The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/hme/if_hme.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1999 The NetBSD Foundation, Inc.
    3  * Copyright (c) 2001-2003 Thomas Moestl <tmm@FreeBSD.org>.
    4  * All rights reserved.
    5  *
    6  * This code is derived from software contributed to The NetBSD Foundation
    7  * by Paul Kranenburg.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. All advertising materials mentioning features or use of this software
   18  *    must display the following acknowledgement:
   19  *        This product includes software developed by the NetBSD
   20  *        Foundation, Inc. and its contributors.
   21  * 4. Neither the name of The NetBSD Foundation nor the names of its
   22  *    contributors may be used to endorse or promote products derived
   23  *    from this software without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   35  * POSSIBILITY OF SUCH DAMAGE.
   36  *
   37  *      from: NetBSD: hme.c,v 1.29 2002/05/05 03:02:38 thorpej Exp
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD: releng/6.1/sys/dev/hme/if_hme.c 157071 2006-03-24 00:38:07Z yongari $");
   42 
   43 /*
   44  * HME Ethernet module driver.
   45  *
   46  * The HME is e.g. part of the PCIO PCI multi function device.
   47  * It supports TX gathering and TX and RX checksum offloading.
   48  * RX buffers must be aligned at a programmable offset modulo 16. We choose 2
   49  * for this offset: mbuf clusters are usually on about 2^11 boundaries, 2 bytes
   50  * are skipped to make sure the header after the ethernet header is aligned on a
   51  * natural boundary, so this ensures minimal wastage in the most common case.
   52  *
   53  * Also, apparently, the buffers must extend to a DMA burst boundary beyond the
   54  * maximum packet size (this is not verified). Buffers starting on odd
   55  * boundaries must be mapped so that the burst can start on a natural boundary.
   56  *
   57  * STP2002QFP-UG says that Ethernet hardware supports TCP checksum offloading.
   58  * In reality, we can do the same technique for UDP datagram too. However,
   59  * the hardware doesn't compensate the checksum for UDP datagram which can yield
   60  * to 0x0. As a safe guard, UDP checksum offload is disabled by default. It
   61  * can be reactivated by setting special link option link0 with ifconfig(8).
   62  */
   63 #define HME_CSUM_FEATURES       (CSUM_TCP)
   64 #define HMEDEBUG
   65 #define KTR_HME         KTR_CT2         /* XXX */
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/bus.h>
   70 #include <sys/endian.h>
   71 #include <sys/kernel.h>
   72 #include <sys/module.h>
   73 #include <sys/ktr.h>
   74 #include <sys/mbuf.h>
   75 #include <sys/malloc.h>
   76 #include <sys/socket.h>
   77 #include <sys/sockio.h>
   78 
   79 #include <net/bpf.h>
   80 #include <net/ethernet.h>
   81 #include <net/if.h>
   82 #include <net/if_arp.h>
   83 #include <net/if_dl.h>
   84 #include <net/if_media.h>
   85 #include <net/if_types.h>
   86 #include <net/if_vlan_var.h>
   87 
   88 #include <netinet/in.h>
   89 #include <netinet/in_systm.h>
   90 #include <netinet/ip.h>
   91 #include <netinet/tcp.h>
   92 #include <netinet/udp.h>
   93 
   94 #include <dev/mii/mii.h>
   95 #include <dev/mii/miivar.h>
   96 
   97 #include <machine/bus.h>
   98 
   99 #include <dev/hme/if_hmereg.h>
  100 #include <dev/hme/if_hmevar.h>
  101 
  102 static void     hme_start(struct ifnet *);
  103 static void     hme_start_locked(struct ifnet *);
  104 static void     hme_stop(struct hme_softc *);
  105 static int      hme_ioctl(struct ifnet *, u_long, caddr_t);
  106 static void     hme_tick(void *);
  107 static void     hme_watchdog(struct ifnet *);
  108 static void     hme_init(void *);
  109 static void     hme_init_locked(struct hme_softc *);
  110 static int      hme_add_rxbuf(struct hme_softc *, unsigned int, int);
  111 static int      hme_meminit(struct hme_softc *);
  112 static int      hme_mac_bitflip(struct hme_softc *, u_int32_t, u_int32_t,
  113     u_int32_t, u_int32_t);
  114 static void     hme_mifinit(struct hme_softc *);
  115 static void     hme_setladrf(struct hme_softc *, int);
  116 
  117 static int      hme_mediachange(struct ifnet *);
  118 static void     hme_mediastatus(struct ifnet *, struct ifmediareq *);
  119 
  120 static int      hme_load_txmbuf(struct hme_softc *, struct mbuf **);
  121 static void     hme_read(struct hme_softc *, int, int, u_int32_t);
  122 static void     hme_eint(struct hme_softc *, u_int);
  123 static void     hme_rint(struct hme_softc *);
  124 static void     hme_tint(struct hme_softc *);
  125 static void     hme_txcksum(struct mbuf *, u_int32_t *);
  126 static void     hme_rxcksum(struct mbuf *, u_int32_t);
  127 
  128 static void     hme_cdma_callback(void *, bus_dma_segment_t *, int, int);
  129 
  130 devclass_t hme_devclass;
  131 
  132 static int hme_nerr;
  133 
  134 DRIVER_MODULE(miibus, hme, miibus_driver, miibus_devclass, 0, 0);
  135 MODULE_DEPEND(hme, miibus, 1, 1, 1);
  136 
  137 #define HME_SPC_READ_4(spc, sc, offs) \
  138         bus_space_read_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
  139             (offs))
  140 #define HME_SPC_WRITE_4(spc, sc, offs, v) \
  141         bus_space_write_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
  142             (offs), (v))
  143 
  144 #define HME_SEB_READ_4(sc, offs)        HME_SPC_READ_4(seb, (sc), (offs))
  145 #define HME_SEB_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(seb, (sc), (offs), (v))
  146 #define HME_ERX_READ_4(sc, offs)        HME_SPC_READ_4(erx, (sc), (offs))
  147 #define HME_ERX_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(erx, (sc), (offs), (v))
  148 #define HME_ETX_READ_4(sc, offs)        HME_SPC_READ_4(etx, (sc), (offs))
  149 #define HME_ETX_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(etx, (sc), (offs), (v))
  150 #define HME_MAC_READ_4(sc, offs)        HME_SPC_READ_4(mac, (sc), (offs))
  151 #define HME_MAC_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(mac, (sc), (offs), (v))
  152 #define HME_MIF_READ_4(sc, offs)        HME_SPC_READ_4(mif, (sc), (offs))
  153 #define HME_MIF_WRITE_4(sc, offs, v)    HME_SPC_WRITE_4(mif, (sc), (offs), (v))
  154 
  155 #define HME_MAXERR      5
  156 #define HME_WHINE(dev, ...) do {                                        \
  157         if (hme_nerr++ < HME_MAXERR)                                    \
  158                 device_printf(dev, __VA_ARGS__);                        \
  159         if (hme_nerr == HME_MAXERR) {                                   \
  160                 device_printf(dev, "too may errors; not reporting any " \
  161                     "more\n");                                          \
  162         }                                                               \
  163 } while(0)
  164 
  165 /* Support oversized VLAN frames. */
  166 #define HME_MAX_FRAMESIZE (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)
  167 
  168 int
  169 hme_config(struct hme_softc *sc)
  170 {
  171         struct ifnet *ifp;
  172         struct mii_softc *child;
  173         bus_size_t size;
  174         int error, rdesc, tdesc, i;
  175 
  176         ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
  177         if (ifp == NULL)
  178                 return (ENOSPC);
  179 
  180         /*
  181          * HME common initialization.
  182          *
  183          * hme_softc fields that must be initialized by the front-end:
  184          *
  185          * the DMA bus tag:
  186          *      sc_dmatag
  187          *
  188          * the bus handles, tags and offsets (splitted for SBus compatability):
  189          *      sc_seb{t,h,o}   (Shared Ethernet Block registers)
  190          *      sc_erx{t,h,o}   (Receiver Unit registers)
  191          *      sc_etx{t,h,o}   (Transmitter Unit registers)
  192          *      sc_mac{t,h,o}   (MAC registers)
  193          *      sc_mif{t,h,o}   (Management Interface registers)
  194          *
  195          * the maximum bus burst size:
  196          *      sc_burst
  197          *
  198          */
  199 
  200         callout_init_mtx(&sc->sc_tick_ch, &sc->sc_lock, 0);
  201 
  202         /* Make sure the chip is stopped. */
  203         HME_LOCK(sc);
  204         hme_stop(sc);
  205         HME_UNLOCK(sc);
  206 
  207         /*
  208          * Allocate DMA capable memory
  209          * Buffer descriptors must be aligned on a 2048 byte boundary;
  210          * take this into account when calculating the size. Note that
  211          * the maximum number of descriptors (256) occupies 2048 bytes,
  212          * so we allocate that much regardless of HME_N*DESC.
  213          */
  214         size =  4096;
  215 
  216         error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
  217             BUS_SPACE_MAXADDR, NULL, NULL, size, HME_NTXDESC + HME_NRXDESC + 1,
  218             BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_pdmatag);
  219         if (error)
  220                 goto fail_ifnet;
  221 
  222         error = bus_dma_tag_create(sc->sc_pdmatag, 2048, 0,
  223             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
  224             1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, busdma_lock_mutex,
  225             &sc->sc_lock, &sc->sc_cdmatag);
  226         if (error)
  227                 goto fail_ptag;
  228 
  229         error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
  230             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
  231             HME_NRXDESC, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
  232             NULL, NULL, &sc->sc_rdmatag);
  233         if (error)
  234                 goto fail_ctag;
  235 
  236         error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
  237             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
  238             HME_NTXDESC, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
  239             NULL, NULL, &sc->sc_tdmatag);
  240         if (error)
  241                 goto fail_rtag;
  242 
  243         /* Allocate control/TX DMA buffer */
  244         error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_rb.rb_membase,
  245             0, &sc->sc_cdmamap);
  246         if (error != 0) {
  247                 device_printf(sc->sc_dev, "DMA buffer alloc error %d\n", error);
  248                 goto fail_ttag;
  249         }
  250 
  251         /* Load the buffer */
  252         sc->sc_rb.rb_dmabase = 0;
  253         if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cdmamap,
  254              sc->sc_rb.rb_membase, size, hme_cdma_callback, sc, 0)) != 0 ||
  255             sc->sc_rb.rb_dmabase == 0) {
  256                 device_printf(sc->sc_dev, "DMA buffer map load error %d\n",
  257                     error);
  258                 goto fail_free;
  259         }
  260         CTR2(KTR_HME, "hme_config: dma va %p, pa %#lx", sc->sc_rb.rb_membase,
  261             sc->sc_rb.rb_dmabase);
  262 
  263         /*
  264          * Prepare the RX descriptors. rdesc serves as marker for the last
  265          * processed descriptor and may be used later on.
  266          */
  267         for (rdesc = 0; rdesc < HME_NRXDESC; rdesc++) {
  268                 sc->sc_rb.rb_rxdesc[rdesc].hrx_m = NULL;
  269                 error = bus_dmamap_create(sc->sc_rdmatag, 0,
  270                     &sc->sc_rb.rb_rxdesc[rdesc].hrx_dmamap);
  271                 if (error != 0)
  272                         goto fail_rxdesc;
  273         }
  274         error = bus_dmamap_create(sc->sc_rdmatag, 0,
  275             &sc->sc_rb.rb_spare_dmamap);
  276         if (error != 0)
  277                 goto fail_rxdesc;
  278         /* Same for the TX descs. */
  279         for (tdesc = 0; tdesc < HME_NTXQ; tdesc++) {
  280                 sc->sc_rb.rb_txdesc[tdesc].htx_m = NULL;
  281                 error = bus_dmamap_create(sc->sc_tdmatag, 0,
  282                     &sc->sc_rb.rb_txdesc[tdesc].htx_dmamap);
  283                 if (error != 0)
  284                         goto fail_txdesc;
  285         }
  286 
  287         sc->sc_csum_features = HME_CSUM_FEATURES;
  288         /* Initialize ifnet structure. */
  289         ifp->if_softc = sc;
  290         if_initname(ifp, device_get_name(sc->sc_dev),
  291             device_get_unit(sc->sc_dev));
  292         ifp->if_mtu = ETHERMTU;
  293         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  294         ifp->if_start = hme_start;
  295         ifp->if_ioctl = hme_ioctl;
  296         ifp->if_init = hme_init;
  297         ifp->if_watchdog = hme_watchdog;
  298         IFQ_SET_MAXLEN(&ifp->if_snd, HME_NTXQ);
  299         ifp->if_snd.ifq_drv_maxlen = HME_NTXQ;
  300         IFQ_SET_READY(&ifp->if_snd);
  301 
  302         hme_mifinit(sc);
  303 
  304         if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, hme_mediachange,
  305             hme_mediastatus)) != 0) {
  306                 device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
  307                 goto fail_rxdesc;
  308         }
  309         sc->sc_mii = device_get_softc(sc->sc_miibus);
  310 
  311         /*
  312          * Walk along the list of attached MII devices and
  313          * establish an `MII instance' to `phy number'
  314          * mapping. We'll use this mapping in media change
  315          * requests to determine which phy to use to program
  316          * the MIF configuration register.
  317          */
  318         for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
  319              child = LIST_NEXT(child, mii_list)) {
  320                 /*
  321                  * Note: we support just two PHYs: the built-in
  322                  * internal device and an external on the MII
  323                  * connector.
  324                  */
  325                 if (child->mii_phy > 1 || child->mii_inst > 1) {
  326                         device_printf(sc->sc_dev, "cannot accommodate "
  327                             "MII device %s at phy %d, instance %d\n",
  328                             device_get_name(child->mii_dev),
  329                             child->mii_phy, child->mii_inst);
  330                         continue;
  331                 }
  332 
  333                 sc->sc_phys[child->mii_inst] = child->mii_phy;
  334         }
  335 
  336         /* Attach the interface. */
  337         ether_ifattach(ifp, sc->sc_enaddr);
  338 
  339         /*
  340          * Tell the upper layer(s) we support long frames/checksum offloads.
  341          */
  342         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  343         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
  344         ifp->if_hwassist |= sc->sc_csum_features;
  345         ifp->if_capenable |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
  346         return (0);
  347 
  348 fail_txdesc:
  349         for (i = 0; i < tdesc; i++) {
  350                 bus_dmamap_destroy(sc->sc_tdmatag,
  351                     sc->sc_rb.rb_txdesc[i].htx_dmamap);
  352         }
  353         bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
  354 fail_rxdesc:
  355         for (i = 0; i < rdesc; i++) {
  356                 bus_dmamap_destroy(sc->sc_rdmatag,
  357                     sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
  358         }
  359         bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
  360 fail_free:
  361         bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
  362 fail_ttag:
  363         bus_dma_tag_destroy(sc->sc_tdmatag);
  364 fail_rtag:
  365         bus_dma_tag_destroy(sc->sc_rdmatag);
  366 fail_ctag:
  367         bus_dma_tag_destroy(sc->sc_cdmatag);
  368 fail_ptag:
  369         bus_dma_tag_destroy(sc->sc_pdmatag);
  370 fail_ifnet:
  371         if_free(ifp);
  372         return (error);
  373 }
  374 
  375 void
  376 hme_detach(struct hme_softc *sc)
  377 {
  378         struct ifnet *ifp = sc->sc_ifp;
  379         int i;
  380 
  381         HME_LOCK(sc);
  382         hme_stop(sc);
  383         HME_UNLOCK(sc);
  384         callout_drain(&sc->sc_tick_ch);
  385         ether_ifdetach(ifp);
  386         if_free(ifp);
  387         device_delete_child(sc->sc_dev, sc->sc_miibus);
  388 
  389         for (i = 0; i < HME_NTXQ; i++) {
  390                 bus_dmamap_destroy(sc->sc_tdmatag,
  391                     sc->sc_rb.rb_txdesc[i].htx_dmamap);
  392         }
  393         bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
  394         for (i = 0; i < HME_NRXDESC; i++) {
  395                 bus_dmamap_destroy(sc->sc_rdmatag,
  396                     sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
  397         }
  398         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
  399         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTWRITE);
  400         bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
  401         bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
  402         bus_dma_tag_destroy(sc->sc_tdmatag);
  403         bus_dma_tag_destroy(sc->sc_rdmatag);
  404         bus_dma_tag_destroy(sc->sc_cdmatag);
  405         bus_dma_tag_destroy(sc->sc_pdmatag);
  406 }
  407 
  408 void
  409 hme_suspend(struct hme_softc *sc)
  410 {
  411 
  412         HME_LOCK(sc);
  413         hme_stop(sc);
  414         HME_UNLOCK(sc);
  415 }
  416 
  417 void
  418 hme_resume(struct hme_softc *sc)
  419 {
  420         struct ifnet *ifp = sc->sc_ifp;
  421 
  422         HME_LOCK(sc);
  423         if ((ifp->if_flags & IFF_UP) != 0)
  424                 hme_init_locked(sc);
  425         HME_UNLOCK(sc);
  426 }
  427 
  428 static void
  429 hme_cdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
  430 {
  431         struct hme_softc *sc = (struct hme_softc *)xsc;
  432 
  433         if (error != 0)
  434                 return;
  435         KASSERT(nsegs == 1, ("hme_cdma_callback: bad dma segment count"));
  436         sc->sc_rb.rb_dmabase = segs[0].ds_addr;
  437 }
  438 
  439 static void
  440 hme_tick(void *arg)
  441 {
  442         struct hme_softc *sc = arg;
  443         struct ifnet *ifp;
  444 
  445         HME_LOCK_ASSERT(sc, MA_OWNED);
  446 
  447         ifp = sc->sc_ifp;
  448         /*
  449          * Unload collision counters
  450          */
  451         ifp->if_collisions +=
  452                 HME_MAC_READ_4(sc, HME_MACI_NCCNT) +
  453                 HME_MAC_READ_4(sc, HME_MACI_FCCNT) +
  454                 HME_MAC_READ_4(sc, HME_MACI_EXCNT) +
  455                 HME_MAC_READ_4(sc, HME_MACI_LTCNT);
  456 
  457         /*
  458          * then clear the hardware counters.
  459          */
  460         HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
  461         HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
  462         HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
  463         HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
  464 
  465         mii_tick(sc->sc_mii);
  466 
  467         callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
  468 }
  469 
  470 static void
  471 hme_stop(struct hme_softc *sc)
  472 {
  473         u_int32_t v;
  474         int n;
  475 
  476         callout_stop(&sc->sc_tick_ch);
  477         sc->sc_ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
  478 
  479         /* Reset transmitter and receiver */
  480         HME_SEB_WRITE_4(sc, HME_SEBI_RESET, HME_SEB_RESET_ETX |
  481             HME_SEB_RESET_ERX);
  482 
  483         for (n = 0; n < 20; n++) {
  484                 v = HME_SEB_READ_4(sc, HME_SEBI_RESET);
  485                 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
  486                         return;
  487                 DELAY(20);
  488         }
  489 
  490         device_printf(sc->sc_dev, "hme_stop: reset failed\n");
  491 }
  492 
  493 /*
  494  * Discard the contents of an mbuf in the RX ring, freeing the buffer in the
  495  * ring for subsequent use.
  496  */
  497 static __inline void
  498 hme_discard_rxbuf(struct hme_softc *sc, int ix)
  499 {
  500 
  501         /*
  502          * Dropped a packet, reinitialize the descriptor and turn the
  503          * ownership back to the hardware.
  504          */
  505         HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ix, HME_XD_OWN |
  506             HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, &sc->sc_rb.rb_rxdesc[ix])));
  507 }
  508 
  509 static int
  510 hme_add_rxbuf(struct hme_softc *sc, unsigned int ri, int keepold)
  511 {
  512         struct hme_rxdesc *rd;
  513         struct mbuf *m;
  514         bus_dma_segment_t segs[1];
  515         bus_dmamap_t map;
  516         uintptr_t b;
  517         int a, unmap, nsegs;
  518 
  519         rd = &sc->sc_rb.rb_rxdesc[ri];
  520         unmap = rd->hrx_m != NULL;
  521         if (unmap && keepold) {
  522                 /*
  523                  * Reinitialize the descriptor flags, as they may have been
  524                  * altered by the hardware.
  525                  */
  526                 hme_discard_rxbuf(sc, ri);
  527                 return (0);
  528         }
  529         if ((m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR)) == NULL)
  530                 return (ENOBUFS);
  531         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
  532         b = mtod(m, uintptr_t);
  533         /*
  534          * Required alignment boundary. At least 16 is needed, but since
  535          * the mapping must be done in a way that a burst can start on a
  536          * natural boundary we might need to extend this.
  537          */
  538         a = imax(HME_MINRXALIGN, sc->sc_burst);
  539         /*
  540          * Make sure the buffer suitably aligned. The 2 byte offset is removed
  541          * when the mbuf is handed up. XXX: this ensures at least 16 byte
  542          * alignment of the header adjacent to the ethernet header, which
  543          * should be sufficient in all cases. Nevertheless, this second-guesses
  544          * ALIGN().
  545          */
  546         m_adj(m, roundup2(b, a) - b);
  547         if (bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap,
  548             m, segs, &nsegs, 0) != 0) {
  549                 m_freem(m);
  550                 return (ENOBUFS);
  551         }
  552         /* If nsegs is wrong then the stack is corrupt */
  553         KASSERT(nsegs == 1, ("Too many segments returned!"));
  554         if (unmap) {
  555                 bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap,
  556                     BUS_DMASYNC_POSTREAD);
  557                 bus_dmamap_unload(sc->sc_rdmatag, rd->hrx_dmamap);
  558         }
  559         map = rd->hrx_dmamap;
  560         rd->hrx_dmamap = sc->sc_rb.rb_spare_dmamap;
  561         sc->sc_rb.rb_spare_dmamap = map;
  562         bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_PREREAD);
  563         HME_XD_SETADDR(sc->sc_pci, sc->sc_rb.rb_rxd, ri, segs[0].ds_addr);
  564         rd->hrx_m = m;
  565         HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ri, HME_XD_OWN |
  566             HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, rd)));
  567         return (0);
  568 }
  569 
  570 static int
  571 hme_meminit(struct hme_softc *sc)
  572 {
  573         struct hme_ring *hr = &sc->sc_rb;
  574         struct hme_txdesc *td;
  575         bus_addr_t dma;
  576         caddr_t p;
  577         unsigned int i;
  578         int error;
  579 
  580         p = hr->rb_membase;
  581         dma = hr->rb_dmabase;
  582 
  583         /*
  584          * Allocate transmit descriptors
  585          */
  586         hr->rb_txd = p;
  587         hr->rb_txddma = dma;
  588         p += HME_NTXDESC * HME_XD_SIZE;
  589         dma += HME_NTXDESC * HME_XD_SIZE;
  590         /* We have reserved descriptor space until the next 2048 byte boundary.*/
  591         dma = (bus_addr_t)roundup((u_long)dma, 2048);
  592         p = (caddr_t)roundup((u_long)p, 2048);
  593 
  594         /*
  595          * Allocate receive descriptors
  596          */
  597         hr->rb_rxd = p;
  598         hr->rb_rxddma = dma;
  599         p += HME_NRXDESC * HME_XD_SIZE;
  600         dma += HME_NRXDESC * HME_XD_SIZE;
  601         /* Again move forward to the next 2048 byte boundary.*/
  602         dma = (bus_addr_t)roundup((u_long)dma, 2048);
  603         p = (caddr_t)roundup((u_long)p, 2048);
  604 
  605         /*
  606          * Initialize transmit buffer descriptors
  607          */
  608         for (i = 0; i < HME_NTXDESC; i++) {
  609                 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, 0);
  610                 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
  611         }
  612 
  613         STAILQ_INIT(&sc->sc_rb.rb_txfreeq);
  614         STAILQ_INIT(&sc->sc_rb.rb_txbusyq);
  615         for (i = 0; i < HME_NTXQ; i++) {
  616                 td = &sc->sc_rb.rb_txdesc[i];
  617                 if (td->htx_m != NULL) {
  618                         bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap,
  619                             BUS_DMASYNC_POSTWRITE);
  620                         bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
  621                         m_freem(td->htx_m);
  622                         td->htx_m = NULL;
  623                 }
  624                 STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, td, htx_q);
  625         }
  626 
  627         /*
  628          * Initialize receive buffer descriptors
  629          */
  630         for (i = 0; i < HME_NRXDESC; i++) {
  631                 error = hme_add_rxbuf(sc, i, 1);
  632                 if (error != 0)
  633                         return (error);
  634         }
  635 
  636         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREREAD);
  637         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_PREWRITE);
  638 
  639         hr->rb_tdhead = hr->rb_tdtail = 0;
  640         hr->rb_td_nbusy = 0;
  641         hr->rb_rdtail = 0;
  642         CTR2(KTR_HME, "hme_meminit: tx ring va %p, pa %#lx", hr->rb_txd,
  643             hr->rb_txddma);
  644         CTR2(KTR_HME, "hme_meminit: rx ring va %p, pa %#lx", hr->rb_rxd,
  645             hr->rb_rxddma);
  646         CTR2(KTR_HME, "rx entry 1: flags %x, address %x",
  647             *(u_int32_t *)hr->rb_rxd, *(u_int32_t *)(hr->rb_rxd + 4));
  648         CTR2(KTR_HME, "tx entry 1: flags %x, address %x",
  649             *(u_int32_t *)hr->rb_txd, *(u_int32_t *)(hr->rb_txd + 4));
  650         return (0);
  651 }
  652 
  653 static int
  654 hme_mac_bitflip(struct hme_softc *sc, u_int32_t reg, u_int32_t val,
  655     u_int32_t clr, u_int32_t set)
  656 {
  657         int i = 0;
  658 
  659         val &= ~clr;
  660         val |= set;
  661         HME_MAC_WRITE_4(sc, reg, val);
  662         if (clr == 0 && set == 0)
  663                 return (1);     /* just write, no bits to wait for */
  664         do {
  665                 DELAY(100);
  666                 i++;
  667                 val = HME_MAC_READ_4(sc, reg);
  668                 if (i > 40) {
  669                         /* After 3.5ms, we should have been done. */
  670                         device_printf(sc->sc_dev, "timeout while writing to "
  671                             "MAC configuration register\n");
  672                         return (0);
  673                 }
  674         } while ((val & clr) != 0 && (val & set) != set);
  675         return (1);
  676 }
  677 
  678 /*
  679  * Initialization of interface; set up initialization block
  680  * and transmit/receive descriptor rings.
  681  */
  682 static void
  683 hme_init(void *xsc)
  684 {
  685         struct hme_softc *sc = (struct hme_softc *)xsc;
  686 
  687         HME_LOCK(sc);
  688         hme_init_locked(sc);
  689         HME_UNLOCK(sc);
  690 }
  691 
  692 static void
  693 hme_init_locked(struct hme_softc *sc)
  694 {
  695         struct ifnet *ifp = sc->sc_ifp;
  696         u_int8_t *ea;
  697         u_int32_t n, v;
  698 
  699         HME_LOCK_ASSERT(sc, MA_OWNED);
  700         /*
  701          * Initialization sequence. The numbered steps below correspond
  702          * to the sequence outlined in section 6.3.5.1 in the Ethernet
  703          * Channel Engine manual (part of the PCIO manual).
  704          * See also the STP2002-STQ document from Sun Microsystems.
  705          */
  706 
  707         /* step 1 & 2. Reset the Ethernet Channel */
  708         hme_stop(sc);
  709 
  710         /* Re-initialize the MIF */
  711         hme_mifinit(sc);
  712 
  713 #if 0
  714         /* Mask all MIF interrupts, just in case */
  715         HME_MIF_WRITE_4(sc, HME_MIFI_IMASK, 0xffff);
  716 #endif
  717 
  718         /* step 3. Setup data structures in host memory */
  719         if (hme_meminit(sc) != 0) {
  720                 device_printf(sc->sc_dev, "out of buffers; init aborted.");
  721                 return;
  722         }
  723 
  724         /* step 4. TX MAC registers & counters */
  725         HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
  726         HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
  727         HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
  728         HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
  729         HME_MAC_WRITE_4(sc, HME_MACI_TXSIZE, HME_MAX_FRAMESIZE);
  730 
  731         /* Load station MAC address */
  732         ea = IFP2ENADDR(sc->sc_ifp);
  733         HME_MAC_WRITE_4(sc, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
  734         HME_MAC_WRITE_4(sc, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
  735         HME_MAC_WRITE_4(sc, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
  736 
  737         /*
  738          * Init seed for backoff
  739          * (source suggested by manual: low 10 bits of MAC address)
  740          */
  741         v = ((ea[4] << 8) | ea[5]) & 0x3fff;
  742         HME_MAC_WRITE_4(sc, HME_MACI_RANDSEED, v);
  743 
  744 
  745         /* Note: Accepting power-on default for other MAC registers here.. */
  746 
  747         /* step 5. RX MAC registers & counters */
  748         hme_setladrf(sc, 0);
  749 
  750         /* step 6 & 7. Program Descriptor Ring Base Addresses */
  751         HME_ETX_WRITE_4(sc, HME_ETXI_RING, sc->sc_rb.rb_txddma);
  752         /* Transmit Descriptor ring size: in increments of 16 */
  753         HME_ETX_WRITE_4(sc, HME_ETXI_RSIZE, HME_NTXDESC / 16 - 1);
  754 
  755         HME_ERX_WRITE_4(sc, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
  756         HME_MAC_WRITE_4(sc, HME_MACI_RXSIZE, HME_MAX_FRAMESIZE);
  757 
  758         /* step 8. Global Configuration & Interrupt Mask */
  759         HME_SEB_WRITE_4(sc, HME_SEBI_IMASK,
  760             ~(/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
  761                 HME_SEB_STAT_HOSTTOTX |
  762                 HME_SEB_STAT_RXTOHOST |
  763                 HME_SEB_STAT_TXALL |
  764                 HME_SEB_STAT_TXPERR |
  765                 HME_SEB_STAT_RCNTEXP |
  766                 HME_SEB_STAT_ALL_ERRORS ));
  767 
  768         switch (sc->sc_burst) {
  769         default:
  770                 v = 0;
  771                 break;
  772         case 16:
  773                 v = HME_SEB_CFG_BURST16;
  774                 break;
  775         case 32:
  776                 v = HME_SEB_CFG_BURST32;
  777                 break;
  778         case 64:
  779                 v = HME_SEB_CFG_BURST64;
  780                 break;
  781         }
  782         /*
  783          * Blindly setting 64bit transfers may hang PCI cards(Cheerio?).
  784          * Allowing 64bit transfers breaks TX checksum offload as well.
  785          * Don't know this comes from hardware bug or driver's DMAing
  786          * scheme.
  787          *
  788          * if (sc->sc_pci == 0)
  789          *      v |= HME_SEB_CFG_64BIT;
  790          */
  791         HME_SEB_WRITE_4(sc, HME_SEBI_CFG, v);
  792 
  793         /* step 9. ETX Configuration: use mostly default values */
  794 
  795         /* Enable DMA */
  796         v = HME_ETX_READ_4(sc, HME_ETXI_CFG);
  797         v |= HME_ETX_CFG_DMAENABLE;
  798         HME_ETX_WRITE_4(sc, HME_ETXI_CFG, v);
  799 
  800         /* step 10. ERX Configuration */
  801         v = HME_ERX_READ_4(sc, HME_ERXI_CFG);
  802 
  803         /* Encode Receive Descriptor ring size: four possible values */
  804         v &= ~HME_ERX_CFG_RINGSIZEMSK;
  805         switch (HME_NRXDESC) {
  806         case 32:
  807                 v |= HME_ERX_CFG_RINGSIZE32;
  808                 break;
  809         case 64:
  810                 v |= HME_ERX_CFG_RINGSIZE64;
  811                 break;
  812         case 128:
  813                 v |= HME_ERX_CFG_RINGSIZE128;
  814                 break;
  815         case 256:
  816                 v |= HME_ERX_CFG_RINGSIZE256;
  817                 break;
  818         default:
  819                 printf("hme: invalid Receive Descriptor ring size\n");
  820                 break;
  821         }
  822 
  823         /* Enable DMA, fix RX first byte offset. */
  824         v &= ~HME_ERX_CFG_FBO_MASK;
  825         v |= HME_ERX_CFG_DMAENABLE | (HME_RXOFFS << HME_ERX_CFG_FBO_SHIFT);
  826         /* RX TCP/UDP checksum offset */
  827         n = (ETHER_HDR_LEN + sizeof(struct ip)) / 2;
  828         n = (n << HME_ERX_CFG_CSUMSTART_SHIFT) & HME_ERX_CFG_CSUMSTART_MASK;
  829         v |= n;
  830         CTR1(KTR_HME, "hme_init: programming ERX_CFG to %x", (u_int)v);
  831         HME_ERX_WRITE_4(sc, HME_ERXI_CFG, v);
  832 
  833         /* step 11. XIF Configuration */
  834         v = HME_MAC_READ_4(sc, HME_MACI_XIF);
  835         v |= HME_MAC_XIF_OE;
  836         /* If an external transceiver is connected, enable its MII drivers */
  837         if ((HME_MIF_READ_4(sc, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
  838                 v |= HME_MAC_XIF_MIIENABLE;
  839         CTR1(KTR_HME, "hme_init: programming XIF to %x", (u_int)v);
  840         HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
  841 
  842         /* step 12. RX_MAC Configuration Register */
  843         v = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
  844         v |= HME_MAC_RXCFG_ENABLE;
  845         v &= ~(HME_MAC_RXCFG_DCRCS);
  846         CTR1(KTR_HME, "hme_init: programming RX_MAC to %x", (u_int)v);
  847         HME_MAC_WRITE_4(sc, HME_MACI_RXCFG, v);
  848 
  849         /* step 13. TX_MAC Configuration Register */
  850         v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
  851         v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
  852         CTR1(KTR_HME, "hme_init: programming TX_MAC to %x", (u_int)v);
  853         HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
  854 
  855         /* step 14. Issue Transmit Pending command */
  856 
  857 #ifdef HMEDEBUG
  858         /* Debug: double-check. */
  859         CTR4(KTR_HME, "hme_init: tx ring %#x, rsz %#x, rx ring %#x, "
  860             "rxsize %#x", HME_ETX_READ_4(sc, HME_ETXI_RING),
  861             HME_ETX_READ_4(sc, HME_ETXI_RSIZE),
  862             HME_ERX_READ_4(sc, HME_ERXI_RING),
  863             HME_MAC_READ_4(sc, HME_MACI_RXSIZE));
  864         CTR3(KTR_HME, "hme_init: intr mask %#x, erx cfg %#x, etx cfg %#x",
  865             HME_SEB_READ_4(sc, HME_SEBI_IMASK),
  866             HME_ERX_READ_4(sc, HME_ERXI_CFG),
  867             HME_ETX_READ_4(sc, HME_ETXI_CFG));
  868         CTR2(KTR_HME, "hme_init: mac rxcfg %#x, maci txcfg %#x",
  869             HME_MAC_READ_4(sc, HME_MACI_RXCFG),
  870             HME_MAC_READ_4(sc, HME_MACI_TXCFG));
  871 #endif
  872 
  873         /* Set the current media. */
  874         /*
  875          * mii_mediachg(sc->sc_mii);
  876          */
  877 
  878         /* Start the one second timer. */
  879         callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
  880 
  881         ifp->if_drv_flags |= IFF_DRV_RUNNING;
  882         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
  883         ifp->if_timer = 0;
  884         hme_start_locked(ifp);
  885 }
  886 
  887 /* TX TCP/UDP checksum */
  888 static void
  889 hme_txcksum(struct mbuf *m, u_int32_t *cflags)
  890 {
  891         struct ip *ip;
  892         u_int32_t offset, offset2;
  893         caddr_t p;
  894 
  895         for(; m && m->m_len == 0; m = m->m_next)
  896                 ;
  897         if (m == NULL || m->m_len < ETHER_HDR_LEN) {
  898                 printf("hme_txcksum: m_len < ETHER_HDR_LEN\n");
  899                 return; /* checksum will be corrupted */
  900         }
  901         if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
  902                 if (m->m_len != ETHER_HDR_LEN) {
  903                         printf("hme_txcksum: m_len != ETHER_HDR_LEN\n");
  904                         return; /* checksum will be corrupted */
  905                 }
  906                 /* XXX */
  907                 for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
  908                         ;
  909                 if (m == NULL)
  910                         return; /* checksum will be corrupted */
  911                 ip = mtod(m, struct ip *);
  912         } else {
  913                 p = mtod(m, caddr_t);
  914                 p += ETHER_HDR_LEN;
  915                 ip = (struct ip *)p;
  916         }
  917         offset2 = m->m_pkthdr.csum_data;
  918         offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
  919         *cflags = offset << HME_XD_TXCKSUM_SSHIFT;
  920         *cflags |= ((offset + offset2) << HME_XD_TXCKSUM_OSHIFT); 
  921         *cflags |= HME_XD_TXCKSUM;
  922 }
  923 
  924 /*
  925  * Routine to dma map an mbuf chain, set up the descriptor rings accordingly and
  926  * start the transmission.
  927  * Returns 0 on success, -1 if there were not enough free descriptors to map
  928  * the packet, or an errno otherwise.
  929  *
  930  * XXX: this relies on the fact that segments returned by bus_dmamap_load_mbuf()
  931  * are readable from the nearest burst boundary on (i.e. potentially before
  932  * ds_addr) to the first boundary beyond the end. This is usually a safe
  933  * assumption to make, but is not documented.
  934  */
  935 static int
  936 hme_load_txmbuf(struct hme_softc *sc, struct mbuf **m0)
  937 {
  938         struct hme_txdesc *htx;
  939         struct mbuf *m, *n;
  940         caddr_t txd;
  941         int i, pci, si, ri, nseg;
  942         u_int32_t flags, cflags = 0;
  943         int error = 0;
  944 
  945         if ((htx = STAILQ_FIRST(&sc->sc_rb.rb_txfreeq)) == NULL)
  946                 return (-1);
  947         m = *m0;
  948         if ((m->m_pkthdr.csum_flags & sc->sc_csum_features) != 0)
  949                 hme_txcksum(m, &cflags);
  950         error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap,
  951             m, sc->sc_rb.rb_txsegs, &nseg, 0);
  952         if (error == EFBIG) {
  953                 n = m_defrag(m, M_DONTWAIT);
  954                 if (n == NULL) {
  955                         m_freem(m);
  956                         m = NULL;
  957                         return (ENOMEM);
  958                 }
  959                 m = n;
  960                 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap,
  961                     m, sc->sc_rb.rb_txsegs, &nseg, 0);
  962                 if (error != 0) {
  963                         m_freem(m);
  964                         m = NULL;
  965                         return (error);
  966                 }
  967         } else if (error != 0)
  968                 return (error);
  969         if (nseg == 0) {
  970                 m_freem(m);
  971                 m = NULL;
  972                 return (EIO);
  973         }
  974         if (sc->sc_rb.rb_td_nbusy + nseg >= HME_NTXDESC) {
  975                 bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
  976                 /* retry with m_defrag(9)? */
  977                 return (-2);
  978         }
  979         bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap, BUS_DMASYNC_PREWRITE);
  980 
  981         si = ri = sc->sc_rb.rb_tdhead;
  982         txd = sc->sc_rb.rb_txd;
  983         pci = sc->sc_pci;
  984         CTR2(KTR_HME, "hme_load_mbuf: next desc is %d (%#x)", ri,
  985             HME_XD_GETFLAGS(pci, txd, ri));
  986         for (i = 0; i < nseg; i++) {
  987                 /* Fill the ring entry. */
  988                 flags = HME_XD_ENCODE_TSIZE(sc->sc_rb.rb_txsegs[i].ds_len);
  989                 if (i == 0)
  990                         flags |= HME_XD_SOP | cflags;
  991                 else
  992                         flags |= HME_XD_OWN | cflags;
  993                 CTR3(KTR_HME, "hme_load_mbuf: activating ri %d, si %d (%#x)",
  994                     ri, si, flags);
  995                 HME_XD_SETADDR(pci, txd, ri, sc->sc_rb.rb_txsegs[i].ds_addr);
  996                 HME_XD_SETFLAGS(pci, txd, ri, flags);
  997                 sc->sc_rb.rb_td_nbusy++;
  998                 htx->htx_lastdesc = ri;
  999                 ri = (ri + 1) % HME_NTXDESC;
 1000         }
 1001         sc->sc_rb.rb_tdhead = ri;
 1002 
 1003         /* set EOP on the last descriptor */
 1004         ri = (ri + HME_NTXDESC - 1) % HME_NTXDESC;
 1005         flags = HME_XD_GETFLAGS(pci, txd, ri);
 1006         flags |= HME_XD_EOP;
 1007         CTR3(KTR_HME, "hme_load_mbuf: setting EOP ri %d, si %d (%#x)", ri, si,
 1008             flags);
 1009         HME_XD_SETFLAGS(pci, txd, ri, flags);
 1010 
 1011         /* Turn the first descriptor ownership to the hme */
 1012         flags = HME_XD_GETFLAGS(pci, txd, si);
 1013         flags |= HME_XD_OWN;
 1014         CTR2(KTR_HME, "hme_load_mbuf: setting OWN for 1st desc ri %d, (%#x)",
 1015             ri, flags);
 1016         HME_XD_SETFLAGS(pci, txd, si, flags);
 1017 
 1018         STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txfreeq, htx_q);
 1019         STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txbusyq, htx, htx_q);
 1020         htx->htx_m = m;
 1021 
 1022         /* start the transmission. */
 1023         HME_ETX_WRITE_4(sc, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP);
 1024 
 1025         return (0);
 1026 }
 1027 
 1028 /*
 1029  * Pass a packet to the higher levels.
 1030  */
 1031 static void
 1032 hme_read(struct hme_softc *sc, int ix, int len, u_int32_t flags)
 1033 {
 1034         struct ifnet *ifp = sc->sc_ifp;
 1035         struct mbuf *m;
 1036 
 1037         if (len <= sizeof(struct ether_header) ||
 1038             len > HME_MAX_FRAMESIZE) {
 1039 #ifdef HMEDEBUG
 1040                 HME_WHINE(sc->sc_dev, "invalid packet size %d; dropping\n",
 1041                     len);
 1042 #endif
 1043                 ifp->if_ierrors++;
 1044                 hme_discard_rxbuf(sc, ix);
 1045                 return;
 1046         }
 1047 
 1048         m = sc->sc_rb.rb_rxdesc[ix].hrx_m;
 1049         CTR1(KTR_HME, "hme_read: len %d", len);
 1050 
 1051         if (hme_add_rxbuf(sc, ix, 0) != 0) {
 1052                 /*
 1053                  * hme_add_rxbuf will leave the old buffer in the ring until
 1054                  * it is sure that a new buffer can be mapped. If it can not,
 1055                  * drop the packet, but leave the interface up.
 1056                  */
 1057                 ifp->if_iqdrops++;
 1058                 hme_discard_rxbuf(sc, ix);
 1059                 return;
 1060         }
 1061 
 1062         ifp->if_ipackets++;
 1063 
 1064         m->m_pkthdr.rcvif = ifp;
 1065         m->m_pkthdr.len = m->m_len = len + HME_RXOFFS;
 1066         m_adj(m, HME_RXOFFS);
 1067         /* RX TCP/UDP checksum */
 1068         if (ifp->if_capenable & IFCAP_RXCSUM)
 1069                 hme_rxcksum(m, flags);
 1070         /* Pass the packet up. */
 1071         HME_UNLOCK(sc);
 1072         (*ifp->if_input)(ifp, m);
 1073         HME_LOCK(sc);
 1074 }
 1075 
 1076 static void
 1077 hme_start(struct ifnet *ifp)
 1078 {
 1079         struct hme_softc *sc = ifp->if_softc;
 1080 
 1081         HME_LOCK(sc);
 1082         hme_start_locked(ifp);
 1083         HME_UNLOCK(sc);
 1084 }
 1085 
 1086 static void
 1087 hme_start_locked(struct ifnet *ifp)
 1088 {
 1089         struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
 1090         struct mbuf *m;
 1091         int error, enq = 0;
 1092 
 1093         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1094             IFF_DRV_RUNNING)
 1095                 return;
 1096 
 1097         for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
 1098             sc->sc_rb.rb_td_nbusy < HME_NTXDESC - 1;) {
 1099                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
 1100                 if (m == NULL)
 1101                         break;
 1102 
 1103                 error = hme_load_txmbuf(sc, &m);
 1104                 if (error != 0) {
 1105                         if (m == NULL)
 1106                                 break;
 1107                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1108                         IFQ_DRV_PREPEND(&ifp->if_snd, m);
 1109                         break;
 1110                 }
 1111                 enq++;
 1112                 BPF_MTAP(ifp, m);
 1113         }
 1114 
 1115         /* Set watchdog timer if a packet was queued */
 1116         if (enq > 0) {
 1117                 bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
 1118                     BUS_DMASYNC_PREWRITE);
 1119                 ifp->if_timer = 5;
 1120         }
 1121 }
 1122 
 1123 /*
 1124  * Transmit interrupt.
 1125  */
 1126 static void
 1127 hme_tint(struct hme_softc *sc)
 1128 {
 1129         caddr_t txd;
 1130         struct ifnet *ifp = sc->sc_ifp;
 1131         struct hme_txdesc *htx;
 1132         unsigned int ri, txflags;
 1133 
 1134         txd = sc->sc_rb.rb_txd;
 1135         htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
 1136         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
 1137         /* Fetch current position in the transmit ring */
 1138         for (ri = sc->sc_rb.rb_tdtail;; ri = (ri + 1) % HME_NTXDESC) {
 1139                 if (sc->sc_rb.rb_td_nbusy <= 0) {
 1140                         CTR0(KTR_HME, "hme_tint: not busy!");
 1141                         break;
 1142                 }
 1143 
 1144                 txflags = HME_XD_GETFLAGS(sc->sc_pci, txd, ri);
 1145                 CTR2(KTR_HME, "hme_tint: index %d, flags %#x", ri, txflags);
 1146 
 1147                 if ((txflags & HME_XD_OWN) != 0)
 1148                         break;
 1149 
 1150                 CTR0(KTR_HME, "hme_tint: not owned");
 1151                 --sc->sc_rb.rb_td_nbusy;
 1152                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 1153 
 1154                 /* Complete packet transmitted? */
 1155                 if ((txflags & HME_XD_EOP) == 0)
 1156                         continue;
 1157 
 1158                 KASSERT(htx->htx_lastdesc == ri,
 1159                     ("hme_tint: ring indices skewed: %d != %d!",
 1160                      htx->htx_lastdesc, ri));
 1161                 bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap,
 1162                     BUS_DMASYNC_POSTWRITE);
 1163                 bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
 1164 
 1165                 ifp->if_opackets++;
 1166                 m_freem(htx->htx_m);
 1167                 htx->htx_m = NULL;
 1168                 STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txbusyq, htx_q);
 1169                 STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, htx, htx_q);
 1170                 htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
 1171         }
 1172         /* Turn off watchdog if hme(4) transmitted queued packet */
 1173         ifp->if_timer = sc->sc_rb.rb_td_nbusy > 0 ? 5 : 0;
 1174 
 1175         /* Update ring */
 1176         sc->sc_rb.rb_tdtail = ri;
 1177 
 1178         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 1179             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1180                 hme_start_locked(ifp);
 1181 }
 1182 
 1183 /*
 1184  * RX TCP/UDP checksum 
 1185  */
 1186 static void
 1187 hme_rxcksum(struct mbuf *m, u_int32_t flags)
 1188 {
 1189         struct ether_header *eh;
 1190         struct ip *ip;
 1191         struct udphdr *uh;
 1192         int32_t hlen, len, pktlen;
 1193         u_int16_t cksum, *opts;
 1194         u_int32_t temp32;
 1195 
 1196         pktlen = m->m_pkthdr.len;
 1197         if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
 1198                 return;
 1199         eh = mtod(m, struct ether_header *);
 1200         if (eh->ether_type != htons(ETHERTYPE_IP))
 1201                 return;
 1202         ip = (struct ip *)(eh + 1);
 1203         if (ip->ip_v != IPVERSION)
 1204                 return;
 1205 
 1206         hlen = ip->ip_hl << 2;
 1207         pktlen -= sizeof(struct ether_header);
 1208         if (hlen < sizeof(struct ip))
 1209                 return;
 1210         if (ntohs(ip->ip_len) < hlen)
 1211                 return;
 1212         if (ntohs(ip->ip_len) != pktlen)
 1213                 return;
 1214         if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
 1215                 return; /* can't handle fragmented packet */
 1216 
 1217         switch (ip->ip_p) {
 1218         case IPPROTO_TCP:
 1219                 if (pktlen < (hlen + sizeof(struct tcphdr)))
 1220                         return;
 1221                 break;
 1222         case IPPROTO_UDP:
 1223                 if (pktlen < (hlen + sizeof(struct udphdr)))
 1224                         return;
 1225                 uh = (struct udphdr *)((caddr_t)ip + hlen);
 1226                 if (uh->uh_sum == 0)
 1227                         return; /* no checksum */
 1228                 break;
 1229         default:
 1230                 return;
 1231         }
 1232 
 1233         cksum = ~(flags & HME_XD_RXCKSUM);
 1234         /* checksum fixup for IP options */
 1235         len = hlen - sizeof(struct ip);
 1236         if (len > 0) {
 1237                 opts = (u_int16_t *)(ip + 1);
 1238                 for (; len > 0; len -= sizeof(u_int16_t), opts++) {
 1239                         temp32 = cksum - *opts;
 1240                         temp32 = (temp32 >> 16) + (temp32 & 65535);
 1241                         cksum = temp32 & 65535;
 1242                 }
 1243         }
 1244         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
 1245         m->m_pkthdr.csum_data = cksum;
 1246 }
 1247 
 1248 /*
 1249  * Receive interrupt.
 1250  */
 1251 static void
 1252 hme_rint(struct hme_softc *sc)
 1253 {
 1254         caddr_t xdr = sc->sc_rb.rb_rxd;
 1255         struct ifnet *ifp = sc->sc_ifp;
 1256         unsigned int ri, len;
 1257         int progress = 0;
 1258         u_int32_t flags;
 1259 
 1260         /*
 1261          * Process all buffers with valid data.
 1262          */
 1263         bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
 1264         for (ri = sc->sc_rb.rb_rdtail;; ri = (ri + 1) % HME_NRXDESC) {
 1265                 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
 1266                 CTR2(KTR_HME, "hme_rint: index %d, flags %#x", ri, flags);
 1267                 if ((flags & HME_XD_OWN) != 0)
 1268                         break;
 1269 
 1270                 progress++;
 1271                 if ((flags & HME_XD_OFL) != 0) {
 1272                         device_printf(sc->sc_dev, "buffer overflow, ri=%d; "
 1273                             "flags=0x%x\n", ri, flags);
 1274                         ifp->if_ierrors++;
 1275                         hme_discard_rxbuf(sc, ri);
 1276                 } else {
 1277                         len = HME_XD_DECODE_RSIZE(flags);
 1278                         hme_read(sc, ri, len, flags);
 1279                 }
 1280         }
 1281         if (progress) {
 1282                 bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
 1283                     BUS_DMASYNC_PREWRITE);
 1284         }
 1285         sc->sc_rb.rb_rdtail = ri;
 1286 }
 1287 
 1288 static void
 1289 hme_eint(struct hme_softc *sc, u_int status)
 1290 {
 1291 
 1292         if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
 1293                 device_printf(sc->sc_dev, "XXXlink status changed\n");
 1294                 return;
 1295         }
 1296 
 1297         /* check for fatal errors that needs reset to unfreeze DMA engine */
 1298         if ((status & HME_SEB_STAT_FATAL_ERRORS) != 0) {
 1299                 HME_WHINE(sc->sc_dev, "error signaled, status=%#x\n", status);
 1300                 hme_init_locked(sc);
 1301         }
 1302 }
 1303 
 1304 void
 1305 hme_intr(void *v)
 1306 {
 1307         struct hme_softc *sc = (struct hme_softc *)v;
 1308         u_int32_t status;
 1309 
 1310         HME_LOCK(sc);
 1311         status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
 1312         CTR1(KTR_HME, "hme_intr: status %#x", (u_int)status);
 1313 
 1314         if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
 1315                 hme_eint(sc, status);
 1316 
 1317         if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
 1318                 hme_tint(sc);
 1319 
 1320         if ((status & HME_SEB_STAT_RXTOHOST) != 0)
 1321                 hme_rint(sc);
 1322         HME_UNLOCK(sc);
 1323 }
 1324 
 1325 
 1326 static void
 1327 hme_watchdog(struct ifnet *ifp)
 1328 {
 1329         struct hme_softc *sc = ifp->if_softc;
 1330 #ifdef HMEDEBUG
 1331         u_int32_t status;
 1332 #endif
 1333 
 1334         HME_LOCK(sc);
 1335 #ifdef HMEDEBUG
 1336         status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
 1337         CTR1(KTR_HME, "hme_watchdog: status %x", (u_int)status);
 1338 #endif
 1339         device_printf(sc->sc_dev, "device timeout\n");
 1340         ++ifp->if_oerrors;
 1341 
 1342         hme_init_locked(sc);
 1343         HME_UNLOCK(sc);
 1344 }
 1345 
 1346 /*
 1347  * Initialize the MII Management Interface
 1348  */
 1349 static void
 1350 hme_mifinit(struct hme_softc *sc)
 1351 {
 1352         u_int32_t v;
 1353 
 1354         /* Configure the MIF in frame mode */
 1355         v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
 1356         v &= ~HME_MIF_CFG_BBMODE;
 1357         HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
 1358 }
 1359 
 1360 /*
 1361  * MII interface
 1362  */
 1363 int
 1364 hme_mii_readreg(device_t dev, int phy, int reg)
 1365 {
 1366         struct hme_softc *sc = device_get_softc(dev);
 1367         int n;
 1368         u_int32_t v;
 1369 
 1370         /* Select the desired PHY in the MIF configuration register */
 1371         v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
 1372         /* Clear PHY select bit */
 1373         v &= ~HME_MIF_CFG_PHY;
 1374         if (phy == HME_PHYAD_EXTERNAL)
 1375                 /* Set PHY select bit to get at external device */
 1376                 v |= HME_MIF_CFG_PHY;
 1377         HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
 1378 
 1379         /* Construct the frame command */
 1380         v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
 1381             HME_MIF_FO_TAMSB |
 1382             (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
 1383             (phy << HME_MIF_FO_PHYAD_SHIFT) |
 1384             (reg << HME_MIF_FO_REGAD_SHIFT);
 1385 
 1386         HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
 1387         for (n = 0; n < 100; n++) {
 1388                 DELAY(1);
 1389                 v = HME_MIF_READ_4(sc, HME_MIFI_FO);
 1390                 if (v & HME_MIF_FO_TALSB) {
 1391                         return (v & HME_MIF_FO_DATA);
 1392                 }
 1393         }
 1394 
 1395         device_printf(sc->sc_dev, "mii_read timeout\n");
 1396         return (0);
 1397 }
 1398 
 1399 int
 1400 hme_mii_writereg(device_t dev, int phy, int reg, int val)
 1401 {
 1402         struct hme_softc *sc = device_get_softc(dev);
 1403         int n;
 1404         u_int32_t v;
 1405 
 1406         /* Select the desired PHY in the MIF configuration register */
 1407         v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
 1408         /* Clear PHY select bit */
 1409         v &= ~HME_MIF_CFG_PHY;
 1410         if (phy == HME_PHYAD_EXTERNAL)
 1411                 /* Set PHY select bit to get at external device */
 1412                 v |= HME_MIF_CFG_PHY;
 1413         HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
 1414 
 1415         /* Construct the frame command */
 1416         v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)  |
 1417             HME_MIF_FO_TAMSB                            |
 1418             (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
 1419             (phy << HME_MIF_FO_PHYAD_SHIFT)             |
 1420             (reg << HME_MIF_FO_REGAD_SHIFT)             |
 1421             (val & HME_MIF_FO_DATA);
 1422 
 1423         HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
 1424         for (n = 0; n < 100; n++) {
 1425                 DELAY(1);
 1426                 v = HME_MIF_READ_4(sc, HME_MIFI_FO);
 1427                 if (v & HME_MIF_FO_TALSB)
 1428                         return (1);
 1429         }
 1430 
 1431         device_printf(sc->sc_dev, "mii_write timeout\n");
 1432         return (0);
 1433 }
 1434 
 1435 void
 1436 hme_mii_statchg(device_t dev)
 1437 {
 1438         struct hme_softc *sc = device_get_softc(dev);
 1439         int instance;
 1440         int phy;
 1441         u_int32_t v;
 1442 
 1443         instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
 1444         phy = sc->sc_phys[instance];
 1445 #ifdef HMEDEBUG
 1446         if (sc->sc_debug)
 1447                 printf("hme_mii_statchg: status change: phy = %d\n", phy);
 1448 #endif
 1449 
 1450         /* Select the current PHY in the MIF configuration register */
 1451         v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
 1452         v &= ~HME_MIF_CFG_PHY;
 1453         if (phy == HME_PHYAD_EXTERNAL)
 1454                 v |= HME_MIF_CFG_PHY;
 1455         HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
 1456 
 1457         /* Set the MAC Full Duplex bit appropriately */
 1458         v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
 1459         if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, v, HME_MAC_TXCFG_ENABLE, 0))
 1460                 return;
 1461         if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
 1462                 v |= HME_MAC_TXCFG_FULLDPLX;
 1463         else
 1464                 v &= ~HME_MAC_TXCFG_FULLDPLX;
 1465         HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
 1466         if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, v, 0, HME_MAC_TXCFG_ENABLE))
 1467                 return;
 1468 }
 1469 
 1470 static int
 1471 hme_mediachange(struct ifnet *ifp)
 1472 {
 1473         struct hme_softc *sc = ifp->if_softc;
 1474         int error;
 1475 
 1476         HME_LOCK(sc);
 1477         error = mii_mediachg(sc->sc_mii);
 1478         HME_UNLOCK(sc);
 1479         return (error);
 1480 }
 1481 
 1482 static void
 1483 hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
 1484 {
 1485         struct hme_softc *sc = ifp->if_softc;
 1486 
 1487         HME_LOCK(sc);
 1488         if ((ifp->if_flags & IFF_UP) == 0) {
 1489                 HME_UNLOCK(sc);
 1490                 return;
 1491         }
 1492 
 1493         mii_pollstat(sc->sc_mii);
 1494         ifmr->ifm_active = sc->sc_mii->mii_media_active;
 1495         ifmr->ifm_status = sc->sc_mii->mii_media_status;
 1496         HME_UNLOCK(sc);
 1497 }
 1498 
 1499 /*
 1500  * Process an ioctl request.
 1501  */
 1502 static int
 1503 hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1504 {
 1505         struct hme_softc *sc = ifp->if_softc;
 1506         struct ifreq *ifr = (struct ifreq *)data;
 1507         int error = 0;
 1508 
 1509         switch (cmd) {
 1510         case SIOCSIFFLAGS:
 1511                 HME_LOCK(sc);
 1512                 if ((ifp->if_flags & IFF_UP) == 0 &&
 1513                     (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1514                         /*
 1515                          * If interface is marked down and it is running, then
 1516                          * stop it.
 1517                          */
 1518                         hme_stop(sc);
 1519                 } else if ((ifp->if_flags & IFF_UP) != 0 &&
 1520                            (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1521                         /*
 1522                          * If interface is marked up and it is stopped, then
 1523                          * start it.
 1524                          */
 1525                         hme_init_locked(sc);
 1526                 } else if ((ifp->if_flags & IFF_UP) != 0) {
 1527                         /*
 1528                          * Reset the interface to pick up changes in any other
 1529                          * flags that affect hardware registers.
 1530                          */
 1531                         hme_init_locked(sc);
 1532                 }
 1533                 if ((ifp->if_flags & IFF_LINK0) != 0)
 1534                         sc->sc_csum_features |= CSUM_UDP;
 1535                 else
 1536                         sc->sc_csum_features &= ~CSUM_UDP;
 1537                 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1538                         ifp->if_hwassist = sc->sc_csum_features;
 1539 #ifdef HMEDEBUG
 1540                 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
 1541 #endif
 1542                 HME_UNLOCK(sc);
 1543                 break;
 1544 
 1545         case SIOCADDMULTI:
 1546         case SIOCDELMULTI:
 1547                 HME_LOCK(sc);
 1548                 hme_setladrf(sc, 1);
 1549                 HME_UNLOCK(sc);
 1550                 error = 0;
 1551                 break;
 1552         case SIOCGIFMEDIA:
 1553         case SIOCSIFMEDIA:
 1554                 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
 1555                 break;
 1556         case SIOCSIFCAP:
 1557                 HME_LOCK(sc);
 1558                 ifp->if_capenable = ifr->ifr_reqcap;
 1559                 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1560                         ifp->if_hwassist = sc->sc_csum_features;
 1561                 else
 1562                         ifp->if_hwassist = 0;
 1563                 HME_UNLOCK(sc);
 1564                 break;
 1565         default:
 1566                 error = ether_ioctl(ifp, cmd, data);
 1567                 break;
 1568         }
 1569 
 1570         return (error);
 1571 }
 1572 
 1573 /*
 1574  * Set up the logical address filter.
 1575  */
 1576 static void
 1577 hme_setladrf(struct hme_softc *sc, int reenable)
 1578 {
 1579         struct ifnet *ifp = sc->sc_ifp;
 1580         struct ifmultiaddr *inm;
 1581         u_int32_t crc;
 1582         u_int32_t hash[4];
 1583         u_int32_t macc;
 1584 
 1585         HME_LOCK_ASSERT(sc, MA_OWNED);
 1586         /* Clear hash table */
 1587         hash[3] = hash[2] = hash[1] = hash[0] = 0;
 1588 
 1589         /* Get current RX configuration */
 1590         macc = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
 1591 
 1592         /*
 1593          * Disable the receiver while changing it's state as the documentation
 1594          * mandates.
 1595          * We then must wait until the bit clears in the register. This should
 1596          * take at most 3.5ms.
 1597          */
 1598         if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, HME_MAC_RXCFG_ENABLE, 0))
 1599                 return;
 1600         /* Disable the hash filter before writing to the filter registers. */
 1601         if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
 1602             HME_MAC_RXCFG_HENABLE, 0))
 1603                 return;
 1604 
 1605         /* make RXMAC really SIMPLEX */
 1606         macc |= HME_MAC_RXCFG_ME;
 1607         if (reenable)
 1608                 macc |= HME_MAC_RXCFG_ENABLE;
 1609         else
 1610                 macc &= ~HME_MAC_RXCFG_ENABLE;
 1611 
 1612         if ((ifp->if_flags & IFF_PROMISC) != 0) {
 1613                 /* Turn on promiscuous mode; turn off the hash filter */
 1614                 macc |= HME_MAC_RXCFG_PMISC;
 1615                 macc &= ~HME_MAC_RXCFG_HENABLE;
 1616                 ifp->if_flags |= IFF_ALLMULTI;
 1617                 goto chipit;
 1618         }
 1619 
 1620         /* Turn off promiscuous mode; turn on the hash filter */
 1621         macc &= ~HME_MAC_RXCFG_PMISC;
 1622         macc |= HME_MAC_RXCFG_HENABLE;
 1623 
 1624         /*
 1625          * Set up multicast address filter by passing all multicast addresses
 1626          * through a crc generator, and then using the high order 6 bits as an
 1627          * index into the 64 bit logical address filter.  The high order bit
 1628          * selects the word, while the rest of the bits select the bit within
 1629          * the word.
 1630          */
 1631 
 1632         IF_ADDR_LOCK(sc->sc_ifp);
 1633         TAILQ_FOREACH(inm, &sc->sc_ifp->if_multiaddrs, ifma_link) {
 1634                 if (inm->ifma_addr->sa_family != AF_LINK)
 1635                         continue;
 1636                 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
 1637                     inm->ifma_addr), ETHER_ADDR_LEN);
 1638 
 1639                 /* Just want the 6 most significant bits. */
 1640                 crc >>= 26;
 1641 
 1642                 /* Set the corresponding bit in the filter. */
 1643                 hash[crc >> 4] |= 1 << (crc & 0xf);
 1644         }
 1645         IF_ADDR_UNLOCK(sc->sc_ifp);
 1646 
 1647         ifp->if_flags &= ~IFF_ALLMULTI;
 1648 
 1649 chipit:
 1650         /* Now load the hash table into the chip */
 1651         HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB0, hash[0]);
 1652         HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB1, hash[1]);
 1653         HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB2, hash[2]);
 1654         HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB3, hash[3]);
 1655         hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, 0,
 1656             macc & (HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_HENABLE |
 1657             HME_MAC_RXCFG_ME));
 1658 }

Cache object: 1d8e3e17d8b5246c0494c3f51f96662d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.