1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2003-2008 Joseph Koshy
5 * Copyright (c) 2007 The FreeBSD Foundation
6 * Copyright (c) 2018 Matthew Macy
7 * All rights reserved.
8 *
9 * Portions of this software were developed by A. Joseph Koshy under
10 * sponsorship from the FreeBSD Foundation and Google, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/domainset.h>
41 #include <sys/eventhandler.h>
42 #include <sys/jail.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/module.h>
49 #include <sys/mount.h>
50 #include <sys/mutex.h>
51 #include <sys/pmc.h>
52 #include <sys/pmckern.h>
53 #include <sys/pmclog.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/resourcevar.h>
58 #include <sys/rwlock.h>
59 #include <sys/sched.h>
60 #include <sys/signalvar.h>
61 #include <sys/smp.h>
62 #include <sys/sx.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysent.h>
65 #include <sys/syslog.h>
66 #include <sys/taskqueue.h>
67 #include <sys/vnode.h>
68
69 #include <sys/linker.h> /* needs to be after <sys/malloc.h> */
70
71 #include <machine/atomic.h>
72 #include <machine/md_var.h>
73
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79
80 #include "hwpmc_soft.h"
81
82 #define PMC_EPOCH_ENTER() struct epoch_tracker pmc_et; epoch_enter_preempt(global_epoch_preempt, &pmc_et)
83 #define PMC_EPOCH_EXIT() epoch_exit_preempt(global_epoch_preempt, &pmc_et)
84
85 /*
86 * Types
87 */
88
89 enum pmc_flags {
90 PMC_FLAG_NONE = 0x00, /* do nothing */
91 PMC_FLAG_REMOVE = 0x01, /* atomically remove entry from hash */
92 PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
93 PMC_FLAG_NOWAIT = 0x04, /* do not wait for mallocs */
94 };
95
96 /*
97 * The offset in sysent where the syscall is allocated.
98 */
99
100 static int pmc_syscall_num = NO_SYSCALL;
101 struct pmc_cpu **pmc_pcpu; /* per-cpu state */
102 pmc_value_t *pmc_pcpu_saved; /* saved PMC values: CSW handling */
103
104 #define PMC_PCPU_SAVED(C,R) pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
105
106 struct mtx_pool *pmc_mtxpool;
107 static int *pmc_pmcdisp; /* PMC row dispositions */
108
109 #define PMC_ROW_DISP_IS_FREE(R) (pmc_pmcdisp[(R)] == 0)
110 #define PMC_ROW_DISP_IS_THREAD(R) (pmc_pmcdisp[(R)] > 0)
111 #define PMC_ROW_DISP_IS_STANDALONE(R) (pmc_pmcdisp[(R)] < 0)
112
113 #define PMC_MARK_ROW_FREE(R) do { \
114 pmc_pmcdisp[(R)] = 0; \
115 } while (0)
116
117 #define PMC_MARK_ROW_STANDALONE(R) do { \
118 KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
119 __LINE__)); \
120 atomic_add_int(&pmc_pmcdisp[(R)], -1); \
121 KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()), \
122 ("[pmc,%d] row disposition error", __LINE__)); \
123 } while (0)
124
125 #define PMC_UNMARK_ROW_STANDALONE(R) do { \
126 atomic_add_int(&pmc_pmcdisp[(R)], 1); \
127 KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
128 __LINE__)); \
129 } while (0)
130
131 #define PMC_MARK_ROW_THREAD(R) do { \
132 KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
133 __LINE__)); \
134 atomic_add_int(&pmc_pmcdisp[(R)], 1); \
135 } while (0)
136
137 #define PMC_UNMARK_ROW_THREAD(R) do { \
138 atomic_add_int(&pmc_pmcdisp[(R)], -1); \
139 KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
140 __LINE__)); \
141 } while (0)
142
143
144 /* various event handlers */
145 static eventhandler_tag pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
146 pmc_kld_unload_tag;
147
148 /* Module statistics */
149 struct pmc_driverstats pmc_stats;
150
151
152 /* Machine/processor dependent operations */
153 static struct pmc_mdep *md;
154
155 /*
156 * Hash tables mapping owner processes and target threads to PMCs.
157 */
158
159 struct mtx pmc_processhash_mtx; /* spin mutex */
160 static u_long pmc_processhashmask;
161 static LIST_HEAD(pmc_processhash, pmc_process) *pmc_processhash;
162
163 /*
164 * Hash table of PMC owner descriptors. This table is protected by
165 * the shared PMC "sx" lock.
166 */
167
168 static u_long pmc_ownerhashmask;
169 static LIST_HEAD(pmc_ownerhash, pmc_owner) *pmc_ownerhash;
170
171 /*
172 * List of PMC owners with system-wide sampling PMCs.
173 */
174
175 static CK_LIST_HEAD(, pmc_owner) pmc_ss_owners;
176
177 /*
178 * List of free thread entries. This is protected by the spin
179 * mutex.
180 */
181 static struct mtx pmc_threadfreelist_mtx; /* spin mutex */
182 static LIST_HEAD(, pmc_thread) pmc_threadfreelist;
183 static int pmc_threadfreelist_entries=0;
184 #define THREADENTRY_SIZE \
185 (sizeof(struct pmc_thread) + (md->pmd_npmc * sizeof(struct pmc_threadpmcstate)))
186
187 /*
188 * Task to free thread descriptors
189 */
190 static struct task free_task;
191
192 /*
193 * A map of row indices to classdep structures.
194 */
195 static struct pmc_classdep **pmc_rowindex_to_classdep;
196
197 /*
198 * Prototypes
199 */
200
201 #ifdef HWPMC_DEBUG
202 static int pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
203 static int pmc_debugflags_parse(char *newstr, char *fence);
204 #endif
205
206 static int load(struct module *module, int cmd, void *arg);
207 static int pmc_add_sample(ring_type_t ring, struct pmc *pm, struct trapframe *tf);
208 static void pmc_add_thread_descriptors_from_proc(struct proc *p,
209 struct pmc_process *pp);
210 static int pmc_attach_process(struct proc *p, struct pmc *pm);
211 static struct pmc *pmc_allocate_pmc_descriptor(void);
212 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
213 static int pmc_attach_one_process(struct proc *p, struct pmc *pm);
214 static int pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
215 int cpu);
216 static int pmc_can_attach(struct pmc *pm, struct proc *p);
217 static void pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
218 static void pmc_cleanup(void);
219 static int pmc_detach_process(struct proc *p, struct pmc *pm);
220 static int pmc_detach_one_process(struct proc *p, struct pmc *pm,
221 int flags);
222 static void pmc_destroy_owner_descriptor(struct pmc_owner *po);
223 static void pmc_destroy_pmc_descriptor(struct pmc *pm);
224 static void pmc_destroy_process_descriptor(struct pmc_process *pp);
225 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
226 static int pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
227 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
228 pmc_id_t pmc);
229 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
230 uint32_t mode);
231 static struct pmc_thread *pmc_find_thread_descriptor(struct pmc_process *pp,
232 struct thread *td, uint32_t mode);
233 static void pmc_force_context_switch(void);
234 static void pmc_link_target_process(struct pmc *pm,
235 struct pmc_process *pp);
236 static void pmc_log_all_process_mappings(struct pmc_owner *po);
237 static void pmc_log_kernel_mappings(struct pmc *pm);
238 static void pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
239 static void pmc_maybe_remove_owner(struct pmc_owner *po);
240 static void pmc_process_csw_in(struct thread *td);
241 static void pmc_process_csw_out(struct thread *td);
242 static void pmc_process_exit(void *arg, struct proc *p);
243 static void pmc_process_fork(void *arg, struct proc *p1,
244 struct proc *p2, int n);
245 static void pmc_process_samples(int cpu, ring_type_t soft);
246 static void pmc_release_pmc_descriptor(struct pmc *pmc);
247 static void pmc_process_thread_add(struct thread *td);
248 static void pmc_process_thread_delete(struct thread *td);
249 static void pmc_process_thread_userret(struct thread *td);
250 static void pmc_remove_owner(struct pmc_owner *po);
251 static void pmc_remove_process_descriptor(struct pmc_process *pp);
252 static int pmc_start(struct pmc *pm);
253 static int pmc_stop(struct pmc *pm);
254 static int pmc_syscall_handler(struct thread *td, void *syscall_args);
255 static struct pmc_thread *pmc_thread_descriptor_pool_alloc(void);
256 static void pmc_thread_descriptor_pool_drain(void);
257 static void pmc_thread_descriptor_pool_free(struct pmc_thread *pt);
258 static void pmc_unlink_target_process(struct pmc *pmc,
259 struct pmc_process *pp);
260 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
261 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
262 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
263 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
264 static void pmc_post_callchain_callback(void);
265 static void pmc_process_threadcreate(struct thread *td);
266 static void pmc_process_threadexit(struct thread *td);
267 static void pmc_process_proccreate(struct proc *p);
268 static void pmc_process_allproc(struct pmc *pm);
269
270 /*
271 * Kernel tunables and sysctl(8) interface.
272 */
273
274 SYSCTL_DECL(_kern_hwpmc);
275 SYSCTL_NODE(_kern_hwpmc, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
276 "HWPMC stats");
277
278
279 /* Stats. */
280 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_ignored, CTLFLAG_RW,
281 &pmc_stats.pm_intr_ignored, "# of interrupts ignored");
282 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_processed, CTLFLAG_RW,
283 &pmc_stats.pm_intr_processed, "# of interrupts processed");
284 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_bufferfull, CTLFLAG_RW,
285 &pmc_stats.pm_intr_bufferfull, "# of interrupts where buffer was full");
286 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscalls, CTLFLAG_RW,
287 &pmc_stats.pm_syscalls, "# of syscalls");
288 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscall_errors, CTLFLAG_RW,
289 &pmc_stats.pm_syscall_errors, "# of syscall_errors");
290 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests, CTLFLAG_RW,
291 &pmc_stats.pm_buffer_requests, "# of buffer requests");
292 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests_failed, CTLFLAG_RW,
293 &pmc_stats.pm_buffer_requests_failed, "# of buffer requests which failed");
294 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, log_sweeps, CTLFLAG_RW,
295 &pmc_stats.pm_log_sweeps, "# of times samples were processed");
296 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, merges, CTLFLAG_RW,
297 &pmc_stats.pm_merges, "# of times kernel stack was found for user trace");
298 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, overwrites, CTLFLAG_RW,
299 &pmc_stats.pm_overwrites, "# of times a sample was overwritten before being logged");
300
301 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
302 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
303 &pmc_callchaindepth, 0, "depth of call chain records");
304
305 char pmc_cpuid[PMC_CPUID_LEN];
306 SYSCTL_STRING(_kern_hwpmc, OID_AUTO, cpuid, CTLFLAG_RD,
307 pmc_cpuid, 0, "cpu version string");
308 #ifdef HWPMC_DEBUG
309 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
310 char pmc_debugstr[PMC_DEBUG_STRSIZE];
311 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
312 sizeof(pmc_debugstr));
313 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
314 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
315 0, 0, pmc_debugflags_sysctl_handler, "A",
316 "debug flags");
317 #endif
318
319
320 /*
321 * kern.hwpmc.hashrows -- determines the number of rows in the
322 * of the hash table used to look up threads
323 */
324
325 static int pmc_hashsize = PMC_HASH_SIZE;
326 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
327 &pmc_hashsize, 0, "rows in hash tables");
328
329 /*
330 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
331 */
332
333 static int pmc_nsamples = PMC_NSAMPLES;
334 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
335 &pmc_nsamples, 0, "number of PC samples per CPU");
336
337 static uint64_t pmc_sample_mask = PMC_NSAMPLES-1;
338
339 /*
340 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
341 */
342
343 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
344 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
345 &pmc_mtxpool_size, 0, "size of spin mutex pool");
346
347
348 /*
349 * kern.hwpmc.threadfreelist_entries -- number of free entries
350 */
351
352 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_entries, CTLFLAG_RD,
353 &pmc_threadfreelist_entries, 0, "number of available thread entries");
354
355
356 /*
357 * kern.hwpmc.threadfreelist_max -- maximum number of free entries
358 */
359
360 static int pmc_threadfreelist_max = PMC_THREADLIST_MAX;
361 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_max, CTLFLAG_RW,
362 &pmc_threadfreelist_max, 0,
363 "maximum number of available thread entries before freeing some");
364
365
366 /*
367 * kern.hwpmc.mincount -- minimum sample count
368 */
369 static u_int pmc_mincount = 1000;
370 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mincount, CTLFLAG_RWTUN,
371 &pmc_mincount, 0,
372 "minimum count for sampling counters");
373
374 /*
375 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
376 * allocate system-wide PMCs.
377 *
378 * Allowing unprivileged processes to allocate system PMCs is convenient
379 * if system-wide measurements need to be taken concurrently with other
380 * per-process measurements. This feature is turned off by default.
381 */
382
383 static int pmc_unprivileged_syspmcs = 0;
384 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
385 &pmc_unprivileged_syspmcs, 0,
386 "allow unprivileged process to allocate system PMCs");
387
388 /*
389 * Hash function. Discard the lower 2 bits of the pointer since
390 * these are always zero for our uses. The hash multiplier is
391 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
392 */
393
394 #if LONG_BIT == 64
395 #define _PMC_HM 11400714819323198486u
396 #elif LONG_BIT == 32
397 #define _PMC_HM 2654435769u
398 #else
399 #error Must know the size of 'long' to compile
400 #endif
401
402 #define PMC_HASH_PTR(P,M) ((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
403
404 /*
405 * Syscall structures
406 */
407
408 /* The `sysent' for the new syscall */
409 static struct sysent pmc_sysent = {
410 .sy_narg = 2,
411 .sy_call = pmc_syscall_handler,
412 };
413
414 static struct syscall_module_data pmc_syscall_mod = {
415 .chainevh = load,
416 .chainarg = NULL,
417 .offset = &pmc_syscall_num,
418 .new_sysent = &pmc_sysent,
419 .old_sysent = { .sy_narg = 0, .sy_call = NULL },
420 .flags = SY_THR_STATIC_KLD,
421 };
422
423 static moduledata_t pmc_mod = {
424 .name = PMC_MODULE_NAME,
425 .evhand = syscall_module_handler,
426 .priv = &pmc_syscall_mod,
427 };
428
429 #ifdef EARLY_AP_STARTUP
430 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
431 #else
432 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
433 #endif
434 MODULE_VERSION(pmc, PMC_VERSION);
435
436 #ifdef HWPMC_DEBUG
437 enum pmc_dbgparse_state {
438 PMCDS_WS, /* in whitespace */
439 PMCDS_MAJOR, /* seen a major keyword */
440 PMCDS_MINOR
441 };
442
443 static int
444 pmc_debugflags_parse(char *newstr, char *fence)
445 {
446 char c, *p, *q;
447 struct pmc_debugflags *tmpflags;
448 int error, found, *newbits, tmp;
449 size_t kwlen;
450
451 tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
452
453 p = newstr;
454 error = 0;
455
456 for (; p < fence && (c = *p); p++) {
457
458 /* skip white space */
459 if (c == ' ' || c == '\t')
460 continue;
461
462 /* look for a keyword followed by "=" */
463 for (q = p; p < fence && (c = *p) && c != '='; p++)
464 ;
465 if (c != '=') {
466 error = EINVAL;
467 goto done;
468 }
469
470 kwlen = p - q;
471 newbits = NULL;
472
473 /* lookup flag group name */
474 #define DBG_SET_FLAG_MAJ(S,F) \
475 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \
476 newbits = &tmpflags->pdb_ ## F;
477
478 DBG_SET_FLAG_MAJ("cpu", CPU);
479 DBG_SET_FLAG_MAJ("csw", CSW);
480 DBG_SET_FLAG_MAJ("logging", LOG);
481 DBG_SET_FLAG_MAJ("module", MOD);
482 DBG_SET_FLAG_MAJ("md", MDP);
483 DBG_SET_FLAG_MAJ("owner", OWN);
484 DBG_SET_FLAG_MAJ("pmc", PMC);
485 DBG_SET_FLAG_MAJ("process", PRC);
486 DBG_SET_FLAG_MAJ("sampling", SAM);
487
488 if (newbits == NULL) {
489 error = EINVAL;
490 goto done;
491 }
492
493 p++; /* skip the '=' */
494
495 /* Now parse the individual flags */
496 tmp = 0;
497 newflag:
498 for (q = p; p < fence && (c = *p); p++)
499 if (c == ' ' || c == '\t' || c == ',')
500 break;
501
502 /* p == fence or c == ws or c == "," or c == 0 */
503
504 if ((kwlen = p - q) == 0) {
505 *newbits = tmp;
506 continue;
507 }
508
509 found = 0;
510 #define DBG_SET_FLAG_MIN(S,F) \
511 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0) \
512 tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
513
514 /* a '*' denotes all possible flags in the group */
515 if (kwlen == 1 && *q == '*')
516 tmp = found = ~0;
517 /* look for individual flag names */
518 DBG_SET_FLAG_MIN("allocaterow", ALR);
519 DBG_SET_FLAG_MIN("allocate", ALL);
520 DBG_SET_FLAG_MIN("attach", ATT);
521 DBG_SET_FLAG_MIN("bind", BND);
522 DBG_SET_FLAG_MIN("config", CFG);
523 DBG_SET_FLAG_MIN("exec", EXC);
524 DBG_SET_FLAG_MIN("exit", EXT);
525 DBG_SET_FLAG_MIN("find", FND);
526 DBG_SET_FLAG_MIN("flush", FLS);
527 DBG_SET_FLAG_MIN("fork", FRK);
528 DBG_SET_FLAG_MIN("getbuf", GTB);
529 DBG_SET_FLAG_MIN("hook", PMH);
530 DBG_SET_FLAG_MIN("init", INI);
531 DBG_SET_FLAG_MIN("intr", INT);
532 DBG_SET_FLAG_MIN("linktarget", TLK);
533 DBG_SET_FLAG_MIN("mayberemove", OMR);
534 DBG_SET_FLAG_MIN("ops", OPS);
535 DBG_SET_FLAG_MIN("read", REA);
536 DBG_SET_FLAG_MIN("register", REG);
537 DBG_SET_FLAG_MIN("release", REL);
538 DBG_SET_FLAG_MIN("remove", ORM);
539 DBG_SET_FLAG_MIN("sample", SAM);
540 DBG_SET_FLAG_MIN("scheduleio", SIO);
541 DBG_SET_FLAG_MIN("select", SEL);
542 DBG_SET_FLAG_MIN("signal", SIG);
543 DBG_SET_FLAG_MIN("swi", SWI);
544 DBG_SET_FLAG_MIN("swo", SWO);
545 DBG_SET_FLAG_MIN("start", STA);
546 DBG_SET_FLAG_MIN("stop", STO);
547 DBG_SET_FLAG_MIN("syscall", PMS);
548 DBG_SET_FLAG_MIN("unlinktarget", TUL);
549 DBG_SET_FLAG_MIN("write", WRI);
550 if (found == 0) {
551 /* unrecognized flag name */
552 error = EINVAL;
553 goto done;
554 }
555
556 if (c == 0 || c == ' ' || c == '\t') { /* end of flag group */
557 *newbits = tmp;
558 continue;
559 }
560
561 p++;
562 goto newflag;
563 }
564
565 /* save the new flag set */
566 bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
567
568 done:
569 free(tmpflags, M_PMC);
570 return error;
571 }
572
573 static int
574 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
575 {
576 char *fence, *newstr;
577 int error;
578 unsigned int n;
579
580 (void) arg1; (void) arg2; /* unused parameters */
581
582 n = sizeof(pmc_debugstr);
583 newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
584 (void) strlcpy(newstr, pmc_debugstr, n);
585
586 error = sysctl_handle_string(oidp, newstr, n, req);
587
588 /* if there is a new string, parse and copy it */
589 if (error == 0 && req->newptr != NULL) {
590 fence = newstr + (n < req->newlen ? n : req->newlen + 1);
591 if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
592 (void) strlcpy(pmc_debugstr, newstr,
593 sizeof(pmc_debugstr));
594 }
595
596 free(newstr, M_PMC);
597
598 return error;
599 }
600 #endif
601
602 /*
603 * Map a row index to a classdep structure and return the adjusted row
604 * index for the PMC class index.
605 */
606 static struct pmc_classdep *
607 pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
608 {
609 struct pmc_classdep *pcd;
610
611 (void) md;
612
613 KASSERT(ri >= 0 && ri < md->pmd_npmc,
614 ("[pmc,%d] illegal row-index %d", __LINE__, ri));
615
616 pcd = pmc_rowindex_to_classdep[ri];
617
618 KASSERT(pcd != NULL,
619 ("[pmc,%d] ri %d null pcd", __LINE__, ri));
620
621 *adjri = ri - pcd->pcd_ri;
622
623 KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
624 ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
625
626 return (pcd);
627 }
628
629 /*
630 * Concurrency Control
631 *
632 * The driver manages the following data structures:
633 *
634 * - target process descriptors, one per target process
635 * - owner process descriptors (and attached lists), one per owner process
636 * - lookup hash tables for owner and target processes
637 * - PMC descriptors (and attached lists)
638 * - per-cpu hardware state
639 * - the 'hook' variable through which the kernel calls into
640 * this module
641 * - the machine hardware state (managed by the MD layer)
642 *
643 * These data structures are accessed from:
644 *
645 * - thread context-switch code
646 * - interrupt handlers (possibly on multiple cpus)
647 * - kernel threads on multiple cpus running on behalf of user
648 * processes doing system calls
649 * - this driver's private kernel threads
650 *
651 * = Locks and Locking strategy =
652 *
653 * The driver uses four locking strategies for its operation:
654 *
655 * - The global SX lock "pmc_sx" is used to protect internal
656 * data structures.
657 *
658 * Calls into the module by syscall() start with this lock being
659 * held in exclusive mode. Depending on the requested operation,
660 * the lock may be downgraded to 'shared' mode to allow more
661 * concurrent readers into the module. Calls into the module from
662 * other parts of the kernel acquire the lock in shared mode.
663 *
664 * This SX lock is held in exclusive mode for any operations that
665 * modify the linkages between the driver's internal data structures.
666 *
667 * The 'pmc_hook' function pointer is also protected by this lock.
668 * It is only examined with the sx lock held in exclusive mode. The
669 * kernel module is allowed to be unloaded only with the sx lock held
670 * in exclusive mode. In normal syscall handling, after acquiring the
671 * pmc_sx lock we first check that 'pmc_hook' is non-null before
672 * proceeding. This prevents races between the thread unloading the module
673 * and other threads seeking to use the module.
674 *
675 * - Lookups of target process structures and owner process structures
676 * cannot use the global "pmc_sx" SX lock because these lookups need
677 * to happen during context switches and in other critical sections
678 * where sleeping is not allowed. We protect these lookup tables
679 * with their own private spin-mutexes, "pmc_processhash_mtx" and
680 * "pmc_ownerhash_mtx".
681 *
682 * - Interrupt handlers work in a lock free manner. At interrupt
683 * time, handlers look at the PMC pointer (phw->phw_pmc) configured
684 * when the PMC was started. If this pointer is NULL, the interrupt
685 * is ignored after updating driver statistics. We ensure that this
686 * pointer is set (using an atomic operation if necessary) before the
687 * PMC hardware is started. Conversely, this pointer is unset atomically
688 * only after the PMC hardware is stopped.
689 *
690 * We ensure that everything needed for the operation of an
691 * interrupt handler is available without it needing to acquire any
692 * locks. We also ensure that a PMC's software state is destroyed only
693 * after the PMC is taken off hardware (on all CPUs).
694 *
695 * - Context-switch handling with process-private PMCs needs more
696 * care.
697 *
698 * A given process may be the target of multiple PMCs. For example,
699 * PMCATTACH and PMCDETACH may be requested by a process on one CPU
700 * while the target process is running on another. A PMC could also
701 * be getting released because its owner is exiting. We tackle
702 * these situations in the following manner:
703 *
704 * - each target process structure 'pmc_process' has an array
705 * of 'struct pmc *' pointers, one for each hardware PMC.
706 *
707 * - At context switch IN time, each "target" PMC in RUNNING state
708 * gets started on hardware and a pointer to each PMC is copied into
709 * the per-cpu phw array. The 'runcount' for the PMC is
710 * incremented.
711 *
712 * - At context switch OUT time, all process-virtual PMCs are stopped
713 * on hardware. The saved value is added to the PMCs value field
714 * only if the PMC is in a non-deleted state (the PMCs state could
715 * have changed during the current time slice).
716 *
717 * Note that since in-between a switch IN on a processor and a switch
718 * OUT, the PMC could have been released on another CPU. Therefore
719 * context switch OUT always looks at the hardware state to turn
720 * OFF PMCs and will update a PMC's saved value only if reachable
721 * from the target process record.
722 *
723 * - OP PMCRELEASE could be called on a PMC at any time (the PMC could
724 * be attached to many processes at the time of the call and could
725 * be active on multiple CPUs).
726 *
727 * We prevent further scheduling of the PMC by marking it as in
728 * state 'DELETED'. If the runcount of the PMC is non-zero then
729 * this PMC is currently running on a CPU somewhere. The thread
730 * doing the PMCRELEASE operation waits by repeatedly doing a
731 * pause() till the runcount comes to zero.
732 *
733 * The contents of a PMC descriptor (struct pmc) are protected using
734 * a spin-mutex. In order to save space, we use a mutex pool.
735 *
736 * In terms of lock types used by witness(4), we use:
737 * - Type "pmc-sx", used by the global SX lock.
738 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
739 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
740 * - Type "pmc-leaf", used for all other spin mutexes.
741 */
742
743 /*
744 * save the cpu binding of the current kthread
745 */
746
747 void
748 pmc_save_cpu_binding(struct pmc_binding *pb)
749 {
750 PMCDBG0(CPU,BND,2, "save-cpu");
751 thread_lock(curthread);
752 pb->pb_bound = sched_is_bound(curthread);
753 pb->pb_cpu = curthread->td_oncpu;
754 pb->pb_priority = curthread->td_priority;
755 thread_unlock(curthread);
756 PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
757 }
758
759 /*
760 * restore the cpu binding of the current thread
761 */
762
763 void
764 pmc_restore_cpu_binding(struct pmc_binding *pb)
765 {
766 PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
767 curthread->td_oncpu, pb->pb_cpu);
768 thread_lock(curthread);
769 sched_bind(curthread, pb->pb_cpu);
770 if (!pb->pb_bound)
771 sched_unbind(curthread);
772 sched_prio(curthread, pb->pb_priority);
773 thread_unlock(curthread);
774 PMCDBG0(CPU,BND,2, "restore-cpu done");
775 }
776
777 /*
778 * move execution over the specified cpu and bind it there.
779 */
780
781 void
782 pmc_select_cpu(int cpu)
783 {
784 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
785 ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
786
787 /* Never move to an inactive CPU. */
788 KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
789 "CPU %d", __LINE__, cpu));
790
791 PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
792 thread_lock(curthread);
793 sched_prio(curthread, PRI_MIN);
794 sched_bind(curthread, cpu);
795 thread_unlock(curthread);
796
797 KASSERT(curthread->td_oncpu == cpu,
798 ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
799 cpu, curthread->td_oncpu));
800
801 PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
802 }
803
804 /*
805 * Force a context switch.
806 *
807 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
808 * guaranteed to force a context switch.
809 */
810
811 static void
812 pmc_force_context_switch(void)
813 {
814
815 pause("pmcctx", 1);
816 }
817
818 uint64_t
819 pmc_rdtsc(void)
820 {
821 #if defined(__i386__) || defined(__amd64__)
822 if (__predict_true(amd_feature & AMDID_RDTSCP))
823 return rdtscp();
824 else
825 return rdtsc();
826 #else
827 return get_cyclecount();
828 #endif
829 }
830
831 /*
832 * Get the file name for an executable. This is a simple wrapper
833 * around vn_fullpath(9).
834 */
835
836 static void
837 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
838 {
839
840 *fullpath = "unknown";
841 *freepath = NULL;
842 vn_fullpath(v, fullpath, freepath);
843 }
844
845 /*
846 * remove an process owning PMCs
847 */
848
849 void
850 pmc_remove_owner(struct pmc_owner *po)
851 {
852 struct pmc *pm, *tmp;
853
854 sx_assert(&pmc_sx, SX_XLOCKED);
855
856 PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
857
858 /* Remove descriptor from the owner hash table */
859 LIST_REMOVE(po, po_next);
860
861 /* release all owned PMC descriptors */
862 LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
863 PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
864 KASSERT(pm->pm_owner == po,
865 ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
866
867 pmc_release_pmc_descriptor(pm); /* will unlink from the list */
868 pmc_destroy_pmc_descriptor(pm);
869 }
870
871 KASSERT(po->po_sscount == 0,
872 ("[pmc,%d] SS count not zero", __LINE__));
873 KASSERT(LIST_EMPTY(&po->po_pmcs),
874 ("[pmc,%d] PMC list not empty", __LINE__));
875
876 /* de-configure the log file if present */
877 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
878 pmclog_deconfigure_log(po);
879 }
880
881 /*
882 * remove an owner process record if all conditions are met.
883 */
884
885 static void
886 pmc_maybe_remove_owner(struct pmc_owner *po)
887 {
888
889 PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
890
891 /*
892 * Remove owner record if
893 * - this process does not own any PMCs
894 * - this process has not allocated a system-wide sampling buffer
895 */
896
897 if (LIST_EMPTY(&po->po_pmcs) &&
898 ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
899 pmc_remove_owner(po);
900 pmc_destroy_owner_descriptor(po);
901 }
902 }
903
904 /*
905 * Add an association between a target process and a PMC.
906 */
907
908 static void
909 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
910 {
911 int ri;
912 struct pmc_target *pt;
913 #ifdef INVARIANTS
914 struct pmc_thread *pt_td;
915 #endif
916
917 sx_assert(&pmc_sx, SX_XLOCKED);
918
919 KASSERT(pm != NULL && pp != NULL,
920 ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
921 KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
922 ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
923 __LINE__, pm, pp->pp_proc->p_pid));
924 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
925 ("[pmc,%d] Illegal reference count %d for process record %p",
926 __LINE__, pp->pp_refcnt, (void *) pp));
927
928 ri = PMC_TO_ROWINDEX(pm);
929
930 PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
931 pm, ri, pp);
932
933 #ifdef HWPMC_DEBUG
934 LIST_FOREACH(pt, &pm->pm_targets, pt_next)
935 if (pt->pt_process == pp)
936 KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
937 __LINE__, pp, pm));
938 #endif
939
940 pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
941 pt->pt_process = pp;
942
943 LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
944
945 atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
946 (uintptr_t)pm);
947
948 if (pm->pm_owner->po_owner == pp->pp_proc)
949 pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
950
951 /*
952 * Initialize the per-process values at this row index.
953 */
954 pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
955 pm->pm_sc.pm_reloadcount : 0;
956
957 pp->pp_refcnt++;
958
959 #ifdef INVARIANTS
960 /* Confirm that the per-thread values at this row index are cleared. */
961 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
962 mtx_lock_spin(pp->pp_tdslock);
963 LIST_FOREACH(pt_td, &pp->pp_tds, pt_next) {
964 KASSERT(pt_td->pt_pmcs[ri].pt_pmcval == (pmc_value_t) 0,
965 ("[pmc,%d] pt_pmcval not cleared for pid=%d at "
966 "ri=%d", __LINE__, pp->pp_proc->p_pid, ri));
967 }
968 mtx_unlock_spin(pp->pp_tdslock);
969 }
970 #endif
971 }
972
973 /*
974 * Removes the association between a target process and a PMC.
975 */
976
977 static void
978 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
979 {
980 int ri;
981 struct proc *p;
982 struct pmc_target *ptgt;
983 struct pmc_thread *pt;
984
985 sx_assert(&pmc_sx, SX_XLOCKED);
986
987 KASSERT(pm != NULL && pp != NULL,
988 ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
989
990 KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
991 ("[pmc,%d] Illegal ref count %d on process record %p",
992 __LINE__, pp->pp_refcnt, (void *) pp));
993
994 ri = PMC_TO_ROWINDEX(pm);
995
996 PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
997 pm, ri, pp);
998
999 KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
1000 ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
1001 ri, pm, pp->pp_pmcs[ri].pp_pmc));
1002
1003 pp->pp_pmcs[ri].pp_pmc = NULL;
1004 pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
1005
1006 /* Clear the per-thread values at this row index. */
1007 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1008 mtx_lock_spin(pp->pp_tdslock);
1009 LIST_FOREACH(pt, &pp->pp_tds, pt_next)
1010 pt->pt_pmcs[ri].pt_pmcval = (pmc_value_t) 0;
1011 mtx_unlock_spin(pp->pp_tdslock);
1012 }
1013
1014 /* Remove owner-specific flags */
1015 if (pm->pm_owner->po_owner == pp->pp_proc) {
1016 pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
1017 pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
1018 }
1019
1020 pp->pp_refcnt--;
1021
1022 /* Remove the target process from the PMC structure */
1023 LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
1024 if (ptgt->pt_process == pp)
1025 break;
1026
1027 KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
1028 "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
1029
1030 LIST_REMOVE(ptgt, pt_next);
1031 free(ptgt, M_PMC);
1032
1033 /* if the PMC now lacks targets, send the owner a SIGIO */
1034 if (LIST_EMPTY(&pm->pm_targets)) {
1035 p = pm->pm_owner->po_owner;
1036 PROC_LOCK(p);
1037 kern_psignal(p, SIGIO);
1038 PROC_UNLOCK(p);
1039
1040 PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
1041 SIGIO);
1042 }
1043 }
1044
1045 /*
1046 * Check if PMC 'pm' may be attached to target process 't'.
1047 */
1048
1049 static int
1050 pmc_can_attach(struct pmc *pm, struct proc *t)
1051 {
1052 struct proc *o; /* pmc owner */
1053 struct ucred *oc, *tc; /* owner, target credentials */
1054 int decline_attach, i;
1055
1056 /*
1057 * A PMC's owner can always attach that PMC to itself.
1058 */
1059
1060 if ((o = pm->pm_owner->po_owner) == t)
1061 return 0;
1062
1063 PROC_LOCK(o);
1064 oc = o->p_ucred;
1065 crhold(oc);
1066 PROC_UNLOCK(o);
1067
1068 PROC_LOCK(t);
1069 tc = t->p_ucred;
1070 crhold(tc);
1071 PROC_UNLOCK(t);
1072
1073 /*
1074 * The effective uid of the PMC owner should match at least one
1075 * of the {effective,real,saved} uids of the target process.
1076 */
1077
1078 decline_attach = oc->cr_uid != tc->cr_uid &&
1079 oc->cr_uid != tc->cr_svuid &&
1080 oc->cr_uid != tc->cr_ruid;
1081
1082 /*
1083 * Every one of the target's group ids, must be in the owner's
1084 * group list.
1085 */
1086 for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
1087 decline_attach = !groupmember(tc->cr_groups[i], oc);
1088
1089 /* check the read and saved gids too */
1090 if (decline_attach == 0)
1091 decline_attach = !groupmember(tc->cr_rgid, oc) ||
1092 !groupmember(tc->cr_svgid, oc);
1093
1094 crfree(tc);
1095 crfree(oc);
1096
1097 return !decline_attach;
1098 }
1099
1100 /*
1101 * Attach a process to a PMC.
1102 */
1103
1104 static int
1105 pmc_attach_one_process(struct proc *p, struct pmc *pm)
1106 {
1107 int ri, error;
1108 char *fullpath, *freepath;
1109 struct pmc_process *pp;
1110
1111 sx_assert(&pmc_sx, SX_XLOCKED);
1112
1113 PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
1114 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1115
1116 /*
1117 * Locate the process descriptor corresponding to process 'p',
1118 * allocating space as needed.
1119 *
1120 * Verify that rowindex 'pm_rowindex' is free in the process
1121 * descriptor.
1122 *
1123 * If not, allocate space for a descriptor and link the
1124 * process descriptor and PMC.
1125 */
1126 ri = PMC_TO_ROWINDEX(pm);
1127
1128 /* mark process as using HWPMCs */
1129 PROC_LOCK(p);
1130 p->p_flag |= P_HWPMC;
1131 PROC_UNLOCK(p);
1132
1133 if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL) {
1134 error = ENOMEM;
1135 goto fail;
1136 }
1137
1138 if (pp->pp_pmcs[ri].pp_pmc == pm) {/* already present at slot [ri] */
1139 error = EEXIST;
1140 goto fail;
1141 }
1142
1143 if (pp->pp_pmcs[ri].pp_pmc != NULL) {
1144 error = EBUSY;
1145 goto fail;
1146 }
1147
1148 pmc_link_target_process(pm, pp);
1149
1150 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1151 (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1152 pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1153
1154 pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1155
1156 /* issue an attach event to a configured log file */
1157 if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1158 if (p->p_flag & P_KPROC) {
1159 fullpath = kernelname;
1160 freepath = NULL;
1161 } else {
1162 pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1163 pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1164 }
1165 free(freepath, M_TEMP);
1166 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1167 pmc_log_process_mappings(pm->pm_owner, p);
1168 }
1169
1170 return (0);
1171 fail:
1172 PROC_LOCK(p);
1173 p->p_flag &= ~P_HWPMC;
1174 PROC_UNLOCK(p);
1175 return (error);
1176 }
1177
1178 /*
1179 * Attach a process and optionally its children
1180 */
1181
1182 static int
1183 pmc_attach_process(struct proc *p, struct pmc *pm)
1184 {
1185 int error;
1186 struct proc *top;
1187
1188 sx_assert(&pmc_sx, SX_XLOCKED);
1189
1190 PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1191 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1192
1193
1194 /*
1195 * If this PMC successfully allowed a GETMSR operation
1196 * in the past, disallow further ATTACHes.
1197 */
1198
1199 if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1200 return EPERM;
1201
1202 if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1203 return pmc_attach_one_process(p, pm);
1204
1205 /*
1206 * Traverse all child processes, attaching them to
1207 * this PMC.
1208 */
1209
1210 sx_slock(&proctree_lock);
1211
1212 top = p;
1213
1214 for (;;) {
1215 if ((error = pmc_attach_one_process(p, pm)) != 0)
1216 break;
1217 if (!LIST_EMPTY(&p->p_children))
1218 p = LIST_FIRST(&p->p_children);
1219 else for (;;) {
1220 if (p == top)
1221 goto done;
1222 if (LIST_NEXT(p, p_sibling)) {
1223 p = LIST_NEXT(p, p_sibling);
1224 break;
1225 }
1226 p = p->p_pptr;
1227 }
1228 }
1229
1230 if (error)
1231 (void) pmc_detach_process(top, pm);
1232
1233 done:
1234 sx_sunlock(&proctree_lock);
1235 return error;
1236 }
1237
1238 /*
1239 * Detach a process from a PMC. If there are no other PMCs tracking
1240 * this process, remove the process structure from its hash table. If
1241 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1242 */
1243
1244 static int
1245 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1246 {
1247 int ri;
1248 struct pmc_process *pp;
1249
1250 sx_assert(&pmc_sx, SX_XLOCKED);
1251
1252 KASSERT(pm != NULL,
1253 ("[pmc,%d] null pm pointer", __LINE__));
1254
1255 ri = PMC_TO_ROWINDEX(pm);
1256
1257 PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1258 pm, ri, p, p->p_pid, p->p_comm, flags);
1259
1260 if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1261 return ESRCH;
1262
1263 if (pp->pp_pmcs[ri].pp_pmc != pm)
1264 return EINVAL;
1265
1266 pmc_unlink_target_process(pm, pp);
1267
1268 /* Issue a detach entry if a log file is configured */
1269 if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1270 pmclog_process_pmcdetach(pm, p->p_pid);
1271
1272 /*
1273 * If there are no PMCs targeting this process, we remove its
1274 * descriptor from the target hash table and unset the P_HWPMC
1275 * flag in the struct proc.
1276 */
1277 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1278 ("[pmc,%d] Illegal refcnt %d for process struct %p",
1279 __LINE__, pp->pp_refcnt, pp));
1280
1281 if (pp->pp_refcnt != 0) /* still a target of some PMC */
1282 return 0;
1283
1284 pmc_remove_process_descriptor(pp);
1285
1286 if (flags & PMC_FLAG_REMOVE)
1287 pmc_destroy_process_descriptor(pp);
1288
1289 PROC_LOCK(p);
1290 p->p_flag &= ~P_HWPMC;
1291 PROC_UNLOCK(p);
1292
1293 return 0;
1294 }
1295
1296 /*
1297 * Detach a process and optionally its descendants from a PMC.
1298 */
1299
1300 static int
1301 pmc_detach_process(struct proc *p, struct pmc *pm)
1302 {
1303 struct proc *top;
1304
1305 sx_assert(&pmc_sx, SX_XLOCKED);
1306
1307 PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1308 PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1309
1310 if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1311 return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1312
1313 /*
1314 * Traverse all children, detaching them from this PMC. We
1315 * ignore errors since we could be detaching a PMC from a
1316 * partially attached proc tree.
1317 */
1318
1319 sx_slock(&proctree_lock);
1320
1321 top = p;
1322
1323 for (;;) {
1324 (void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1325
1326 if (!LIST_EMPTY(&p->p_children))
1327 p = LIST_FIRST(&p->p_children);
1328 else for (;;) {
1329 if (p == top)
1330 goto done;
1331 if (LIST_NEXT(p, p_sibling)) {
1332 p = LIST_NEXT(p, p_sibling);
1333 break;
1334 }
1335 p = p->p_pptr;
1336 }
1337 }
1338
1339 done:
1340 sx_sunlock(&proctree_lock);
1341
1342 if (LIST_EMPTY(&pm->pm_targets))
1343 pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1344
1345 return 0;
1346 }
1347
1348
1349 /*
1350 * Thread context switch IN
1351 */
1352
1353 static void
1354 pmc_process_csw_in(struct thread *td)
1355 {
1356 int cpu;
1357 unsigned int adjri, ri;
1358 struct pmc *pm;
1359 struct proc *p;
1360 struct pmc_cpu *pc;
1361 struct pmc_hw *phw __diagused;
1362 pmc_value_t newvalue;
1363 struct pmc_process *pp;
1364 struct pmc_thread *pt;
1365 struct pmc_classdep *pcd;
1366
1367 p = td->td_proc;
1368 pt = NULL;
1369 if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1370 return;
1371
1372 KASSERT(pp->pp_proc == td->td_proc,
1373 ("[pmc,%d] not my thread state", __LINE__));
1374
1375 critical_enter(); /* no preemption from this point */
1376
1377 cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1378
1379 PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1380 p->p_pid, p->p_comm, pp);
1381
1382 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1383 ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1384
1385 pc = pmc_pcpu[cpu];
1386
1387 for (ri = 0; ri < md->pmd_npmc; ri++) {
1388
1389 if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1390 continue;
1391
1392 KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1393 ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1394 __LINE__, PMC_TO_MODE(pm)));
1395
1396 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1397 ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1398 __LINE__, PMC_TO_ROWINDEX(pm), ri));
1399
1400 /*
1401 * Only PMCs that are marked as 'RUNNING' need
1402 * be placed on hardware.
1403 */
1404
1405 if (pm->pm_state != PMC_STATE_RUNNING)
1406 continue;
1407
1408 KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
1409 ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
1410 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
1411
1412 /* increment PMC runcount */
1413 counter_u64_add(pm->pm_runcount, 1);
1414
1415 /* configure the HWPMC we are going to use. */
1416 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1417 pcd->pcd_config_pmc(cpu, adjri, pm);
1418
1419 phw = pc->pc_hwpmcs[ri];
1420
1421 KASSERT(phw != NULL,
1422 ("[pmc,%d] null hw pointer", __LINE__));
1423
1424 KASSERT(phw->phw_pmc == pm,
1425 ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1426 phw->phw_pmc, pm));
1427
1428 /*
1429 * Write out saved value and start the PMC.
1430 *
1431 * Sampling PMCs use a per-thread value, while
1432 * counting mode PMCs use a per-pmc value that is
1433 * inherited across descendants.
1434 */
1435 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1436 if (pt == NULL)
1437 pt = pmc_find_thread_descriptor(pp, td,
1438 PMC_FLAG_NONE);
1439
1440 KASSERT(pt != NULL,
1441 ("[pmc,%d] No thread found for td=%p", __LINE__,
1442 td));
1443
1444 mtx_pool_lock_spin(pmc_mtxpool, pm);
1445
1446 /*
1447 * If we have a thread descriptor, use the per-thread
1448 * counter in the descriptor. If not, we will use
1449 * a per-process counter.
1450 *
1451 * TODO: Remove the per-process "safety net" once
1452 * we have thoroughly tested that we don't hit the
1453 * above assert.
1454 */
1455 if (pt != NULL) {
1456 if (pt->pt_pmcs[ri].pt_pmcval > 0)
1457 newvalue = pt->pt_pmcs[ri].pt_pmcval;
1458 else
1459 newvalue = pm->pm_sc.pm_reloadcount;
1460 } else {
1461 /*
1462 * Use the saved value calculated after the most
1463 * recent time a thread using the shared counter
1464 * switched out. Reset the saved count in case
1465 * another thread from this process switches in
1466 * before any threads switch out.
1467 */
1468
1469 newvalue = pp->pp_pmcs[ri].pp_pmcval;
1470 pp->pp_pmcs[ri].pp_pmcval =
1471 pm->pm_sc.pm_reloadcount;
1472 }
1473 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1474 KASSERT(newvalue > 0 && newvalue <=
1475 pm->pm_sc.pm_reloadcount,
1476 ("[pmc,%d] pmcval outside of expected range cpu=%d "
1477 "ri=%d pmcval=%jx pm_reloadcount=%jx", __LINE__,
1478 cpu, ri, newvalue, pm->pm_sc.pm_reloadcount));
1479 } else {
1480 KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1481 ("[pmc,%d] illegal mode=%d", __LINE__,
1482 PMC_TO_MODE(pm)));
1483 mtx_pool_lock_spin(pmc_mtxpool, pm);
1484 newvalue = PMC_PCPU_SAVED(cpu, ri) =
1485 pm->pm_gv.pm_savedvalue;
1486 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1487 }
1488
1489 PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1490
1491 pcd->pcd_write_pmc(cpu, adjri, newvalue);
1492
1493 /* If a sampling mode PMC, reset stalled state. */
1494 if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1495 pm->pm_pcpu_state[cpu].pps_stalled = 0;
1496
1497 /* Indicate that we desire this to run. */
1498 pm->pm_pcpu_state[cpu].pps_cpustate = 1;
1499
1500 /* Start the PMC. */
1501 pcd->pcd_start_pmc(cpu, adjri);
1502 }
1503
1504 /*
1505 * perform any other architecture/cpu dependent thread
1506 * switch-in actions.
1507 */
1508
1509 (void) (*md->pmd_switch_in)(pc, pp);
1510
1511 critical_exit();
1512
1513 }
1514
1515 /*
1516 * Thread context switch OUT.
1517 */
1518
1519 static void
1520 pmc_process_csw_out(struct thread *td)
1521 {
1522 int cpu;
1523 int64_t tmp;
1524 struct pmc *pm;
1525 struct proc *p;
1526 enum pmc_mode mode;
1527 struct pmc_cpu *pc;
1528 pmc_value_t newvalue;
1529 unsigned int adjri, ri;
1530 struct pmc_process *pp;
1531 struct pmc_thread *pt = NULL;
1532 struct pmc_classdep *pcd;
1533
1534
1535 /*
1536 * Locate our process descriptor; this may be NULL if
1537 * this process is exiting and we have already removed
1538 * the process from the target process table.
1539 *
1540 * Note that due to kernel preemption, multiple
1541 * context switches may happen while the process is
1542 * exiting.
1543 *
1544 * Note also that if the target process cannot be
1545 * found we still need to deconfigure any PMCs that
1546 * are currently running on hardware.
1547 */
1548
1549 p = td->td_proc;
1550 pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1551
1552 /*
1553 * save PMCs
1554 */
1555
1556 critical_enter();
1557
1558 cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1559
1560 PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1561 p->p_pid, p->p_comm, pp);
1562
1563 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1564 ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1565
1566 pc = pmc_pcpu[cpu];
1567
1568 /*
1569 * When a PMC gets unlinked from a target PMC, it will
1570 * be removed from the target's pp_pmc[] array.
1571 *
1572 * However, on a MP system, the target could have been
1573 * executing on another CPU at the time of the unlink.
1574 * So, at context switch OUT time, we need to look at
1575 * the hardware to determine if a PMC is scheduled on
1576 * it.
1577 */
1578
1579 for (ri = 0; ri < md->pmd_npmc; ri++) {
1580
1581 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1582 pm = NULL;
1583 (void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1584
1585 if (pm == NULL) /* nothing at this row index */
1586 continue;
1587
1588 mode = PMC_TO_MODE(pm);
1589 if (!PMC_IS_VIRTUAL_MODE(mode))
1590 continue; /* not a process virtual PMC */
1591
1592 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1593 ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1594 __LINE__, PMC_TO_ROWINDEX(pm), ri));
1595
1596 /*
1597 * Change desired state, and then stop if not stalled.
1598 * This two-step dance should avoid race conditions where
1599 * an interrupt re-enables the PMC after this code has
1600 * already checked the pm_stalled flag.
1601 */
1602 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
1603 if (pm->pm_pcpu_state[cpu].pps_stalled == 0)
1604 pcd->pcd_stop_pmc(cpu, adjri);
1605
1606 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
1607 ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
1608 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
1609
1610 /* reduce this PMC's runcount */
1611 counter_u64_add(pm->pm_runcount, -1);
1612
1613 /*
1614 * If this PMC is associated with this process,
1615 * save the reading.
1616 */
1617
1618 if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
1619 pp->pp_pmcs[ri].pp_pmc != NULL) {
1620 KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1621 ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1622 pm, ri, pp->pp_pmcs[ri].pp_pmc));
1623
1624 KASSERT(pp->pp_refcnt > 0,
1625 ("[pmc,%d] pp refcnt = %d", __LINE__,
1626 pp->pp_refcnt));
1627
1628 pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1629
1630 if (mode == PMC_MODE_TS) {
1631 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d val=%jd (samp)",
1632 cpu, ri, newvalue);
1633
1634 if (pt == NULL)
1635 pt = pmc_find_thread_descriptor(pp, td,
1636 PMC_FLAG_NONE);
1637
1638 KASSERT(pt != NULL,
1639 ("[pmc,%d] No thread found for td=%p",
1640 __LINE__, td));
1641
1642 mtx_pool_lock_spin(pmc_mtxpool, pm);
1643
1644 /*
1645 * If we have a thread descriptor, save the
1646 * per-thread counter in the descriptor. If not,
1647 * we will update the per-process counter.
1648 *
1649 * TODO: Remove the per-process "safety net"
1650 * once we have thoroughly tested that we
1651 * don't hit the above assert.
1652 */
1653 if (pt != NULL)
1654 pt->pt_pmcs[ri].pt_pmcval = newvalue;
1655 else {
1656 /*
1657 * For sampling process-virtual PMCs,
1658 * newvalue is the number of events to
1659 * be seen until the next sampling
1660 * interrupt. We can just add the events
1661 * left from this invocation to the
1662 * counter, then adjust in case we
1663 * overflow our range.
1664 *
1665 * (Recall that we reload the counter
1666 * every time we use it.)
1667 */
1668 pp->pp_pmcs[ri].pp_pmcval += newvalue;
1669 if (pp->pp_pmcs[ri].pp_pmcval >
1670 pm->pm_sc.pm_reloadcount)
1671 pp->pp_pmcs[ri].pp_pmcval -=
1672 pm->pm_sc.pm_reloadcount;
1673 }
1674 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1675 } else {
1676 tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1677
1678 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1679 cpu, ri, tmp);
1680
1681 /*
1682 * For counting process-virtual PMCs,
1683 * we expect the count to be
1684 * increasing monotonically, modulo a 64
1685 * bit wraparound.
1686 */
1687 KASSERT(tmp >= 0,
1688 ("[pmc,%d] negative increment cpu=%d "
1689 "ri=%d newvalue=%jx saved=%jx "
1690 "incr=%jx", __LINE__, cpu, ri,
1691 newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1692
1693 mtx_pool_lock_spin(pmc_mtxpool, pm);
1694 pm->pm_gv.pm_savedvalue += tmp;
1695 pp->pp_pmcs[ri].pp_pmcval += tmp;
1696 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1697
1698 if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1699 pmclog_process_proccsw(pm, pp, tmp, td);
1700 }
1701 }
1702
1703 /* mark hardware as free */
1704 pcd->pcd_config_pmc(cpu, adjri, NULL);
1705 }
1706
1707 /*
1708 * perform any other architecture/cpu dependent thread
1709 * switch out functions.
1710 */
1711
1712 (void) (*md->pmd_switch_out)(pc, pp);
1713
1714 critical_exit();
1715 }
1716
1717 /*
1718 * A new thread for a process.
1719 */
1720 static void
1721 pmc_process_thread_add(struct thread *td)
1722 {
1723 struct pmc_process *pmc;
1724
1725 pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1726 if (pmc != NULL)
1727 pmc_find_thread_descriptor(pmc, td, PMC_FLAG_ALLOCATE);
1728 }
1729
1730 /*
1731 * A thread delete for a process.
1732 */
1733 static void
1734 pmc_process_thread_delete(struct thread *td)
1735 {
1736 struct pmc_process *pmc;
1737
1738 pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1739 if (pmc != NULL)
1740 pmc_thread_descriptor_pool_free(pmc_find_thread_descriptor(pmc,
1741 td, PMC_FLAG_REMOVE));
1742 }
1743
1744 /*
1745 * A userret() call for a thread.
1746 */
1747 static void
1748 pmc_process_thread_userret(struct thread *td)
1749 {
1750 sched_pin();
1751 pmc_capture_user_callchain(curcpu, PMC_UR, td->td_frame);
1752 sched_unpin();
1753 }
1754
1755 /*
1756 * A mapping change for a process.
1757 */
1758
1759 static void
1760 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1761 {
1762 int ri;
1763 pid_t pid;
1764 char *fullpath, *freepath;
1765 const struct pmc *pm;
1766 struct pmc_owner *po;
1767 const struct pmc_process *pp;
1768
1769 freepath = fullpath = NULL;
1770 MPASS(!in_epoch(global_epoch_preempt));
1771 pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1772
1773 pid = td->td_proc->p_pid;
1774
1775 PMC_EPOCH_ENTER();
1776 /* Inform owners of all system-wide sampling PMCs. */
1777 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1778 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1779 pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1780
1781 if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1782 goto done;
1783
1784 /*
1785 * Inform sampling PMC owners tracking this process.
1786 */
1787 for (ri = 0; ri < md->pmd_npmc; ri++)
1788 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1789 PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1790 pmclog_process_map_in(pm->pm_owner,
1791 pid, pkm->pm_address, fullpath);
1792
1793 done:
1794 if (freepath)
1795 free(freepath, M_TEMP);
1796 PMC_EPOCH_EXIT();
1797 }
1798
1799
1800 /*
1801 * Log an munmap request.
1802 */
1803
1804 static void
1805 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1806 {
1807 int ri;
1808 pid_t pid;
1809 struct pmc_owner *po;
1810 const struct pmc *pm;
1811 const struct pmc_process *pp;
1812
1813 pid = td->td_proc->p_pid;
1814
1815 PMC_EPOCH_ENTER();
1816 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1817 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1818 pmclog_process_map_out(po, pid, pkm->pm_address,
1819 pkm->pm_address + pkm->pm_size);
1820 PMC_EPOCH_EXIT();
1821
1822 if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1823 return;
1824
1825 for (ri = 0; ri < md->pmd_npmc; ri++)
1826 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1827 PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1828 pmclog_process_map_out(pm->pm_owner, pid,
1829 pkm->pm_address, pkm->pm_address + pkm->pm_size);
1830 }
1831
1832 /*
1833 * Log mapping information about the kernel.
1834 */
1835
1836 static void
1837 pmc_log_kernel_mappings(struct pmc *pm)
1838 {
1839 struct pmc_owner *po;
1840 struct pmckern_map_in *km, *kmbase;
1841
1842 MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
1843 KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1844 ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1845 __LINE__, (void *) pm));
1846
1847 po = pm->pm_owner;
1848
1849 if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1850 return;
1851 if (PMC_TO_MODE(pm) == PMC_MODE_SS)
1852 pmc_process_allproc(pm);
1853 /*
1854 * Log the current set of kernel modules.
1855 */
1856 kmbase = linker_hwpmc_list_objects();
1857 for (km = kmbase; km->pm_file != NULL; km++) {
1858 PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1859 (void *) km->pm_address);
1860 pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1861 km->pm_file);
1862 }
1863 free(kmbase, M_LINKER);
1864
1865 po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1866 }
1867
1868 /*
1869 * Log the mappings for a single process.
1870 */
1871
1872 static void
1873 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1874 {
1875 vm_map_t map;
1876 struct vnode *vp;
1877 struct vmspace *vm;
1878 vm_map_entry_t entry;
1879 vm_offset_t last_end;
1880 u_int last_timestamp;
1881 struct vnode *last_vp;
1882 vm_offset_t start_addr;
1883 vm_object_t obj, lobj, tobj;
1884 char *fullpath, *freepath;
1885
1886 last_vp = NULL;
1887 last_end = (vm_offset_t) 0;
1888 fullpath = freepath = NULL;
1889
1890 if ((vm = vmspace_acquire_ref(p)) == NULL)
1891 return;
1892
1893 map = &vm->vm_map;
1894 vm_map_lock_read(map);
1895
1896 VM_MAP_ENTRY_FOREACH(entry, map) {
1897
1898 if (entry == NULL) {
1899 PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1900 "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1901 break;
1902 }
1903
1904 /*
1905 * We only care about executable map entries.
1906 */
1907 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1908 !(entry->protection & VM_PROT_EXECUTE) ||
1909 (entry->object.vm_object == NULL)) {
1910 continue;
1911 }
1912
1913 obj = entry->object.vm_object;
1914 VM_OBJECT_RLOCK(obj);
1915
1916 /*
1917 * Walk the backing_object list to find the base
1918 * (non-shadowed) vm_object.
1919 */
1920 for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1921 if (tobj != obj)
1922 VM_OBJECT_RLOCK(tobj);
1923 if (lobj != obj)
1924 VM_OBJECT_RUNLOCK(lobj);
1925 lobj = tobj;
1926 }
1927
1928 /*
1929 * At this point lobj is the base vm_object and it is locked.
1930 */
1931 if (lobj == NULL) {
1932 PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1933 "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1934 VM_OBJECT_RUNLOCK(obj);
1935 continue;
1936 }
1937
1938 vp = vm_object_vnode(lobj);
1939 if (vp == NULL) {
1940 if (lobj != obj)
1941 VM_OBJECT_RUNLOCK(lobj);
1942 VM_OBJECT_RUNLOCK(obj);
1943 continue;
1944 }
1945
1946 /*
1947 * Skip contiguous regions that point to the same
1948 * vnode, so we don't emit redundant MAP-IN
1949 * directives.
1950 */
1951 if (entry->start == last_end && vp == last_vp) {
1952 last_end = entry->end;
1953 if (lobj != obj)
1954 VM_OBJECT_RUNLOCK(lobj);
1955 VM_OBJECT_RUNLOCK(obj);
1956 continue;
1957 }
1958
1959 /*
1960 * We don't want to keep the proc's vm_map or this
1961 * vm_object locked while we walk the pathname, since
1962 * vn_fullpath() can sleep. However, if we drop the
1963 * lock, it's possible for concurrent activity to
1964 * modify the vm_map list. To protect against this,
1965 * we save the vm_map timestamp before we release the
1966 * lock, and check it after we reacquire the lock
1967 * below.
1968 */
1969 start_addr = entry->start;
1970 last_end = entry->end;
1971 last_timestamp = map->timestamp;
1972 vm_map_unlock_read(map);
1973
1974 vref(vp);
1975 if (lobj != obj)
1976 VM_OBJECT_RUNLOCK(lobj);
1977
1978 VM_OBJECT_RUNLOCK(obj);
1979
1980 freepath = NULL;
1981 pmc_getfilename(vp, &fullpath, &freepath);
1982 last_vp = vp;
1983
1984 vrele(vp);
1985
1986 vp = NULL;
1987 pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1988 if (freepath)
1989 free(freepath, M_TEMP);
1990
1991 vm_map_lock_read(map);
1992
1993 /*
1994 * If our saved timestamp doesn't match, this means
1995 * that the vm_map was modified out from under us and
1996 * we can't trust our current "entry" pointer. Do a
1997 * new lookup for this entry. If there is no entry
1998 * for this address range, vm_map_lookup_entry() will
1999 * return the previous one, so we always want to go to
2000 * the next entry on the next loop iteration.
2001 *
2002 * There is an edge condition here that can occur if
2003 * there is no entry at or before this address. In
2004 * this situation, vm_map_lookup_entry returns
2005 * &map->header, which would cause our loop to abort
2006 * without processing the rest of the map. However,
2007 * in practice this will never happen for process
2008 * vm_map. This is because the executable's text
2009 * segment is the first mapping in the proc's address
2010 * space, and this mapping is never removed until the
2011 * process exits, so there will always be a non-header
2012 * entry at or before the requested address for
2013 * vm_map_lookup_entry to return.
2014 */
2015 if (map->timestamp != last_timestamp)
2016 vm_map_lookup_entry(map, last_end - 1, &entry);
2017 }
2018
2019 vm_map_unlock_read(map);
2020 vmspace_free(vm);
2021 return;
2022 }
2023
2024 /*
2025 * Log mappings for all processes in the system.
2026 */
2027
2028 static void
2029 pmc_log_all_process_mappings(struct pmc_owner *po)
2030 {
2031 struct proc *p, *top;
2032
2033 sx_assert(&pmc_sx, SX_XLOCKED);
2034
2035 if ((p = pfind(1)) == NULL)
2036 panic("[pmc,%d] Cannot find init", __LINE__);
2037
2038 PROC_UNLOCK(p);
2039
2040 sx_slock(&proctree_lock);
2041
2042 top = p;
2043
2044 for (;;) {
2045 pmc_log_process_mappings(po, p);
2046 if (!LIST_EMPTY(&p->p_children))
2047 p = LIST_FIRST(&p->p_children);
2048 else for (;;) {
2049 if (p == top)
2050 goto done;
2051 if (LIST_NEXT(p, p_sibling)) {
2052 p = LIST_NEXT(p, p_sibling);
2053 break;
2054 }
2055 p = p->p_pptr;
2056 }
2057 }
2058 done:
2059 sx_sunlock(&proctree_lock);
2060 }
2061
2062 /*
2063 * The 'hook' invoked from the kernel proper
2064 */
2065
2066
2067 #ifdef HWPMC_DEBUG
2068 const char *pmc_hooknames[] = {
2069 /* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
2070 "",
2071 "EXEC",
2072 "CSW-IN",
2073 "CSW-OUT",
2074 "SAMPLE",
2075 "UNUSED1",
2076 "UNUSED2",
2077 "MMAP",
2078 "MUNMAP",
2079 "CALLCHAIN-NMI",
2080 "CALLCHAIN-SOFT",
2081 "SOFTSAMPLING",
2082 "THR-CREATE",
2083 "THR-EXIT",
2084 "THR-USERRET",
2085 "THR-CREATE-LOG",
2086 "THR-EXIT-LOG",
2087 "PROC-CREATE-LOG"
2088 };
2089 #endif
2090
2091 static int
2092 pmc_hook_handler(struct thread *td, int function, void *arg)
2093 {
2094 int cpu;
2095
2096 PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
2097 pmc_hooknames[function], arg);
2098
2099 switch (function)
2100 {
2101
2102 /*
2103 * Process exec()
2104 */
2105
2106 case PMC_FN_PROCESS_EXEC:
2107 {
2108 char *fullpath, *freepath;
2109 unsigned int ri;
2110 int is_using_hwpmcs;
2111 struct pmc *pm;
2112 struct proc *p;
2113 struct pmc_owner *po;
2114 struct pmc_process *pp;
2115 struct pmckern_procexec *pk;
2116
2117 sx_assert(&pmc_sx, SX_XLOCKED);
2118
2119 p = td->td_proc;
2120 pmc_getfilename(p->p_textvp, &fullpath, &freepath);
2121
2122 pk = (struct pmckern_procexec *) arg;
2123
2124 PMC_EPOCH_ENTER();
2125 /* Inform owners of SS mode PMCs of the exec event. */
2126 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
2127 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2128 pmclog_process_procexec(po, PMC_ID_INVALID,
2129 p->p_pid, pk->pm_entryaddr, fullpath);
2130 PMC_EPOCH_EXIT();
2131
2132 PROC_LOCK(p);
2133 is_using_hwpmcs = p->p_flag & P_HWPMC;
2134 PROC_UNLOCK(p);
2135
2136 if (!is_using_hwpmcs) {
2137 if (freepath)
2138 free(freepath, M_TEMP);
2139 break;
2140 }
2141
2142 /*
2143 * PMCs are not inherited across an exec(): remove any
2144 * PMCs that this process is the owner of.
2145 */
2146
2147 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
2148 pmc_remove_owner(po);
2149 pmc_destroy_owner_descriptor(po);
2150 }
2151
2152 /*
2153 * If the process being exec'ed is not the target of any
2154 * PMC, we are done.
2155 */
2156 if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
2157 if (freepath)
2158 free(freepath, M_TEMP);
2159 break;
2160 }
2161
2162 /*
2163 * Log the exec event to all monitoring owners. Skip
2164 * owners who have already received the event because
2165 * they had system sampling PMCs active.
2166 */
2167 for (ri = 0; ri < md->pmd_npmc; ri++)
2168 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
2169 po = pm->pm_owner;
2170 if (po->po_sscount == 0 &&
2171 po->po_flags & PMC_PO_OWNS_LOGFILE)
2172 pmclog_process_procexec(po, pm->pm_id,
2173 p->p_pid, pk->pm_entryaddr,
2174 fullpath);
2175 }
2176
2177 if (freepath)
2178 free(freepath, M_TEMP);
2179
2180
2181 PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
2182 p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
2183
2184 if (pk->pm_credentialschanged == 0) /* no change */
2185 break;
2186
2187 /*
2188 * If the newly exec()'ed process has a different credential
2189 * than before, allow it to be the target of a PMC only if
2190 * the PMC's owner has sufficient privilege.
2191 */
2192
2193 for (ri = 0; ri < md->pmd_npmc; ri++)
2194 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
2195 if (pmc_can_attach(pm, td->td_proc) != 0)
2196 pmc_detach_one_process(td->td_proc,
2197 pm, PMC_FLAG_NONE);
2198
2199 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
2200 ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
2201 pp->pp_refcnt, pp));
2202
2203 /*
2204 * If this process is no longer the target of any
2205 * PMCs, we can remove the process entry and free
2206 * up space.
2207 */
2208
2209 if (pp->pp_refcnt == 0) {
2210 pmc_remove_process_descriptor(pp);
2211 pmc_destroy_process_descriptor(pp);
2212 break;
2213 }
2214
2215 }
2216 break;
2217
2218 case PMC_FN_CSW_IN:
2219 pmc_process_csw_in(td);
2220 break;
2221
2222 case PMC_FN_CSW_OUT:
2223 pmc_process_csw_out(td);
2224 break;
2225
2226 /*
2227 * Process accumulated PC samples.
2228 *
2229 * This function is expected to be called by hardclock() for
2230 * each CPU that has accumulated PC samples.
2231 *
2232 * This function is to be executed on the CPU whose samples
2233 * are being processed.
2234 */
2235 case PMC_FN_DO_SAMPLES:
2236
2237 /*
2238 * Clear the cpu specific bit in the CPU mask before
2239 * do the rest of the processing. If the NMI handler
2240 * gets invoked after the "atomic_clear_int()" call
2241 * below but before "pmc_process_samples()" gets
2242 * around to processing the interrupt, then we will
2243 * come back here at the next hardclock() tick (and
2244 * may find nothing to do if "pmc_process_samples()"
2245 * had already processed the interrupt). We don't
2246 * lose the interrupt sample.
2247 */
2248 DPCPU_SET(pmc_sampled, 0);
2249 cpu = PCPU_GET(cpuid);
2250 pmc_process_samples(cpu, PMC_HR);
2251 pmc_process_samples(cpu, PMC_SR);
2252 pmc_process_samples(cpu, PMC_UR);
2253 break;
2254
2255 case PMC_FN_MMAP:
2256 pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2257 break;
2258
2259 case PMC_FN_MUNMAP:
2260 MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
2261 pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2262 break;
2263
2264 case PMC_FN_PROC_CREATE_LOG:
2265 pmc_process_proccreate((struct proc *)arg);
2266 break;
2267
2268 case PMC_FN_USER_CALLCHAIN:
2269 /*
2270 * Record a call chain.
2271 */
2272 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2273 __LINE__));
2274
2275 pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2276 (struct trapframe *) arg);
2277
2278 KASSERT(td->td_pinned == 1,
2279 ("[pmc,%d] invalid td_pinned value", __LINE__));
2280 sched_unpin(); /* Can migrate safely now. */
2281
2282 td->td_pflags &= ~TDP_CALLCHAIN;
2283 break;
2284
2285 case PMC_FN_USER_CALLCHAIN_SOFT:
2286 /*
2287 * Record a call chain.
2288 */
2289 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2290 __LINE__));
2291
2292 cpu = PCPU_GET(cpuid);
2293 pmc_capture_user_callchain(cpu, PMC_SR,
2294 (struct trapframe *) arg);
2295
2296 KASSERT(td->td_pinned == 1,
2297 ("[pmc,%d] invalid td_pinned value", __LINE__));
2298
2299 sched_unpin(); /* Can migrate safely now. */
2300
2301 td->td_pflags &= ~TDP_CALLCHAIN;
2302 break;
2303
2304 case PMC_FN_SOFT_SAMPLING:
2305 /*
2306 * Call soft PMC sampling intr.
2307 */
2308 pmc_soft_intr((struct pmckern_soft *) arg);
2309 break;
2310
2311 case PMC_FN_THR_CREATE:
2312 pmc_process_thread_add(td);
2313 pmc_process_threadcreate(td);
2314 break;
2315
2316 case PMC_FN_THR_CREATE_LOG:
2317 pmc_process_threadcreate(td);
2318 break;
2319
2320 case PMC_FN_THR_EXIT:
2321 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2322 __LINE__));
2323 pmc_process_thread_delete(td);
2324 pmc_process_threadexit(td);
2325 break;
2326 case PMC_FN_THR_EXIT_LOG:
2327 pmc_process_threadexit(td);
2328 break;
2329 case PMC_FN_THR_USERRET:
2330 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2331 __LINE__));
2332 pmc_process_thread_userret(td);
2333 break;
2334
2335 default:
2336 #ifdef HWPMC_DEBUG
2337 KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2338 #endif
2339 break;
2340
2341 }
2342
2343 return 0;
2344 }
2345
2346 /*
2347 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2348 */
2349
2350 static struct pmc_owner *
2351 pmc_allocate_owner_descriptor(struct proc *p)
2352 {
2353 uint32_t hindex;
2354 struct pmc_owner *po;
2355 struct pmc_ownerhash *poh;
2356
2357 hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2358 poh = &pmc_ownerhash[hindex];
2359
2360 /* allocate space for N pointers and one descriptor struct */
2361 po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2362 po->po_owner = p;
2363 LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2364
2365 TAILQ_INIT(&po->po_logbuffers);
2366 mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2367
2368 PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2369 p, p->p_pid, p->p_comm, po);
2370
2371 return po;
2372 }
2373
2374 static void
2375 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2376 {
2377
2378 PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2379 po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2380
2381 mtx_destroy(&po->po_mtx);
2382 free(po, M_PMC);
2383 }
2384
2385 /*
2386 * Allocate a thread descriptor from the free pool.
2387 *
2388 * NOTE: This *can* return NULL.
2389 */
2390 static struct pmc_thread *
2391 pmc_thread_descriptor_pool_alloc(void)
2392 {
2393 struct pmc_thread *pt;
2394
2395 mtx_lock_spin(&pmc_threadfreelist_mtx);
2396 if ((pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2397 LIST_REMOVE(pt, pt_next);
2398 pmc_threadfreelist_entries--;
2399 }
2400 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2401
2402 return (pt);
2403 }
2404
2405 /*
2406 * Add a thread descriptor to the free pool. We use this instead of free()
2407 * to maintain a cache of free entries. Additionally, we can safely call
2408 * this function when we cannot call free(), such as in a critical section.
2409 *
2410 */
2411 static void
2412 pmc_thread_descriptor_pool_free(struct pmc_thread *pt)
2413 {
2414
2415 if (pt == NULL)
2416 return;
2417
2418 memset(pt, 0, THREADENTRY_SIZE);
2419 mtx_lock_spin(&pmc_threadfreelist_mtx);
2420 LIST_INSERT_HEAD(&pmc_threadfreelist, pt, pt_next);
2421 pmc_threadfreelist_entries++;
2422 if (pmc_threadfreelist_entries > pmc_threadfreelist_max)
2423 taskqueue_enqueue(taskqueue_fast, &free_task);
2424 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2425 }
2426
2427 /*
2428 * An asynchronous task to manage the free list.
2429 */
2430 static void
2431 pmc_thread_descriptor_pool_free_task(void *arg __unused, int pending __unused)
2432 {
2433 struct pmc_thread *pt;
2434 LIST_HEAD(, pmc_thread) tmplist;
2435 int delta;
2436
2437 LIST_INIT(&tmplist);
2438
2439 /* Determine what changes, if any, we need to make. */
2440 mtx_lock_spin(&pmc_threadfreelist_mtx);
2441 delta = pmc_threadfreelist_entries - pmc_threadfreelist_max;
2442 while (delta > 0 && (pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2443 delta--;
2444 pmc_threadfreelist_entries--;
2445 LIST_REMOVE(pt, pt_next);
2446 LIST_INSERT_HEAD(&tmplist, pt, pt_next);
2447 }
2448 mtx_unlock_spin(&pmc_threadfreelist_mtx);
2449
2450 /* If there are entries to free, free them. */
2451 while (!LIST_EMPTY(&tmplist)) {
2452 pt = LIST_FIRST(&tmplist);
2453 LIST_REMOVE(pt, pt_next);
2454 free(pt, M_PMC);
2455 }
2456 }
2457
2458 /*
2459 * Drain the thread free pool, freeing all allocations.
2460 */
2461 static void
2462 pmc_thread_descriptor_pool_drain(void)
2463 {
2464 struct pmc_thread *pt, *next;
2465
2466 LIST_FOREACH_SAFE(pt, &pmc_threadfreelist, pt_next, next) {
2467 LIST_REMOVE(pt, pt_next);
2468 free(pt, M_PMC);
2469 }
2470 }
2471
2472 /*
2473 * find the descriptor corresponding to thread 'td', adding or removing it
2474 * as specified by 'mode'.
2475 *
2476 * Note that this supports additional mode flags in addition to those
2477 * supported by pmc_find_process_descriptor():
2478 * PMC_FLAG_NOWAIT: Causes the function to not wait for mallocs.
2479 * This makes it safe to call while holding certain other locks.
2480 */
2481
2482 static struct pmc_thread *
2483 pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td,
2484 uint32_t mode)
2485 {
2486 struct pmc_thread *pt = NULL, *ptnew = NULL;
2487 int wait_flag;
2488
2489 KASSERT(td != NULL, ("[pmc,%d] called to add NULL td", __LINE__));
2490
2491 /*
2492 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case prior to
2493 * acquiring the lock.
2494 */
2495 if (mode & PMC_FLAG_ALLOCATE) {
2496 if ((ptnew = pmc_thread_descriptor_pool_alloc()) == NULL) {
2497 wait_flag = M_WAITOK;
2498 if ((mode & PMC_FLAG_NOWAIT) || in_epoch(global_epoch_preempt))
2499 wait_flag = M_NOWAIT;
2500
2501 ptnew = malloc(THREADENTRY_SIZE, M_PMC,
2502 wait_flag|M_ZERO);
2503 }
2504 }
2505
2506 mtx_lock_spin(pp->pp_tdslock);
2507
2508 LIST_FOREACH(pt, &pp->pp_tds, pt_next)
2509 if (pt->pt_td == td)
2510 break;
2511
2512 if ((mode & PMC_FLAG_REMOVE) && pt != NULL)
2513 LIST_REMOVE(pt, pt_next);
2514
2515 if ((mode & PMC_FLAG_ALLOCATE) && pt == NULL && ptnew != NULL) {
2516 pt = ptnew;
2517 ptnew = NULL;
2518 pt->pt_td = td;
2519 LIST_INSERT_HEAD(&pp->pp_tds, pt, pt_next);
2520 }
2521
2522 mtx_unlock_spin(pp->pp_tdslock);
2523
2524 if (ptnew != NULL) {
2525 free(ptnew, M_PMC);
2526 }
2527
2528 return pt;
2529 }
2530
2531 /*
2532 * Try to add thread descriptors for each thread in a process.
2533 */
2534
2535 static void
2536 pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp)
2537 {
2538 struct thread *curtd;
2539 struct pmc_thread **tdlist;
2540 int i, tdcnt, tdlistsz;
2541
2542 KASSERT(!PROC_LOCKED(p), ("[pmc,%d] proc unexpectedly locked",
2543 __LINE__));
2544 tdcnt = 32;
2545 restart:
2546 tdlistsz = roundup2(tdcnt, 32);
2547
2548 tdcnt = 0;
2549 tdlist = malloc(sizeof(struct pmc_thread*) * tdlistsz, M_TEMP, M_WAITOK);
2550
2551 PROC_LOCK(p);
2552 FOREACH_THREAD_IN_PROC(p, curtd)
2553 tdcnt++;
2554 if (tdcnt >= tdlistsz) {
2555 PROC_UNLOCK(p);
2556 free(tdlist, M_TEMP);
2557 goto restart;
2558 }
2559 /*
2560 * Try to add each thread to the list without sleeping. If unable,
2561 * add to a queue to retry after dropping the process lock.
2562 */
2563 tdcnt = 0;
2564 FOREACH_THREAD_IN_PROC(p, curtd) {
2565 tdlist[tdcnt] = pmc_find_thread_descriptor(pp, curtd,
2566 PMC_FLAG_ALLOCATE|PMC_FLAG_NOWAIT);
2567 if (tdlist[tdcnt] == NULL) {
2568 PROC_UNLOCK(p);
2569 for (i = 0; i <= tdcnt; i++)
2570 pmc_thread_descriptor_pool_free(tdlist[i]);
2571 free(tdlist, M_TEMP);
2572 goto restart;
2573 }
2574 tdcnt++;
2575 }
2576 PROC_UNLOCK(p);
2577 free(tdlist, M_TEMP);
2578 }
2579
2580 /*
2581 * find the descriptor corresponding to process 'p', adding or removing it
2582 * as specified by 'mode'.
2583 */
2584
2585 static struct pmc_process *
2586 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2587 {
2588 uint32_t hindex;
2589 struct pmc_process *pp, *ppnew;
2590 struct pmc_processhash *pph;
2591
2592 hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2593 pph = &pmc_processhash[hindex];
2594
2595 ppnew = NULL;
2596
2597 /*
2598 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case since we
2599 * cannot call malloc(9) once we hold a spin lock.
2600 */
2601 if (mode & PMC_FLAG_ALLOCATE)
2602 ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2603 sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2604
2605 mtx_lock_spin(&pmc_processhash_mtx);
2606 LIST_FOREACH(pp, pph, pp_next)
2607 if (pp->pp_proc == p)
2608 break;
2609
2610 if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2611 LIST_REMOVE(pp, pp_next);
2612
2613 if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2614 ppnew != NULL) {
2615 ppnew->pp_proc = p;
2616 LIST_INIT(&ppnew->pp_tds);
2617 ppnew->pp_tdslock = mtx_pool_find(pmc_mtxpool, ppnew);
2618 LIST_INSERT_HEAD(pph, ppnew, pp_next);
2619 mtx_unlock_spin(&pmc_processhash_mtx);
2620 pp = ppnew;
2621 ppnew = NULL;
2622
2623 /* Add thread descriptors for this process' current threads. */
2624 pmc_add_thread_descriptors_from_proc(p, pp);
2625 }
2626 else
2627 mtx_unlock_spin(&pmc_processhash_mtx);
2628
2629 if (ppnew != NULL)
2630 free(ppnew, M_PMC);
2631
2632 return pp;
2633 }
2634
2635 /*
2636 * remove a process descriptor from the process hash table.
2637 */
2638
2639 static void
2640 pmc_remove_process_descriptor(struct pmc_process *pp)
2641 {
2642 KASSERT(pp->pp_refcnt == 0,
2643 ("[pmc,%d] Removing process descriptor %p with count %d",
2644 __LINE__, pp, pp->pp_refcnt));
2645
2646 mtx_lock_spin(&pmc_processhash_mtx);
2647 LIST_REMOVE(pp, pp_next);
2648 mtx_unlock_spin(&pmc_processhash_mtx);
2649 }
2650
2651 /*
2652 * destroy a process descriptor.
2653 */
2654
2655 static void
2656 pmc_destroy_process_descriptor(struct pmc_process *pp)
2657 {
2658 struct pmc_thread *pmc_td;
2659
2660 while ((pmc_td = LIST_FIRST(&pp->pp_tds)) != NULL) {
2661 LIST_REMOVE(pmc_td, pt_next);
2662 pmc_thread_descriptor_pool_free(pmc_td);
2663 }
2664 free(pp, M_PMC);
2665 }
2666
2667
2668 /*
2669 * find an owner descriptor corresponding to proc 'p'
2670 */
2671
2672 static struct pmc_owner *
2673 pmc_find_owner_descriptor(struct proc *p)
2674 {
2675 uint32_t hindex;
2676 struct pmc_owner *po;
2677 struct pmc_ownerhash *poh;
2678
2679 hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2680 poh = &pmc_ownerhash[hindex];
2681
2682 po = NULL;
2683 LIST_FOREACH(po, poh, po_next)
2684 if (po->po_owner == p)
2685 break;
2686
2687 PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2688 "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2689
2690 return po;
2691 }
2692
2693 /*
2694 * pmc_allocate_pmc_descriptor
2695 *
2696 * Allocate a pmc descriptor and initialize its
2697 * fields.
2698 */
2699
2700 static struct pmc *
2701 pmc_allocate_pmc_descriptor(void)
2702 {
2703 struct pmc *pmc;
2704
2705 pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2706 pmc->pm_runcount = counter_u64_alloc(M_WAITOK);
2707 pmc->pm_pcpu_state = malloc(sizeof(struct pmc_pcpu_state)*mp_ncpus, M_PMC, M_WAITOK|M_ZERO);
2708 PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2709
2710 return pmc;
2711 }
2712
2713 /*
2714 * Destroy a pmc descriptor.
2715 */
2716
2717 static void
2718 pmc_destroy_pmc_descriptor(struct pmc *pm)
2719 {
2720
2721 KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2722 pm->pm_state == PMC_STATE_FREE,
2723 ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2724 KASSERT(LIST_EMPTY(&pm->pm_targets),
2725 ("[pmc,%d] destroying pmc with targets", __LINE__));
2726 KASSERT(pm->pm_owner == NULL,
2727 ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2728 KASSERT(counter_u64_fetch(pm->pm_runcount) == 0,
2729 ("[pmc,%d] pmc has non-zero run count %ld", __LINE__,
2730 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
2731
2732 counter_u64_free(pm->pm_runcount);
2733 free(pm->pm_pcpu_state, M_PMC);
2734 free(pm, M_PMC);
2735 }
2736
2737 static void
2738 pmc_wait_for_pmc_idle(struct pmc *pm)
2739 {
2740 #ifdef INVARIANTS
2741 volatile int maxloop;
2742
2743 maxloop = 100 * pmc_cpu_max();
2744 #endif
2745 /*
2746 * Loop (with a forced context switch) till the PMC's runcount
2747 * comes down to zero.
2748 */
2749 pmclog_flush(pm->pm_owner, 1);
2750 while (counter_u64_fetch(pm->pm_runcount) > 0) {
2751 pmclog_flush(pm->pm_owner, 1);
2752 #ifdef INVARIANTS
2753 maxloop--;
2754 KASSERT(maxloop > 0,
2755 ("[pmc,%d] (ri%d, rc%ld) waiting too long for "
2756 "pmc to be free", __LINE__,
2757 PMC_TO_ROWINDEX(pm), (unsigned long)counter_u64_fetch(pm->pm_runcount)));
2758 #endif
2759 pmc_force_context_switch();
2760 }
2761 }
2762
2763 /*
2764 * This function does the following things:
2765 *
2766 * - detaches the PMC from hardware
2767 * - unlinks all target threads that were attached to it
2768 * - removes the PMC from its owner's list
2769 * - destroys the PMC private mutex
2770 *
2771 * Once this function completes, the given pmc pointer can be freed by
2772 * calling pmc_destroy_pmc_descriptor().
2773 */
2774
2775 static void
2776 pmc_release_pmc_descriptor(struct pmc *pm)
2777 {
2778 enum pmc_mode mode;
2779 struct pmc_hw *phw __diagused;
2780 u_int adjri, ri, cpu;
2781 struct pmc_owner *po;
2782 struct pmc_binding pb;
2783 struct pmc_process *pp;
2784 struct pmc_classdep *pcd;
2785 struct pmc_target *ptgt, *tmp;
2786
2787 sx_assert(&pmc_sx, SX_XLOCKED);
2788
2789 KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2790
2791 ri = PMC_TO_ROWINDEX(pm);
2792 pcd = pmc_ri_to_classdep(md, ri, &adjri);
2793 mode = PMC_TO_MODE(pm);
2794
2795 PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2796 mode);
2797
2798 /*
2799 * First, we take the PMC off hardware.
2800 */
2801 cpu = 0;
2802 if (PMC_IS_SYSTEM_MODE(mode)) {
2803
2804 /*
2805 * A system mode PMC runs on a specific CPU. Switch
2806 * to this CPU and turn hardware off.
2807 */
2808 pmc_save_cpu_binding(&pb);
2809
2810 cpu = PMC_TO_CPU(pm);
2811
2812 pmc_select_cpu(cpu);
2813
2814 /* switch off non-stalled CPUs */
2815 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
2816 if (pm->pm_state == PMC_STATE_RUNNING &&
2817 pm->pm_pcpu_state[cpu].pps_stalled == 0) {
2818
2819 phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2820
2821 KASSERT(phw->phw_pmc == pm,
2822 ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2823 __LINE__, ri, phw->phw_pmc, pm));
2824 PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2825
2826 critical_enter();
2827 pcd->pcd_stop_pmc(cpu, adjri);
2828 critical_exit();
2829 }
2830
2831 PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2832
2833 critical_enter();
2834 pcd->pcd_config_pmc(cpu, adjri, NULL);
2835 critical_exit();
2836
2837 /* adjust the global and process count of SS mode PMCs */
2838 if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2839 po = pm->pm_owner;
2840 po->po_sscount--;
2841 if (po->po_sscount == 0) {
2842 atomic_subtract_rel_int(&pmc_ss_count, 1);
2843 CK_LIST_REMOVE(po, po_ssnext);
2844 epoch_wait_preempt(global_epoch_preempt);
2845 }
2846 }
2847
2848 pm->pm_state = PMC_STATE_DELETED;
2849
2850 pmc_restore_cpu_binding(&pb);
2851
2852 /*
2853 * We could have references to this PMC structure in
2854 * the per-cpu sample queues. Wait for the queue to
2855 * drain.
2856 */
2857 pmc_wait_for_pmc_idle(pm);
2858
2859 } else if (PMC_IS_VIRTUAL_MODE(mode)) {
2860
2861 /*
2862 * A virtual PMC could be running on multiple CPUs at
2863 * a given instant.
2864 *
2865 * By marking its state as DELETED, we ensure that
2866 * this PMC is never further scheduled on hardware.
2867 *
2868 * Then we wait till all CPUs are done with this PMC.
2869 */
2870 pm->pm_state = PMC_STATE_DELETED;
2871
2872
2873 /* Wait for the PMCs runcount to come to zero. */
2874 pmc_wait_for_pmc_idle(pm);
2875
2876 /*
2877 * At this point the PMC is off all CPUs and cannot be
2878 * freshly scheduled onto a CPU. It is now safe to
2879 * unlink all targets from this PMC. If a
2880 * process-record's refcount falls to zero, we remove
2881 * it from the hash table. The module-wide SX lock
2882 * protects us from races.
2883 */
2884 LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2885 pp = ptgt->pt_process;
2886 pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2887
2888 PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2889
2890 /*
2891 * If the target process record shows that no
2892 * PMCs are attached to it, reclaim its space.
2893 */
2894
2895 if (pp->pp_refcnt == 0) {
2896 pmc_remove_process_descriptor(pp);
2897 pmc_destroy_process_descriptor(pp);
2898 }
2899 }
2900
2901 cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2902
2903 }
2904
2905 /*
2906 * Release any MD resources
2907 */
2908 (void) pcd->pcd_release_pmc(cpu, adjri, pm);
2909
2910 /*
2911 * Update row disposition
2912 */
2913
2914 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2915 PMC_UNMARK_ROW_STANDALONE(ri);
2916 else
2917 PMC_UNMARK_ROW_THREAD(ri);
2918
2919 /* unlink from the owner's list */
2920 if (pm->pm_owner) {
2921 LIST_REMOVE(pm, pm_next);
2922 pm->pm_owner = NULL;
2923 }
2924 }
2925
2926 /*
2927 * Register an owner and a pmc.
2928 */
2929
2930 static int
2931 pmc_register_owner(struct proc *p, struct pmc *pmc)
2932 {
2933 struct pmc_owner *po;
2934
2935 sx_assert(&pmc_sx, SX_XLOCKED);
2936
2937 if ((po = pmc_find_owner_descriptor(p)) == NULL)
2938 if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2939 return ENOMEM;
2940
2941 KASSERT(pmc->pm_owner == NULL,
2942 ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2943 pmc->pm_owner = po;
2944
2945 LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2946
2947 PROC_LOCK(p);
2948 p->p_flag |= P_HWPMC;
2949 PROC_UNLOCK(p);
2950
2951 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2952 pmclog_process_pmcallocate(pmc);
2953
2954 PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2955 po, pmc);
2956
2957 return 0;
2958 }
2959
2960 /*
2961 * Return the current row disposition:
2962 * == 0 => FREE
2963 * > 0 => PROCESS MODE
2964 * < 0 => SYSTEM MODE
2965 */
2966
2967 int
2968 pmc_getrowdisp(int ri)
2969 {
2970 return pmc_pmcdisp[ri];
2971 }
2972
2973 /*
2974 * Check if a PMC at row index 'ri' can be allocated to the current
2975 * process.
2976 *
2977 * Allocation can fail if:
2978 * - the current process is already being profiled by a PMC at index 'ri',
2979 * attached to it via OP_PMCATTACH.
2980 * - the current process has already allocated a PMC at index 'ri'
2981 * via OP_ALLOCATE.
2982 */
2983
2984 static int
2985 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2986 {
2987 enum pmc_mode mode;
2988 struct pmc *pm;
2989 struct pmc_owner *po;
2990 struct pmc_process *pp;
2991
2992 PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2993 "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2994
2995 /*
2996 * We shouldn't have already allocated a process-mode PMC at
2997 * row index 'ri'.
2998 *
2999 * We shouldn't have allocated a system-wide PMC on the same
3000 * CPU and same RI.
3001 */
3002 if ((po = pmc_find_owner_descriptor(p)) != NULL)
3003 LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
3004 if (PMC_TO_ROWINDEX(pm) == ri) {
3005 mode = PMC_TO_MODE(pm);
3006 if (PMC_IS_VIRTUAL_MODE(mode))
3007 return EEXIST;
3008 if (PMC_IS_SYSTEM_MODE(mode) &&
3009 (int) PMC_TO_CPU(pm) == cpu)
3010 return EEXIST;
3011 }
3012 }
3013
3014 /*
3015 * We also shouldn't be the target of any PMC at this index
3016 * since otherwise a PMC_ATTACH to ourselves will fail.
3017 */
3018 if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
3019 if (pp->pp_pmcs[ri].pp_pmc)
3020 return EEXIST;
3021
3022 PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
3023 p, p->p_pid, p->p_comm, ri);
3024
3025 return 0;
3026 }
3027
3028 /*
3029 * Check if a given PMC at row index 'ri' can be currently used in
3030 * mode 'mode'.
3031 */
3032
3033 static int
3034 pmc_can_allocate_row(int ri, enum pmc_mode mode)
3035 {
3036 enum pmc_disp disp;
3037
3038 sx_assert(&pmc_sx, SX_XLOCKED);
3039
3040 PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
3041
3042 if (PMC_IS_SYSTEM_MODE(mode))
3043 disp = PMC_DISP_STANDALONE;
3044 else
3045 disp = PMC_DISP_THREAD;
3046
3047 /*
3048 * check disposition for PMC row 'ri':
3049 *
3050 * Expected disposition Row-disposition Result
3051 *
3052 * STANDALONE STANDALONE or FREE proceed
3053 * STANDALONE THREAD fail
3054 * THREAD THREAD or FREE proceed
3055 * THREAD STANDALONE fail
3056 */
3057
3058 if (!PMC_ROW_DISP_IS_FREE(ri) &&
3059 !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
3060 !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
3061 return EBUSY;
3062
3063 /*
3064 * All OK
3065 */
3066
3067 PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
3068
3069 return 0;
3070
3071 }
3072
3073 /*
3074 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
3075 */
3076
3077 static struct pmc *
3078 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
3079 {
3080 struct pmc *pm;
3081
3082 KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
3083 ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
3084 PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
3085
3086 LIST_FOREACH(pm, &po->po_pmcs, pm_next)
3087 if (pm->pm_id == pmcid)
3088 return pm;
3089
3090 return NULL;
3091 }
3092
3093 static int
3094 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
3095 {
3096
3097 struct pmc *pm, *opm;
3098 struct pmc_owner *po;
3099 struct pmc_process *pp;
3100
3101 PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
3102 if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
3103 return (EINVAL);
3104
3105 if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
3106 /*
3107 * In case of PMC_F_DESCENDANTS child processes we will not find
3108 * the current process in the owners hash list. Find the owner
3109 * process first and from there lookup the po.
3110 */
3111 if ((pp = pmc_find_process_descriptor(curthread->td_proc,
3112 PMC_FLAG_NONE)) == NULL) {
3113 return ESRCH;
3114 } else {
3115 opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
3116 if (opm == NULL)
3117 return ESRCH;
3118 if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER|
3119 PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER|
3120 PMC_F_DESCENDANTS))
3121 return ESRCH;
3122 po = opm->pm_owner;
3123 }
3124 }
3125
3126 if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
3127 return EINVAL;
3128
3129 PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
3130
3131 *pmc = pm;
3132 return 0;
3133 }
3134
3135 /*
3136 * Start a PMC.
3137 */
3138
3139 static int
3140 pmc_start(struct pmc *pm)
3141 {
3142 enum pmc_mode mode;
3143 struct pmc_owner *po;
3144 struct pmc_binding pb;
3145 struct pmc_classdep *pcd;
3146 int adjri, error, cpu, ri;
3147
3148 KASSERT(pm != NULL,
3149 ("[pmc,%d] null pm", __LINE__));
3150
3151 mode = PMC_TO_MODE(pm);
3152 ri = PMC_TO_ROWINDEX(pm);
3153 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3154
3155 error = 0;
3156
3157 PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
3158
3159 po = pm->pm_owner;
3160
3161 /*
3162 * Disallow PMCSTART if a logfile is required but has not been
3163 * configured yet.
3164 */
3165 if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
3166 (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
3167 return (EDOOFUS); /* programming error */
3168
3169 /*
3170 * If this is a sampling mode PMC, log mapping information for
3171 * the kernel modules that are currently loaded.
3172 */
3173 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3174 pmc_log_kernel_mappings(pm);
3175
3176 if (PMC_IS_VIRTUAL_MODE(mode)) {
3177
3178 /*
3179 * If a PMCATTACH has never been done on this PMC,
3180 * attach it to its owner process.
3181 */
3182
3183 if (LIST_EMPTY(&pm->pm_targets))
3184 error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
3185 pmc_attach_process(po->po_owner, pm);
3186
3187 /*
3188 * If the PMC is attached to its owner, then force a context
3189 * switch to ensure that the MD state gets set correctly.
3190 */
3191
3192 if (error == 0) {
3193 pm->pm_state = PMC_STATE_RUNNING;
3194 if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
3195 pmc_force_context_switch();
3196 }
3197
3198 return (error);
3199 }
3200
3201
3202 /*
3203 * A system-wide PMC.
3204 *
3205 * Add the owner to the global list if this is a system-wide
3206 * sampling PMC.
3207 */
3208
3209 if (mode == PMC_MODE_SS) {
3210 /*
3211 * Log mapping information for all existing processes in the
3212 * system. Subsequent mappings are logged as they happen;
3213 * see pmc_process_mmap().
3214 */
3215 if (po->po_logprocmaps == 0) {
3216 pmc_log_all_process_mappings(po);
3217 po->po_logprocmaps = 1;
3218 }
3219 po->po_sscount++;
3220 if (po->po_sscount == 1) {
3221 atomic_add_rel_int(&pmc_ss_count, 1);
3222 CK_LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
3223 PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
3224 }
3225 }
3226
3227 /*
3228 * Move to the CPU associated with this
3229 * PMC, and start the hardware.
3230 */
3231
3232 pmc_save_cpu_binding(&pb);
3233
3234 cpu = PMC_TO_CPU(pm);
3235
3236 if (!pmc_cpu_is_active(cpu))
3237 return (ENXIO);
3238
3239 pmc_select_cpu(cpu);
3240
3241 /*
3242 * global PMCs are configured at allocation time
3243 * so write out the initial value and start the PMC.
3244 */
3245
3246 pm->pm_state = PMC_STATE_RUNNING;
3247
3248 critical_enter();
3249 if ((error = pcd->pcd_write_pmc(cpu, adjri,
3250 PMC_IS_SAMPLING_MODE(mode) ?
3251 pm->pm_sc.pm_reloadcount :
3252 pm->pm_sc.pm_initial)) == 0) {
3253 /* If a sampling mode PMC, reset stalled state. */
3254 if (PMC_IS_SAMPLING_MODE(mode))
3255 pm->pm_pcpu_state[cpu].pps_stalled = 0;
3256
3257 /* Indicate that we desire this to run. Start it. */
3258 pm->pm_pcpu_state[cpu].pps_cpustate = 1;
3259 error = pcd->pcd_start_pmc(cpu, adjri);
3260 }
3261 critical_exit();
3262
3263 pmc_restore_cpu_binding(&pb);
3264
3265 return (error);
3266 }
3267
3268 /*
3269 * Stop a PMC.
3270 */
3271
3272 static int
3273 pmc_stop(struct pmc *pm)
3274 {
3275 struct pmc_owner *po;
3276 struct pmc_binding pb;
3277 struct pmc_classdep *pcd;
3278 int adjri, cpu, error, ri;
3279
3280 KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
3281
3282 PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
3283 PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
3284
3285 pm->pm_state = PMC_STATE_STOPPED;
3286
3287 /*
3288 * If the PMC is a virtual mode one, changing the state to
3289 * non-RUNNING is enough to ensure that the PMC never gets
3290 * scheduled.
3291 *
3292 * If this PMC is current running on a CPU, then it will
3293 * handled correctly at the time its target process is context
3294 * switched out.
3295 */
3296
3297 if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
3298 return 0;
3299
3300 /*
3301 * A system-mode PMC. Move to the CPU associated with
3302 * this PMC, and stop the hardware. We update the
3303 * 'initial count' so that a subsequent PMCSTART will
3304 * resume counting from the current hardware count.
3305 */
3306
3307 pmc_save_cpu_binding(&pb);
3308
3309 cpu = PMC_TO_CPU(pm);
3310
3311 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
3312 ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
3313
3314 if (!pmc_cpu_is_active(cpu))
3315 return ENXIO;
3316
3317 pmc_select_cpu(cpu);
3318
3319 ri = PMC_TO_ROWINDEX(pm);
3320 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3321
3322 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
3323 critical_enter();
3324 if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
3325 error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
3326 critical_exit();
3327
3328 pmc_restore_cpu_binding(&pb);
3329
3330 po = pm->pm_owner;
3331
3332 /* remove this owner from the global list of SS PMC owners */
3333 if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
3334 po->po_sscount--;
3335 if (po->po_sscount == 0) {
3336 atomic_subtract_rel_int(&pmc_ss_count, 1);
3337 CK_LIST_REMOVE(po, po_ssnext);
3338 epoch_wait_preempt(global_epoch_preempt);
3339 PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
3340 }
3341 }
3342
3343 return (error);
3344 }
3345
3346 static struct pmc_classdep *
3347 pmc_class_to_classdep(enum pmc_class class)
3348 {
3349 int n;
3350
3351 for (n = 0; n < md->pmd_nclass; n++)
3352 if (md->pmd_classdep[n].pcd_class == class)
3353 return (&md->pmd_classdep[n]);
3354 return (NULL);
3355 }
3356
3357 #if defined(HWPMC_DEBUG) && defined(KTR)
3358 static const char *pmc_op_to_name[] = {
3359 #undef __PMC_OP
3360 #define __PMC_OP(N, D) #N ,
3361 __PMC_OPS()
3362 NULL
3363 };
3364 #endif
3365
3366 /*
3367 * The syscall interface
3368 */
3369
3370 #define PMC_GET_SX_XLOCK(...) do { \
3371 sx_xlock(&pmc_sx); \
3372 if (pmc_hook == NULL) { \
3373 sx_xunlock(&pmc_sx); \
3374 return __VA_ARGS__; \
3375 } \
3376 } while (0)
3377
3378 #define PMC_DOWNGRADE_SX() do { \
3379 sx_downgrade(&pmc_sx); \
3380 is_sx_downgraded = 1; \
3381 } while (0)
3382
3383 static int
3384 pmc_syscall_handler(struct thread *td, void *syscall_args)
3385 {
3386 int error, is_sx_downgraded, op;
3387 struct pmc_syscall_args *c;
3388 void *pmclog_proc_handle;
3389 void *arg;
3390
3391 c = (struct pmc_syscall_args *)syscall_args;
3392 op = c->pmop_code;
3393 arg = c->pmop_data;
3394 /* PMC isn't set up yet */
3395 if (pmc_hook == NULL)
3396 return (EINVAL);
3397 if (op == PMC_OP_CONFIGURELOG) {
3398 /*
3399 * We cannot create the logging process inside
3400 * pmclog_configure_log() because there is a LOR
3401 * between pmc_sx and process structure locks.
3402 * Instead, pre-create the process and ignite the loop
3403 * if everything is fine, otherwise direct the process
3404 * to exit.
3405 */
3406 error = pmclog_proc_create(td, &pmclog_proc_handle);
3407 if (error != 0)
3408 goto done_syscall;
3409 }
3410
3411 PMC_GET_SX_XLOCK(ENOSYS);
3412 is_sx_downgraded = 0;
3413 PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
3414 pmc_op_to_name[op], arg);
3415
3416 error = 0;
3417 counter_u64_add(pmc_stats.pm_syscalls, 1);
3418
3419 switch (op) {
3420
3421
3422 /*
3423 * Configure a log file.
3424 *
3425 * XXX This OP will be reworked.
3426 */
3427
3428 case PMC_OP_CONFIGURELOG:
3429 {
3430 struct proc *p;
3431 struct pmc *pm;
3432 struct pmc_owner *po;
3433 struct pmc_op_configurelog cl;
3434
3435 if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
3436 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3437 break;
3438 }
3439
3440 /* mark this process as owning a log file */
3441 p = td->td_proc;
3442 if ((po = pmc_find_owner_descriptor(p)) == NULL)
3443 if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
3444 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3445 error = ENOMEM;
3446 break;
3447 }
3448
3449 /*
3450 * If a valid fd was passed in, try to configure that,
3451 * otherwise if 'fd' was less than zero and there was
3452 * a log file configured, flush its buffers and
3453 * de-configure it.
3454 */
3455 if (cl.pm_logfd >= 0) {
3456 error = pmclog_configure_log(md, po, cl.pm_logfd);
3457 pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
3458 po : NULL);
3459 } else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
3460 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3461 error = pmclog_close(po);
3462 if (error == 0) {
3463 LIST_FOREACH(pm, &po->po_pmcs, pm_next)
3464 if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
3465 pm->pm_state == PMC_STATE_RUNNING)
3466 pmc_stop(pm);
3467 error = pmclog_deconfigure_log(po);
3468 }
3469 } else {
3470 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3471 error = EINVAL;
3472 }
3473 }
3474 break;
3475
3476 /*
3477 * Flush a log file.
3478 */
3479
3480 case PMC_OP_FLUSHLOG:
3481 {
3482 struct pmc_owner *po;
3483
3484 sx_assert(&pmc_sx, SX_XLOCKED);
3485
3486 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3487 error = EINVAL;
3488 break;
3489 }
3490
3491 error = pmclog_flush(po, 0);
3492 }
3493 break;
3494
3495 /*
3496 * Close a log file.
3497 */
3498
3499 case PMC_OP_CLOSELOG:
3500 {
3501 struct pmc_owner *po;
3502
3503 sx_assert(&pmc_sx, SX_XLOCKED);
3504
3505 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3506 error = EINVAL;
3507 break;
3508 }
3509
3510 error = pmclog_close(po);
3511 }
3512 break;
3513
3514 /*
3515 * Retrieve hardware configuration.
3516 */
3517
3518 case PMC_OP_GETCPUINFO: /* CPU information */
3519 {
3520 struct pmc_op_getcpuinfo gci;
3521 struct pmc_classinfo *pci;
3522 struct pmc_classdep *pcd;
3523 int cl;
3524
3525 memset(&gci, 0, sizeof(gci));
3526 gci.pm_cputype = md->pmd_cputype;
3527 gci.pm_ncpu = pmc_cpu_max();
3528 gci.pm_npmc = md->pmd_npmc;
3529 gci.pm_nclass = md->pmd_nclass;
3530 pci = gci.pm_classes;
3531 pcd = md->pmd_classdep;
3532 for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
3533 pci->pm_caps = pcd->pcd_caps;
3534 pci->pm_class = pcd->pcd_class;
3535 pci->pm_width = pcd->pcd_width;
3536 pci->pm_num = pcd->pcd_num;
3537 }
3538 error = copyout(&gci, arg, sizeof(gci));
3539 }
3540 break;
3541
3542 /*
3543 * Retrieve soft events list.
3544 */
3545 case PMC_OP_GETDYNEVENTINFO:
3546 {
3547 enum pmc_class cl;
3548 enum pmc_event ev;
3549 struct pmc_op_getdyneventinfo *gei;
3550 struct pmc_dyn_event_descr dev;
3551 struct pmc_soft *ps;
3552 uint32_t nevent;
3553
3554 sx_assert(&pmc_sx, SX_LOCKED);
3555
3556 gei = (struct pmc_op_getdyneventinfo *) arg;
3557
3558 if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3559 break;
3560
3561 /* Only SOFT class is dynamic. */
3562 if (cl != PMC_CLASS_SOFT) {
3563 error = EINVAL;
3564 break;
3565 }
3566
3567 nevent = 0;
3568 for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3569 ps = pmc_soft_ev_acquire(ev);
3570 if (ps == NULL)
3571 continue;
3572 bcopy(&ps->ps_ev, &dev, sizeof(dev));
3573 pmc_soft_ev_release(ps);
3574
3575 error = copyout(&dev,
3576 &gei->pm_events[nevent],
3577 sizeof(struct pmc_dyn_event_descr));
3578 if (error != 0)
3579 break;
3580 nevent++;
3581 }
3582 if (error != 0)
3583 break;
3584
3585 error = copyout(&nevent, &gei->pm_nevent,
3586 sizeof(nevent));
3587 }
3588 break;
3589
3590 /*
3591 * Get module statistics
3592 */
3593
3594 case PMC_OP_GETDRIVERSTATS:
3595 {
3596 struct pmc_op_getdriverstats gms;
3597 #define CFETCH(a, b, field) a.field = counter_u64_fetch(b.field)
3598 CFETCH(gms, pmc_stats, pm_intr_ignored);
3599 CFETCH(gms, pmc_stats, pm_intr_processed);
3600 CFETCH(gms, pmc_stats, pm_intr_bufferfull);
3601 CFETCH(gms, pmc_stats, pm_syscalls);
3602 CFETCH(gms, pmc_stats, pm_syscall_errors);
3603 CFETCH(gms, pmc_stats, pm_buffer_requests);
3604 CFETCH(gms, pmc_stats, pm_buffer_requests_failed);
3605 CFETCH(gms, pmc_stats, pm_log_sweeps);
3606 #undef CFETCH
3607 error = copyout(&gms, arg, sizeof(gms));
3608 }
3609 break;
3610
3611
3612 /*
3613 * Retrieve module version number
3614 */
3615
3616 case PMC_OP_GETMODULEVERSION:
3617 {
3618 uint32_t cv, modv;
3619
3620 /* retrieve the client's idea of the ABI version */
3621 if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3622 break;
3623 /* don't service clients newer than our driver */
3624 modv = PMC_VERSION;
3625 if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3626 error = EPROGMISMATCH;
3627 break;
3628 }
3629 error = copyout(&modv, arg, sizeof(int));
3630 }
3631 break;
3632
3633
3634 /*
3635 * Retrieve the state of all the PMCs on a given
3636 * CPU.
3637 */
3638
3639 case PMC_OP_GETPMCINFO:
3640 {
3641 int ari;
3642 struct pmc *pm;
3643 size_t pmcinfo_size;
3644 uint32_t cpu, n, npmc;
3645 struct pmc_owner *po;
3646 struct pmc_binding pb;
3647 struct pmc_classdep *pcd;
3648 struct pmc_info *p, *pmcinfo;
3649 struct pmc_op_getpmcinfo *gpi;
3650
3651 PMC_DOWNGRADE_SX();
3652
3653 gpi = (struct pmc_op_getpmcinfo *) arg;
3654
3655 if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3656 break;
3657
3658 if (cpu >= pmc_cpu_max()) {
3659 error = EINVAL;
3660 break;
3661 }
3662
3663 if (!pmc_cpu_is_active(cpu)) {
3664 error = ENXIO;
3665 break;
3666 }
3667
3668 /* switch to CPU 'cpu' */
3669 pmc_save_cpu_binding(&pb);
3670 pmc_select_cpu(cpu);
3671
3672 npmc = md->pmd_npmc;
3673
3674 pmcinfo_size = npmc * sizeof(struct pmc_info);
3675 pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK | M_ZERO);
3676
3677 p = pmcinfo;
3678
3679 for (n = 0; n < md->pmd_npmc; n++, p++) {
3680
3681 pcd = pmc_ri_to_classdep(md, n, &ari);
3682
3683 KASSERT(pcd != NULL,
3684 ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3685
3686 if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3687 break;
3688
3689 if (PMC_ROW_DISP_IS_STANDALONE(n))
3690 p->pm_rowdisp = PMC_DISP_STANDALONE;
3691 else if (PMC_ROW_DISP_IS_THREAD(n))
3692 p->pm_rowdisp = PMC_DISP_THREAD;
3693 else
3694 p->pm_rowdisp = PMC_DISP_FREE;
3695
3696 p->pm_ownerpid = -1;
3697
3698 if (pm == NULL) /* no PMC associated */
3699 continue;
3700
3701 po = pm->pm_owner;
3702
3703 KASSERT(po->po_owner != NULL,
3704 ("[pmc,%d] pmc_owner had a null proc pointer",
3705 __LINE__));
3706
3707 p->pm_ownerpid = po->po_owner->p_pid;
3708 p->pm_mode = PMC_TO_MODE(pm);
3709 p->pm_event = pm->pm_event;
3710 p->pm_flags = pm->pm_flags;
3711
3712 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3713 p->pm_reloadcount =
3714 pm->pm_sc.pm_reloadcount;
3715 }
3716
3717 pmc_restore_cpu_binding(&pb);
3718
3719 /* now copy out the PMC info collected */
3720 if (error == 0)
3721 error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3722
3723 free(pmcinfo, M_PMC);
3724 }
3725 break;
3726
3727
3728 /*
3729 * Set the administrative state of a PMC. I.e. whether
3730 * the PMC is to be used or not.
3731 */
3732
3733 case PMC_OP_PMCADMIN:
3734 {
3735 int cpu, ri;
3736 enum pmc_state request;
3737 struct pmc_cpu *pc;
3738 struct pmc_hw *phw;
3739 struct pmc_op_pmcadmin pma;
3740 struct pmc_binding pb;
3741
3742 sx_assert(&pmc_sx, SX_XLOCKED);
3743
3744 KASSERT(td == curthread,
3745 ("[pmc,%d] td != curthread", __LINE__));
3746
3747 error = priv_check(td, PRIV_PMC_MANAGE);
3748 if (error)
3749 break;
3750
3751 if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3752 break;
3753
3754 cpu = pma.pm_cpu;
3755
3756 if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3757 error = EINVAL;
3758 break;
3759 }
3760
3761 if (!pmc_cpu_is_active(cpu)) {
3762 error = ENXIO;
3763 break;
3764 }
3765
3766 request = pma.pm_state;
3767
3768 if (request != PMC_STATE_DISABLED &&
3769 request != PMC_STATE_FREE) {
3770 error = EINVAL;
3771 break;
3772 }
3773
3774 ri = pma.pm_pmc; /* pmc id == row index */
3775 if (ri < 0 || ri >= (int) md->pmd_npmc) {
3776 error = EINVAL;
3777 break;
3778 }
3779
3780 /*
3781 * We can't disable a PMC with a row-index allocated
3782 * for process virtual PMCs.
3783 */
3784
3785 if (PMC_ROW_DISP_IS_THREAD(ri) &&
3786 request == PMC_STATE_DISABLED) {
3787 error = EBUSY;
3788 break;
3789 }
3790
3791 /*
3792 * otherwise, this PMC on this CPU is either free or
3793 * in system-wide mode.
3794 */
3795
3796 pmc_save_cpu_binding(&pb);
3797 pmc_select_cpu(cpu);
3798
3799 pc = pmc_pcpu[cpu];
3800 phw = pc->pc_hwpmcs[ri];
3801
3802 /*
3803 * XXX do we need some kind of 'forced' disable?
3804 */
3805
3806 if (phw->phw_pmc == NULL) {
3807 if (request == PMC_STATE_DISABLED &&
3808 (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3809 phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3810 PMC_MARK_ROW_STANDALONE(ri);
3811 } else if (request == PMC_STATE_FREE &&
3812 (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3813 phw->phw_state |= PMC_PHW_FLAG_IS_ENABLED;
3814 PMC_UNMARK_ROW_STANDALONE(ri);
3815 }
3816 /* other cases are a no-op */
3817 } else
3818 error = EBUSY;
3819
3820 pmc_restore_cpu_binding(&pb);
3821 }
3822 break;
3823
3824
3825 /*
3826 * Allocate a PMC.
3827 */
3828
3829 case PMC_OP_PMCALLOCATE:
3830 {
3831 int adjri, n;
3832 u_int cpu;
3833 uint32_t caps;
3834 struct pmc *pmc;
3835 enum pmc_mode mode;
3836 struct pmc_hw *phw;
3837 struct pmc_binding pb;
3838 struct pmc_classdep *pcd;
3839 struct pmc_op_pmcallocate pa;
3840
3841 if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3842 break;
3843
3844 caps = pa.pm_caps;
3845 mode = pa.pm_mode;
3846 cpu = pa.pm_cpu;
3847
3848 if ((mode != PMC_MODE_SS && mode != PMC_MODE_SC &&
3849 mode != PMC_MODE_TS && mode != PMC_MODE_TC) ||
3850 (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3851 error = EINVAL;
3852 break;
3853 }
3854
3855 /*
3856 * Virtual PMCs should only ask for a default CPU.
3857 * System mode PMCs need to specify a non-default CPU.
3858 */
3859
3860 if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3861 (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3862 error = EINVAL;
3863 break;
3864 }
3865
3866 /*
3867 * Check that an inactive CPU is not being asked for.
3868 */
3869
3870 if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3871 error = ENXIO;
3872 break;
3873 }
3874
3875 /*
3876 * Refuse an allocation for a system-wide PMC if this
3877 * process has been jailed, or if this process lacks
3878 * super-user credentials and the sysctl tunable
3879 * 'security.bsd.unprivileged_syspmcs' is zero.
3880 */
3881
3882 if (PMC_IS_SYSTEM_MODE(mode)) {
3883 if (jailed(curthread->td_ucred)) {
3884 error = EPERM;
3885 break;
3886 }
3887 if (!pmc_unprivileged_syspmcs) {
3888 error = priv_check(curthread,
3889 PRIV_PMC_SYSTEM);
3890 if (error)
3891 break;
3892 }
3893 }
3894
3895 /*
3896 * Look for valid values for 'pm_flags'
3897 */
3898
3899 if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3900 PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN |
3901 PMC_F_USERCALLCHAIN)) != 0) {
3902 error = EINVAL;
3903 break;
3904 }
3905
3906 /* PMC_F_USERCALLCHAIN is only valid with PMC_F_CALLCHAIN */
3907 if ((pa.pm_flags & (PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN)) ==
3908 PMC_F_USERCALLCHAIN) {
3909 error = EINVAL;
3910 break;
3911 }
3912
3913 /* PMC_F_USERCALLCHAIN is only valid for sampling mode */
3914 if (pa.pm_flags & PMC_F_USERCALLCHAIN &&
3915 mode != PMC_MODE_TS && mode != PMC_MODE_SS) {
3916 error = EINVAL;
3917 break;
3918 }
3919
3920 /* process logging options are not allowed for system PMCs */
3921 if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3922 (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3923 error = EINVAL;
3924 break;
3925 }
3926
3927 /*
3928 * All sampling mode PMCs need to be able to interrupt the
3929 * CPU.
3930 */
3931 if (PMC_IS_SAMPLING_MODE(mode))
3932 caps |= PMC_CAP_INTERRUPT;
3933
3934 /* A valid class specifier should have been passed in. */
3935 pcd = pmc_class_to_classdep(pa.pm_class);
3936 if (pcd == NULL) {
3937 error = EINVAL;
3938 break;
3939 }
3940
3941 /* The requested PMC capabilities should be feasible. */
3942 if ((pcd->pcd_caps & caps) != caps) {
3943 error = EOPNOTSUPP;
3944 break;
3945 }
3946
3947 PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3948 pa.pm_ev, caps, mode, cpu);
3949
3950 pmc = pmc_allocate_pmc_descriptor();
3951 pmc->pm_id = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3952 PMC_ID_INVALID);
3953 pmc->pm_event = pa.pm_ev;
3954 pmc->pm_state = PMC_STATE_FREE;
3955 pmc->pm_caps = caps;
3956 pmc->pm_flags = pa.pm_flags;
3957
3958 /* XXX set lower bound on sampling for process counters */
3959 if (PMC_IS_SAMPLING_MODE(mode)) {
3960 /*
3961 * Don't permit requested sample rate to be
3962 * less than pmc_mincount.
3963 */
3964 if (pa.pm_count < MAX(1, pmc_mincount))
3965 log(LOG_WARNING, "pmcallocate: passed sample "
3966 "rate %ju - setting to %u\n",
3967 (uintmax_t)pa.pm_count,
3968 MAX(1, pmc_mincount));
3969 pmc->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
3970 pa.pm_count);
3971 } else
3972 pmc->pm_sc.pm_initial = pa.pm_count;
3973
3974 /* switch thread to CPU 'cpu' */
3975 pmc_save_cpu_binding(&pb);
3976
3977 #define PMC_IS_SHAREABLE_PMC(cpu, n) \
3978 (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state & \
3979 PMC_PHW_FLAG_IS_SHAREABLE)
3980 #define PMC_IS_UNALLOCATED(cpu, n) \
3981 (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3982
3983 if (PMC_IS_SYSTEM_MODE(mode)) {
3984 pmc_select_cpu(cpu);
3985 for (n = pcd->pcd_ri; n < (int) md->pmd_npmc; n++) {
3986 pcd = pmc_ri_to_classdep(md, n, &adjri);
3987 if (pmc_can_allocate_row(n, mode) == 0 &&
3988 pmc_can_allocate_rowindex(
3989 curthread->td_proc, n, cpu) == 0 &&
3990 (PMC_IS_UNALLOCATED(cpu, n) ||
3991 PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3992 pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3993 &pa) == 0)
3994 break;
3995 }
3996 } else {
3997 /* Process virtual mode */
3998 for (n = pcd->pcd_ri; n < (int) md->pmd_npmc; n++) {
3999 pcd = pmc_ri_to_classdep(md, n, &adjri);
4000 if (pmc_can_allocate_row(n, mode) == 0 &&
4001 pmc_can_allocate_rowindex(
4002 curthread->td_proc, n,
4003 PMC_CPU_ANY) == 0 &&
4004 pcd->pcd_allocate_pmc(curthread->td_oncpu,
4005 adjri, pmc, &pa) == 0)
4006 break;
4007 }
4008 }
4009
4010 #undef PMC_IS_UNALLOCATED
4011 #undef PMC_IS_SHAREABLE_PMC
4012
4013 pmc_restore_cpu_binding(&pb);
4014
4015 if (n == (int) md->pmd_npmc) {
4016 pmc_destroy_pmc_descriptor(pmc);
4017 pmc = NULL;
4018 error = EINVAL;
4019 break;
4020 }
4021
4022 /* Fill in the correct value in the ID field */
4023 pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
4024
4025 PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
4026 pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
4027
4028 /* Process mode PMCs with logging enabled need log files */
4029 if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
4030 pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
4031
4032 /* All system mode sampling PMCs require a log file */
4033 if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
4034 pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
4035
4036 /*
4037 * Configure global pmc's immediately
4038 */
4039
4040 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
4041
4042 pmc_save_cpu_binding(&pb);
4043 pmc_select_cpu(cpu);
4044
4045 phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
4046 pcd = pmc_ri_to_classdep(md, n, &adjri);
4047
4048 if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
4049 (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
4050 (void) pcd->pcd_release_pmc(cpu, adjri, pmc);
4051 pmc_destroy_pmc_descriptor(pmc);
4052 pmc = NULL;
4053 pmc_restore_cpu_binding(&pb);
4054 error = EPERM;
4055 break;
4056 }
4057
4058 pmc_restore_cpu_binding(&pb);
4059 }
4060
4061 pmc->pm_state = PMC_STATE_ALLOCATED;
4062 pmc->pm_class = pa.pm_class;
4063
4064 /*
4065 * mark row disposition
4066 */
4067
4068 if (PMC_IS_SYSTEM_MODE(mode))
4069 PMC_MARK_ROW_STANDALONE(n);
4070 else
4071 PMC_MARK_ROW_THREAD(n);
4072
4073 /*
4074 * Register this PMC with the current thread as its owner.
4075 */
4076
4077 if ((error =
4078 pmc_register_owner(curthread->td_proc, pmc)) != 0) {
4079 pmc_release_pmc_descriptor(pmc);
4080 pmc_destroy_pmc_descriptor(pmc);
4081 pmc = NULL;
4082 break;
4083 }
4084
4085
4086 /*
4087 * Return the allocated index.
4088 */
4089
4090 pa.pm_pmcid = pmc->pm_id;
4091
4092 error = copyout(&pa, arg, sizeof(pa));
4093 }
4094 break;
4095
4096
4097 /*
4098 * Attach a PMC to a process.
4099 */
4100
4101 case PMC_OP_PMCATTACH:
4102 {
4103 struct pmc *pm;
4104 struct proc *p;
4105 struct pmc_op_pmcattach a;
4106
4107 sx_assert(&pmc_sx, SX_XLOCKED);
4108
4109 if ((error = copyin(arg, &a, sizeof(a))) != 0)
4110 break;
4111
4112 if (a.pm_pid < 0) {
4113 error = EINVAL;
4114 break;
4115 } else if (a.pm_pid == 0)
4116 a.pm_pid = td->td_proc->p_pid;
4117
4118 if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
4119 break;
4120
4121 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
4122 error = EINVAL;
4123 break;
4124 }
4125
4126 /* PMCs may be (re)attached only when allocated or stopped */
4127 if (pm->pm_state == PMC_STATE_RUNNING) {
4128 error = EBUSY;
4129 break;
4130 } else if (pm->pm_state != PMC_STATE_ALLOCATED &&
4131 pm->pm_state != PMC_STATE_STOPPED) {
4132 error = EINVAL;
4133 break;
4134 }
4135
4136 /* lookup pid */
4137 if ((p = pfind(a.pm_pid)) == NULL) {
4138 error = ESRCH;
4139 break;
4140 }
4141
4142 /*
4143 * Ignore processes that are working on exiting.
4144 */
4145 if (p->p_flag & P_WEXIT) {
4146 error = ESRCH;
4147 PROC_UNLOCK(p); /* pfind() returns a locked process */
4148 break;
4149 }
4150
4151 /*
4152 * we are allowed to attach a PMC to a process if
4153 * we can debug it.
4154 */
4155 error = p_candebug(curthread, p);
4156
4157 PROC_UNLOCK(p);
4158
4159 if (error == 0)
4160 error = pmc_attach_process(p, pm);
4161 }
4162 break;
4163
4164
4165 /*
4166 * Detach an attached PMC from a process.
4167 */
4168
4169 case PMC_OP_PMCDETACH:
4170 {
4171 struct pmc *pm;
4172 struct proc *p;
4173 struct pmc_op_pmcattach a;
4174
4175 if ((error = copyin(arg, &a, sizeof(a))) != 0)
4176 break;
4177
4178 if (a.pm_pid < 0) {
4179 error = EINVAL;
4180 break;
4181 } else if (a.pm_pid == 0)
4182 a.pm_pid = td->td_proc->p_pid;
4183
4184 if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
4185 break;
4186
4187 if ((p = pfind(a.pm_pid)) == NULL) {
4188 error = ESRCH;
4189 break;
4190 }
4191
4192 /*
4193 * Treat processes that are in the process of exiting
4194 * as if they were not present.
4195 */
4196
4197 if (p->p_flag & P_WEXIT)
4198 error = ESRCH;
4199
4200 PROC_UNLOCK(p); /* pfind() returns a locked process */
4201
4202 if (error == 0)
4203 error = pmc_detach_process(p, pm);
4204 }
4205 break;
4206
4207
4208 /*
4209 * Retrieve the MSR number associated with the counter
4210 * 'pmc_id'. This allows processes to directly use RDPMC
4211 * instructions to read their PMCs, without the overhead of a
4212 * system call.
4213 */
4214
4215 case PMC_OP_PMCGETMSR:
4216 {
4217 int adjri, ri;
4218 struct pmc *pm;
4219 struct pmc_target *pt;
4220 struct pmc_op_getmsr gm;
4221 struct pmc_classdep *pcd;
4222
4223 PMC_DOWNGRADE_SX();
4224
4225 if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
4226 break;
4227
4228 if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
4229 break;
4230
4231 /*
4232 * The allocated PMC has to be a process virtual PMC,
4233 * i.e., of type MODE_T[CS]. Global PMCs can only be
4234 * read using the PMCREAD operation since they may be
4235 * allocated on a different CPU than the one we could
4236 * be running on at the time of the RDPMC instruction.
4237 *
4238 * The GETMSR operation is not allowed for PMCs that
4239 * are inherited across processes.
4240 */
4241
4242 if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
4243 (pm->pm_flags & PMC_F_DESCENDANTS)) {
4244 error = EINVAL;
4245 break;
4246 }
4247
4248 /*
4249 * It only makes sense to use a RDPMC (or its
4250 * equivalent instruction on non-x86 architectures) on
4251 * a process that has allocated and attached a PMC to
4252 * itself. Conversely the PMC is only allowed to have
4253 * one process attached to it -- its owner.
4254 */
4255
4256 if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
4257 LIST_NEXT(pt, pt_next) != NULL ||
4258 pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
4259 error = EINVAL;
4260 break;
4261 }
4262
4263 ri = PMC_TO_ROWINDEX(pm);
4264 pcd = pmc_ri_to_classdep(md, ri, &adjri);
4265
4266 /* PMC class has no 'GETMSR' support */
4267 if (pcd->pcd_get_msr == NULL) {
4268 error = ENOSYS;
4269 break;
4270 }
4271
4272 if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
4273 break;
4274
4275 if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
4276 break;
4277
4278 /*
4279 * Mark our process as using MSRs. Update machine
4280 * state using a forced context switch.
4281 */
4282
4283 pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
4284 pmc_force_context_switch();
4285
4286 }
4287 break;
4288
4289 /*
4290 * Release an allocated PMC
4291 */
4292
4293 case PMC_OP_PMCRELEASE:
4294 {
4295 pmc_id_t pmcid;
4296 struct pmc *pm;
4297 struct pmc_owner *po;
4298 struct pmc_op_simple sp;
4299
4300 /*
4301 * Find PMC pointer for the named PMC.
4302 *
4303 * Use pmc_release_pmc_descriptor() to switch off the
4304 * PMC, remove all its target threads, and remove the
4305 * PMC from its owner's list.
4306 *
4307 * Remove the owner record if this is the last PMC
4308 * owned.
4309 *
4310 * Free up space.
4311 */
4312
4313 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4314 break;
4315
4316 pmcid = sp.pm_pmcid;
4317
4318 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4319 break;
4320
4321 po = pm->pm_owner;
4322 pmc_release_pmc_descriptor(pm);
4323 pmc_maybe_remove_owner(po);
4324 pmc_destroy_pmc_descriptor(pm);
4325 }
4326 break;
4327
4328
4329 /*
4330 * Read and/or write a PMC.
4331 */
4332
4333 case PMC_OP_PMCRW:
4334 {
4335 int adjri;
4336 struct pmc *pm;
4337 uint32_t cpu, ri;
4338 pmc_value_t oldvalue;
4339 struct pmc_binding pb;
4340 struct pmc_op_pmcrw prw;
4341 struct pmc_classdep *pcd;
4342 struct pmc_op_pmcrw *pprw;
4343
4344 PMC_DOWNGRADE_SX();
4345
4346 if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
4347 break;
4348
4349 PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
4350 prw.pm_flags);
4351
4352 /* must have at least one flag set */
4353 if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
4354 error = EINVAL;
4355 break;
4356 }
4357
4358 /* locate pmc descriptor */
4359 if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
4360 break;
4361
4362 /* Can't read a PMC that hasn't been started. */
4363 if (pm->pm_state != PMC_STATE_ALLOCATED &&
4364 pm->pm_state != PMC_STATE_STOPPED &&
4365 pm->pm_state != PMC_STATE_RUNNING) {
4366 error = EINVAL;
4367 break;
4368 }
4369
4370 /* writing a new value is allowed only for 'STOPPED' pmcs */
4371 if (pm->pm_state == PMC_STATE_RUNNING &&
4372 (prw.pm_flags & PMC_F_NEWVALUE)) {
4373 error = EBUSY;
4374 break;
4375 }
4376
4377 if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
4378
4379 /*
4380 * If this PMC is attached to its owner (i.e.,
4381 * the process requesting this operation) and
4382 * is running, then attempt to get an
4383 * upto-date reading from hardware for a READ.
4384 * Writes are only allowed when the PMC is
4385 * stopped, so only update the saved value
4386 * field.
4387 *
4388 * If the PMC is not running, or is not
4389 * attached to its owner, read/write to the
4390 * savedvalue field.
4391 */
4392
4393 ri = PMC_TO_ROWINDEX(pm);
4394 pcd = pmc_ri_to_classdep(md, ri, &adjri);
4395
4396 mtx_pool_lock_spin(pmc_mtxpool, pm);
4397 cpu = curthread->td_oncpu;
4398
4399 if (prw.pm_flags & PMC_F_OLDVALUE) {
4400 if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
4401 (pm->pm_state == PMC_STATE_RUNNING))
4402 error = (*pcd->pcd_read_pmc)(cpu, adjri,
4403 &oldvalue);
4404 else
4405 oldvalue = pm->pm_gv.pm_savedvalue;
4406 }
4407 if (prw.pm_flags & PMC_F_NEWVALUE)
4408 pm->pm_gv.pm_savedvalue = prw.pm_value;
4409
4410 mtx_pool_unlock_spin(pmc_mtxpool, pm);
4411
4412 } else { /* System mode PMCs */
4413 cpu = PMC_TO_CPU(pm);
4414 ri = PMC_TO_ROWINDEX(pm);
4415 pcd = pmc_ri_to_classdep(md, ri, &adjri);
4416
4417 if (!pmc_cpu_is_active(cpu)) {
4418 error = ENXIO;
4419 break;
4420 }
4421
4422 /* move this thread to CPU 'cpu' */
4423 pmc_save_cpu_binding(&pb);
4424 pmc_select_cpu(cpu);
4425
4426 critical_enter();
4427 /* save old value */
4428 if (prw.pm_flags & PMC_F_OLDVALUE)
4429 if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
4430 &oldvalue)))
4431 goto error;
4432 /* write out new value */
4433 if (prw.pm_flags & PMC_F_NEWVALUE)
4434 error = (*pcd->pcd_write_pmc)(cpu, adjri,
4435 prw.pm_value);
4436 error:
4437 critical_exit();
4438 pmc_restore_cpu_binding(&pb);
4439 if (error)
4440 break;
4441 }
4442
4443 pprw = (struct pmc_op_pmcrw *) arg;
4444
4445 #ifdef HWPMC_DEBUG
4446 if (prw.pm_flags & PMC_F_NEWVALUE)
4447 PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
4448 ri, prw.pm_value, oldvalue);
4449 else if (prw.pm_flags & PMC_F_OLDVALUE)
4450 PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
4451 #endif
4452
4453 /* return old value if requested */
4454 if (prw.pm_flags & PMC_F_OLDVALUE)
4455 if ((error = copyout(&oldvalue, &pprw->pm_value,
4456 sizeof(prw.pm_value))))
4457 break;
4458
4459 }
4460 break;
4461
4462
4463 /*
4464 * Set the sampling rate for a sampling mode PMC and the
4465 * initial count for a counting mode PMC.
4466 */
4467
4468 case PMC_OP_PMCSETCOUNT:
4469 {
4470 struct pmc *pm;
4471 struct pmc_op_pmcsetcount sc;
4472
4473 PMC_DOWNGRADE_SX();
4474
4475 if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
4476 break;
4477
4478 if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
4479 break;
4480
4481 if (pm->pm_state == PMC_STATE_RUNNING) {
4482 error = EBUSY;
4483 break;
4484 }
4485
4486 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
4487 /*
4488 * Don't permit requested sample rate to be
4489 * less than pmc_mincount.
4490 */
4491 if (sc.pm_count < MAX(1, pmc_mincount))
4492 log(LOG_WARNING, "pmcsetcount: passed sample "
4493 "rate %ju - setting to %u\n",
4494 (uintmax_t)sc.pm_count,
4495 MAX(1, pmc_mincount));
4496 pm->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
4497 sc.pm_count);
4498 } else
4499 pm->pm_sc.pm_initial = sc.pm_count;
4500 }
4501 break;
4502
4503
4504 /*
4505 * Start a PMC.
4506 */
4507
4508 case PMC_OP_PMCSTART:
4509 {
4510 pmc_id_t pmcid;
4511 struct pmc *pm;
4512 struct pmc_op_simple sp;
4513
4514 sx_assert(&pmc_sx, SX_XLOCKED);
4515
4516 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4517 break;
4518
4519 pmcid = sp.pm_pmcid;
4520
4521 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4522 break;
4523
4524 KASSERT(pmcid == pm->pm_id,
4525 ("[pmc,%d] pmcid %x != id %x", __LINE__,
4526 pm->pm_id, pmcid));
4527
4528 if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
4529 break;
4530 else if (pm->pm_state != PMC_STATE_STOPPED &&
4531 pm->pm_state != PMC_STATE_ALLOCATED) {
4532 error = EINVAL;
4533 break;
4534 }
4535
4536 error = pmc_start(pm);
4537 }
4538 break;
4539
4540
4541 /*
4542 * Stop a PMC.
4543 */
4544
4545 case PMC_OP_PMCSTOP:
4546 {
4547 pmc_id_t pmcid;
4548 struct pmc *pm;
4549 struct pmc_op_simple sp;
4550
4551 PMC_DOWNGRADE_SX();
4552
4553 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4554 break;
4555
4556 pmcid = sp.pm_pmcid;
4557
4558 /*
4559 * Mark the PMC as inactive and invoke the MD stop
4560 * routines if needed.
4561 */
4562
4563 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4564 break;
4565
4566 KASSERT(pmcid == pm->pm_id,
4567 ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
4568 pm->pm_id, pmcid));
4569
4570 if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
4571 break;
4572 else if (pm->pm_state != PMC_STATE_RUNNING) {
4573 error = EINVAL;
4574 break;
4575 }
4576
4577 error = pmc_stop(pm);
4578 }
4579 break;
4580
4581
4582 /*
4583 * Write a user supplied value to the log file.
4584 */
4585
4586 case PMC_OP_WRITELOG:
4587 {
4588 struct pmc_op_writelog wl;
4589 struct pmc_owner *po;
4590
4591 PMC_DOWNGRADE_SX();
4592
4593 if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4594 break;
4595
4596 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4597 error = EINVAL;
4598 break;
4599 }
4600
4601 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4602 error = EINVAL;
4603 break;
4604 }
4605
4606 error = pmclog_process_userlog(po, &wl);
4607 }
4608 break;
4609
4610
4611 default:
4612 error = EINVAL;
4613 break;
4614 }
4615
4616 if (is_sx_downgraded)
4617 sx_sunlock(&pmc_sx);
4618 else
4619 sx_xunlock(&pmc_sx);
4620 done_syscall:
4621 if (error)
4622 counter_u64_add(pmc_stats.pm_syscall_errors, 1);
4623
4624 return (error);
4625 }
4626
4627 /*
4628 * Helper functions
4629 */
4630
4631
4632 /*
4633 * Mark the thread as needing callchain capture and post an AST. The
4634 * actual callchain capture will be done in a context where it is safe
4635 * to take page faults.
4636 */
4637
4638 static void
4639 pmc_post_callchain_callback(void)
4640 {
4641 struct thread *td;
4642
4643 td = curthread;
4644
4645 /*
4646 * If there is multiple PMCs for the same interrupt ignore new post
4647 */
4648 if (td->td_pflags & TDP_CALLCHAIN)
4649 return;
4650
4651 /*
4652 * Mark this thread as needing callchain capture.
4653 * `td->td_pflags' will be safe to touch because this thread
4654 * was in user space when it was interrupted.
4655 */
4656 td->td_pflags |= TDP_CALLCHAIN;
4657
4658 /*
4659 * Don't let this thread migrate between CPUs until callchain
4660 * capture completes.
4661 */
4662 sched_pin();
4663
4664 return;
4665 }
4666
4667 /*
4668 * Find a free slot in the per-cpu array of samples and capture the
4669 * current callchain there. If a sample was successfully added, a bit
4670 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4671 * needs to be invoked from the clock handler.
4672 *
4673 * This function is meant to be called from an NMI handler. It cannot
4674 * use any of the locking primitives supplied by the OS.
4675 */
4676
4677 static int
4678 pmc_add_sample(ring_type_t ring, struct pmc *pm, struct trapframe *tf)
4679 {
4680 int error, cpu, callchaindepth, inuserspace;
4681 struct thread *td;
4682 struct pmc_sample *ps;
4683 struct pmc_samplebuffer *psb;
4684
4685 error = 0;
4686
4687 /*
4688 * Allocate space for a sample buffer.
4689 */
4690 cpu = curcpu;
4691 psb = pmc_pcpu[cpu]->pc_sb[ring];
4692 inuserspace = TRAPF_USERMODE(tf);
4693 ps = PMC_PROD_SAMPLE(psb);
4694 if (psb->ps_considx != psb->ps_prodidx &&
4695 ps->ps_nsamples) { /* in use, reader hasn't caught up */
4696 pm->pm_pcpu_state[cpu].pps_stalled = 1;
4697 counter_u64_add(pmc_stats.pm_intr_bufferfull, 1);
4698 PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4699 cpu, pm, (void *) tf, inuserspace,
4700 (int) (psb->ps_prodidx & pmc_sample_mask),
4701 (int) (psb->ps_considx & pmc_sample_mask));
4702 callchaindepth = 1;
4703 error = ENOMEM;
4704 goto done;
4705 }
4706
4707 /* Fill in entry. */
4708 PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4709 (void *) tf, inuserspace,
4710 (int) (psb->ps_prodidx & pmc_sample_mask),
4711 (int) (psb->ps_considx & pmc_sample_mask));
4712
4713 td = curthread;
4714 ps->ps_pmc = pm;
4715 ps->ps_td = td;
4716 ps->ps_pid = td->td_proc->p_pid;
4717 ps->ps_tid = td->td_tid;
4718 ps->ps_tsc = pmc_rdtsc();
4719 ps->ps_ticks = ticks;
4720 ps->ps_cpu = cpu;
4721 ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4722
4723 callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4724 pmc_callchaindepth : 1;
4725
4726 MPASS(ps->ps_pc != NULL);
4727 if (callchaindepth == 1)
4728 ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4729 else {
4730 /*
4731 * Kernel stack traversals can be done immediately,
4732 * while we defer to an AST for user space traversals.
4733 */
4734 if (!inuserspace) {
4735 callchaindepth =
4736 pmc_save_kernel_callchain(ps->ps_pc,
4737 callchaindepth, tf);
4738 } else {
4739 pmc_post_callchain_callback();
4740 callchaindepth = PMC_USER_CALLCHAIN_PENDING;
4741 }
4742 }
4743
4744 ps->ps_nsamples = callchaindepth; /* mark entry as in use */
4745 if (ring == PMC_UR) {
4746 ps->ps_nsamples_actual = callchaindepth; /* mark entry as in use */
4747 ps->ps_nsamples = PMC_USER_CALLCHAIN_PENDING;
4748 } else
4749 ps->ps_nsamples = callchaindepth; /* mark entry as in use */
4750
4751 KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
4752 ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
4753 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4754
4755 counter_u64_add(pm->pm_runcount, 1); /* hold onto PMC */
4756 /* increment write pointer */
4757 psb->ps_prodidx++;
4758 done:
4759 /* mark CPU as needing processing */
4760 if (callchaindepth != PMC_USER_CALLCHAIN_PENDING)
4761 DPCPU_SET(pmc_sampled, 1);
4762
4763 return (error);
4764 }
4765
4766 /*
4767 * Interrupt processing.
4768 *
4769 * This function is meant to be called from an NMI handler. It cannot
4770 * use any of the locking primitives supplied by the OS.
4771 */
4772
4773 int
4774 pmc_process_interrupt(int ring, struct pmc *pm, struct trapframe *tf)
4775 {
4776 struct thread *td;
4777
4778 td = curthread;
4779 if ((pm->pm_flags & PMC_F_USERCALLCHAIN) &&
4780 (td->td_proc->p_flag & P_KPROC) == 0 &&
4781 !TRAPF_USERMODE(tf)) {
4782 atomic_add_int(&td->td_pmcpend, 1);
4783 return (pmc_add_sample(PMC_UR, pm, tf));
4784 }
4785 return (pmc_add_sample(ring, pm, tf));
4786 }
4787
4788 /*
4789 * Capture a user call chain. This function will be called from ast()
4790 * before control returns to userland and before the process gets
4791 * rescheduled.
4792 */
4793
4794 static void
4795 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4796 {
4797 struct pmc *pm;
4798 struct thread *td;
4799 struct pmc_sample *ps;
4800 struct pmc_samplebuffer *psb;
4801 uint64_t considx, prodidx;
4802 int nsamples, nrecords, pass, iter;
4803 #ifdef INVARIANTS
4804 int start_ticks = ticks;
4805 #endif
4806 psb = pmc_pcpu[cpu]->pc_sb[ring];
4807 td = curthread;
4808
4809 KASSERT(td->td_pflags & TDP_CALLCHAIN,
4810 ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4811 __LINE__));
4812
4813 nrecords = INT_MAX;
4814 pass = 0;
4815 restart:
4816 if (ring == PMC_UR)
4817 nrecords = atomic_readandclear_32(&td->td_pmcpend);
4818
4819 for (iter = 0, considx = psb->ps_considx, prodidx = psb->ps_prodidx;
4820 considx < prodidx && iter < pmc_nsamples; considx++, iter++) {
4821 ps = PMC_CONS_SAMPLE_OFF(psb, considx);
4822
4823 /*
4824 * Iterate through all deferred callchain requests.
4825 * Walk from the current read pointer to the current
4826 * write pointer.
4827 */
4828
4829 #ifdef INVARIANTS
4830 if (ps->ps_nsamples == PMC_SAMPLE_FREE) {
4831 continue;
4832 }
4833 #endif
4834 if (ps->ps_td != td ||
4835 ps->ps_nsamples != PMC_USER_CALLCHAIN_PENDING ||
4836 ps->ps_pmc->pm_state != PMC_STATE_RUNNING)
4837 continue;
4838
4839 KASSERT(ps->ps_cpu == cpu,
4840 ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4841 ps->ps_cpu, PCPU_GET(cpuid)));
4842
4843 pm = ps->ps_pmc;
4844
4845 KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4846 ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4847 "want it", __LINE__));
4848
4849 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4850 ("[pmc,%d] runcount %ld", __LINE__, (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4851
4852 if (ring == PMC_UR) {
4853 nsamples = ps->ps_nsamples_actual;
4854 counter_u64_add(pmc_stats.pm_merges, 1);
4855 } else
4856 nsamples = 0;
4857
4858 /*
4859 * Retrieve the callchain and mark the sample buffer
4860 * as 'processable' by the timer tick sweep code.
4861 */
4862
4863 if (__predict_true(nsamples < pmc_callchaindepth - 1))
4864 nsamples += pmc_save_user_callchain(ps->ps_pc + nsamples,
4865 pmc_callchaindepth - nsamples - 1, tf);
4866
4867 /*
4868 * We have to prevent hardclock from potentially overwriting
4869 * this sample between when we read the value and when we set
4870 * it
4871 */
4872 spinlock_enter();
4873 /*
4874 * Verify that the sample hasn't been dropped in the meantime
4875 */
4876 if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
4877 ps->ps_nsamples = nsamples;
4878 /*
4879 * If we couldn't get a sample, simply drop the reference
4880 */
4881 if (nsamples == 0)
4882 counter_u64_add(pm->pm_runcount, -1);
4883 }
4884 spinlock_exit();
4885 if (nrecords-- == 1)
4886 break;
4887 }
4888 if (__predict_false(ring == PMC_UR && td->td_pmcpend)) {
4889 if (pass == 0) {
4890 pass = 1;
4891 goto restart;
4892 }
4893 /* only collect samples for this part once */
4894 td->td_pmcpend = 0;
4895 }
4896
4897 #ifdef INVARIANTS
4898 if ((ticks - start_ticks) > hz)
4899 log(LOG_ERR, "%s took %d ticks\n", __func__, (ticks - start_ticks));
4900 #endif
4901
4902 /* mark CPU as needing processing */
4903 DPCPU_SET(pmc_sampled, 1);
4904 }
4905
4906 /*
4907 * Process saved PC samples.
4908 */
4909
4910 static void
4911 pmc_process_samples(int cpu, ring_type_t ring)
4912 {
4913 struct pmc *pm;
4914 int adjri, n;
4915 struct thread *td;
4916 struct pmc_owner *po;
4917 struct pmc_sample *ps;
4918 struct pmc_classdep *pcd;
4919 struct pmc_samplebuffer *psb;
4920 uint64_t delta __diagused;
4921
4922 KASSERT(PCPU_GET(cpuid) == cpu,
4923 ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4924 PCPU_GET(cpuid), cpu));
4925
4926 psb = pmc_pcpu[cpu]->pc_sb[ring];
4927 delta = psb->ps_prodidx - psb->ps_considx;
4928 MPASS(delta <= pmc_nsamples);
4929 MPASS(psb->ps_considx <= psb->ps_prodidx);
4930 for (n = 0; psb->ps_considx < psb->ps_prodidx; psb->ps_considx++, n++) {
4931 ps = PMC_CONS_SAMPLE(psb);
4932
4933 if (__predict_false(ps->ps_nsamples == PMC_SAMPLE_FREE))
4934 continue;
4935 pm = ps->ps_pmc;
4936 /* skip non-running samples */
4937 if (pm->pm_state != PMC_STATE_RUNNING)
4938 goto entrydone;
4939
4940 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4941 ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
4942 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4943
4944 po = pm->pm_owner;
4945
4946 KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4947 ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4948 pm, PMC_TO_MODE(pm)));
4949
4950
4951 /* If there is a pending AST wait for completion */
4952 if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
4953 /* if we've been waiting more than 1 tick to
4954 * collect a callchain for this record then
4955 * drop it and move on.
4956 */
4957 if (ticks - ps->ps_ticks > 1) {
4958 /*
4959 * track how often we hit this as it will
4960 * preferentially lose user samples
4961 * for long running system calls
4962 */
4963 counter_u64_add(pmc_stats.pm_overwrites, 1);
4964 goto entrydone;
4965 }
4966 /* Need a rescan at a later time. */
4967 DPCPU_SET(pmc_sampled, 1);
4968 break;
4969 }
4970
4971 PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4972 pm, ps->ps_nsamples, ps->ps_flags,
4973 (int) (psb->ps_prodidx & pmc_sample_mask),
4974 (int) (psb->ps_considx & pmc_sample_mask));
4975
4976 /*
4977 * If this is a process-mode PMC that is attached to
4978 * its owner, and if the PC is in user mode, update
4979 * profiling statistics like timer-based profiling
4980 * would have done.
4981 *
4982 * Otherwise, this is either a sampling-mode PMC that
4983 * is attached to a different process than its owner,
4984 * or a system-wide sampling PMC. Dispatch a log
4985 * entry to the PMC's owner process.
4986 */
4987 if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4988 if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4989 td = FIRST_THREAD_IN_PROC(po->po_owner);
4990 addupc_intr(td, ps->ps_pc[0], 1);
4991 }
4992 } else
4993 pmclog_process_callchain(pm, ps);
4994
4995 entrydone:
4996 ps->ps_nsamples = 0; /* mark entry as free */
4997 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4998 ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
4999 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
5000
5001 counter_u64_add(pm->pm_runcount, -1);
5002 }
5003
5004 counter_u64_add(pmc_stats.pm_log_sweeps, 1);
5005
5006 /* Do not re-enable stalled PMCs if we failed to process any samples */
5007 if (n == 0)
5008 return;
5009
5010 /*
5011 * Restart any stalled sampling PMCs on this CPU.
5012 *
5013 * If the NMI handler sets the pm_stalled field of a PMC after
5014 * the check below, we'll end up processing the stalled PMC at
5015 * the next hardclock tick.
5016 */
5017 for (n = 0; n < md->pmd_npmc; n++) {
5018 pcd = pmc_ri_to_classdep(md, n, &adjri);
5019 KASSERT(pcd != NULL,
5020 ("[pmc,%d] null pcd ri=%d", __LINE__, n));
5021 (void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
5022
5023 if (pm == NULL || /* !cfg'ed */
5024 pm->pm_state != PMC_STATE_RUNNING || /* !active */
5025 !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
5026 !pm->pm_pcpu_state[cpu].pps_cpustate || /* !desired */
5027 !pm->pm_pcpu_state[cpu].pps_stalled) /* !stalled */
5028 continue;
5029
5030 pm->pm_pcpu_state[cpu].pps_stalled = 0;
5031 (*pcd->pcd_start_pmc)(cpu, adjri);
5032 }
5033 }
5034
5035 /*
5036 * Event handlers.
5037 */
5038
5039 /*
5040 * Handle a process exit.
5041 *
5042 * Remove this process from all hash tables. If this process
5043 * owned any PMCs, turn off those PMCs and deallocate them,
5044 * removing any associations with target processes.
5045 *
5046 * This function will be called by the last 'thread' of a
5047 * process.
5048 *
5049 * XXX This eventhandler gets called early in the exit process.
5050 * Consider using a 'hook' invocation from thread_exit() or equivalent
5051 * spot. Another negative is that kse_exit doesn't seem to call
5052 * exit1() [??].
5053 *
5054 */
5055
5056 static void
5057 pmc_process_exit(void *arg __unused, struct proc *p)
5058 {
5059 struct pmc *pm;
5060 int adjri, cpu;
5061 unsigned int ri;
5062 int is_using_hwpmcs;
5063 struct pmc_owner *po;
5064 struct pmc_process *pp;
5065 struct pmc_classdep *pcd;
5066 pmc_value_t newvalue, tmp;
5067
5068 PROC_LOCK(p);
5069 is_using_hwpmcs = p->p_flag & P_HWPMC;
5070 PROC_UNLOCK(p);
5071
5072 /*
5073 * Log a sysexit event to all SS PMC owners.
5074 */
5075 PMC_EPOCH_ENTER();
5076 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5077 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5078 pmclog_process_sysexit(po, p->p_pid);
5079 PMC_EPOCH_EXIT();
5080
5081 if (!is_using_hwpmcs)
5082 return;
5083
5084 PMC_GET_SX_XLOCK();
5085 PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
5086 p->p_comm);
5087
5088 /*
5089 * Since this code is invoked by the last thread in an exiting
5090 * process, we would have context switched IN at some prior
5091 * point. However, with PREEMPTION, kernel mode context
5092 * switches may happen any time, so we want to disable a
5093 * context switch OUT till we get any PMCs targeting this
5094 * process off the hardware.
5095 *
5096 * We also need to atomically remove this process'
5097 * entry from our target process hash table, using
5098 * PMC_FLAG_REMOVE.
5099 */
5100 PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
5101 p->p_comm);
5102
5103 critical_enter(); /* no preemption */
5104
5105 cpu = curthread->td_oncpu;
5106
5107 if ((pp = pmc_find_process_descriptor(p,
5108 PMC_FLAG_REMOVE)) != NULL) {
5109
5110 PMCDBG2(PRC,EXT,2,
5111 "process-exit proc=%p pmc-process=%p", p, pp);
5112
5113 /*
5114 * The exiting process could the target of
5115 * some PMCs which will be running on
5116 * currently executing CPU.
5117 *
5118 * We need to turn these PMCs off like we
5119 * would do at context switch OUT time.
5120 */
5121 for (ri = 0; ri < md->pmd_npmc; ri++) {
5122
5123 /*
5124 * Pick up the pmc pointer from hardware
5125 * state similar to the CSW_OUT code.
5126 */
5127 pm = NULL;
5128
5129 pcd = pmc_ri_to_classdep(md, ri, &adjri);
5130
5131 (void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
5132
5133 PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
5134
5135 if (pm == NULL ||
5136 !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
5137 continue;
5138
5139 PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
5140 "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
5141 pm, pm->pm_state);
5142
5143 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
5144 ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
5145 __LINE__, PMC_TO_ROWINDEX(pm), ri));
5146
5147 KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
5148 ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
5149 __LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
5150
5151 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
5152 ("[pmc,%d] bad runcount ri %d rc %ld",
5153 __LINE__, ri, (unsigned long)counter_u64_fetch(pm->pm_runcount)));
5154
5155 /*
5156 * Change desired state, and then stop if not
5157 * stalled. This two-step dance should avoid
5158 * race conditions where an interrupt re-enables
5159 * the PMC after this code has already checked
5160 * the pm_stalled flag.
5161 */
5162 if (pm->pm_pcpu_state[cpu].pps_cpustate) {
5163 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
5164 if (!pm->pm_pcpu_state[cpu].pps_stalled) {
5165 (void) pcd->pcd_stop_pmc(cpu, adjri);
5166
5167 if (PMC_TO_MODE(pm) == PMC_MODE_TC) {
5168 pcd->pcd_read_pmc(cpu, adjri,
5169 &newvalue);
5170 tmp = newvalue -
5171 PMC_PCPU_SAVED(cpu,ri);
5172
5173 mtx_pool_lock_spin(pmc_mtxpool,
5174 pm);
5175 pm->pm_gv.pm_savedvalue += tmp;
5176 pp->pp_pmcs[ri].pp_pmcval +=
5177 tmp;
5178 mtx_pool_unlock_spin(
5179 pmc_mtxpool, pm);
5180 }
5181 }
5182 }
5183
5184 KASSERT((int64_t) counter_u64_fetch(pm->pm_runcount) > 0,
5185 ("[pmc,%d] runcount is %d", __LINE__, ri));
5186
5187 counter_u64_add(pm->pm_runcount, -1);
5188
5189 (void) pcd->pcd_config_pmc(cpu, adjri, NULL);
5190 }
5191
5192 /*
5193 * Inform the MD layer of this pseudo "context switch
5194 * out"
5195 */
5196 (void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
5197
5198 critical_exit(); /* ok to be pre-empted now */
5199
5200 /*
5201 * Unlink this process from the PMCs that are
5202 * targeting it. This will send a signal to
5203 * all PMC owner's whose PMCs are orphaned.
5204 *
5205 * Log PMC value at exit time if requested.
5206 */
5207 for (ri = 0; ri < md->pmd_npmc; ri++)
5208 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
5209 if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
5210 PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
5211 pmclog_process_procexit(pm, pp);
5212 pmc_unlink_target_process(pm, pp);
5213 }
5214 free(pp, M_PMC);
5215
5216 } else
5217 critical_exit(); /* pp == NULL */
5218
5219
5220 /*
5221 * If the process owned PMCs, free them up and free up
5222 * memory.
5223 */
5224 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
5225 pmc_remove_owner(po);
5226 pmc_destroy_owner_descriptor(po);
5227 }
5228
5229 sx_xunlock(&pmc_sx);
5230 }
5231
5232 /*
5233 * Handle a process fork.
5234 *
5235 * If the parent process 'p1' is under HWPMC monitoring, then copy
5236 * over any attached PMCs that have 'do_descendants' semantics.
5237 */
5238
5239 static void
5240 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
5241 int flags)
5242 {
5243 int is_using_hwpmcs;
5244 unsigned int ri;
5245 uint32_t do_descendants;
5246 struct pmc *pm;
5247 struct pmc_owner *po;
5248 struct pmc_process *ppnew, *ppold;
5249
5250 (void) flags; /* unused parameter */
5251
5252 PROC_LOCK(p1);
5253 is_using_hwpmcs = p1->p_flag & P_HWPMC;
5254 PROC_UNLOCK(p1);
5255
5256 /*
5257 * If there are system-wide sampling PMCs active, we need to
5258 * log all fork events to their owner's logs.
5259 */
5260 PMC_EPOCH_ENTER();
5261 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5262 if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
5263 pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
5264 pmclog_process_proccreate(po, newproc, 1);
5265 }
5266 PMC_EPOCH_EXIT();
5267
5268 if (!is_using_hwpmcs)
5269 return;
5270
5271 PMC_GET_SX_XLOCK();
5272 PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
5273 p1->p_pid, p1->p_comm, newproc);
5274
5275 /*
5276 * If the parent process (curthread->td_proc) is a
5277 * target of any PMCs, look for PMCs that are to be
5278 * inherited, and link these into the new process
5279 * descriptor.
5280 */
5281 if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
5282 PMC_FLAG_NONE)) == NULL)
5283 goto done; /* nothing to do */
5284
5285 do_descendants = 0;
5286 for (ri = 0; ri < md->pmd_npmc; ri++)
5287 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
5288 do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
5289 if (do_descendants == 0) /* nothing to do */
5290 goto done;
5291
5292 /*
5293 * Now mark the new process as being tracked by this driver.
5294 */
5295 PROC_LOCK(newproc);
5296 newproc->p_flag |= P_HWPMC;
5297 PROC_UNLOCK(newproc);
5298
5299 /* allocate a descriptor for the new process */
5300 if ((ppnew = pmc_find_process_descriptor(newproc,
5301 PMC_FLAG_ALLOCATE)) == NULL)
5302 goto done;
5303
5304 /*
5305 * Run through all PMCs that were targeting the old process
5306 * and which specified F_DESCENDANTS and attach them to the
5307 * new process.
5308 *
5309 * Log the fork event to all owners of PMCs attached to this
5310 * process, if not already logged.
5311 */
5312 for (ri = 0; ri < md->pmd_npmc; ri++)
5313 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
5314 (pm->pm_flags & PMC_F_DESCENDANTS)) {
5315 pmc_link_target_process(pm, ppnew);
5316 po = pm->pm_owner;
5317 if (po->po_sscount == 0 &&
5318 po->po_flags & PMC_PO_OWNS_LOGFILE)
5319 pmclog_process_procfork(po, p1->p_pid,
5320 newproc->p_pid);
5321 }
5322
5323 done:
5324 sx_xunlock(&pmc_sx);
5325 }
5326
5327 static void
5328 pmc_process_threadcreate(struct thread *td)
5329 {
5330 struct pmc_owner *po;
5331
5332 PMC_EPOCH_ENTER();
5333 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5334 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5335 pmclog_process_threadcreate(po, td, 1);
5336 PMC_EPOCH_EXIT();
5337 }
5338
5339 static void
5340 pmc_process_threadexit(struct thread *td)
5341 {
5342 struct pmc_owner *po;
5343
5344 PMC_EPOCH_ENTER();
5345 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5346 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5347 pmclog_process_threadexit(po, td);
5348 PMC_EPOCH_EXIT();
5349 }
5350
5351 static void
5352 pmc_process_proccreate(struct proc *p)
5353 {
5354 struct pmc_owner *po;
5355
5356 PMC_EPOCH_ENTER();
5357 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5358 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5359 pmclog_process_proccreate(po, p, 1 /* sync */);
5360 PMC_EPOCH_EXIT();
5361 }
5362
5363 static void
5364 pmc_process_allproc(struct pmc *pm)
5365 {
5366 struct pmc_owner *po;
5367 struct thread *td;
5368 struct proc *p;
5369
5370 po = pm->pm_owner;
5371 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
5372 return;
5373 sx_slock(&allproc_lock);
5374 FOREACH_PROC_IN_SYSTEM(p) {
5375 pmclog_process_proccreate(po, p, 0 /* sync */);
5376 PROC_LOCK(p);
5377 FOREACH_THREAD_IN_PROC(p, td)
5378 pmclog_process_threadcreate(po, td, 0 /* sync */);
5379 PROC_UNLOCK(p);
5380 }
5381 sx_sunlock(&allproc_lock);
5382 pmclog_flush(po, 0);
5383 }
5384
5385 static void
5386 pmc_kld_load(void *arg __unused, linker_file_t lf)
5387 {
5388 struct pmc_owner *po;
5389
5390 /*
5391 * Notify owners of system sampling PMCs about KLD operations.
5392 */
5393 PMC_EPOCH_ENTER();
5394 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5395 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5396 pmclog_process_map_in(po, (pid_t) -1,
5397 (uintfptr_t) lf->address, lf->filename);
5398 PMC_EPOCH_EXIT();
5399
5400 /*
5401 * TODO: Notify owners of (all) process-sampling PMCs too.
5402 */
5403 }
5404
5405 static void
5406 pmc_kld_unload(void *arg __unused, const char *filename __unused,
5407 caddr_t address, size_t size)
5408 {
5409 struct pmc_owner *po;
5410
5411 PMC_EPOCH_ENTER();
5412 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5413 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5414 pmclog_process_map_out(po, (pid_t) -1,
5415 (uintfptr_t) address, (uintfptr_t) address + size);
5416 PMC_EPOCH_EXIT();
5417
5418 /*
5419 * TODO: Notify owners of process-sampling PMCs.
5420 */
5421 }
5422
5423 /*
5424 * initialization
5425 */
5426 static const char *
5427 pmc_name_of_pmcclass(enum pmc_class class)
5428 {
5429
5430 switch (class) {
5431 #undef __PMC_CLASS
5432 #define __PMC_CLASS(S,V,D) \
5433 case PMC_CLASS_##S: \
5434 return #S;
5435 __PMC_CLASSES();
5436 default:
5437 return ("<unknown>");
5438 }
5439 }
5440
5441 /*
5442 * Base class initializer: allocate structure and set default classes.
5443 */
5444 struct pmc_mdep *
5445 pmc_mdep_alloc(int nclasses)
5446 {
5447 struct pmc_mdep *md;
5448 int n;
5449
5450 /* SOFT + md classes */
5451 n = 1 + nclasses;
5452 md = malloc(sizeof(struct pmc_mdep) + n *
5453 sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
5454 md->pmd_nclass = n;
5455
5456 /* Add base class. */
5457 pmc_soft_initialize(md);
5458 return md;
5459 }
5460
5461 void
5462 pmc_mdep_free(struct pmc_mdep *md)
5463 {
5464 pmc_soft_finalize(md);
5465 free(md, M_PMC);
5466 }
5467
5468 static int
5469 generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
5470 {
5471 (void) pc; (void) pp;
5472
5473 return (0);
5474 }
5475
5476 static int
5477 generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
5478 {
5479 (void) pc; (void) pp;
5480
5481 return (0);
5482 }
5483
5484 static struct pmc_mdep *
5485 pmc_generic_cpu_initialize(void)
5486 {
5487 struct pmc_mdep *md;
5488
5489 md = pmc_mdep_alloc(0);
5490
5491 md->pmd_cputype = PMC_CPU_GENERIC;
5492
5493 md->pmd_pcpu_init = NULL;
5494 md->pmd_pcpu_fini = NULL;
5495 md->pmd_switch_in = generic_switch_in;
5496 md->pmd_switch_out = generic_switch_out;
5497
5498 return (md);
5499 }
5500
5501 static void
5502 pmc_generic_cpu_finalize(struct pmc_mdep *md)
5503 {
5504 (void) md;
5505 }
5506
5507
5508 static int
5509 pmc_initialize(void)
5510 {
5511 int c, cpu, error, n, ri;
5512 unsigned int maxcpu, domain;
5513 struct pcpu *pc;
5514 struct pmc_binding pb;
5515 struct pmc_sample *ps;
5516 struct pmc_classdep *pcd;
5517 struct pmc_samplebuffer *sb;
5518
5519 md = NULL;
5520 error = 0;
5521
5522 pmc_stats.pm_intr_ignored = counter_u64_alloc(M_WAITOK);
5523 pmc_stats.pm_intr_processed = counter_u64_alloc(M_WAITOK);
5524 pmc_stats.pm_intr_bufferfull = counter_u64_alloc(M_WAITOK);
5525 pmc_stats.pm_syscalls = counter_u64_alloc(M_WAITOK);
5526 pmc_stats.pm_syscall_errors = counter_u64_alloc(M_WAITOK);
5527 pmc_stats.pm_buffer_requests = counter_u64_alloc(M_WAITOK);
5528 pmc_stats.pm_buffer_requests_failed = counter_u64_alloc(M_WAITOK);
5529 pmc_stats.pm_log_sweeps = counter_u64_alloc(M_WAITOK);
5530 pmc_stats.pm_merges = counter_u64_alloc(M_WAITOK);
5531 pmc_stats.pm_overwrites = counter_u64_alloc(M_WAITOK);
5532
5533 #ifdef HWPMC_DEBUG
5534 /* parse debug flags first */
5535 if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
5536 pmc_debugstr, sizeof(pmc_debugstr)))
5537 pmc_debugflags_parse(pmc_debugstr,
5538 pmc_debugstr+strlen(pmc_debugstr));
5539 #endif
5540
5541 PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
5542
5543 /* check kernel version */
5544 if (pmc_kernel_version != PMC_VERSION) {
5545 if (pmc_kernel_version == 0)
5546 printf("hwpmc: this kernel has not been compiled with "
5547 "'options HWPMC_HOOKS'.\n");
5548 else
5549 printf("hwpmc: kernel version (0x%x) does not match "
5550 "module version (0x%x).\n", pmc_kernel_version,
5551 PMC_VERSION);
5552 return EPROGMISMATCH;
5553 }
5554
5555 /*
5556 * check sysctl parameters
5557 */
5558
5559 if (pmc_hashsize <= 0) {
5560 (void) printf("hwpmc: tunable \"hashsize\"=%d must be "
5561 "greater than zero.\n", pmc_hashsize);
5562 pmc_hashsize = PMC_HASH_SIZE;
5563 }
5564
5565 if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
5566 (void) printf("hwpmc: tunable \"nsamples\"=%d out of "
5567 "range.\n", pmc_nsamples);
5568 pmc_nsamples = PMC_NSAMPLES;
5569 }
5570 pmc_sample_mask = pmc_nsamples-1;
5571
5572 if (pmc_callchaindepth <= 0 ||
5573 pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
5574 (void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
5575 "range - using %d.\n", pmc_callchaindepth,
5576 PMC_CALLCHAIN_DEPTH_MAX);
5577 pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
5578 }
5579
5580 md = pmc_md_initialize();
5581 if (md == NULL) {
5582 /* Default to generic CPU. */
5583 md = pmc_generic_cpu_initialize();
5584 if (md == NULL)
5585 return (ENOSYS);
5586 }
5587
5588 /*
5589 * Refresh classes base ri. Optional classes may come in different
5590 * order.
5591 */
5592 for (ri = c = 0; c < md->pmd_nclass; c++) {
5593 pcd = &md->pmd_classdep[c];
5594 pcd->pcd_ri = ri;
5595 ri += pcd->pcd_num;
5596 }
5597
5598 KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
5599 ("[pmc,%d] no classes or pmcs", __LINE__));
5600
5601 /* Compute the map from row-indices to classdep pointers. */
5602 pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
5603 md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
5604
5605 for (n = 0; n < md->pmd_npmc; n++)
5606 pmc_rowindex_to_classdep[n] = NULL;
5607 for (ri = c = 0; c < md->pmd_nclass; c++) {
5608 pcd = &md->pmd_classdep[c];
5609 for (n = 0; n < pcd->pcd_num; n++, ri++)
5610 pmc_rowindex_to_classdep[ri] = pcd;
5611 }
5612
5613 KASSERT(ri == md->pmd_npmc,
5614 ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
5615 ri, md->pmd_npmc));
5616
5617 maxcpu = pmc_cpu_max();
5618
5619 /* allocate space for the per-cpu array */
5620 pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
5621 M_WAITOK|M_ZERO);
5622
5623 /* per-cpu 'saved values' for managing process-mode PMCs */
5624 pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
5625 M_PMC, M_WAITOK);
5626
5627 /* Perform CPU-dependent initialization. */
5628 pmc_save_cpu_binding(&pb);
5629 error = 0;
5630 for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
5631 if (!pmc_cpu_is_active(cpu))
5632 continue;
5633 pmc_select_cpu(cpu);
5634 pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
5635 md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
5636 M_WAITOK|M_ZERO);
5637 if (md->pmd_pcpu_init)
5638 error = md->pmd_pcpu_init(md, cpu);
5639 for (n = 0; error == 0 && n < md->pmd_nclass; n++)
5640 if (md->pmd_classdep[n].pcd_num > 0)
5641 error = md->pmd_classdep[n].pcd_pcpu_init(md,
5642 cpu);
5643 }
5644 pmc_restore_cpu_binding(&pb);
5645
5646 if (error)
5647 return (error);
5648
5649 /* allocate space for the sample array */
5650 for (cpu = 0; cpu < maxcpu; cpu++) {
5651 if (!pmc_cpu_is_active(cpu))
5652 continue;
5653 pc = pcpu_find(cpu);
5654 domain = pc->pc_domain;
5655 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5656 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5657 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5658
5659 KASSERT(pmc_pcpu[cpu] != NULL,
5660 ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
5661
5662 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5663 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5664 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5665
5666 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5667 ps->ps_pc = sb->ps_callchains +
5668 (n * pmc_callchaindepth);
5669
5670 pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
5671
5672 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5673 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5674 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5675
5676 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5677 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5678 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5679 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5680 ps->ps_pc = sb->ps_callchains +
5681 (n * pmc_callchaindepth);
5682
5683 pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
5684
5685 sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5686 pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5687 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5688 sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5689 pmc_nsamples * sizeof(uintptr_t), M_PMC,
5690 DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5691 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5692 ps->ps_pc = sb->ps_callchains + n * pmc_callchaindepth;
5693
5694 pmc_pcpu[cpu]->pc_sb[PMC_UR] = sb;
5695 }
5696
5697 /* allocate space for the row disposition array */
5698 pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
5699 M_PMC, M_WAITOK|M_ZERO);
5700
5701 /* mark all PMCs as available */
5702 for (n = 0; n < (int) md->pmd_npmc; n++)
5703 PMC_MARK_ROW_FREE(n);
5704
5705 /* allocate thread hash tables */
5706 pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
5707 &pmc_ownerhashmask);
5708
5709 pmc_processhash = hashinit(pmc_hashsize, M_PMC,
5710 &pmc_processhashmask);
5711 mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
5712 MTX_SPIN);
5713
5714 CK_LIST_INIT(&pmc_ss_owners);
5715 pmc_ss_count = 0;
5716
5717 /* allocate a pool of spin mutexes */
5718 pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
5719 MTX_SPIN);
5720
5721 PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
5722 "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
5723 pmc_processhash, pmc_processhashmask);
5724
5725 /* Initialize a spin mutex for the thread free list. */
5726 mtx_init(&pmc_threadfreelist_mtx, "pmc-threadfreelist", "pmc-leaf",
5727 MTX_SPIN);
5728
5729 /* Initialize the task to prune the thread free list. */
5730 TASK_INIT(&free_task, 0, pmc_thread_descriptor_pool_free_task, NULL);
5731
5732 /* register process {exit,fork,exec} handlers */
5733 pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
5734 pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
5735 pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
5736 pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
5737
5738 /* register kld event handlers */
5739 pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
5740 NULL, EVENTHANDLER_PRI_ANY);
5741 pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
5742 NULL, EVENTHANDLER_PRI_ANY);
5743
5744 /* initialize logging */
5745 pmclog_initialize();
5746
5747 /* set hook functions */
5748 pmc_intr = md->pmd_intr;
5749 wmb();
5750 pmc_hook = pmc_hook_handler;
5751
5752 if (error == 0) {
5753 printf(PMC_MODULE_NAME ":");
5754 for (n = 0; n < (int) md->pmd_nclass; n++) {
5755 if (md->pmd_classdep[n].pcd_num == 0)
5756 continue;
5757 pcd = &md->pmd_classdep[n];
5758 printf(" %s/%d/%d/0x%b",
5759 pmc_name_of_pmcclass(pcd->pcd_class),
5760 pcd->pcd_num,
5761 pcd->pcd_width,
5762 pcd->pcd_caps,
5763 "\2"
5764 "\1INT\2USR\3SYS\4EDG\5THR"
5765 "\6REA\7WRI\10INV\11QUA\12PRC"
5766 "\13TAG\14CSC");
5767 }
5768 printf("\n");
5769 }
5770
5771 return (error);
5772 }
5773
5774 /* prepare to be unloaded */
5775 static void
5776 pmc_cleanup(void)
5777 {
5778 int c, cpu;
5779 unsigned int maxcpu;
5780 struct pmc_ownerhash *ph;
5781 struct pmc_owner *po, *tmp;
5782 struct pmc_binding pb;
5783 #ifdef HWPMC_DEBUG
5784 struct pmc_processhash *prh;
5785 #endif
5786
5787 PMCDBG0(MOD,INI,0, "cleanup");
5788
5789 /* switch off sampling */
5790 CPU_FOREACH(cpu)
5791 DPCPU_ID_SET(cpu, pmc_sampled, 0);
5792 pmc_intr = NULL;
5793
5794 sx_xlock(&pmc_sx);
5795 if (pmc_hook == NULL) { /* being unloaded already */
5796 sx_xunlock(&pmc_sx);
5797 return;
5798 }
5799
5800 pmc_hook = NULL; /* prevent new threads from entering module */
5801
5802 /* deregister event handlers */
5803 EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5804 EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5805 EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5806 EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5807
5808 /* send SIGBUS to all owner threads, free up allocations */
5809 if (pmc_ownerhash)
5810 for (ph = pmc_ownerhash;
5811 ph <= &pmc_ownerhash[pmc_ownerhashmask];
5812 ph++) {
5813 LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5814 pmc_remove_owner(po);
5815
5816 /* send SIGBUS to owner processes */
5817 PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5818 "(%d, %s)", po->po_owner,
5819 po->po_owner->p_pid,
5820 po->po_owner->p_comm);
5821
5822 PROC_LOCK(po->po_owner);
5823 kern_psignal(po->po_owner, SIGBUS);
5824 PROC_UNLOCK(po->po_owner);
5825
5826 pmc_destroy_owner_descriptor(po);
5827 }
5828 }
5829
5830 /* reclaim allocated data structures */
5831 taskqueue_drain(taskqueue_fast, &free_task);
5832 mtx_destroy(&pmc_threadfreelist_mtx);
5833 pmc_thread_descriptor_pool_drain();
5834
5835 if (pmc_mtxpool)
5836 mtx_pool_destroy(&pmc_mtxpool);
5837
5838 mtx_destroy(&pmc_processhash_mtx);
5839 if (pmc_processhash) {
5840 #ifdef HWPMC_DEBUG
5841 struct pmc_process *pp;
5842
5843 PMCDBG0(MOD,INI,3, "destroy process hash");
5844 for (prh = pmc_processhash;
5845 prh <= &pmc_processhash[pmc_processhashmask];
5846 prh++)
5847 LIST_FOREACH(pp, prh, pp_next)
5848 PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5849 #endif
5850
5851 hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5852 pmc_processhash = NULL;
5853 }
5854
5855 if (pmc_ownerhash) {
5856 PMCDBG0(MOD,INI,3, "destroy owner hash");
5857 hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5858 pmc_ownerhash = NULL;
5859 }
5860
5861 KASSERT(CK_LIST_EMPTY(&pmc_ss_owners),
5862 ("[pmc,%d] Global SS owner list not empty", __LINE__));
5863 KASSERT(pmc_ss_count == 0,
5864 ("[pmc,%d] Global SS count not empty", __LINE__));
5865
5866 /* do processor and pmc-class dependent cleanup */
5867 maxcpu = pmc_cpu_max();
5868
5869 PMCDBG0(MOD,INI,3, "md cleanup");
5870 if (md) {
5871 pmc_save_cpu_binding(&pb);
5872 for (cpu = 0; cpu < maxcpu; cpu++) {
5873 PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5874 cpu, pmc_pcpu[cpu]);
5875 if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5876 continue;
5877 pmc_select_cpu(cpu);
5878 for (c = 0; c < md->pmd_nclass; c++)
5879 if (md->pmd_classdep[c].pcd_num > 0)
5880 md->pmd_classdep[c].pcd_pcpu_fini(md,
5881 cpu);
5882 if (md->pmd_pcpu_fini)
5883 md->pmd_pcpu_fini(md, cpu);
5884 }
5885
5886 if (md->pmd_cputype == PMC_CPU_GENERIC)
5887 pmc_generic_cpu_finalize(md);
5888 else
5889 pmc_md_finalize(md);
5890
5891 pmc_mdep_free(md);
5892 md = NULL;
5893 pmc_restore_cpu_binding(&pb);
5894 }
5895
5896 /* Free per-cpu descriptors. */
5897 for (cpu = 0; cpu < maxcpu; cpu++) {
5898 if (!pmc_cpu_is_active(cpu))
5899 continue;
5900 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5901 ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5902 cpu));
5903 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5904 ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5905 cpu));
5906 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_UR] != NULL,
5907 ("[pmc,%d] Null userret cpu sample buffer cpu=%d", __LINE__,
5908 cpu));
5909 free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5910 free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5911 free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5912 free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5913 free(pmc_pcpu[cpu]->pc_sb[PMC_UR]->ps_callchains, M_PMC);
5914 free(pmc_pcpu[cpu]->pc_sb[PMC_UR], M_PMC);
5915 free(pmc_pcpu[cpu], M_PMC);
5916 }
5917
5918 free(pmc_pcpu, M_PMC);
5919 pmc_pcpu = NULL;
5920
5921 free(pmc_pcpu_saved, M_PMC);
5922 pmc_pcpu_saved = NULL;
5923
5924 if (pmc_pmcdisp) {
5925 free(pmc_pmcdisp, M_PMC);
5926 pmc_pmcdisp = NULL;
5927 }
5928
5929 if (pmc_rowindex_to_classdep) {
5930 free(pmc_rowindex_to_classdep, M_PMC);
5931 pmc_rowindex_to_classdep = NULL;
5932 }
5933
5934 pmclog_shutdown();
5935 counter_u64_free(pmc_stats.pm_intr_ignored);
5936 counter_u64_free(pmc_stats.pm_intr_processed);
5937 counter_u64_free(pmc_stats.pm_intr_bufferfull);
5938 counter_u64_free(pmc_stats.pm_syscalls);
5939 counter_u64_free(pmc_stats.pm_syscall_errors);
5940 counter_u64_free(pmc_stats.pm_buffer_requests);
5941 counter_u64_free(pmc_stats.pm_buffer_requests_failed);
5942 counter_u64_free(pmc_stats.pm_log_sweeps);
5943 counter_u64_free(pmc_stats.pm_merges);
5944 counter_u64_free(pmc_stats.pm_overwrites);
5945 sx_xunlock(&pmc_sx); /* we are done */
5946 }
5947
5948 /*
5949 * The function called at load/unload.
5950 */
5951
5952 static int
5953 load (struct module *module __unused, int cmd, void *arg __unused)
5954 {
5955 int error;
5956
5957 error = 0;
5958
5959 switch (cmd) {
5960 case MOD_LOAD :
5961 /* initialize the subsystem */
5962 error = pmc_initialize();
5963 if (error != 0)
5964 break;
5965 PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5966 pmc_syscall_num, pmc_cpu_max());
5967 break;
5968
5969
5970 case MOD_UNLOAD :
5971 case MOD_SHUTDOWN:
5972 pmc_cleanup();
5973 PMCDBG0(MOD,INI,1, "unloaded");
5974 break;
5975
5976 default :
5977 error = EINVAL; /* XXX should panic(9) */
5978 break;
5979 }
5980
5981 return error;
5982 }
Cache object: 778bf26580feb4a9e32391866f8dd6b8
|