mbuf clusters are usually on about 2^11 boundaries, 2 bytes
   50  * are skipped to make sure the header after the ethernet header is aligned on a
   51  * natural boundary, so this ensures minimal wastage in the most common case.
   52  *
   53  * Also, apparently, the buffers must extend to a DMA burst boundary beyond the
   54  * maximum packet size (this is not verified). Buffers starting on odd
   55  * boundaries must be mapped so that the burst can start on a natural boundary.
   56  *
   57  * STP2002QFP-UG says that Ethernet hardware supports TCP checksum offloading.
   58  * In reality, we can do the same technique for UDP datagram too. However,
   59  * the hardware doesn't compensate the checksum for UDP datagram which can yield
   60  * to 0x0. As a safe guard, UDP checksum offload is disabled by default. It
   61  * can be reactivated by setting special link option link0 with ifconfig(8).
   62  */
   63 #define HME_CSUM_FEATURES       (CSUM_TCP)
   64 #if 0
   65 #define HMEDEBUG
   66 #endif
   67 #define KTR_HME         KTR_SPARE2      /* XXX */
   68 
   69 #include <sys/param.h>
   70 #include <sys/systm.h>
   71 #include <sys/bus.h>
   72 #include <sys/endian.h>
   73 #include <sys/kernel.h>
   74 #include <sys/module.h>
   75 #include <sys/ktr.h>
   76 #include <sys/mbuf.h>
   77 #include <sys/malloc.h>
   78 #include <sys/socket.h>
   79 #include <sys/sockio.h>
   80 
   81 #include <net/bpf.h>
   82 #include <net/ethernet.h>
   83 #include <net/if.h>
   84 #include <net/if_var.h>
   85 #include <net/if_arp.h>
   86 #include <net/if_dl.h>
   87 #include <net/if_media.h>
   88 #include <net/if_types.h>
   89 #include <net/if_vlan_var.h>
   90 
   91 #include <netinet/in.h>
   92 #include <netinet/in_systm.h>
   93 #include <netinet/ip.h>
   94 #include <netinet/tcp.h>
   95 #include <netinet/udp.h>
   96 
   97 #include <dev/mii/mii.h>
   98 #include <dev/mii/miivar.h>
   99 
  100 #include <machine/bus.h>
  101 
  102 #include <dev/hme/if_hmereg.h>
  103 #include <dev/hme/if_hmevar.h>
  104 
  105 CTASSERT(powerof2(HME_NRXDESC) && HME_NRXDESC >= 32 && HME_NRXDESC <= 256);
  106 CTASSERT(HME_NTXDESC % 16 == 0 && HME_NTXDESC >= 16 && HME_NTXDESC <= 256);
  107 
  108 static void     hme_start(struct ifnet *);
  109 static void     hme_start_locked(struct ifnet *);
  110 static void     hme_stop(struct hme_softc *);
  111 static int      hme_ioctl(struct ifnet *, u_long, caddr_t);
  112 static void     hme_tick(void *);
  113 static int      hme_watchdog(struct hme_softc *);
  114 static void     hme_init(void *);
  115 static void     hme_init_locked(struct hme_softc *);
  116 static int      hme_add_rxbuf(struct hme_softc *, unsigned int, int);
  117 static int      hme_meminit(struct hme_softc *);
  118 static int      hme_mac_bitflip(struct hme_softc *, u_int32_t, u_int32_t,
  119     u_int32_t, u_int32_t);
  120 static void     hme_mifinit(struct hme_softc *);
  121 static void     hme_setladrf(struct hme_softc *, int);
  122 
  123 static int      hme_mediachange(struct ifnet *);
  124 static int      hme_mediachange_locked(struct hme_softc *);
  125 static void     hme_mediastatus(struct ifnet *, struct ifmediareq *);
  126 
  127 static int      hme_load_txmbuf(struct hme_softc *, struct mbuf **);
  128 static void     hme_read(struct hme_softc *, int, int, u_int32_t);
  129 static void     hme_eint(struct hme_softc *, u_int);
  130 static void     hme_rint(struct hme_softc *);
  131 static void     hme_tint(struct hme_softc *);
  132 static void     hme_rxcksum(struct mbuf *, u_int32_t);
  133 
  134 static void     hme_cdma_callback(void *, bus_dma_segment_t *, int, int);
  135 
  136 devclass_t hme_devclass;
  137 
  138 static int hme_nerr;
  139 
  140 DRIVER_MODULE(miibus, hme, miibus_driver, miibus_devclass, 0, 0);
  141 MODULE_DEPEND(hme, miibus, 1, 1, 1);
  142 
  143 #define HME_SPC_READ_4(spc, sc, offs) \
  144         bus_space_read_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
  145             (offs))
  146 #define HME_SPC_WRITE_4(spc, sc, offs, v) \
  147         bus_space_write_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
  148             (offs), (v))
  149 #define HME_SPC_BARRIER(spc, sc, offs, l, f) \
  150         bus_space_barrier((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
  151             (offs), (l), (f))
  152 
  153 #define HME_SEB_READ_4(sc, offs)        HME_SPC_READ_4(seb, (sc), (offs))
  154 #define HME_SEB_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(seb, (sc), (offs), (v))
  155 #define HME_SEB_BARRIER(sc, offs, l, f) \
  156         HME_SPC_BARRIER(seb, (sc), (offs), (l), (f))
  157 #define HME_ERX_READ_4(sc, offs)        HME_SPC_READ_4(erx, (sc), (offs))
  158 #define HME_ERX_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(erx, (sc), (offs), (v))
  159 #define HME_ERX_BARRIER(sc, offs, l, f) \
  160         HME_SPC_BARRIER(erx, (sc), (offs), (l), (f))
  161 #define HME_ETX_READ_4(sc, offs)        HME_SPC_READ_4(etx, (sc), (offs))
  162 #define HME_ETX_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(etx, (sc), (offs), (v))
  163 #define HME_ETX_BARRIER(sc, offs, l, f) \
  164         HME_SPC_BARRIER(etx, (sc), (offs), (l), (f))
  165 #define HME_MAC_READ_4(sc, offs)        HME_SPC_READ_4(mac, (sc), (offs))
  166 #define HME_MAC_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(mac, (sc), (offs), (v))
  167 #define HME_MAC_BARRIER(sc, offs, l, f) \
  168         HME_SPC_BARRIER(mac, (sc), (offs), (l), (f))
  169 #define HME_MIF_READ_4(sc, offs)        HME_SPC_READ_4(mif, (sc), (offs))
  170 #define HME_MIF_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(mif, (sc), (offs), (v))
  171 #define HME_MIF_BARRIER(sc, offs, l, f) \
  172         HME_SPC_BARRIER(mif, (sc), (offs), (l), (f))
  173 
  174 #define HME_MAXERR      5
  175 #define HME_WHINE(dev, ...) do {                                        \
  176         if (hme_nerr++ < HME_MAXERR)                                    \
  177                 device_printf(dev, __VA_ARGS__);                        \
  178         if (hme_nerr == HME_MAXERR) {                                   \
  179                 device_printf(dev, "too many errors; not reporting "    \
  180                     "any more\n");                                      \
  181         }                                                               \
  182 } while(0)
  183 
  184 /* Support oversized VLAN frames. */
  185 #define HME_MAX_FRAMESIZE (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)
  186 
  187 int
  188 hme_config(struct hme_softc *sc)
  189 {
  190         struct ifnet *ifp;
  191         struct mii_softc *child;
  192         bus_size_t size;
  193         int error, rdesc, tdesc, i;
  194 
  195         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
  196         if (ifp == NULL)
  197                 return (ENOSPC);
  198 
  199         /*
  200          * HME common initialization.
  201          *
  202          * hme_softc fields that must be initialized by the front-end:
  203          *
  204          * the DMA bus tag:
  205          *      sc_dmatag
  206          *
  207          * the bus handles, tags and offsets (splitted for SBus compatibility):
  208          *      sc_seb{t,h,o}   (Shared Ethernet Block registers)
  209          *      sc_erx{t,h,o}   (Receiver Unit registers)
  210          *      sc_etx{t,h,o}   (Transmitter Unit registers)
  211          *      sc_mac{t,h,o}   (MAC registers)
  212          *      sc_mif{t,h,o}   (Management Interface registers)
  213          *
  214          * the maximum bus burst size:
  215          *      sc_burst
  216          *
  217          */
  218 
  219         callout_init_mtx(&sc->sc_tick_ch, &sc->sc_lock, 0);
  220 
  221         /* Make sure the chip is stopped. */
  222         HME_LOCK(sc);
  223         hme_stop(sc);
  224         HME_UNLOCK(sc);
  225 
  226         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
  227             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
  228             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
  229             NULL, NULL, &sc->sc_pdmatag);
  230         if (error)
  231                 goto fail_ifnet;
  232 
  233         /*
  234          * Create control, RX and TX mbuf DMA tags.
  235          * Buffer descriptors must be aligned on a 2048 byte boundary;
  236          * take this into account when calculating the size. Note that
  237          * the maximum number of descriptors (256) occupies 2048 bytes,
  238          * so we allocate that much regardless of HME_N*DESC.
  239          */
  240         size = 4096;
  241         error = bus_dma_tag_create(sc->sc_pdmatag, 2048, 0,
  242             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
  243             1, size, 0, busdma_lock_mutex, &sc->sc_lock, &sc->sc_cdmatag);
  244         if (error)
  245                 goto fail_ptag;
  246 
  247         error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
  248             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
  249             1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdmatag);
  250         if (error)
  251                 goto fail_ctag;
  252 
  253         error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
  254             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
  255             MCLBYTES * HME_NTXSEGS, HME_NTXSEGS, MCLBYTES, BUS_DMA_ALLOCNOW,
  256             NULL, NULL, &sc->sc_tdmatag);
  257         if (error)
  258                 goto fail_rtag;
  259 
  260         /* Allocate the control DMA buffer. */
  261         error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_rb.rb_membase,
  262             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdmamap);
  263         if (error != 0) {
  264                 device_printf(sc->sc_dev, "DMA buffer alloc error %d\n", error);
  265                 goto fail_ttag;
  266         }
  267 
  268         /* Load the control DMA buffer. */
  269         sc->sc_rb.rb_dmabase = 0;
  270         if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cdmamap,
  271             sc->sc_rb.rb_membase, size, hme_cdma_callback, sc, 0)) != 0 ||
  272             sc->sc_rb.rb_dmabase == 0) {
  273                 device_printf(sc->sc_dev, "DMA buffer map load error %d\n",
  274                     error);
  275                 goto fail_free;
  276         }
  277         CTR2(KTR_HME, "hme_config: dma va %p, pa %#lx", sc->sc_rb.rb_membase,
  278             sc->sc_rb.rb_dmabase);
  279 
  280         /*
  281          * Prepare the RX descriptors. rdesc serves as marker for the last
  282          * processed descriptor and may be used later on.
  283          */
  284         for (rdesc = 0; rdesc < HME_NRXDESC; rdesc++) {
  285                 sc->sc_rb.rb_rxdesc[rdesc].hrx_m = NULL;
  286                 error = bus_dmamap_create(sc->sc_rdmatag, 0,
  287                     &sc->sc_rb.rb_rxdesc[rdesc].hrx_dmamap);
  288                 if (error != 0)
  289                         goto fail_rxdesc;
  290         }
  291         error = bus_dmamap_create(sc->sc_rdmatag, 0,
  292             &sc->sc_rb.rb_spare_dmamap);
  293         if (error != 0)
  294                 goto fail_rxdesc;
  295         /* Same for the TX descs. */
  296         for (tdesc = 0; tdesc < HME_NTXQ; tdesc++) {
  297                 sc->sc_rb.rb_txdesc[tdesc].htx_m = NULL;
  298                 error = bus_dmamap_create(sc->sc_tdmatag, 0,
  299                     &sc->sc_rb.rb_txdesc[tdesc].htx_dmamap);
  300                 if (error != 0)
  301                         goto fail_txdesc;
  302         }
  303 
  304         sc->sc_csum_features = HME_CSUM_FEATURES;
  305         /* Initialize ifnet structure. */
  306         ifp->if_softc = sc;
  307         if_initname(ifp, device_get_name(sc->sc_dev),
  308             device_get_unit(sc->sc_dev));
  309         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  310         ifp->if_start = hme_start;
  311         ifp->if_ioctl = hme_ioctl;
  312         ifp->if_init = hme_init;
  313         IFQ_SET_MAXLEN(&ifp->if_snd, HME_NTXQ);
  314         ifp->if_snd.ifq_drv_maxlen = HME_NTXQ;
  315         IFQ_SET_READY(&ifp->if_snd);
  316 
  317         hme_mifinit(sc);
  318 
  319         /*
  320          * DP83840A used with HME chips don't advertise their media
  321          * capabilities themselves properly so force writing the ANAR
  322          * according to the BMSR in mii_phy_setmedia().
  323          */
  324         error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, hme_mediachange,
  325             hme_mediastatus, BMSR_DEFCAPMASK, HME_PHYAD_EXTERNAL,
  326             MII_OFFSET_ANY, MIIF_FORCEANEG);
  327         i = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, hme_mediachange,
  328             hme_mediastatus, BMSR_DEFCAPMASK, HME_PHYAD_INTERNAL,
  329             MII_OFFSET_ANY, MIIF_FORCEANEG);
  330         if (error != 0 && i != 0) {
  331                 error = ENXIO;
  332                 device_printf(sc->sc_dev, "attaching PHYs failed\n");
  333                 goto fail_rxdesc;
  334         }
  335         sc->sc_mii = device_get_softc(sc->sc_miibus);
  336 
  337         /*
  338          * Walk along the list of attached MII devices and
  339          * establish an `MII instance' to `PHY number'
  340          * mapping. We'll use this mapping to enable the MII
  341          * drivers of the external transceiver according to
  342          * the currently selected media.
  343          */
  344         sc->sc_phys[0] = sc->sc_phys[1] = -1;
  345         LIST_FOREACH(child, &sc->sc_mii->mii_phys, mii_list) {
  346                 /*
  347                  * Note: we support just two PHYs: the built-in
  348                  * internal device and an external on the MII
  349                  * connector.
  350                  */
  351                 if ((child->mii_phy != HME_PHYAD_EXTERNAL &&
  352                     child->mii_phy != HME_PHYAD_INTERNAL) ||
  353                     child->mii_inst > 1) {
  354                         device_printf(sc->sc_dev, "cannot accommodate "
  355                             "MII device %s at phy %d, instance %d\n",
  356                             device_get_name(child->mii_dev),
  357                             child->mii_phy, child->mii_inst);
  358                         continue;
  359                 }
  360 
  361                 sc->sc_phys[child->mii_inst] = child->mii_phy;
  362         }
  363 
  364         /* Attach the interface. */
  365         ether_ifattach(ifp, sc->sc_enaddr);
  366 
  367         /*
  368          * Tell the upper layer(s) we support long frames/checksum offloads.
  369          */
  370         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
  371         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
  372         ifp->if_hwassist |= sc->sc_csum_features;
  373         ifp->if_capenable |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
  374         return (0);
  375 
  376 fail_txdesc:
  377         for (i = 0; i < tdesc; i++) {
  378                 bus_dmamap_destroy(sc->sc_tdmatag,
  379                     sc->sc_rb.rb_txdesc[i].htx_dmamap);
  380         }
  381         bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
  382 fail_rxdesc:
  383         for (i = 0; i < rdesc; i++) {
  384                 bus_dmamap_destroy(sc->sc_rdmatag,
  385                     sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
  386         }
  387         bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
  388 fail_free:
  389         bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
  390 fail_ttag:
  391         bus_dma_tag_destroy(sc->sc_tdmatag);
  392 fail_rtag:
  393         bus_dma_tag_destroy(sc->sc_rdmatag);
  394 fail_ctag:
  395         bus_dma_tag_destroy(sc->sc_cdmatag);
  396 fail_ptag:
  397         bus_dma_tag_destroy(sc->sc_pdmatag);
  398 fail_ifnet:
  399         if_free(ifp);
  400         return (error);
  401 }
  402 
  403 void
  404 hme_detach(struct hme_softc *sc)
  405 {
  406         struct ifnet *ifp = sc->sc_ifp;
  407         int i;
  408 
  409         HME_LOCK(sc);
  410         hme_stop(sc);
  411         HME_UNLOCK(sc);
  412         callout_drain(&sc->sc_tick_ch);
  413         ether_ifdetach(ifp);
  414         if_free(ifp);
  415         device_delete_child(sc->sc_dev, sc->sc_miibus);
  416 
  417         for (i = 0; i < HME_NTXQ; i++) {
  418                 bus_dmamap_destroy(sc->sc_tdmatag,
  419                     sc->sc_rb.rb_txdesc[i].htx_dmamap);
  420         }
  421         bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
  422         for (i = 0; i < HME_NRXDESC; i++) {
  423                 bus_dmamap_destroy(sc->sc_rdmatag,
  424                     sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
  425         }
  426         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
  427             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
  428         bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
  429         bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
  430         bus_dma_tag_destroy(sc->sc_tdmatag);
  431         bus_dma_tag_destroy(sc->sc_rdmatag);
  432         bus_dma_tag_destroy(sc->sc_cdmatag);
  433         bus_dma_tag_destroy(sc->sc_pdmatag);
  434 }
  435 
  436 void
  437 hme_suspend(struct hme_softc *sc)
  438 {
  439 
  440         HME_LOCK(sc);
  441         hme_stop(sc);
  442         HME_UNLOCK(sc);
  443 }
  444 
  445 void
  446 hme_resume(struct hme_softc *sc)
  447 {
  448         struct ifnet *ifp = sc->sc_ifp;
  449 
  450         HME_LOCK(sc);
  451         if ((ifp->if_flags & IFF_UP) != 0)
  452                 hme_init_locked(sc);
  453         HME_UNLOCK(sc);
  454 }
  455 
  456 static void
  457 hme_cdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
  458 {
  459         struct hme_softc *sc = (struct hme_softc *)xsc;
  460 
  461         if (error != 0)
  462                 return;
  463         KASSERT(nsegs == 1,
  464             ("%s: too many DMA segments (%d)", __func__, nsegs));
  465         sc->sc_rb.rb_dmabase = segs[0].ds_addr;
  466 }
  467 
  468 static void
  469 hme_tick(void *arg)
  470 {
  471         struct hme_softc *sc = arg;
  472         struct ifnet *ifp;
  473 
  474         HME_LOCK_ASSERT(sc, MA_OWNED);
  475 
  476         ifp = sc->sc_ifp;
  477         /*
  478          * Unload collision counters
  479          */
  480         if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
  481                 HME_MAC_READ_4(sc, HME_MACI_NCCNT) +
  482                 HME_MAC_READ_4(sc, HME_MACI_FCCNT) +
  483                 HME_MAC_READ_4(sc, HME_MACI_EXCNT) +
  484                 HME_MAC_READ_4(sc, HME_MACI_LTCNT));
  485 
  486         /*
  487          * then clear the hardware counters.
  488          */
  489         HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
  490         HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
  491         HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
  492         HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
  493 
  494         mii_tick(sc->sc_mii);
  495 
  496         if (hme_watchdog(sc) == EJUSTRETURN)
  497                 return;
  498 
  499         callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
  500 }
  501 
  502 static void
  503 hme_stop(struct hme_softc *sc)
  504 {
  505         u_int32_t v;
  506         int n;
  507 
  508         callout_stop(&sc->sc_tick_ch);
  509         sc->sc_wdog_timer = 0;
  510         sc->sc_ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
  511         sc->sc_flags &= ~HME_LINK;
  512 
  513         /* Mask all interrupts */
  514         HME_SEB_WRITE_4(sc, HME_SEBI_IMASK, 0xffffffff);
  515 
  516         /* Reset transmitter and receiver */
  517         HME_SEB_WRITE_4(sc, HME_SEBI_RESET, HME_SEB_RESET_ETX |
  518             HME_SEB_RESET_ERX);
  519         HME_SEB_BARRIER(sc, HME_SEBI_RESET, 4,
  520             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  521         for (n = 0; n < 20; n++) {
  522                 v = HME_SEB_READ_4(sc, HME_SEBI_RESET);
  523                 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
  524                         return;
  525                 DELAY(20);
  526         }
  527 
  528         device_printf(sc->sc_dev, "hme_stop: reset failed\n");
  529 }
  530 
  531 /*
  532  * Discard the contents of an mbuf in the RX ring, freeing the buffer in the
  533  * ring for subsequent use.
  534  */
  535 static __inline void
  536 hme_discard_rxbuf(struct hme_softc *sc, int ix)
  537 {
  538 
  539         /*
  540          * Dropped a packet, reinitialize the descriptor and turn the
  541          * ownership back to the hardware.
  542          */
  543         HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd,
  544             ix, HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc,
  545             &sc->sc_rb.rb_rxdesc[ix])));
  546 }
  547 
  548 static int
  549 hme_add_rxbuf(struct hme_softc *sc, unsigned int ri, int keepold)
  550 {
  551         struct hme_rxdesc *rd;
  552         struct mbuf *m;
  553         bus_dma_segment_t segs[1];
  554         bus_dmamap_t map;
  555         uintptr_t b;
  556         int a, unmap, nsegs;
  557 
  558         rd = &sc->sc_rb.rb_rxdesc[ri];
  559         unmap = rd->hrx_m != NULL;
  560         if (unmap && keepold) {
  561                 /*
  562                  * Reinitialize the descriptor flags, as they may have been
  563                  * altered by the hardware.
  564                  */
  565                 hme_discard_rxbuf(sc, ri);
  566                 return (0);
  567         }
  568         if ((m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR)) == NULL)
  569                 return (ENOBUFS);
  570         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
  571         b = mtod(m, uintptr_t);
  572         /*
  573          * Required alignment boundary. At least 16 is needed, but since
  574          * the mapping must be done in a way that a burst can start on a
  575          * natural boundary we might need to extend this.
  576          */
  577         a = imax(HME_MINRXALIGN, sc->sc_burst);
  578         /*
  579          * Make sure the buffer suitably aligned. The 2 byte offset is removed
  580          * when the mbuf is handed up. XXX: this ensures at least 16 byte
  581          * alignment of the header adjacent to the ethernet header, which
  582          * should be sufficient in all cases. Nevertheless, this second-guesses
  583          * ALIGN().
  584          */
  585         m_adj(m, roundup2(b, a) - b);
  586         if (bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap,
  587             m, segs, &nsegs, 0) != 0) {
  588                 m_freem(m);
  589                 return (ENOBUFS);
  590         }
  591         /* If nsegs is wrong then the stack is corrupt. */
  592         KASSERT(nsegs == 1,
  593             ("%s: too many DMA segments (%d)", __func__, nsegs));
  594         if (unmap) {
  595                 bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap,
  596                     BUS_DMASYNC_POSTREAD);
  597                 bus_dmamap_unload(sc->sc_rdmatag, rd->hrx_dmamap);
  598         }
  599         map = rd->hrx_dmamap;
  600         rd->hrx_dmamap = sc->sc_rb.rb_spare_dmamap;
  601         sc->sc_rb.rb_spare_dmamap = map;
  602         bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_PREREAD);
  603         HME_XD_SETADDR(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ri,
  604             segs[0].ds_addr);
  605         rd->hrx_m = m;
  606         HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ri,
  607             HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, rd)));
  608         return (0);
  609 }
  610 
  611 static int
  612 hme_meminit(struct hme_softc *sc)
  613 {
  614         struct hme_ring *hr = &sc->sc_rb;
  615         struct hme_txdesc *td;
  616         bus_addr_t dma;
  617         caddr_t p;
  618         unsigned int i;
  619         int error;
  620 
  621         p = hr->rb_membase;
  622         dma = hr->rb_dmabase;
  623 
  624         /*
  625          * Allocate transmit descriptors
  626          */
  627         hr->rb_txd = p;
  628         hr->rb_txddma = dma;
  629         p += HME_NTXDESC * HME_XD_SIZE;
  630         dma += HME_NTXDESC * HME_XD_SIZE;
  631         /*
  632          * We have reserved descriptor space until the next 2048 byte
  633          * boundary.
  634          */
  635         dma = (bus_addr_t)roundup((u_long)dma, 2048);
  636         p = (caddr_t)roundup((u_long)p, 2048);
  637 
  638         /*
  639          * Allocate receive descriptors
  640          */
  641         hr->rb_rxd = p;
  642         hr->rb_rxddma = dma;
  643         p += HME_NRXDESC * HME_XD_SIZE;
  644         dma += HME_NRXDESC * HME_XD_SIZE;
  645         /* Again move forward to the next 2048 byte boundary.*/
  646         dma = (bus_addr_t)roundup((u_long)dma, 2048);
  647         p = (caddr_t)roundup((u_long)p, 2048);
  648 
  649         /*
  650          * Initialize transmit buffer descriptors
  651          */
  652         for (i = 0; i < HME_NTXDESC; i++) {
  653                 HME_XD_SETADDR(sc->sc_flags & HME_PCI, hr->rb_txd, i, 0);
  654                 HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, hr->rb_txd, i, 0);
  655         }
  656 
  657         STAILQ_INIT(&sc->sc_rb.rb_txfreeq);
  658         STAILQ_INIT(&sc->sc_rb.rb_txbusyq);
  659         for (i = 0; i < HME_NTXQ; i++) {
  660                 td = &sc->sc_rb.rb_txdesc[i];
  661                 if (td->htx_m != NULL) {
  662                         bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap,
  663                             BUS_DMASYNC_POSTWRITE);
  664                         bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
  665                         m_freem(td->htx_m);
  666                         td->htx_m = NULL;
  667                 }
  668                 STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, td, htx_q);
  669         }
  670 
  671         /*
  672          * Initialize receive buffer descriptors
  673          */
  674         for (i = 0; i < HME_NRXDESC; i++) {
  675                 error = hme_add_rxbuf(sc, i, 1);
  676                 if (error != 0)
  677                         return (error);
  678         }
  679 
  680         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
  681             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  682 
  683         hr->rb_tdhead = hr->rb_tdtail = 0;
  684         hr->rb_td_nbusy = 0;
  685         hr->rb_rdtail = 0;
  686         CTR2(KTR_HME, "hme_meminit: tx ring va %p, pa %#lx", hr->rb_txd,
  687             hr->rb_txddma);
  688         CTR2(KTR_HME, "hme_meminit: rx ring va %p, pa %#lx", hr->rb_rxd,
  689             hr->rb_rxddma);
  690         CTR2(KTR_HME, "rx entry 1: flags %x, address %x",
  691             *(u_int32_t *)hr->rb_rxd, *(u_int32_t *)(hr->rb_rxd + 4));
  692         CTR2(KTR_HME, "tx entry 1: flags %x, address %x",
  693             *(u_int32_t *)hr->rb_txd, *(u_int32_t *)(hr->rb_txd + 4));
  694         return (0);
  695 }
  696 
  697 static int
  698 hme_mac_bitflip(struct hme_softc *sc, u_int32_t reg, u_int32_t val,
  699     u_int32_t clr, u_int32_t set)
  700 {
  701         int i = 0;
  702 
  703         val &= ~clr;
  704         val |= set;
  705         HME_MAC_WRITE_4(sc, reg, val);
  706         HME_MAC_BARRIER(sc, reg, 4,
  707             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  708         if (clr == 0 && set == 0)
  709                 return (1);     /* just write, no bits to wait for */
  710         do {
  711                 DELAY(100);
  712                 i++;
  713                 val = HME_MAC_READ_4(sc, reg);
  714                 if (i > 40) {
  715                         /* After 3.5ms, we should have been done. */
  716                         device_printf(sc->sc_dev, "timeout while writing to "
  717                             "MAC configuration register\n");
  718                         return (0);
  719                 }
  720         } while ((val & clr) != 0 && (val & set) != set);
  721         return (1);
  722 }
  723 
  724 /*
  725  * Initialization of interface; set up initialization block
  726  * and transmit/receive descriptor rings.
  727  */
  728 static void
  729 hme_init(void *xsc)
  730 {
  731         struct hme_softc *sc = (struct hme_softc *)xsc;
  732 
  733         HME_LOCK(sc);
  734         hme_init_locked(sc);
  735         HME_UNLOCK(sc);
  736 }
  737 
  738 static void
  739 hme_init_locked(struct hme_softc *sc)
  740 {
  741         struct ifnet *ifp = sc->sc_ifp;
  742         u_int8_t *ea;
  743         u_int32_t n, v;
  744 
  745         HME_LOCK_ASSERT(sc, MA_OWNED);
  746 
  747         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
  748                 return;
  749 
  750         /*
  751          * Initialization sequence. The numbered steps below correspond
  752          * to the sequence outlined in section 6.3.5.1 in the Ethernet
  753          * Channel Engine manual (part of the PCIO manual).
  754          * See also the STP2002-STQ document from Sun Microsystems.
  755          */
  756 
  757         /* step 1 & 2. Reset the Ethernet Channel */
  758         hme_stop(sc);
  759 
  760         /* Re-initialize the MIF */
  761         hme_mifinit(sc);
  762 
  763 #if 0
  764         /* Mask all MIF interrupts, just in case */
  765         HME_MIF_WRITE_4(sc, HME_MIFI_IMASK, 0xffff);
  766 #endif
  767 
  768         /* step 3. Setup data structures in host memory */
  769         if (hme_meminit(sc) != 0) {
  770                 device_printf(sc->sc_dev, "out of buffers; init aborted.");
  771                 return;
  772         }
  773 
  774         /* step 4. TX MAC registers & counters */
  775         HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
  776         HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
  777         HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
  778         HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
  779         HME_MAC_WRITE_4(sc, HME_MACI_TXSIZE, HME_MAX_FRAMESIZE);
  780 
  781         /* Load station MAC address */
  782         ea = IF_LLADDR(ifp);
  783         HME_MAC_WRITE_4(sc, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
  784         HME_MAC_WRITE_4(sc, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
  785         HME_MAC_WRITE_4(sc, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
  786 
  787         /*
  788          * Init seed for backoff
  789          * (source suggested by manual: low 10 bits of MAC address)
  790          */
  791         v = ((ea[4] << 8) | ea[5]) & 0x3fff;
  792         HME_MAC_WRITE_4(sc, HME_MACI_RANDSEED, v);
  793 
  794         /* Note: Accepting power-on default for other MAC registers here.. */
  795 
  796         /* step 5. RX MAC registers & counters */
  797         hme_setladrf(sc, 0);
  798 
  799         /* step 6 & 7. Program Descriptor Ring Base Addresses */
  800         HME_ETX_WRITE_4(sc, HME_ETXI_RING, sc->sc_rb.rb_txddma);
  801         /* Transmit Descriptor ring size: in increments of 16 */
  802         HME_ETX_WRITE_4(sc, HME_ETXI_RSIZE, HME_NTXDESC / 16 - 1);
  803 
  804         HME_ERX_WRITE_4(sc, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
  805         HME_MAC_WRITE_4(sc, HME_MACI_RXSIZE, HME_MAX_FRAMESIZE);
  806 
  807         /* step 8. Global Configuration & Interrupt Mask */
  808         HME_SEB_WRITE_4(sc, HME_SEBI_IMASK,
  809             ~(/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
  810                 HME_SEB_STAT_HOSTTOTX |
  811                 HME_SEB_STAT_RXTOHOST |
  812                 HME_SEB_STAT_TXALL |
  813                 HME_SEB_STAT_TXPERR |
  814                 HME_SEB_STAT_RCNTEXP |
  815                 HME_SEB_STAT_ALL_ERRORS ));
  816 
  817         switch (sc->sc_burst) {
  818         default:
  819                 v = 0;
  820                 break;
  821         case 16:
  822                 v = HME_SEB_CFG_BURST16;
  823                 break;
  824         case 32:
  825                 v = HME_SEB_CFG_BURST32;
  826                 break;
  827         case 64:
  828                 v = HME_SEB_CFG_BURST64;
  829                 break;
  830         }
  831         /*
  832          * Blindly setting 64bit transfers may hang PCI cards(Cheerio?).
  833          * Allowing 64bit transfers breaks TX checksum offload as well.
  834          * Don't know this comes from hardware bug or driver's DMAing
  835          * scheme.
  836          *
  837          * if (sc->sc_flags & HME_PCI == 0)
  838          *      v |= HME_SEB_CFG_64BIT;
  839          */
  840         HME_SEB_WRITE_4(sc, HME_SEBI_CFG, v);
  841 
  842         /* step 9. ETX Configuration: use mostly default values */
  843 
  844         /* Enable DMA */
  845         v = HME_ETX_READ_4(sc, HME_ETXI_CFG);
  846         v |= HME_ETX_CFG_DMAENABLE;
  847         HME_ETX_WRITE_4(sc, HME_ETXI_CFG, v);
  848 
  849         /* step 10. ERX Configuration */
  850         v = HME_ERX_READ_4(sc, HME_ERXI_CFG);
  851 
  852         /* Encode Receive Descriptor ring size: four possible values */
  853         v &= ~HME_ERX_CFG_RINGSIZEMSK;
  854         switch (HME_NRXDESC) {
  855         case 32:
  856                 v |= HME_ERX_CFG_RINGSIZE32;
  857                 break;
  858         case 64:
  859                 v |= HME_ERX_CFG_RINGSIZE64;
  860                 break;
  861         case 128:
  862                 v |= HME_ERX_CFG_RINGSIZE128;
  863                 break;
  864         case 256:
  865                 v |= HME_ERX_CFG_RINGSIZE256;
  866                 break;
  867         default:
  868                 printf("hme: invalid Receive Descriptor ring size\n");
  869                 break;
  870         }
  871 
  872         /* Enable DMA, fix RX first byte offset. */
  873         v &= ~HME_ERX_CFG_FBO_MASK;
  874         v |= HME_ERX_CFG_DMAENABLE | (HME_RXOFFS << HME_ERX_CFG_FBO_SHIFT);
  875         /* RX TCP/UDP checksum offset */
  876         n = (ETHER_HDR_LEN + sizeof(struct ip)) / 2;
  877         n = (n << HME_ERX_CFG_CSUMSTART_SHIFT) & HME_ERX_CFG_CSUMSTART_MASK;
  878         v |= n;
  879         CTR1(KTR_HME, "hme_init: programming ERX_CFG to %x", (u_int)v);
  880         HME_ERX_WRITE_4(sc, HME_ERXI_CFG, v);
  881 
  882         /* step 11. XIF Configuration */
  883         v = HME_MAC_READ_4(sc, HME_MACI_XIF);
  884         v |= HME_MAC_XIF_OE;
  885         CTR1(KTR_HME, "hme_init: programming XIF to %x", (u_int)v);
  886         HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
  887 
  888         /* step 12. RX_MAC Configuration Register */
  889         v = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
  890         v |= HME_MAC_RXCFG_ENABLE;
  891         v &= ~(HME_MAC_RXCFG_DCRCS);
  892         CTR1(KTR_HME, "hme_init: programming RX_MAC to %x", (u_int)v);
  893         HME_MAC_WRITE_4(sc, HME_MACI_RXCFG, v);
  894 
  895         /* step 13. TX_MAC Configuration Register */
  896         v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
  897         v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
  898         CTR1(KTR_HME, "hme_init: programming TX_MAC to %x", (u_int)v);
  899         HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
  900 
  901         /* step 14. Issue Transmit Pending command */
  902 
  903 #ifdef HMEDEBUG
  904         /* Debug: double-check. */
  905         CTR4(KTR_HME, "hme_init: tx ring %#x, rsz %#x, rx ring %#x, "
  906             "rxsize %#x", HME_ETX_READ_4(sc, HME_ETXI_RING),
  907             HME_ETX_READ_4(sc, HME_ETXI_RSIZE),
  908             HME_ERX_READ_4(sc, HME_ERXI_RING),
  909             HME_MAC_READ_4(sc, HME_MACI_RXSIZE));
  910         CTR3(KTR_HME, "hme_init: intr mask %#x, erx cfg %#x, etx cfg %#x",
  911             HME_SEB_READ_4(sc, HME_SEBI_IMASK),
  912             HME_ERX_READ_4(sc, HME_ERXI_CFG),
  913             HME_ETX_READ_4(sc, HME_ETXI_CFG));
  914         CTR2(KTR_HME, "hme_init: mac rxcfg %#x, maci txcfg %#x",
  915             HME_MAC_READ_4(sc, HME_MACI_RXCFG),
  916             HME_MAC_READ_4(sc, HME_MACI_TXCFG));
  917 #endif
  918 
  919         ifp->if_drv_flags |= IFF_DRV_RUNNING;
  920         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  921 
  922         /* Set the current media. */
  923         hme_mediachange_locked(sc);
  924 
  925         /* Start the one second timer. */
  926         sc->sc_wdog_timer = 0;
  927         callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
  928 }
  929 
  930 /*
  931  * Routine to DMA map an mbuf chain, set up the descriptor rings
  932  * accordingly and start the transmission.
  933  * Returns 0 on success, -1 if there were not enough free descriptors
  934  * to map the packet, or an errno otherwise.
  935  *
  936  * XXX: this relies on the fact that segments returned by
  937  * bus_dmamap_load_mbuf_sg() are readable from the nearest burst
  938  * boundary on (i.e. potentially before ds_addr) to the first
  939  * boundary beyond the end.  This is usually a safe assumption to
  940  * make, but is not documented.
  941  */
  942 static int
  943 hme_load_txmbuf(struct hme_softc *sc, struct mbuf **m0)
  944 {
  945         bus_dma_segment_t segs[HME_NTXSEGS];
  946         struct hme_txdesc *htx;
  947         struct ip *ip;
  948         struct mbuf *m;
  949         caddr_t txd;
  950         int error, i, nsegs, pci, ri, si;
  951         uint32_t cflags, flags;
  952 
  953         if ((htx = STAILQ_FIRST(&sc->sc_rb.rb_txfreeq)) == NULL)
  954                 return (ENOBUFS);
  955 
  956         cflags = 0;
  957         if (((*m0)->m_pkthdr.csum_flags & sc->sc_csum_features) != 0) {
  958                 if (M_WRITABLE(*m0) == 0) {
  959                         m = m_dup(*m0, M_NOWAIT);
  960                         m_freem(*m0);
  961                         *m0 = m;
  962                         if (m == NULL)
  963                                 return (ENOBUFS);
  964                 }
  965                 i = sizeof(struct ether_header);
  966                 m = m_pullup(*m0, i + sizeof(struct ip));
  967                 if (m == NULL) {
  968                         *m0 = NULL;
  969                         return (ENOBUFS);
  970                 }
  971                 ip = (struct ip *)(mtod(m, caddr_t) + i);
  972                 i += (ip->ip_hl << 2);
  973                 cflags = i << HME_XD_TXCKSUM_SSHIFT |
  974                     ((i + m->m_pkthdr.csum_data) << HME_XD_TXCKSUM_OSHIFT) |
  975                     HME_XD_TXCKSUM;
  976                 *m0 = m;
  977         }
  978 
  979         error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap,
  980             *m0, segs, &nsegs, 0);
  981         if (error == EFBIG) {
  982                 m = m_collapse(*m0, M_NOWAIT, HME_NTXSEGS);
  983                 if (m == NULL) {
  984                         m_freem(*m0);
  985                         *m0 = NULL;
  986                         return (ENOMEM);
  987                 }
  988                 *m0 = m;
  989                 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap,
  990                     *m0, segs, &nsegs, 0);
  991                 if (error != 0) {
  992                         m_freem(*m0);
  993                         *m0 = NULL;
  994                         return (error);
  995                 }
  996         } else if (error != 0)
  997                 return (error);
  998         /* If nsegs is wrong then the stack is corrupt. */
  999         KASSERT(nsegs <= HME_NTXSEGS,
 1000             ("%s: too many DMA segments (%d)", __func__, nsegs));
 1001         if (nsegs == 0) {
 1002                 m_freem(*m0);
 1003                 *m0 = NULL;
 1004                 return (EIO);
 1005         }
 1006         if (sc->sc_rb.rb_td_nbusy + nsegs >= HME_NTXDESC) {
 1007                 bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
 1008                 /* Retry with m_collapse(9)? */
 1009                 return (ENOBUFS);
 1010         }
 1011         bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap, BUS_DMASYNC_PREWRITE);
 1012 
 1013         si = ri = sc->sc_rb.rb_tdhead;
 1014         txd = sc->sc_rb.rb_txd;
 1015         pci = sc->sc_flags & HME_PCI;
 1016         CTR2(KTR_HME, "hme_load_mbuf: next desc is %d (%#x)", ri,
 1017             HME_XD_GETFLAGS(pci, txd, ri));
 1018         for (i = 0; i < nsegs; i++) {
 1019                 /* Fill the ring entry. */
 1020                 flags = HME_XD_ENCODE_TSIZE(segs[i].ds_len);
 1021                 if (i == 0)
 1022                         flags |= HME_XD_SOP | cflags;
 1023                 else
 1024                         flags |= HME_XD_OWN | cflags;
 1025                 CTR3(KTR_HME, "hme_load_mbuf: activating ri %d, si %d (%#x)",
 1026                     ri, si, flags);
 1027                 HME_XD_SETADDR(pci, txd, ri, segs[i].ds_addr);
 1028                 HME_XD_SETFLAGS(pci, txd, ri, flags);
 1029                 sc->sc_rb.rb_td_nbusy++;
 1030                 htx->htx_lastdesc = ri;
 1031                 ri = (ri + 1) % HME_NTXDESC;
 1032         }
 1033         sc->sc_rb.rb_tdhead = ri;
 1034 
 1035         /* set EOP on the last descriptor */
 1036         ri = (ri + HME_NTXDESC - 1) % HME_NTXDESC;
 1037         flags = HME_XD_GETFLAGS(pci, txd, ri);
 1038         flags |= HME_XD_EOP;
 1039         CTR3(KTR_HME, "hme_load_mbuf: setting EOP ri %d, si %d (%#x)", ri, si,
 1040             flags);
 1041         HME_XD_SETFLAGS(pci, txd, ri, flags);
 1042 
 1043         /* Turn the first descriptor ownership to the hme */
 1044         flags = HME_XD_GETFLAGS(pci, txd, si);
 1045         flags |= HME_XD_OWN;
 1046         CTR2(KTR_HME, "hme_load_mbuf: setting OWN for 1st desc ri %d, (%#x)",
 1047             ri, flags);
 1048         HME_XD_SETFLAGS(pci, txd, si, flags);
 1049 
 1050         STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txfreeq, htx_q);
 1051         STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txbusyq, htx, htx_q);
 1052         htx->htx_m = *m0;
 1053 
 1054         /* start the transmission. */
 1055         HME_ETX_WRITE_4(sc, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP);
 1056 
 1057         return (0);
 1058 }
 1059 
 1060 /*
 1061  * Pass a packet to the higher levels.
 1062  */
 1063 static void
 1064 hme_read(struct hme_softc *sc, int ix, int len, u_int32_t flags)
 1065 {
 1066         struct ifnet *ifp = sc->sc_ifp;
 1067         struct mbuf *m;
 1068 
 1069         if (len <= sizeof(struct ether_header) ||
 1070             len > HME_MAX_FRAMESIZE) {
 1071 #ifdef HMEDEBUG
 1072                 HME_WHINE(sc->sc_dev, "invalid packet size %d; dropping\n",
 1073                     len);
 1074 #endif
 1075                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 1076                 hme_discard_rxbuf(sc, ix);
 1077                 return;
 1078         }
 1079 
 1080         m = sc->sc_rb.rb_rxdesc[ix].hrx_m;
 1081         CTR1(KTR_HME, "hme_read: len %d", len);
 1082 
 1083         if (hme_add_rxbuf(sc, ix, 0) != 0) {
 1084                 /*
 1085                  * hme_add_rxbuf will leave the old buffer in the ring until
 1086                  * it is sure that a new buffer can be mapped. If it can not,
 1087                  * drop the packet, but leave the interface up.
 1088                  */
 1089                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 1090                 hme_discard_rxbuf(sc, ix);
 1091                 return;
 1092         }
 1093 
 1094         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 1095 
 1096         m->m_pkthdr.rcvif = ifp;
 1097         m->m_pkthdr.len = m->m_len = len + HME_RXOFFS;
 1098         m_adj(m, HME_RXOFFS);
 1099         /* RX TCP/UDP checksum */
 1100         if (ifp->if_capenable & IFCAP_RXCSUM)
 1101                 hme_rxcksum(m, flags);
 1102         /* Pass the packet up. */
 1103         HME_UNLOCK(sc);
 1104         (*ifp->if_input)(ifp, m);
 1105         HME_LOCK(sc);
 1106 }
 1107 
 1108 static void
 1109 hme_start(struct ifnet *ifp)
 1110 {
 1111         struct hme_softc *sc = ifp->if_softc;
 1112 
 1113         HME_LOCK(sc);
 1114         hme_start_locked(ifp);
 1115         HME_UNLOCK(sc);
 1116 }
 1117 
 1118 static void
 1119 hme_start_locked(struct ifnet *ifp)
 1120 {
 1121         struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
 1122         struct mbuf *m;
 1123         int error, enq = 0;
 1124 
 1125         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1126             IFF_DRV_RUNNING || (sc->sc_flags & HME_LINK) == 0)
 1127                 return;
 1128 
 1129         for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 1130             sc->sc_rb.rb_td_nbusy < HME_NTXDESC - 1;) {
 1131                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 1132                 if (m == NULL)
 1133                         break;
 1134 
 1135                 error = hme_load_txmbuf(sc, &m);
 1136                 if (error != 0) {
 1137                         if (m == NULL)
 1138                                 break;
 1139                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1140                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
 1141                         break;
 1142                 }
 1143                 enq++;
 1144                 BPF_MTAP(ifp, m);
 1145         }
 1146 
 1147         if (enq > 0) {
 1148                 bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
 1149                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1150                 sc->sc_wdog_timer = 5;
 1151         }
 1152 }
 1153 
 1154 /*
 1155  * Transmit interrupt.
 1156  */
 1157 static void
 1158 hme_tint(struct hme_softc *sc)
 1159 {
 1160         caddr_t txd;
 1161         struct ifnet *ifp = sc->sc_ifp;
 1162         struct hme_txdesc *htx;
 1163         unsigned int ri, txflags;
 1164 
 1165         txd = sc->sc_rb.rb_txd;
 1166         htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
 1167         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
 1168         /* Fetch current position in the transmit ring */
 1169         for (ri = sc->sc_rb.rb_tdtail;; ri = (ri + 1) % HME_NTXDESC) {
 1170                 if (sc->sc_rb.rb_td_nbusy <= 0) {
 1171                         CTR0(KTR_HME, "hme_tint: not busy!");
 1172                         break;
 1173                 }
 1174 
 1175                 txflags = HME_XD_GETFLAGS(sc->sc_flags & HME_PCI, txd, ri);
 1176                 CTR2(KTR_HME, "hme_tint: index %d, flags %#x", ri, txflags);
 1177 
 1178                 if ((txflags & HME_XD_OWN) != 0)
 1179                         break;
 1180 
 1181                 CTR0(KTR_HME, "hme_tint: not owned");
 1182                 --sc->sc_rb.rb_td_nbusy;
 1183                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1184 
 1185                 /* Complete packet transmitted? */
 1186                 if ((txflags & HME_XD_EOP) == 0)
 1187                         continue;
 1188 
 1189                 KASSERT(htx->htx_lastdesc == ri,
 1190                     ("%s: ring indices skewed: %d != %d!",
 1191                     __func__, htx->htx_lastdesc, ri));
 1192                 bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap,
 1193                     BUS_DMASYNC_POSTWRITE);
 1194                 bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
 1195 
 1196                 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 1197                 m_freem(htx->htx_m);
 1198                 htx->htx_m = NULL;
 1199                 STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txbusyq, htx_q);
 1200                 STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, htx, htx_q);
 1201                 htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
 1202         }
 1203         sc->sc_wdog_timer = sc->sc_rb.rb_td_nbusy > 0 ? 5 : 0;
 1204 
 1205         /* Update ring */
 1206         sc->sc_rb.rb_tdtail = ri;
 1207 
 1208         hme_start_locked(ifp);
 1209 }
 1210 
 1211 /*
 1212  * RX TCP/UDP checksum
 1213  */
 1214 static void
 1215 hme_rxcksum(struct mbuf *m, u_int32_t flags)
 1216 {
 1217         struct ether_header *eh;
 1218         struct ip *ip;
 1219         struct udphdr *uh;
 1220         int32_t hlen, len, pktlen;
 1221         u_int16_t cksum, *opts;
 1222         u_int32_t temp32;
 1223 
 1224         pktlen = m->m_pkthdr.len;
 1225         if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
 1226                 return;
 1227         eh = mtod(m, struct ether_header *);
 1228         if (eh->ether_type != htons(ETHERTYPE_IP))
 1229                 return;
 1230         ip = (struct ip *)(eh + 1);
 1231         if (ip->ip_v != IPVERSION)
 1232                 return;
 1233 
 1234         hlen = ip->ip_hl << 2;
 1235         pktlen -= sizeof(struct ether_header);
 1236         if (hlen < sizeof(struct ip))
 1237                 return;
 1238         if (ntohs(ip->ip_len) < hlen)
 1239                 return;
 1240         if (ntohs(ip->ip_len) != pktlen)
 1241                 return;
 1242         if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
 1243                 return; /* can't handle fragmented packet */
 1244 
 1245         switch (ip->ip_p) {
 1246         case IPPROTO_TCP:
 1247                 if (pktlen < (hlen + sizeof(struct tcphdr)))
 1248                         return;
 1249                 break;
 1250         case IPPROTO_UDP:
 1251                 if (pktlen < (hlen + sizeof(struct udphdr)))
 1252                         return;
 1253                 uh = (struct udphdr *)((caddr_t)ip + hlen);
 1254                 if (uh->uh_sum == 0)
 1255                         return; /* no checksum */
 1256                 break;
 1257         default:
 1258                 return;
 1259         }
 1260 
 1261         cksum = ~(flags & HME_XD_RXCKSUM);
 1262         /* checksum fixup for IP options */
 1263         len = hlen - sizeof(struct ip);
 1264         if (len > 0) {
 1265                 opts = (u_int16_t *)(ip + 1);
 1266                 for (; len > 0; len -= sizeof(u_int16_t), opts++) {
 1267                         temp32 = cksum - *opts;
 1268                         temp32 = (temp32 >> 16) + (temp32 & 65535);
 1269                         cksum = temp32 & 65535;
 1270                 }
 1271         }
 1272         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
 1273         m->m_pkthdr.csum_data = cksum;
 1274 }
 1275 
 1276 /*
 1277  * Receive interrupt.
 1278  */
 1279 static void
 1280 hme_rint(struct hme_softc *sc)
 1281 {
 1282         caddr_t xdr = sc->sc_rb.rb_rxd;
 1283         struct ifnet *ifp = sc->sc_ifp;
 1284         unsigned int ri, len;
 1285         int progress = 0;
 1286         u_int32_t flags;
 1287 
 1288         /*
 1289          * Process all buffers with valid data.
 1290          */
 1291         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
 1292         for (ri = sc->sc_rb.rb_rdtail;; ri = (ri + 1) % HME_NRXDESC) {
 1293                 flags = HME_XD_GETFLAGS(sc->sc_flags & HME_PCI, xdr, ri);
 1294                 CTR2(KTR_HME, "hme_rint: index %d, flags %#x", ri, flags);
 1295                 if ((flags & HME_XD_OWN) != 0)
 1296                         break;
 1297 
 1298                 progress++;
 1299                 if ((flags & HME_XD_OFL) != 0) {
 1300                         device_printf(sc->sc_dev, "buffer overflow, ri=%d; "
 1301                             "flags=0x%x\n", ri, flags);
 1302                         if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 1303                         hme_discard_rxbuf(sc, ri);
 1304                 } else {
 1305                         len = HME_XD_DECODE_RSIZE(flags);
 1306                         hme_read(sc, ri, len, flags);
 1307                 }
 1308         }
 1309         if (progress) {
 1310                 bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
 1311                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1312         }
 1313         sc->sc_rb.rb_rdtail = ri;
 1314 }
 1315 
 1316 static void
 1317 hme_eint(struct hme_softc *sc, u_int status)
 1318 {
 1319 
 1320         if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
 1321                 device_printf(sc->sc_dev, "XXXlink status changed: "
 1322                     "cfg=%#x, stat=%#x, sm=%#x\n",
 1323                     HME_MIF_READ_4(sc, HME_MIFI_CFG),
 1324                     HME_MIF_READ_4(sc, HME_MIFI_STAT),
 1325                     HME_MIF_READ_4(sc, HME_MIFI_SM));
 1326                 return;
 1327         }
 1328 
 1329         /* check for fatal errors that needs reset to unfreeze DMA engine */
 1330         if ((status & HME_SEB_STAT_FATAL_ERRORS) != 0) {
 1331                 HME_WHINE(sc->sc_dev, "error signaled, status=%#x\n", status);
 1332                 sc->sc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1333                 hme_init_locked(sc);
 1334         }
 1335 }
 1336 
 1337 void
 1338 hme_intr(void *v)
 1339 {
 1340         struct hme_softc *sc = (struct hme_softc *)v;
 1341         u_int32_t status;
 1342 
 1343         HME_LOCK(sc);
 1344         status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
 1345         CTR1(KTR_HME, "hme_intr: status %#x", (u_int)status);
 1346 
 1347         if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
 1348                 hme_eint(sc, status);
 1349 
 1350         if ((status & HME_SEB_STAT_RXTOHOST) != 0)
 1351                 hme_rint(sc);
 1352 
 1353         if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
 1354                 hme_tint(sc);
 1355         HME_UNLOCK(sc);
 1356 }
 1357 
 1358 static int
 1359 hme_watchdog(struct hme_softc *sc)
 1360 {
 1361         struct ifnet *ifp = sc->sc_ifp;
 1362 
 1363         HME_LOCK_ASSERT(sc, MA_OWNED);
 1364 
 1365 #ifdef HMEDEBUG
 1366         CTR1(KTR_HME, "hme_watchdog: status %x",
 1367             (u_int)HME_SEB_READ_4(sc, HME_SEBI_STAT));
 1368 #endif
 1369 
 1370         if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
 1371                 return (0);
 1372 
 1373         if ((sc->sc_flags & HME_LINK) != 0)
 1374                 device_printf(sc->sc_dev, "device timeout\n");
 1375         else if (bootverbose)
 1376                 device_printf(sc->sc_dev, "device timeout (no link)\n");
 1377         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1378 
 1379         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1380         hme_init_locked(sc);
 1381         hme_start_locked(ifp);
 1382         return (EJUSTRETURN);
 1383 }
 1384 
 1385 /*
 1386  * Initialize the MII Management Interface
 1387  */
 1388 static void
 1389 hme_mifinit(struct hme_softc *sc)
 1390 {
 1391         u_int32_t v;
 1392 
 1393         /*
 1394          * Configure the MIF in frame mode, polling disabled, internal PHY
 1395          * selected.
 1396          */
 1397         HME_MIF_WRITE_4(sc, HME_MIFI_CFG, 0);
 1398 
 1399         /*
 1400          * If the currently selected media uses the external transceiver,
 1401          * enable its MII drivers (which basically isolates the internal
 1402          * one and vice versa). In case the current media hasn't been set,
 1403          * yet, we default to the internal transceiver.
 1404          */
 1405         v = HME_MAC_READ_4(sc, HME_MACI_XIF);
 1406         if (sc->sc_mii != NULL && sc->sc_mii->mii_media.ifm_cur != NULL &&
 1407             sc->sc_phys[IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media)] ==
 1408             HME_PHYAD_EXTERNAL)
 1409                 v |= HME_MAC_XIF_MIIENABLE;
 1410         else
 1411                 v &= ~HME_MAC_XIF_MIIENABLE;
 1412         HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
 1413 }
 1414 
 1415 /*
 1416  * MII interface
 1417  */
 1418 int
 1419 hme_mii_readreg(device_t dev, int phy, int reg)
 1420 {
 1421         struct hme_softc *sc;
 1422         int n;
 1423         u_int32_t v;
 1424 
 1425         sc = device_get_softc(dev);
 1426         /* Select the desired PHY in the MIF configuration register */
 1427         v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
 1428         if (phy == HME_PHYAD_EXTERNAL)
 1429                 v |= HME_MIF_CFG_PHY;
 1430         else
 1431                 v &= ~HME_MIF_CFG_PHY;
 1432         HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
 1433 
 1434         /* Construct the frame command */
 1435         v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
 1436             HME_MIF_FO_TAMSB |
 1437             (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
 1438             (phy << HME_MIF_FO_PHYAD_SHIFT) |
 1439             (reg << HME_MIF_FO_REGAD_SHIFT);
 1440 
 1441         HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
 1442         HME_MIF_BARRIER(sc, HME_MIFI_FO, 4,
 1443             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
 1444         for (n = 0; n < 100; n++) {
 1445                 DELAY(1);
 1446                 v = HME_MIF_READ_4(sc, HME_MIFI_FO);
 1447                 if (v & HME_MIF_FO_TALSB)
 1448                         return (v & HME_MIF_FO_DATA);
 1449         }
 1450 
 1451         device_printf(sc->sc_dev, "mii_read timeout\n");
 1452         return (0);
 1453 }
 1454 
 1455 int
 1456 hme_mii_writereg(device_t dev, int phy, int reg, int val)
 1457 {
 1458         struct hme_softc *sc;
 1459         int n;
 1460         u_int32_t v;
 1461 
 1462         sc = device_get_softc(dev);
 1463         /* Select the desired PHY in the MIF configuration register */
 1464         v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
 1465         if (phy == HME_PHYAD_EXTERNAL)
 1466                 v |= HME_MIF_CFG_PHY;
 1467         else
 1468                 v &= ~HME_MIF_CFG_PHY;
 1469         HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
 1470 
 1471         /* Construct the frame command */
 1472         v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)  |
 1473             HME_MIF_FO_TAMSB                            |
 1474             (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
 1475             (phy << HME_MIF_FO_PHYAD_SHIFT)             |
 1476             (reg << HME_MIF_FO_REGAD_SHIFT)             |
 1477             (val & HME_MIF_FO_DATA);
 1478 
 1479         HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
 1480         HME_MIF_BARRIER(sc, HME_MIFI_FO, 4,
 1481             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
 1482         for (n = 0; n < 100; n++) {
 1483                 DELAY(1);
 1484                 v = HME_MIF_READ_4(sc, HME_MIFI_FO);
 1485                 if (v & HME_MIF_FO_TALSB)
 1486                         return (1);
 1487         }
 1488 
 1489         device_printf(sc->sc_dev, "mii_write timeout\n");
 1490         return (0);
 1491 }
 1492 
 1493 void
 1494 hme_mii_statchg(device_t dev)
 1495 {
 1496         struct hme_softc *sc;
 1497         uint32_t rxcfg, txcfg;
 1498 
 1499         sc = device_get_softc(dev);
 1500 
 1501 #ifdef HMEDEBUG
 1502         if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0)
 1503                 device_printf(sc->sc_dev, "hme_mii_statchg: status change\n");
 1504 #endif
 1505 
 1506         if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
 1507             IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
 1508                 sc->sc_flags |= HME_LINK;
 1509         else
 1510                 sc->sc_flags &= ~HME_LINK;
 1511 
 1512         txcfg = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
 1513         if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, txcfg,
 1514             HME_MAC_TXCFG_ENABLE, 0))
 1515                 device_printf(sc->sc_dev, "cannot disable TX MAC\n");
 1516         rxcfg = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
 1517         if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, rxcfg,
 1518             HME_MAC_RXCFG_ENABLE, 0))
 1519                 device_printf(sc->sc_dev, "cannot disable RX MAC\n");
 1520 
 1521         /* Set the MAC Full Duplex bit appropriately. */
 1522         if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
 1523                 txcfg |= HME_MAC_TXCFG_FULLDPLX;
 1524         else
 1525                 txcfg &= ~HME_MAC_TXCFG_FULLDPLX;
 1526         HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, txcfg);
 1527 
 1528         if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 1529             (sc->sc_flags & HME_LINK) != 0) {
 1530                 if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, txcfg, 0,
 1531                     HME_MAC_TXCFG_ENABLE))
 1532                         device_printf(sc->sc_dev, "cannot enable TX MAC\n");
 1533                 if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, rxcfg, 0,
 1534                     HME_MAC_RXCFG_ENABLE))
 1535                         device_printf(sc->sc_dev, "cannot enable RX MAC\n");
 1536         }
 1537 }
 1538 
 1539 static int
 1540 hme_mediachange(struct ifnet *ifp)
 1541 {
 1542         struct hme_softc *sc = ifp->if_softc;
 1543         int error;
 1544 
 1545         HME_LOCK(sc);
 1546         error = hme_mediachange_locked(sc);
 1547         HME_UNLOCK(sc);
 1548         return (error);
 1549 }
 1550 
 1551 static int
 1552 hme_mediachange_locked(struct hme_softc *sc)
 1553 {
 1554         struct mii_softc *child;
 1555 
 1556         HME_LOCK_ASSERT(sc, MA_OWNED);
 1557 
 1558 #ifdef HMEDEBUG
 1559         if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0)
 1560                 device_printf(sc->sc_dev, "hme_mediachange_locked");
 1561 #endif
 1562 
 1563         hme_mifinit(sc);
 1564 
 1565         /*
 1566          * If both PHYs are present reset them. This is required for
 1567          * unisolating the previously isolated PHY when switching PHYs.
 1568          * As the above hme_mifinit() call will set the MII drivers in
 1569          * the XIF configuration register according to the currently
 1570          * selected media, there should be no window during which the
 1571          * data paths of both transceivers are open at the same time,
 1572          * even if the PHY device drivers use MIIF_NOISOLATE.
 1573          */
 1574         if (sc->sc_phys[0] != -1 && sc->sc_phys[1] != -1)
 1575                 LIST_FOREACH(child, &sc->sc_mii->mii_phys, mii_list)
 1576                         PHY_RESET(child);
 1577         return (mii_mediachg(sc->sc_mii));
 1578 }
 1579 
 1580 static void
 1581 hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
 1582 {
 1583         struct hme_softc *sc = ifp->if_softc;
 1584 
 1585         HME_LOCK(sc);
 1586         if ((ifp->if_flags & IFF_UP) == 0) {
 1587                 HME_UNLOCK(sc);
 1588                 return;
 1589         }
 1590 
 1591         mii_pollstat(sc->sc_mii);
 1592         ifmr->ifm_active = sc->sc_mii->mii_media_active;
 1593         ifmr->ifm_status = sc->sc_mii->mii_media_status;
 1594         HME_UNLOCK(sc);
 1595 }
 1596 
 1597 /*
 1598  * Process an ioctl request.
 1599  */
 1600 static int
 1601 hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1602 {
 1603         struct hme_softc *sc = ifp->if_softc;
 1604         struct ifreq *ifr = (struct ifreq *)data;
 1605         int error = 0;
 1606 
 1607         switch (cmd) {
 1608         case SIOCSIFFLAGS:
 1609                 HME_LOCK(sc);
 1610                 if ((ifp->if_flags & IFF_UP) != 0) {
 1611                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
 1612                             ((ifp->if_flags ^ sc->sc_ifflags) &
 1613                             (IFF_ALLMULTI | IFF_PROMISC)) != 0)
 1614                                 hme_setladrf(sc, 1);
 1615                         else
 1616                                 hme_init_locked(sc);
 1617                 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1618                         hme_stop(sc);
 1619                 if ((ifp->if_flags & IFF_LINK0) != 0)
 1620                         sc->sc_csum_features |= CSUM_UDP;
 1621                 else
 1622                         sc->sc_csum_features &= ~CSUM_UDP;
 1623                 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1624                         ifp->if_hwassist = sc->sc_csum_features;
 1625                 sc->sc_ifflags = ifp->if_flags;
 1626                 HME_UNLOCK(sc);
 1627                 break;
 1628 
 1629         case SIOCADDMULTI:
 1630         case SIOCDELMULTI:
 1631                 HME_LOCK(sc);
 1632                 hme_setladrf(sc, 1);
 1633                 HME_UNLOCK(sc);
 1634                 error = 0;
 1635                 break;
 1636         case SIOCGIFMEDIA:
 1637         case SIOCSIFMEDIA:
 1638                 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
 1639                 break;
 1640         case SIOCSIFCAP:
 1641                 HME_LOCK(sc);
 1642                 ifp->if_capenable = ifr->ifr_reqcap;
 1643                 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1644                         ifp->if_hwassist = sc->sc_csum_features;
 1645                 else
 1646                         ifp->if_hwassist = 0;
 1647                 HME_UNLOCK(sc);
 1648                 break;
 1649         default:
 1650                 error = ether_ioctl(ifp, cmd, data);
 1651                 break;
 1652         }
 1653 
 1654         return (error);
 1655 }
 1656 
 1657 /*
 1658  * Set up the logical address filter.
 1659  */
 1660 static void
 1661 hme_setladrf(struct hme_softc *sc, int reenable)
 1662 {
 1663         struct ifnet *ifp = sc->sc_ifp;
 1664         struct ifmultiaddr *inm;
 1665         u_int32_t crc;
 1666         u_int32_t hash[4];
 1667         u_int32_t macc;
 1668 
 1669         HME_LOCK_ASSERT(sc, MA_OWNED);
 1670         /* Clear the hash table. */
 1671         hash[3] = hash[2] = hash[1] = hash[0] = 0;
 1672 
 1673         /* Get the current RX configuration. */
 1674         macc = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
 1675 
 1676         /*
 1677          * Turn off promiscuous mode, promiscuous group mode (all multicast),
 1678          * and hash filter.  Depending on the case, the right bit will be
 1679          * enabled.
 1680          */
 1681         macc &= ~(HME_MAC_RXCFG_PGRP | HME_MAC_RXCFG_PMISC);
 1682 
 1683         /*
 1684          * Disable the receiver while changing it's state as the documentation
 1685          * mandates.
 1686          * We then must wait until the bit clears in the register. This should
 1687          * take at most 3.5ms.
 1688          */
 1689         if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
 1690             HME_MAC_RXCFG_ENABLE, 0))
 1691                 device_printf(sc->sc_dev, "cannot disable RX MAC\n");
 1692         /* Disable the hash filter before writing to the filter registers. */
 1693         if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
 1694             HME_MAC_RXCFG_HENABLE, 0))
 1695                 device_printf(sc->sc_dev, "cannot disable hash filter\n");
 1696 
 1697         /* Make the RX MAC really SIMPLEX. */
 1698         macc |= HME_MAC_RXCFG_ME;
 1699         if (reenable)
 1700                 macc |= HME_MAC_RXCFG_ENABLE;
 1701         else
 1702                 macc &= ~HME_MAC_RXCFG_ENABLE;
 1703 
 1704         if ((ifp->if_flags & IFF_PROMISC) != 0) {
 1705                 macc |= HME_MAC_RXCFG_PMISC;
 1706                 goto chipit;
 1707         }
 1708         if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
 1709                 macc |= HME_MAC_RXCFG_PGRP;
 1710                 goto chipit;
 1711         }
 1712 
 1713         macc |= HME_MAC_RXCFG_HENABLE;
 1714 
 1715         /*
 1716          * Set up multicast address filter by passing all multicast addresses
 1717          * through a crc generator, and then using the high order 6 bits as an
 1718          * index into the 64 bit logical address filter.  The high order bit
 1719          * selects the word, while the rest of the bits select the bit within
 1720          * the word.
 1721          */
 1722 
 1723         if_maddr_rlock(ifp);
 1724         TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
 1725                 if (inm->ifma_addr->sa_family != AF_LINK)
 1726                         continue;
 1727                 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
 1728                     inm->ifma_addr), ETHER_ADDR_LEN);
 1729 
 1730                 /* Just want the 6 most significant bits. */
 1731                 crc >>= 26;
 1732 
 1733                 /* Set the corresponding bit in the filter. */
 1734                 hash[crc >> 4] |= 1 << (crc & 0xf);
 1735         }
 1736         if_maddr_runlock(ifp);
 1737 
 1738 chipit:
 1739         /* Now load the hash table into the chip */
 1740         HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB0, hash[0]);
 1741         HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB1, hash[1]);
 1742         HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB2, hash[2]);
 1743         HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB3, hash[3]);
 1744         if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, 0,
 1745             macc & (HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_HENABLE |
 1746             HME_MAC_RXCFG_ME)))
 1747                 device_printf(sc->sc_dev, "cannot configure RX MAC\n");
 1748 }

Cache object: 1b34ff6d71dd444e908122f26c30fb1f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.