1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011,2013 Justin Hibbits
5 * Copyright (c) 2005, Joseph Koshy
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/param.h>
35 #include <sys/pmc.h>
36 #include <sys/pmckern.h>
37 #include <sys/sysent.h>
38 #include <sys/syslog.h>
39 #include <sys/systm.h>
40
41 #include <machine/pmc_mdep.h>
42 #include <machine/spr.h>
43 #include <machine/pte.h>
44 #include <machine/sr.h>
45 #include <machine/cpu.h>
46 #include <machine/stack.h>
47
48 #include "hwpmc_powerpc.h"
49
50 #ifdef __powerpc64__
51 #define OFFSET 4 /* Account for the TOC reload slot */
52 #else
53 #define OFFSET 0
54 #endif
55
56 struct powerpc_cpu **powerpc_pcpu;
57 struct pmc_ppc_event *ppc_event_codes;
58 size_t ppc_event_codes_size;
59 int ppc_event_first;
60 int ppc_event_last;
61 int ppc_max_pmcs;
62 enum pmc_class ppc_class;
63
64 void (*powerpc_set_pmc)(int cpu, int ri, int config);
65 pmc_value_t (*powerpc_pmcn_read)(unsigned int pmc);
66 void (*powerpc_pmcn_write)(unsigned int pmc, uint32_t val);
67 void (*powerpc_resume_pmc)(bool ie);
68
69
70 int
71 pmc_save_kernel_callchain(uintptr_t *cc, int maxsamples,
72 struct trapframe *tf)
73 {
74 uintptr_t *osp, *sp;
75 uintptr_t pc;
76 int frames = 0;
77
78 cc[frames++] = PMC_TRAPFRAME_TO_PC(tf);
79 sp = (uintptr_t *)PMC_TRAPFRAME_TO_FP(tf);
80 osp = (uintptr_t *)PAGE_SIZE;
81
82 for (; frames < maxsamples; frames++) {
83 if (sp <= osp)
84 break;
85 #ifdef __powerpc64__
86 pc = sp[2];
87 #else
88 pc = sp[1];
89 #endif
90 if ((pc & 3) || (pc < 0x100))
91 break;
92
93 /*
94 * trapexit() and asttrapexit() are sentinels
95 * for kernel stack tracing.
96 * */
97 if (pc + OFFSET == (uintptr_t) &trapexit ||
98 pc + OFFSET == (uintptr_t) &asttrapexit)
99 break;
100
101 cc[frames] = pc;
102 osp = sp;
103 sp = (uintptr_t *)*sp;
104 }
105 return (frames);
106 }
107
108 static int
109 powerpc_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
110 {
111
112 return (0);
113 }
114
115 static int
116 powerpc_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
117 {
118
119 return (0);
120 }
121
122 int
123 powerpc_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
124 {
125 int error;
126 struct pmc_hw *phw;
127 char powerpc_name[PMC_NAME_MAX];
128
129 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
130 ("[powerpc,%d], illegal CPU %d", __LINE__, cpu));
131
132 phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
133 snprintf(powerpc_name, sizeof(powerpc_name), "POWERPC-%d", ri);
134 if ((error = copystr(powerpc_name, pi->pm_name, PMC_NAME_MAX,
135 NULL)) != 0)
136 return error;
137 pi->pm_class = powerpc_pcpu[cpu]->pc_class;
138 if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
139 pi->pm_enabled = TRUE;
140 *ppmc = phw->phw_pmc;
141 } else {
142 pi->pm_enabled = FALSE;
143 *ppmc = NULL;
144 }
145
146 return (0);
147 }
148
149 int
150 powerpc_get_config(int cpu, int ri, struct pmc **ppm)
151 {
152
153 *ppm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
154
155 return (0);
156 }
157
158 int
159 powerpc_pcpu_init(struct pmc_mdep *md, int cpu)
160 {
161 struct pmc_cpu *pc;
162 struct powerpc_cpu *pac;
163 struct pmc_hw *phw;
164 int first_ri, i;
165
166 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
167 ("[powerpc,%d] wrong cpu number %d", __LINE__, cpu));
168 PMCDBG1(MDP,INI,1,"powerpc-init cpu=%d", cpu);
169
170 powerpc_pcpu[cpu] = pac = malloc(sizeof(struct powerpc_cpu) +
171 ppc_max_pmcs * sizeof(struct pmc_hw), M_PMC, M_WAITOK | M_ZERO);
172 pac->pc_class =
173 md->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC].pcd_class;
174
175 pc = pmc_pcpu[cpu];
176 first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC].pcd_ri;
177 KASSERT(pc != NULL, ("[powerpc,%d] NULL per-cpu pointer", __LINE__));
178
179 for (i = 0, phw = pac->pc_ppcpmcs; i < ppc_max_pmcs; i++, phw++) {
180 phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
181 PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
182 phw->phw_pmc = NULL;
183 pc->pc_hwpmcs[i + first_ri] = phw;
184 }
185
186 return (0);
187 }
188
189 int
190 powerpc_pcpu_fini(struct pmc_mdep *md, int cpu)
191 {
192 PMCDBG1(MDP,INI,1,"powerpc-fini cpu=%d", cpu);
193
194 free(powerpc_pcpu[cpu], M_PMC);
195 powerpc_pcpu[cpu] = NULL;
196
197 return (0);
198 }
199
200 int
201 powerpc_allocate_pmc(int cpu, int ri, struct pmc *pm,
202 const struct pmc_op_pmcallocate *a)
203 {
204 enum pmc_event pe;
205 uint32_t caps, config = 0, counter = 0;
206 int i;
207
208 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
209 ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
210 KASSERT(ri >= 0 && ri < ppc_max_pmcs,
211 ("[powerpc,%d] illegal row index %d", __LINE__, ri));
212
213 if (a->pm_class != ppc_class)
214 return (EINVAL);
215
216 caps = a->pm_caps;
217
218 pe = a->pm_ev;
219
220 if (pe < ppc_event_first || pe > ppc_event_last)
221 return (EINVAL);
222
223 for (i = 0; i < ppc_event_codes_size; i++) {
224 if (ppc_event_codes[i].pe_event == pe) {
225 config = ppc_event_codes[i].pe_code;
226 counter = ppc_event_codes[i].pe_flags;
227 break;
228 }
229 }
230 if (i == ppc_event_codes_size)
231 return (EINVAL);
232
233 if ((counter & (1 << ri)) == 0)
234 return (EINVAL);
235
236 if (caps & PMC_CAP_SYSTEM)
237 config |= POWERPC_PMC_KERNEL_ENABLE;
238 if (caps & PMC_CAP_USER)
239 config |= POWERPC_PMC_USER_ENABLE;
240 if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
241 config |= POWERPC_PMC_ENABLE;
242
243 pm->pm_md.pm_powerpc.pm_powerpc_evsel = config;
244
245 PMCDBG3(MDP,ALL,1,"powerpc-allocate cpu=%d ri=%d -> config=0x%x",
246 cpu, ri, config);
247 return (0);
248 }
249
250 int
251 powerpc_release_pmc(int cpu, int ri, struct pmc *pmc)
252 {
253 struct pmc_hw *phw __diagused;
254
255 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
256 ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
257 KASSERT(ri >= 0 && ri < ppc_max_pmcs,
258 ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
259
260 phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
261 KASSERT(phw->phw_pmc == NULL,
262 ("[powerpc,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
263
264 return (0);
265 }
266
267 int
268 powerpc_start_pmc(int cpu, int ri)
269 {
270 struct pmc *pm;
271
272 PMCDBG2(MDP,STA,1,"powerpc-start cpu=%d ri=%d", cpu, ri);
273 pm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
274 powerpc_set_pmc(cpu, ri, pm->pm_md.pm_powerpc.pm_powerpc_evsel);
275
276 return (0);
277 }
278
279 int
280 powerpc_stop_pmc(int cpu, int ri)
281 {
282 PMCDBG2(MDP,STO,1, "powerpc-stop cpu=%d ri=%d", cpu, ri);
283 powerpc_set_pmc(cpu, ri, PMCN_NONE);
284 return (0);
285 }
286
287 int
288 powerpc_config_pmc(int cpu, int ri, struct pmc *pm)
289 {
290 struct pmc_hw *phw;
291
292 PMCDBG3(MDP,CFG,1, "powerpc-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
293
294 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
295 ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
296 KASSERT(ri >= 0 && ri < ppc_max_pmcs,
297 ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
298
299 phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
300
301 KASSERT(pm == NULL || phw->phw_pmc == NULL,
302 ("[powerpc,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
303 __LINE__, pm, phw->phw_pmc));
304
305 phw->phw_pmc = pm;
306
307 return (0);
308 }
309
310 pmc_value_t
311 powerpc_pmcn_read_default(unsigned int pmc)
312 {
313 pmc_value_t val;
314
315 if (pmc > ppc_max_pmcs)
316 panic("Invalid PMC number: %d\n", pmc);
317
318 switch (pmc) {
319 case 0:
320 val = mfspr(SPR_PMC1);
321 break;
322 case 1:
323 val = mfspr(SPR_PMC2);
324 break;
325 case 2:
326 val = mfspr(SPR_PMC3);
327 break;
328 case 3:
329 val = mfspr(SPR_PMC4);
330 break;
331 case 4:
332 val = mfspr(SPR_PMC5);
333 break;
334 case 5:
335 val = mfspr(SPR_PMC6);
336 break;
337 case 6:
338 val = mfspr(SPR_PMC7);
339 break;
340 case 7:
341 val = mfspr(SPR_PMC8);
342 break;
343 }
344
345 return (val);
346 }
347
348 void
349 powerpc_pmcn_write_default(unsigned int pmc, uint32_t val)
350 {
351 if (pmc > ppc_max_pmcs)
352 panic("Invalid PMC number: %d\n", pmc);
353
354 switch (pmc) {
355 case 0:
356 mtspr(SPR_PMC1, val);
357 break;
358 case 1:
359 mtspr(SPR_PMC2, val);
360 break;
361 case 2:
362 mtspr(SPR_PMC3, val);
363 break;
364 case 3:
365 mtspr(SPR_PMC4, val);
366 break;
367 case 4:
368 mtspr(SPR_PMC5, val);
369 break;
370 case 5:
371 mtspr(SPR_PMC6, val);
372 break;
373 case 6:
374 mtspr(SPR_PMC7, val);
375 break;
376 case 7:
377 mtspr(SPR_PMC8, val);
378 break;
379 }
380 }
381
382 int
383 powerpc_read_pmc(int cpu, int ri, pmc_value_t *v)
384 {
385 struct pmc *pm;
386 pmc_value_t p, r, tmp;
387
388 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
389 ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
390 KASSERT(ri >= 0 && ri < ppc_max_pmcs,
391 ("[powerpc,%d] illegal row index %d", __LINE__, ri));
392
393 pm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
394 KASSERT(pm,
395 ("[core,%d] cpu %d ri %d pmc not configured", __LINE__, cpu,
396 ri));
397
398 /*
399 * After an interrupt occurs because of a PMC overflow, the PMC value
400 * is not always MAX_PMC_VALUE + 1, but may be a little above it.
401 * This may mess up calculations and frustrate machine independent
402 * layer expectations, such as that no value read should be greater
403 * than reload count in sampling mode.
404 * To avoid these issues, use MAX_PMC_VALUE as an upper limit.
405 */
406 p = MIN(powerpc_pmcn_read(ri), POWERPC_MAX_PMC_VALUE);
407 r = pm->pm_sc.pm_reloadcount;
408
409 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
410 /*
411 * Special case 1: r is too big
412 * This usually happens when a PMC write fails, the PMC is
413 * stopped and then it is read.
414 *
415 * Special case 2: PMC was reseted or has a value
416 * that should not be possible with current r.
417 *
418 * In the above cases, just return 0 instead of an arbitrary
419 * value.
420 */
421 if (r > POWERPC_MAX_PMC_VALUE || p + r <= POWERPC_MAX_PMC_VALUE)
422 tmp = 0;
423 else
424 tmp = POWERPC_PERFCTR_VALUE_TO_RELOAD_COUNT(p);
425 } else
426 tmp = p + (POWERPC_MAX_PMC_VALUE + 1) * PPC_OVERFLOWCNT(pm);
427
428 PMCDBG5(MDP,REA,1,"ppc-read cpu=%d ri=%d -> %jx (%jx,%jx)",
429 cpu, ri, (uintmax_t)tmp, (uintmax_t)PPC_OVERFLOWCNT(pm),
430 (uintmax_t)p);
431 *v = tmp;
432 return (0);
433 }
434
435 int
436 powerpc_write_pmc(int cpu, int ri, pmc_value_t v)
437 {
438 struct pmc *pm;
439 pmc_value_t vlo;
440
441 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
442 ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
443 KASSERT(ri >= 0 && ri < ppc_max_pmcs,
444 ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
445
446 pm = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
447
448 if (PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm))) {
449 PPC_OVERFLOWCNT(pm) = v / (POWERPC_MAX_PMC_VALUE + 1);
450 vlo = v % (POWERPC_MAX_PMC_VALUE + 1);
451 } else if (v > POWERPC_MAX_PMC_VALUE) {
452 PMCDBG3(MDP,WRI,2,
453 "powerpc-write cpu=%d ri=%d: PMC value is too big: %jx",
454 cpu, ri, (uintmax_t)v);
455 return (EINVAL);
456 } else
457 vlo = POWERPC_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
458
459 PMCDBG5(MDP,WRI,1,"powerpc-write cpu=%d ri=%d -> %jx (%jx,%jx)",
460 cpu, ri, (uintmax_t)v, (uintmax_t)PPC_OVERFLOWCNT(pm),
461 (uintmax_t)vlo);
462
463 powerpc_pmcn_write(ri, vlo);
464 return (0);
465 }
466
467 int
468 powerpc_pmc_intr(struct trapframe *tf)
469 {
470 struct pmc *pm;
471 struct powerpc_cpu *pc;
472 int cpu, error, i, retval;
473
474 cpu = curcpu;
475 KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
476 ("[powerpc,%d] out of range CPU %d", __LINE__, cpu));
477
478 PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
479 TRAPF_USERMODE(tf));
480
481 retval = 0;
482 pc = powerpc_pcpu[cpu];
483
484 /*
485 * Look for a running, sampling PMC which has overflowed
486 * and which has a valid 'struct pmc' association.
487 */
488 for (i = 0; i < ppc_max_pmcs; i++) {
489 if (!POWERPC_PMC_HAS_OVERFLOWED(i))
490 continue;
491 retval = 1; /* Found an interrupting PMC. */
492
493 /*
494 * Always clear the PMC, to make it stop interrupting.
495 * If pm is available and in sampling mode, use reload
496 * count, to make PMC read after stop correct.
497 * Otherwise, just reset the PMC.
498 */
499 if ((pm = pc->pc_ppcpmcs[i].phw_pmc) != NULL &&
500 PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
501 if (pm->pm_state != PMC_STATE_RUNNING) {
502 powerpc_write_pmc(cpu, i,
503 pm->pm_sc.pm_reloadcount);
504 continue;
505 }
506 } else {
507 if (pm != NULL) { /* !PMC_IS_SAMPLING_MODE */
508 PPC_OVERFLOWCNT(pm) = (PPC_OVERFLOWCNT(pm) +
509 1) % PPC_OVERFLOWCNT_MAX;
510 PMCDBG3(MDP,INT,2,
511 "cpu=%d ri=%d: overflowcnt=%d",
512 cpu, i, PPC_OVERFLOWCNT(pm));
513 }
514
515 powerpc_pmcn_write(i, 0);
516 continue;
517 }
518
519 error = pmc_process_interrupt(PMC_HR, pm, tf);
520 if (error != 0) {
521 PMCDBG3(MDP,INT,3,
522 "cpu=%d ri=%d: error %d processing interrupt",
523 cpu, i, error);
524 powerpc_stop_pmc(cpu, i);
525 }
526
527 /* Reload sampling count */
528 powerpc_write_pmc(cpu, i, pm->pm_sc.pm_reloadcount);
529 }
530
531 if (retval)
532 counter_u64_add(pmc_stats.pm_intr_processed, 1);
533 else
534 counter_u64_add(pmc_stats.pm_intr_ignored, 1);
535
536 /*
537 * Re-enable PERF exceptions if we were able to find the interrupt
538 * source and handle it. Otherwise, it's better to disable PERF
539 * interrupts, to avoid the risk of processing the same interrupt
540 * forever.
541 */
542 powerpc_resume_pmc(retval != 0);
543 if (retval == 0)
544 log(LOG_WARNING,
545 "pmc_intr: couldn't find interrupting PMC on cpu %d - "
546 "disabling PERF interrupts\n", cpu);
547
548 return (retval);
549 }
550
551 struct pmc_mdep *
552 pmc_md_initialize(void)
553 {
554 struct pmc_mdep *pmc_mdep;
555 int error;
556 uint16_t vers;
557
558 /*
559 * Allocate space for pointers to PMC HW descriptors and for
560 * the MDEP structure used by MI code.
561 */
562 powerpc_pcpu = malloc(sizeof(struct powerpc_cpu *) * pmc_cpu_max(), M_PMC,
563 M_WAITOK|M_ZERO);
564
565 /* Just one class */
566 pmc_mdep = pmc_mdep_alloc(1);
567
568 vers = mfpvr() >> 16;
569
570 pmc_mdep->pmd_switch_in = powerpc_switch_in;
571 pmc_mdep->pmd_switch_out = powerpc_switch_out;
572
573 switch (vers) {
574 case MPC7447A:
575 case MPC7448:
576 case MPC7450:
577 case MPC7455:
578 case MPC7457:
579 error = pmc_mpc7xxx_initialize(pmc_mdep);
580 break;
581 case IBM970:
582 case IBM970FX:
583 case IBM970MP:
584 error = pmc_ppc970_initialize(pmc_mdep);
585 break;
586 case IBMPOWER8E:
587 case IBMPOWER8NVL:
588 case IBMPOWER8:
589 case IBMPOWER9:
590 error = pmc_power8_initialize(pmc_mdep);
591 break;
592 case FSL_E500v1:
593 case FSL_E500v2:
594 case FSL_E500mc:
595 case FSL_E5500:
596 error = pmc_e500_initialize(pmc_mdep);
597 break;
598 default:
599 error = -1;
600 break;
601 }
602
603 if (error != 0) {
604 pmc_mdep_free(pmc_mdep);
605 pmc_mdep = NULL;
606 }
607
608 /* Set the value for kern.hwpmc.cpuid */
609 snprintf(pmc_cpuid, sizeof(pmc_cpuid), "%08x", mfpvr());
610
611 return (pmc_mdep);
612 }
613
614 void
615 pmc_md_finalize(struct pmc_mdep *md)
616 {
617
618 free(powerpc_pcpu, M_PMC);
619 powerpc_pcpu = NULL;
620 }
621
622 int
623 pmc_save_user_callchain(uintptr_t *cc, int maxsamples,
624 struct trapframe *tf)
625 {
626 uintptr_t *osp, *sp;
627 int frames = 0;
628
629 cc[frames++] = PMC_TRAPFRAME_TO_PC(tf);
630 sp = (uintptr_t *)PMC_TRAPFRAME_TO_FP(tf);
631 osp = NULL;
632
633 for (; frames < maxsamples; frames++) {
634 if (sp <= osp)
635 break;
636 osp = sp;
637 #ifdef __powerpc64__
638 /* Check if 32-bit mode. */
639 if (!(tf->srr1 & PSL_SF)) {
640 cc[frames] = fuword32((uint32_t *)sp + 1);
641 sp = (uintptr_t *)(uintptr_t)fuword32(sp);
642 } else {
643 cc[frames] = fuword(sp + 2);
644 sp = (uintptr_t *)fuword(sp);
645 }
646 #else
647 cc[frames] = fuword32((uint32_t *)sp + 1);
648 sp = (uintptr_t *)fuword32(sp);
649 #endif
650 }
651
652 return (frames);
653 }
Cache object: 746b4a80de100b1ce39eb1275cf2987c
|