The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/adwlib.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* $NetBSD: adwlib.c,v 1.31 2003/11/02 11:07:44 wiz Exp $        */
    2 
    3 /*
    4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
    5  *
    6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
    7  * All rights reserved.
    8  *
    9  * Author: Baldassare Dante Profeta <dante@mclink.it>
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *        This product includes software developed by the NetBSD
   22  *        Foundation, Inc. and its contributors.
   23  * 4. Neither the name of The NetBSD Foundation nor the names of its
   24  *    contributors may be used to endorse or promote products derived
   25  *    from this software without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   37  * POSSIBILITY OF SUCH DAMAGE.
   38  */
   39 /*
   40  * Ported from:
   41  */
   42 /*
   43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   44  * 
   45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
   46  * All Rights Reserved.
   47  *
   48  * Redistribution and use in source and binary forms, with or without
   49  * modification, are permitted provided that redistributions of source
   50  * code retain the above copyright notice and this comment without
   51  * modification.
   52  */
   53 
   54 #include <sys/cdefs.h>
   55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.31 2003/11/02 11:07:44 wiz Exp $");
   56 
   57 #include <sys/param.h>
   58 #include <sys/systm.h>
   59 #include <sys/malloc.h>
   60 #include <sys/kernel.h>
   61 #include <sys/queue.h>
   62 #include <sys/device.h>
   63 
   64 #include <machine/bus.h>
   65 #include <machine/intr.h>
   66 
   67 #include <dev/scsipi/scsi_all.h>
   68 #include <dev/scsipi/scsipi_all.h>
   69 #include <dev/scsipi/scsiconf.h>
   70 
   71 #include <dev/pci/pcidevs.h>
   72 
   73 #include <uvm/uvm_extern.h>
   74 
   75 #include <dev/ic/adwlib.h>
   76 #include <dev/ic/adwmcode.h>
   77 #include <dev/ic/adw.h>
   78 
   79 
   80 /* Static Functions */
   81 
   82 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
   83 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
   84                                                                 u_int8_t));
   85 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
   86 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
   87                                                                 ADW_DVC_CFG *));
   88 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
   89                                                                 ADW_DVC_CFG *));
   90 
   91 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
   92                                                         ADW_EEPROM *));
   93 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
   94                                                          ADW_EEPROM *));
   95 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
   96 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
   97 
   98 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
   99 
  100 static void AdwSleepMilliSecond __P((u_int32_t));
  101 static void AdwDelayMicroSecond __P((u_int32_t));
  102 
  103 
  104 /*
  105  * EEPROM Configuration.
  106  *
  107  * All drivers should use this structure to set the default EEPROM
  108  * configuration. The BIOS now uses this structure when it is built.
  109  * Additional structure information can be found in adwlib.h where
  110  * the structure is defined.
  111  */
  112 const static ADW_EEPROM adw_3550_Default_EEPROM = {
  113         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  114         0x0000,                 /* 01 cfg_msw */
  115         0xFFFF,                 /* 02 disc_enable */
  116         0xFFFF,                 /* 03 wdtr_able */
  117         { 0xFFFF },             /* 04 sdtr_able */
  118         0xFFFF,                 /* 05 start_motor */
  119         0xFFFF,                 /* 06 tagqng_able */
  120         0xFFFF,                 /* 07 bios_scan */
  121         0,                      /* 08 scam_tolerant */
  122         7,                      /* 09 adapter_scsi_id */
  123         0,                      /*    bios_boot_delay */
  124         3,                      /* 10 scsi_reset_delay */
  125         0,                      /*    bios_id_lun */
  126         0,                      /* 11 termination */
  127         0,                      /*    reserved1 */
  128         0xFFE7,                 /* 12 bios_ctrl */
  129         { 0xFFFF },             /* 13 ultra_able */
  130         { 0 },                  /* 14 reserved2 */
  131         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  132         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  133         0,                      /* 16 dvc_cntl */
  134         { 0 },                  /* 17 bug_fix */
  135         { 0,0,0 },              /* 18-20 serial_number[3] */
  136         0,                      /* 21 check_sum */
  137         {                       /* 22-29 oem_name[16] */
  138           0,0,0,0,0,0,0,0,
  139           0,0,0,0,0,0,0,0
  140         },
  141         0,                      /* 30 dvc_err_code */
  142         0,                      /* 31 adv_err_code */
  143         0,                      /* 32 adv_err_addr */
  144         0,                      /* 33 saved_dvc_err_code */
  145         0,                      /* 34 saved_adv_err_code */
  146         0                       /* 35 saved_adv_err_addr */
  147 };
  148 
  149 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
  150         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  151         0x0000,                 /* 01 cfg_msw */
  152         0xFFFF,                 /* 02 disc_enable */
  153         0xFFFF,                 /* 03 wdtr_able */
  154         { 0x4444 },             /* 04 sdtr_speed1 */
  155         0xFFFF,                 /* 05 start_motor */
  156         0xFFFF,                 /* 06 tagqng_able */
  157         0xFFFF,                 /* 07 bios_scan */
  158         0,                      /* 08 scam_tolerant */
  159         7,                      /* 09 adapter_scsi_id */
  160         0,                      /*    bios_boot_delay */
  161         3,                      /* 10 scsi_reset_delay */
  162         0,                      /*    bios_id_lun */
  163         0,                      /* 11 termination_se */
  164         0,                      /*    termination_lvd */
  165         0xFFE7,                 /* 12 bios_ctrl */
  166         { 0x4444 },             /* 13 sdtr_speed2 */
  167         { 0x4444 },             /* 14 sdtr_speed3 */
  168         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  169         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  170         0,                      /* 16 dvc_cntl */
  171         { 0x4444 },             /* 17 sdtr_speed4 */
  172         { 0,0,0 },              /* 18-20 serial_number[3] */
  173         0,                      /* 21 check_sum */
  174         {                       /* 22-29 oem_name[16] */
  175           0,0,0,0,0,0,0,0,
  176           0,0,0,0,0,0,0,0
  177         },
  178         0,                      /* 30 dvc_err_code */
  179         0,                      /* 31 adv_err_code */
  180         0,                      /* 32 adv_err_addr */
  181         0,                      /* 33 saved_dvc_err_code */
  182         0,                      /* 34 saved_adv_err_code */
  183         0,                      /* 35 saved_adv_err_addr */
  184         {                       /* 36-55 reserved1[16] */
  185           0,0,0,0,0,0,0,0,0,0,
  186           0,0,0,0,0,0,0,0,0,0
  187         },
  188         0,                      /* 56 cisptr_lsw */
  189         0,                      /* 57 cisprt_msw */
  190         PCI_VENDOR_ADVSYS,      /* 58 subsysvid */
  191         PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
  192         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  193 };
  194 
  195 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
  196         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  197         0x0000,                 /* 01 cfg_msw */
  198         0xFFFF,                 /* 02 disc_enable */
  199         0xFFFF,                 /* 03 wdtr_able */
  200         { 0x5555 },             /* 04 sdtr_speed1 */
  201         0xFFFF,                 /* 05 start_motor */
  202         0xFFFF,                 /* 06 tagqng_able */
  203         0xFFFF,                 /* 07 bios_scan */
  204         0,                      /* 08 scam_tolerant */
  205         7,                      /* 09 adapter_scsi_id */
  206         0,                      /*    bios_boot_delay */
  207         3,                      /* 10 scsi_reset_delay */
  208         0,                      /*    bios_id_lun */
  209         0,                      /* 11 termination_se */
  210         0,                      /*    termination_lvd */
  211         0xFFE7,                 /* 12 bios_ctrl */
  212         { 0x5555 },             /* 13 sdtr_speed2 */
  213         { 0x5555 },             /* 14 sdtr_speed3 */
  214         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  215         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  216         0,                      /* 16 dvc_cntl */
  217         { 0x5555 },             /* 17 sdtr_speed4 */
  218         { 0,0,0 },              /* 18-20 serial_number[3] */
  219         0,                      /* 21 check_sum */
  220         {                       /* 22-29 oem_name[16] */
  221           0,0,0,0,0,0,0,0,
  222           0,0,0,0,0,0,0,0
  223         },
  224         0,                      /* 30 dvc_err_code */
  225         0,                      /* 31 adv_err_code */
  226         0,                      /* 32 adv_err_addr */
  227         0,                      /* 33 saved_dvc_err_code */
  228         0,                      /* 34 saved_adv_err_code */
  229         0,                      /* 35 saved_adv_err_addr */
  230         {                       /* 36-55 reserved1[16] */
  231           0,0,0,0,0,0,0,0,0,0,
  232           0,0,0,0,0,0,0,0,0,0
  233         },
  234         0,                      /* 56 cisptr_lsw */
  235         0,                      /* 57 cisprt_msw */
  236         PCI_VENDOR_ADVSYS,      /* 58 subsysvid */
  237         PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
  238         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  239 };
  240 
  241 
  242 /*
  243  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
  244  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
  245  * all of this is done.
  246  *
  247  * For a non-fatal error return a warning code. If there are no warnings
  248  * then 0 is returned.
  249  *
  250  * Note: Chip is stopped on entry.
  251  */
  252 int
  253 AdwInitFromEEPROM(sc)
  254 ADW_SOFTC      *sc;
  255 {
  256         bus_space_tag_t iot = sc->sc_iot;
  257         bus_space_handle_t ioh = sc->sc_ioh;
  258         ADW_EEPROM              eep_config;
  259         u_int16_t               warn_code;
  260         u_int16_t               sdtr_speed = 0;
  261         u_int8_t                tid, termination;
  262         int                     i, j;
  263 
  264 
  265         warn_code = 0;
  266 
  267         /*
  268          * Read the board's EEPROM configuration.
  269          *
  270          * Set default values if a bad checksum is found.
  271          *
  272          * XXX - Don't handle big-endian access to EEPROM yet.
  273          */
  274         if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
  275                 warn_code |= ADW_WARN_EEPROM_CHKSUM;
  276 
  277                 /*
  278                  * Set EEPROM default values.
  279                  */
  280                 switch(sc->chip_type) {
  281                 case ADW_CHIP_ASC3550:
  282                         eep_config = adw_3550_Default_EEPROM;
  283                         break;
  284                 case ADW_CHIP_ASC38C0800:
  285                         eep_config = adw_38C0800_Default_EEPROM;
  286                         break;
  287                 case ADW_CHIP_ASC38C1600:
  288                         eep_config = adw_38C1600_Default_EEPROM;
  289 
  290 #if 0
  291 XXX       TODO!!!       if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
  292 #endif
  293                         if (sc->cfg.pci_slot_info != 0) {
  294                                 u_int8_t lsw_msb;
  295 
  296                                 lsw_msb = eep_config.cfg_lsw >> 8;
  297                                 /*
  298                                  * Set Function 1 EEPROM Word 0 MSB
  299                                  *
  300                                  * Clear the BIOS_ENABLE (bit 14) and
  301                                  * INTAB (bit 11) EEPROM bits.
  302                                  *
  303                                  * Disable Bit 14 (BIOS_ENABLE) to fix
  304                                  * SPARC Ultra 60 and old Mac system booting
  305                                  * problem. The Expansion ROM must
  306                                  * be disabled in Function 1 for these systems.
  307                                  */
  308                                 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
  309                                                 ADW_EEPROM_INTAB) >> 8) & 0xFF);
  310                                 /*
  311                                  * Set the INTAB (bit 11) if the GPIO 0 input
  312                                  * indicates the Function 1 interrupt line is
  313                                  * wired to INTA.
  314                                  *
  315                                  * Set/Clear Bit 11 (INTAB) from
  316                                  * the GPIO bit 0 input:
  317                                  *   1 - Function 1 intr line wired to INT A.
  318                                  *   0 - Function 1 intr line wired to INT B.
  319                                  *
  320                                  * Note: Adapter boards always have Function 0
  321                                  * wired to INTA.
  322                                  * Put all 5 GPIO bits in input mode and then
  323                                  * read their input values.
  324                                  */
  325                                 ADW_WRITE_BYTE_REGISTER(iot, ioh,
  326                                                         IOPB_GPIO_CNTL, 0);
  327                                 if (ADW_READ_BYTE_REGISTER(iot, ioh,
  328                                                 IOPB_GPIO_DATA) & 0x01) {
  329                                         /*
  330                                          * Function 1 interrupt wired to INTA;
  331                                          * Set EEPROM bit.
  332                                          */
  333                                         lsw_msb |= (ADW_EEPROM_INTAB >> 8)
  334                                                          & 0xFF;
  335                                  }
  336                                  eep_config.cfg_lsw &= 0x00FF;
  337                                  eep_config.cfg_lsw |= lsw_msb << 8;
  338                         }
  339                         break;
  340                 }
  341 
  342                 /*
  343                  * Assume the 6 byte board serial number that was read
  344                  * from EEPROM is correct even if the EEPROM checksum
  345                  * failed.
  346                  */
  347                 for (i=2, j=1; i>=0; i--, j++) {
  348                 eep_config.serial_number[i] =
  349                         AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
  350                 }
  351 
  352                 AdwSetEEPROMConfig(iot, ioh, &eep_config);
  353         }
  354         /*
  355          * Set sc and sc->cfg variables from the EEPROM configuration
  356          * that was read.
  357          *
  358          * This is the mapping of EEPROM fields to Adw Library fields.
  359          */
  360         sc->wdtr_able = eep_config.wdtr_able;
  361         if (sc->chip_type == ADW_CHIP_ASC3550) {
  362                 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
  363                 sc->ultra_able = eep_config.sdtr2.ultra_able;
  364         } else {
  365                 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
  366                 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
  367                 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
  368                 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
  369         }
  370         sc->ppr_able = 0;
  371         sc->tagqng_able = eep_config.tagqng_able;
  372         sc->cfg.disc_enable = eep_config.disc_enable;
  373         sc->max_host_qng = eep_config.max_host_qng;
  374         sc->max_dvc_qng = eep_config.max_dvc_qng;
  375         sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
  376         sc->start_motor = eep_config.start_motor;
  377         sc->scsi_reset_wait = eep_config.scsi_reset_delay;
  378         sc->bios_ctrl = eep_config.bios_ctrl;
  379         sc->no_scam = eep_config.scam_tolerant;
  380         sc->cfg.serial1 = eep_config.serial_number[0];
  381         sc->cfg.serial2 = eep_config.serial_number[1];
  382         sc->cfg.serial3 = eep_config.serial_number[2];
  383 
  384         if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
  385             sc->chip_type == ADW_CHIP_ASC38C1600) {
  386                 sc->sdtr_able = 0;
  387                 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  388                         if (tid == 0) {
  389                                 sdtr_speed = sc->sdtr_speed1;
  390                         } else if (tid == 4) {
  391                                 sdtr_speed = sc->sdtr_speed2;
  392                         } else if (tid == 8) {
  393                                 sdtr_speed = sc->sdtr_speed3;
  394                         } else if (tid == 12) {
  395                                 sdtr_speed = sc->sdtr_speed4;
  396                         }
  397                         if (sdtr_speed & ADW_MAX_TID) {
  398                                 sc->sdtr_able |= (1 << tid);
  399                         }
  400                         sdtr_speed >>= 4;
  401                 }
  402         }
  403 
  404         /*
  405          * Set the host maximum queuing (max. 253, min. 16) and the per device
  406          * maximum queuing (max. 63, min. 4).
  407          */
  408         if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
  409                 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
  410         } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
  411         {
  412                 /* If the value is zero, assume it is uninitialized. */
  413                 if (eep_config.max_host_qng == 0) {
  414                         eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
  415                 } else {
  416                         eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
  417                 }
  418         }
  419 
  420         if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
  421                 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
  422         } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
  423                 /* If the value is zero, assume it is uninitialized. */
  424                 if (eep_config.max_dvc_qng == 0) {
  425                         eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
  426                 } else {
  427                         eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
  428                 }
  429         }
  430 
  431         /*
  432          * If 'max_dvc_qng' is greater than 'max_host_qng', then
  433          * set 'max_dvc_qng' to 'max_host_qng'.
  434          */
  435         if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
  436                 eep_config.max_dvc_qng = eep_config.max_host_qng;
  437         }
  438 
  439         /*
  440          * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
  441          * values based on possibly adjusted EEPROM values.
  442          */
  443         sc->max_host_qng = eep_config.max_host_qng;
  444         sc->max_dvc_qng = eep_config.max_dvc_qng;
  445 
  446 
  447         /*
  448          * If the EEPROM 'termination' field is set to automatic (0), then set
  449          * the ADV_DVC_CFG 'termination' field to automatic also.
  450          *
  451          * If the termination is specified with a non-zero 'termination'
  452          * value check that a legal value is set and set the ADV_DVC_CFG
  453          * 'termination' field appropriately.
  454          */
  455 
  456         switch(sc->chip_type) {
  457         case ADW_CHIP_ASC3550:
  458                 sc->cfg.termination = 0;        /* auto termination */
  459                 switch(eep_config.termination_se) {
  460                 case 3:
  461                         /* Enable manual control with low on / high on. */
  462                         sc->cfg.termination |= ADW_TERM_CTL_L;
  463                 case 2:
  464                         /* Enable manual control with low off / high on. */
  465                         sc->cfg.termination |= ADW_TERM_CTL_H;
  466                 case 1:
  467                         /* Enable manual control with low off / high off. */
  468                         sc->cfg.termination |= ADW_TERM_CTL_SEL;
  469                 case 0:
  470                         break;
  471                 default:
  472                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  473                 }
  474                 break;
  475 
  476         case ADW_CHIP_ASC38C0800:
  477         case ADW_CHIP_ASC38C1600:
  478                 switch(eep_config.termination_se) {
  479                 case 0:
  480                         /* auto termination for SE */
  481                         termination = 0;
  482                         break;
  483                 case 1:
  484                         /* Enable manual control with low off / high off. */
  485                         termination = 0;
  486                         break;
  487                 case 2:
  488                         /* Enable manual control with low off / high on. */
  489                         termination = ADW_TERM_SE_HI;
  490                         break;
  491                 case 3:
  492                         /* Enable manual control with low on / high on. */
  493                         termination = ADW_TERM_SE;
  494                         break;
  495                 default:
  496                         /*
  497                          * The EEPROM 'termination_se' field contains a
  498                          * bad value. Use automatic termination instead.
  499                          */
  500                         termination = 0;
  501                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  502                 }
  503 
  504                 switch(eep_config.termination_lvd) {
  505                 case 0:
  506                         /* auto termination for LVD */
  507                         sc->cfg.termination = termination;
  508                         break;
  509                 case 1:
  510                         /* Enable manual control with low off / high off. */
  511                         sc->cfg.termination = termination;
  512                         break;
  513                 case 2:
  514                         /* Enable manual control with low off / high on. */
  515                         sc->cfg.termination = termination | ADW_TERM_LVD_HI;
  516                         break;
  517                 case 3:
  518                         /* Enable manual control with low on / high on. */
  519                         sc->cfg.termination = termination | ADW_TERM_LVD;
  520                         break;
  521                 default:
  522                         /*
  523                          * The EEPROM 'termination_lvd' field contains a
  524                          * bad value. Use automatic termination instead.
  525                          */
  526                         sc->cfg.termination = termination;
  527                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  528                 }
  529                 break;
  530         }
  531 
  532         return warn_code;
  533 }
  534 
  535 
  536 /*
  537  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
  538  *
  539  * On failure return the error code.
  540  */
  541 int
  542 AdwInitDriver(sc)
  543 ADW_SOFTC      *sc;
  544 {
  545         bus_space_tag_t iot = sc->sc_iot;
  546         bus_space_handle_t ioh = sc->sc_ioh;
  547         u_int16_t       error_code;
  548         int             word;
  549         int             i;
  550         u_int16_t       bios_mem[ADW_MC_BIOSLEN/2];     /* BIOS RISC Memory
  551                                                                 0x40-0x8F. */
  552         u_int16_t       wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
  553         u_int8_t        max_cmd[ADW_MAX_TID + 1];
  554         u_int8_t        tid;
  555 
  556 
  557         error_code = 0;
  558 
  559         /*
  560          * Save the RISC memory BIOS region before writing the microcode.
  561          * The BIOS may already be loaded and using its RISC LRAM region
  562          * so its region must be saved and restored.
  563          *
  564          * Note: This code makes the assumption, which is currently true,
  565          * that a chip reset does not clear RISC LRAM.
  566          */
  567         for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
  568                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
  569         }
  570 
  571         /*
  572          * Save current per TID negotiated values.
  573          */
  574         switch (sc->chip_type) {
  575         case ADW_CHIP_ASC3550:
  576                 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
  577 
  578                         u_int16_t  bios_version, major, minor;
  579 
  580                         bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
  581                                         ADW_MC_BIOSMEM) / 2];
  582                         major = (bios_version  >> 12) & 0xF;
  583                         minor = (bios_version  >> 8) & 0xF;
  584                         if (major < 3 || (major == 3 && minor == 1)) {
  585                             /*
  586                              * BIOS 3.1 and earlier location of
  587                              * 'wdtr_able' variable.
  588                              */
  589                             ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
  590                         } else {
  591                             ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
  592                                             wdtr_able);
  593                         }
  594                 }
  595                 break;
  596 
  597         case ADW_CHIP_ASC38C1600:
  598                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
  599                 /* FALLTHROUGH */
  600         case ADW_CHIP_ASC38C0800:
  601                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
  602                 break;
  603         }
  604         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
  605         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
  606         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  607                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
  608                         max_cmd[tid]);
  609         }
  610 
  611         /*
  612          * Perform a RAM Built-In Self Test
  613          */
  614         if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
  615                 return error_code;
  616         }
  617 
  618         /*
  619          * Load the Microcode
  620          */
  621         ;
  622         if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
  623                 return error_code;
  624         }
  625 
  626         /*
  627          * Read microcode version and date.
  628          */
  629         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
  630         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
  631 
  632         /*
  633          * If the PCI Configuration Command Register "Parity Error Response
  634          * Control" Bit was clear (0), then set the microcode variable
  635          * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
  636          * to ignore DMA parity errors.
  637          */
  638         if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
  639                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
  640                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
  641                                         word | CONTROL_FLAG_IGNORE_PERR);
  642         }
  643 
  644         switch (sc->chip_type) {
  645         case ADW_CHIP_ASC3550:
  646                 /*
  647                  * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
  648                  * FIFO threshold of 128 bytes.
  649                  * This register is only accessible to the host.
  650                  */
  651                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  652                                 START_CTL_EMFU | READ_CMD_MRM);
  653                 break;
  654 
  655         case ADW_CHIP_ASC38C0800:
  656                 /*
  657                  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
  658                  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
  659                  * cable detection and then we are able to read C_DET[3:0].
  660                  *
  661                  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
  662                  * Microcode Default Value' section below.
  663                  */
  664                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
  665                                 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
  666                                 | ADW_DIS_TERM_DRV);
  667 
  668                 /*
  669                  * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
  670                  * START_CTL_TH [3:2] bits for the default FIFO threshold.
  671                  *
  672                  * Note: ASC-38C0800 FIFO threshold has been changed to
  673                  * 256 bytes.
  674                  *
  675                  * For DMA Errata #4 set the BC_THRESH_ENB bit.
  676                  */
  677                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  678                                                 BC_THRESH_ENB | FIFO_THRESH_80B
  679                                                 | START_CTL_TH | READ_CMD_MRM);
  680                 break;
  681 
  682         case ADW_CHIP_ASC38C1600:
  683                 /*
  684                  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
  685                  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
  686                  * cable detection and then we are able to read C_DET[3:0].
  687                  *
  688                  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
  689                  * Microcode Default Value' section below.
  690                  */
  691                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
  692                                 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
  693                                 | ADW_DIS_TERM_DRV);
  694 
  695                 /*
  696                  * If the BIOS control flag AIPP (Asynchronous Information
  697                  * Phase Protection) disable bit is not set, then set the
  698                  * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
  699                  * enable AIPP checking and encoding.
  700                  */
  701                 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
  702                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
  703                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
  704                                         word | CONTROL_FLAG_ENABLE_AIPP);
  705                 }
  706 
  707                 /*
  708                  * For ASC-38C1600 use DMA_CFG0 default values:
  709                  * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
  710                  */
  711                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  712                                 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
  713                 break;
  714         }
  715 
  716         /*
  717          * Microcode operating variables for WDTR, SDTR, and command tag
  718          * queuing will be set in AdvInquiryHandling() based on what a
  719          * device reports it is capable of in Inquiry byte 7.
  720          *
  721          * If SCSI Bus Resets have been disabled, then directly set
  722          * SDTR and WDTR from the EEPROM configuration. This will allow
  723          * the BIOS and warm boot to work without a SCSI bus hang on
  724          * the Inquiry caused by host and target mismatched DTR values.
  725          * Without the SCSI Bus Reset, before an Inquiry a device can't
  726          * be assumed to be in Asynchronous, Narrow mode.
  727          */
  728         if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
  729                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
  730                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
  731         }
  732 
  733         /*
  734          * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
  735          * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
  736          * bitmask. These values determine the maximum SDTR speed negotiated
  737          * with a device.
  738          *
  739          * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
  740          * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
  741          * without determining here whether the device supports SDTR.
  742          */
  743         switch (sc->chip_type) {
  744         case ADW_CHIP_ASC3550:
  745                 word = 0;
  746                 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  747                         if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
  748                                 /* Set Ultra speed for TID 'tid'. */
  749                                 word |= (0x3 << (4 * (tid % 4)));
  750                         } else {
  751                                 /* Set Fast speed for TID 'tid'. */
  752                                 word |= (0x2 << (4 * (tid % 4)));
  753                         }
  754                         /* Check if done with sdtr_speed1. */
  755                         if (tid == 3) {
  756                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  757                                                 ADW_MC_SDTR_SPEED1, word);
  758                                 word = 0;
  759                         /* Check if done with sdtr_speed2. */
  760                         } else if (tid == 7) {
  761                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  762                                                 ADW_MC_SDTR_SPEED2, word);
  763                                 word = 0;
  764                         /* Check if done with sdtr_speed3. */
  765                         } else if (tid == 11) {
  766                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  767                                                 ADW_MC_SDTR_SPEED3, word);
  768                                 word = 0;
  769                         /* Check if done with sdtr_speed4. */
  770                         } else if (tid == 15) {
  771                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  772                                                 ADW_MC_SDTR_SPEED4, word);
  773                                 /* End of loop. */
  774                         }
  775                 }
  776 
  777                 /*
  778                  * Set microcode operating variable for the
  779                  * disconnect per TID bitmask.
  780                  */
  781                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
  782                                                         sc->cfg.disc_enable);
  783                 break;
  784 
  785         case ADW_CHIP_ASC38C0800:
  786                 /* FALLTHROUGH */
  787         case ADW_CHIP_ASC38C1600:
  788                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
  789                                                         sc->cfg.disc_enable);
  790                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
  791                                                         sc->sdtr_speed1);
  792                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
  793                                                         sc->sdtr_speed2);
  794                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
  795                                                         sc->sdtr_speed3);
  796                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
  797                                                         sc->sdtr_speed4);
  798                 break;
  799         }
  800 
  801 
  802         /*
  803          * Set SCSI_CFG0 Microcode Default Value.
  804          *
  805          * The microcode will set the SCSI_CFG0 register using this value
  806          * after it is started below.
  807          */
  808         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
  809                 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
  810                 ADW_OUR_ID_EN | sc->chip_scsi_id);
  811 
  812 
  813         switch(sc->chip_type) {
  814         case ADW_CHIP_ASC3550:
  815                 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
  816                 break;
  817 
  818         case ADW_CHIP_ASC38C0800:
  819                 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
  820                 break;
  821 
  822         case ADW_CHIP_ASC38C1600:
  823                 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
  824                 break;
  825         }
  826         if(error_code) {
  827                 return error_code;
  828         }
  829 
  830         /*
  831          * Set SEL_MASK Microcode Default Value
  832          *
  833          * The microcode will set the SEL_MASK register using this value
  834          * after it is started below.
  835          */
  836         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
  837                 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
  838 
  839         /*
  840          * Create and Initialize Host->RISC Carrier lists
  841          */
  842         sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
  843                                                 sc->sc_control->carriers);
  844 
  845         /*
  846          * Set-up the Host->RISC Initiator Command Queue (ICQ).
  847          */
  848 
  849         if ((sc->icq_sp = sc->carr_freelist) == NULL) {
  850                 return ADW_IERR_NO_CARRIER;
  851         }
  852         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
  853                         ASC_GET_CARRP(sc->icq_sp->next_ba));
  854 
  855         /*
  856          * The first command issued will be placed in the stopper carrier.
  857          */
  858         sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
  859 
  860         /*
  861          * Set RISC ICQ physical address start value.
  862          */
  863         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
  864 
  865         /*
  866          * Initialize the COMMA register to the same value otherwise
  867          * the RISC will prematurely detect a command is available.
  868          */
  869         if(sc->chip_type == ADW_CHIP_ASC38C1600) {
  870                 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
  871                                                 le32toh(sc->icq_sp->carr_ba));
  872         }
  873 
  874         /*
  875          * Set-up the RISC->Host Initiator Response Queue (IRQ).
  876          */
  877         if ((sc->irq_sp = sc->carr_freelist) == NULL) {
  878                 return ADW_IERR_NO_CARRIER;
  879         }
  880         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
  881                         ASC_GET_CARRP(sc->irq_sp->next_ba));
  882 
  883         /*
  884          * The first command completed by the RISC will be placed in
  885          * the stopper.
  886          *
  887          * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
  888          * completed the RISC will set the ASC_RQ_DONE bit.
  889          */
  890         sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
  891 
  892         /*
  893          * Set RISC IRQ physical address start value.
  894          */
  895         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
  896         sc->carr_pending_cnt = 0;
  897 
  898         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
  899                 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
  900         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
  901         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
  902 
  903         /* finally, finally, gentlemen, start your engine */
  904         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
  905 
  906         /*
  907          * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
  908          * Resets should be performed. The RISC has to be running
  909          * to issue a SCSI Bus Reset.
  910          */
  911         if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
  912         {
  913                 /*
  914                  * If the BIOS Signature is present in memory, restore the
  915                  * BIOS Handshake Configuration Table and do not perform
  916                  * a SCSI Bus Reset.
  917                  */
  918                 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
  919                                 0x55AA) {
  920                         /*
  921                          * Restore per TID negotiated values.
  922                          */
  923                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
  924                                         wdtr_able);
  925                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
  926                                         sdtr_able);
  927                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
  928                                         tagqng_able);
  929                         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  930                                 ADW_WRITE_BYTE_LRAM(iot, ioh,
  931                                                 ADW_MC_NUMBER_OF_MAX_CMD + tid,
  932                                                 max_cmd[tid]);
  933                         }
  934                 } else {
  935                         if (AdwResetCCB(sc) != ADW_TRUE) {
  936                                 error_code = ADW_WARN_BUSRESET_ERROR;
  937                         }
  938                 }
  939         }
  940 
  941         return error_code;
  942 }
  943 
  944 
  945 int
  946 AdwRamSelfTest(iot, ioh, chip_type)
  947         bus_space_tag_t iot;
  948         bus_space_handle_t ioh;
  949         u_int8_t chip_type;
  950 {
  951         int             i;
  952         u_int8_t        byte;
  953 
  954 
  955         if ((chip_type == ADW_CHIP_ASC38C0800) ||
  956             (chip_type == ADW_CHIP_ASC38C1600)) {
  957                 /*
  958                  * RAM BIST (RAM Built-In Self Test)
  959                  *
  960                  * Address : I/O base + offset 0x38h register (byte).
  961                  * Function: Bit 7-6(RW) : RAM mode
  962                  *                          Normal Mode   : 0x00
  963                  *                          Pre-test Mode : 0x40
  964                  *                          RAM Test Mode : 0x80
  965                  *           Bit 5       : unused
  966                  *           Bit 4(RO)   : Done bit
  967                  *           Bit 3-0(RO) : Status
  968                  *                          Host Error    : 0x08
  969                  *                          Int_RAM Error : 0x04
  970                  *                          RISC Error    : 0x02
  971                  *                          SCSI Error    : 0x01
  972                  *                          No Error      : 0x00
  973                  *
  974                  * Note: RAM BIST code should be put right here, before loading
  975                  * the microcode and after saving the RISC memory BIOS region.
  976                  */
  977 
  978                 /*
  979                  * LRAM Pre-test
  980                  *
  981                  * Write PRE_TEST_MODE (0x40) to register and wait for
  982                  * 10 milliseconds.
  983                  * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
  984                  * return an error. Reset to NORMAL_MODE (0x00) and do again.
  985                  * If cannot reset to NORMAL_MODE, return an error too.
  986                  */
  987                 for (i = 0; i < 2; i++) {
  988                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
  989                                         PRE_TEST_MODE);
  990                          /* Wait for 10ms before reading back. */
  991                         AdwSleepMilliSecond(10);
  992                         byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
  993                         if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
  994                                         PRE_TEST_VALUE) {
  995                                 return ADW_IERR_BIST_PRE_TEST;
  996                         }
  997 
  998                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
  999                                                                 NORMAL_MODE);
 1000                         /* Wait for 10ms before reading back. */
 1001                         AdwSleepMilliSecond(10);
 1002                         if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
 1003                             != NORMAL_VALUE) {
 1004                                 return ADW_IERR_BIST_PRE_TEST;
 1005                         }
 1006                 }
 1007 
 1008                 /*
 1009                  * LRAM Test - It takes about 1.5 ms to run through the test.
 1010                  *
 1011                  * Write RAM_TEST_MODE (0x80) to register and wait for
 1012                  * 10 milliseconds.
 1013                  * If Done bit not set or Status not 0, save register byte,
 1014                  * set the err_code, and return an error.
 1015                  */
 1016                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
 1017                 /* Wait for 10ms before checking status. */
 1018                 AdwSleepMilliSecond(10);
 1019 
 1020                 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
 1021                 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
 1022                         /* Get here if Done bit not set or Status not 0. */
 1023                         return ADW_IERR_BIST_RAM_TEST;
 1024                 }
 1025 
 1026                 /* We need to reset back to normal mode after LRAM test passes*/
 1027                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
 1028         }
 1029 
 1030         return 0;
 1031 }
 1032 
 1033 
 1034 int
 1035 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
 1036         bus_space_tag_t iot;
 1037         bus_space_handle_t ioh;
 1038         u_int16_t *bios_mem;
 1039         u_int8_t chip_type;
 1040 {
 1041         u_int8_t        *mcode_data;
 1042         u_int32_t        mcode_chksum;
 1043         u_int16_t        mcode_size;
 1044         u_int32_t       sum;
 1045         u_int16_t       code_sum;
 1046         int             begin_addr;
 1047         int             end_addr;
 1048         int             word;
 1049         int             adw_memsize;
 1050         int             adw_mcode_expanded_size;
 1051         int             i, j;
 1052 
 1053 
 1054         switch(chip_type) {
 1055         case ADW_CHIP_ASC3550:
 1056                 mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
 1057                 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
 1058                 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
 1059                 adw_memsize = ADW_3550_MEMSIZE;
 1060                 break;
 1061 
 1062         case ADW_CHIP_ASC38C0800:
 1063                 mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
 1064                 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
 1065                 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
 1066                 adw_memsize = ADW_38C0800_MEMSIZE;
 1067                 break;
 1068 
 1069         case ADW_CHIP_ASC38C1600:
 1070                 mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
 1071                 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
 1072                 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
 1073                 adw_memsize = ADW_38C1600_MEMSIZE;
 1074                 break;
 1075 
 1076         default:
 1077                 return (EINVAL);
 1078         }
 1079 
 1080         /*
 1081          * Write the microcode image to RISC memory starting at address 0.
 1082          */
 1083         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
 1084 
 1085         /* Assume the following compressed format of the microcode buffer:
 1086          *
 1087          *  254 word (508 byte) table indexed by byte code followed
 1088          *  by the following byte codes:
 1089          *
 1090          *    1-Byte Code:
 1091          *      00: Emit word 0 in table.
 1092          *      01: Emit word 1 in table.
 1093          *      .
 1094          *      FD: Emit word 253 in table.
 1095          *
 1096          *    Multi-Byte Code:
 1097          *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
 1098          *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
 1099          */
 1100         word = 0;
 1101         for (i = 253 * 2; i < mcode_size; i++) {
 1102                 if (mcode_data[i] == 0xff) {
 1103                         for (j = 0; j < mcode_data[i + 1]; j++) {
 1104                                 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
 1105                                   (((u_int16_t)mcode_data[i + 3] << 8) |
 1106                                   mcode_data[i + 2]));
 1107                                 word++;
 1108                         }
 1109                         i += 3;
 1110                 } else if (mcode_data[i] == 0xfe) {
 1111                         ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
 1112                             (((u_int16_t)mcode_data[i + 2] << 8) |
 1113                             mcode_data[i + 1]));
 1114                         i += 2;
 1115                         word++;
 1116                 } else {
 1117                         ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
 1118                          mcode_data[(mcode_data[i] * 2) + 1] <<8) |
 1119                          mcode_data[mcode_data[i] * 2]));
 1120                         word++;
 1121                 }
 1122         }
 1123 
 1124         /*
 1125          * Set 'word' for later use to clear the rest of memory and save
 1126          * the expanded mcode size.
 1127          */
 1128         word *= 2;
 1129         adw_mcode_expanded_size = word;
 1130 
 1131         /*
 1132          * Clear the rest of the Internal RAM.
 1133          */
 1134         for (; word < adw_memsize; word += 2) {
 1135                 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
 1136         }
 1137 
 1138         /*
 1139          * Verify the microcode checksum.
 1140          */
 1141         sum = 0;
 1142         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
 1143 
 1144         for (word = 0; word < adw_mcode_expanded_size; word += 2) {
 1145                 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
 1146         }
 1147 
 1148         if (sum != mcode_chksum) {
 1149                 return ADW_IERR_MCODE_CHKSUM;
 1150         }
 1151 
 1152         /*
 1153          * Restore the RISC memory BIOS region.
 1154          */
 1155         for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
 1156                 if(chip_type == ADW_CHIP_ASC3550) {
 1157                         ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
 1158                                                                 bios_mem[i]);
 1159                 } else {
 1160                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
 1161                                                                 bios_mem[i]);
 1162                 }
 1163         }
 1164 
 1165         /*
 1166          * Calculate and write the microcode code checksum to the microcode
 1167          * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
 1168          */
 1169         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
 1170         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
 1171         code_sum = 0;
 1172         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
 1173         for (word = begin_addr; word < end_addr; word += 2) {
 1174                 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
 1175         }
 1176         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
 1177 
 1178         /*
 1179          * Set the chip type.
 1180          */
 1181         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
 1182 
 1183         return 0;
 1184 }
 1185 
 1186 
 1187 int
 1188 AdwASC3550Cabling(iot, ioh, cfg)
 1189         bus_space_tag_t iot;
 1190         bus_space_handle_t ioh;
 1191         ADW_DVC_CFG *cfg;
 1192 {
 1193         u_int16_t       scsi_cfg1;
 1194 
 1195 
 1196         /*
 1197          * Determine SCSI_CFG1 Microcode Default Value.
 1198          *
 1199          * The microcode will set the SCSI_CFG1 register using this value
 1200          * after it is started below.
 1201          */
 1202 
 1203         /* Read current SCSI_CFG1 Register value. */
 1204         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1205 
 1206         /*
 1207          * If all three connectors are in use in ASC3550, return an error.
 1208          */
 1209         if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
 1210              (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
 1211                 return ADW_IERR_ILLEGAL_CONNECTION;
 1212         }
 1213 
 1214         /*
 1215          * If the cable is reversed all of the SCSI_CTRL register signals
 1216          * will be set. Check for and return an error if this condition is
 1217          * found.
 1218          */
 1219         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1220                 return ADW_IERR_REVERSED_CABLE;
 1221         }
 1222 
 1223         /*
 1224          * If this is a differential board and a single-ended device
 1225          * is attached to one of the connectors, return an error.
 1226          */
 1227         if ((scsi_cfg1 & ADW_DIFF_MODE) &&
 1228             (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
 1229                 return ADW_IERR_SINGLE_END_DEVICE;
 1230         }
 1231 
 1232         /*
 1233          * If automatic termination control is enabled, then set the
 1234          * termination value based on a table listed in a_condor.h.
 1235          *
 1236          * If manual termination was specified with an EEPROM setting
 1237          * then 'termination' was set-up in AdwInitFromEEPROM() and
 1238          * is ready to be 'ored' into SCSI_CFG1.
 1239          */
 1240         if (cfg->termination == 0) {
 1241                 /*
 1242                  * The software always controls termination by setting
 1243                  * TERM_CTL_SEL.
 1244                  * If TERM_CTL_SEL were set to 0, the hardware would set
 1245                  * termination.
 1246                  */
 1247                 cfg->termination |= ADW_TERM_CTL_SEL;
 1248 
 1249                 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
 1250                         /* TERM_CTL_H: on, TERM_CTL_L: on */
 1251                         case 0x3: case 0x7: case 0xB:
 1252                         case 0xD: case 0xE: case 0xF:
 1253                                 cfg->termination |=
 1254                                 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
 1255                                 break;
 1256 
 1257                         /* TERM_CTL_H: on, TERM_CTL_L: off */
 1258                         case 0x1: case 0x5: case 0x9:
 1259                         case 0xA: case 0xC:
 1260                                 cfg->termination |= ADW_TERM_CTL_H;
 1261                                 break;
 1262 
 1263                         /* TERM_CTL_H: off, TERM_CTL_L: off */
 1264                         case 0x2: case 0x6:
 1265                                 break;
 1266                 }
 1267         }
 1268 
 1269         /*
 1270          * Clear any set TERM_CTL_H and TERM_CTL_L bits.
 1271          */
 1272         scsi_cfg1 &= ~ADW_TERM_CTL;
 1273 
 1274         /*
 1275          * Invert the TERM_CTL_H and TERM_CTL_L bits and then
 1276          * set 'scsi_cfg1'. The TERM_POL bit does not need to be
 1277          * referenced, because the hardware internally inverts
 1278          * the Termination High and Low bits if TERM_POL is set.
 1279          */
 1280         scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
 1281 
 1282         /*
 1283          * Set SCSI_CFG1 Microcode Default Value
 1284          *
 1285          * Set filter value and possibly modified termination control
 1286          * bits in the Microcode SCSI_CFG1 Register Value.
 1287          *
 1288          * The microcode will set the SCSI_CFG1 register using this value
 1289          * after it is started below.
 1290          */
 1291         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
 1292                                                 ADW_FLTR_DISABLE | scsi_cfg1);
 1293 
 1294         /*
 1295          * Set MEM_CFG Microcode Default Value
 1296          *
 1297          * The microcode will set the MEM_CFG register using this value
 1298          * after it is started below.
 1299          *
 1300          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1301          * are defined.
 1302          *
 1303          * ASC-3550 has 8KB internal memory.
 1304          */
 1305         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1306                                                 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
 1307 
 1308         return 0;
 1309 }
 1310 
 1311 
 1312 int
 1313 AdwASC38C0800Cabling(iot, ioh, cfg)
 1314         bus_space_tag_t iot;
 1315         bus_space_handle_t ioh;
 1316         ADW_DVC_CFG *cfg;
 1317 {
 1318         u_int16_t       scsi_cfg1;
 1319 
 1320 
 1321         /*
 1322          * Determine SCSI_CFG1 Microcode Default Value.
 1323          *
 1324          * The microcode will set the SCSI_CFG1 register using this value
 1325          * after it is started below.
 1326          */
 1327 
 1328         /* Read current SCSI_CFG1 Register value. */
 1329         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1330 
 1331         /*
 1332          * If the cable is reversed all of the SCSI_CTRL register signals
 1333          * will be set. Check for and return an error if this condition is
 1334          * found.
 1335          */
 1336         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1337                 return ADW_IERR_REVERSED_CABLE;
 1338         }
 1339 
 1340         /*
 1341          * All kind of combinations of devices attached to one of four
 1342          * connectors are acceptable except HVD device attached.
 1343          * For example, LVD device can be attached to SE connector while
 1344          * SE device attached to LVD connector.
 1345          * If LVD device attached to SE connector, it only runs up to
 1346          * Ultra speed.
 1347          *
 1348          * If an HVD device is attached to one of LVD connectors, return
 1349          * an error.
 1350          * However, there is no way to detect HVD device attached to
 1351          * SE connectors.
 1352          */
 1353         if (scsi_cfg1 & ADW_HVD) {
 1354                 return ADW_IERR_HVD_DEVICE;
 1355         }
 1356 
 1357         /*
 1358          * If either SE or LVD automatic termination control is enabled, then
 1359          * set the termination value based on a table listed in a_condor.h.
 1360          *
 1361          * If manual termination was specified with an EEPROM setting then
 1362          * 'termination' was set-up in AdwInitFromEEPROM() and is ready
 1363          * to be 'ored' into SCSI_CFG1.
 1364          */
 1365         if ((cfg->termination & ADW_TERM_SE) == 0) {
 1366                 /* SE automatic termination control is enabled. */
 1367                 switch(scsi_cfg1 & ADW_C_DET_SE) {
 1368                         /* TERM_SE_HI: on, TERM_SE_LO: on */
 1369                         case 0x1: case 0x2: case 0x3:
 1370                                 cfg->termination |= ADW_TERM_SE;
 1371                                 break;
 1372 
 1373                         /* TERM_SE_HI: on, TERM_SE_LO: off */
 1374                         case 0x0:
 1375                                 cfg->termination |= ADW_TERM_SE_HI;
 1376                                 break;
 1377                 }
 1378         }
 1379 
 1380         if ((cfg->termination & ADW_TERM_LVD) == 0) {
 1381                 /* LVD automatic termination control is enabled. */
 1382                 switch(scsi_cfg1 & ADW_C_DET_LVD) {
 1383                         /* TERM_LVD_HI: on, TERM_LVD_LO: on */
 1384                         case 0x4: case 0x8: case 0xC:
 1385                                 cfg->termination |= ADW_TERM_LVD;
 1386                                 break;
 1387 
 1388                         /* TERM_LVD_HI: off, TERM_LVD_LO: off */
 1389                         case 0x0:
 1390                                 break;
 1391                 }
 1392         }
 1393 
 1394         /*
 1395          * Clear any set TERM_SE and TERM_LVD bits.
 1396          */
 1397         scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
 1398 
 1399         /*
 1400          * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
 1401          */
 1402         scsi_cfg1 |= (~cfg->termination & 0xF0);
 1403 
 1404         /*
 1405          * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
 1406          * HVD/LVD/SE bits and set possibly modified termination control bits
 1407          * in the Microcode SCSI_CFG1 Register Value.
 1408          */
 1409         scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
 1410                                         ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
 1411 
 1412         /*
 1413          * Set SCSI_CFG1 Microcode Default Value
 1414          *
 1415          * Set possibly modified termination control and reset DIS_TERM_DRV
 1416          * bits in the Microcode SCSI_CFG1 Register Value.
 1417          *
 1418          * The microcode will set the SCSI_CFG1 register using this value
 1419          * after it is started below.
 1420          */
 1421         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
 1422 
 1423         /*
 1424          * Set MEM_CFG Microcode Default Value
 1425          *
 1426          * The microcode will set the MEM_CFG register using this value
 1427          * after it is started below.
 1428          *
 1429          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1430          * are defined.
 1431          *
 1432          * ASC-38C0800 has 16KB internal memory.
 1433          */
 1434         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1435                                                 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
 1436 
 1437         return 0;
 1438 }
 1439 
 1440 
 1441 int
 1442 AdwASC38C1600Cabling(iot, ioh, cfg)
 1443         bus_space_tag_t iot;
 1444         bus_space_handle_t ioh;
 1445         ADW_DVC_CFG *cfg;
 1446 {
 1447         u_int16_t       scsi_cfg1;
 1448 
 1449 
 1450         /*
 1451          * Determine SCSI_CFG1 Microcode Default Value.
 1452          *
 1453          * The microcode will set the SCSI_CFG1 register using this value
 1454          * after it is started below.
 1455          * Each ASC-38C1600 function has only two cable detect bits.
 1456          * The bus mode override bits are in IOPB_SOFT_OVER_WR.
 1457          */
 1458 
 1459         /* Read current SCSI_CFG1 Register value. */
 1460         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1461 
 1462         /*
 1463          * If the cable is reversed all of the SCSI_CTRL register signals
 1464          * will be set. Check for and return an error if this condition is
 1465          * found.
 1466          */
 1467         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1468                 return ADW_IERR_REVERSED_CABLE;
 1469         }
 1470 
 1471         /*
 1472          * Each ASC-38C1600 function has two connectors. Only an HVD device
 1473          * cannot be connected to either connector. An LVD device or SE device
 1474          * may be connected to either connector. If an SE device is connected,
 1475          * then at most Ultra speed (20 MHz) can be used on both connectors.
 1476          *
 1477          * If an HVD device is attached, return an error.
 1478          */
 1479         if (scsi_cfg1 & ADW_HVD) {
 1480                 return ADW_IERR_HVD_DEVICE;
 1481         }
 1482 
 1483         /*
 1484          * Each function in the ASC-38C1600 uses only the SE cable detect and
 1485          * termination because there are two connectors for each function.
 1486          * Each function may use either LVD or SE mode.
 1487          * Corresponding the SE automatic termination control EEPROM bits are
 1488          * used for each function.
 1489          * Each function has its own EEPROM. If SE automatic control is enabled
 1490          * for the function, then set the termination value based on a table
 1491          * listed in adwlib.h.
 1492          *
 1493          * If manual termination is specified in the EEPROM for the function,
 1494          * then 'termination' was set-up in AdwInitFromEEPROM() and is
 1495          * ready to be 'ored' into SCSI_CFG1.
 1496          */
 1497         if ((cfg->termination & ADW_TERM_SE) == 0) {
 1498                 /* SE automatic termination control is enabled. */
 1499                 switch(scsi_cfg1 & ADW_C_DET_SE) {
 1500                         /* TERM_SE_HI: on, TERM_SE_LO: on */
 1501                         case 0x1: case 0x2: case 0x3:
 1502                                 cfg->termination |= ADW_TERM_SE;
 1503                                 break;
 1504 
 1505                         case 0x0:
 1506 #if 0
 1507         /* !!!!TODO!!!! */
 1508                                 if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
 1509                                 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
 1510                                 }
 1511                                 else
 1512 #endif
 1513                                 {
 1514                                 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
 1515                                         cfg->termination |= ADW_TERM_SE_HI;
 1516                                 }
 1517                                 break;
 1518                         }
 1519         }
 1520 
 1521         /*
 1522          * Clear any set TERM_SE bits.
 1523          */
 1524         scsi_cfg1 &= ~ADW_TERM_SE;
 1525 
 1526         /*
 1527          * Invert the TERM_SE bits and then set 'scsi_cfg1'.
 1528          */
 1529         scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
 1530 
 1531         /*
 1532          * Clear Big Endian and Terminator Polarity bits and set possibly
 1533          * modified termination control bits in the Microcode SCSI_CFG1
 1534          * Register Value.
 1535          */
 1536         scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
 1537 
 1538         /*
 1539          * Set SCSI_CFG1 Microcode Default Value
 1540          *
 1541          * Set possibly modified termination control bits in the Microcode
 1542          * SCSI_CFG1 Register Value.
 1543          *
 1544          * The microcode will set the SCSI_CFG1 register using this value
 1545          * after it is started below.
 1546          */
 1547         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
 1548 
 1549         /*
 1550          * Set MEM_CFG Microcode Default Value
 1551          *
 1552          * The microcode will set the MEM_CFG register using this value
 1553          * after it is started below.
 1554          *
 1555          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1556          * are defined.
 1557          *
 1558          * ASC-38C1600 has 32KB internal memory.
 1559          */
 1560         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1561                                                 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
 1562 
 1563         return 0;
 1564 }
 1565 
 1566 
 1567 /*
 1568  * Read EEPROM configuration into the specified buffer.
 1569  *
 1570  * Return a checksum based on the EEPROM configuration read.
 1571  */
 1572 static u_int16_t
 1573 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
 1574         bus_space_tag_t         iot;
 1575         bus_space_handle_t      ioh;
 1576         ADW_EEPROM              *cfg_buf;
 1577 {
 1578         u_int16_t              wval, chksum;
 1579         u_int16_t              *wbuf;
 1580         int                 eep_addr;
 1581 
 1582 
 1583         wbuf = (u_int16_t *) cfg_buf;
 1584         chksum = 0;
 1585 
 1586         for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
 1587                 eep_addr < ASC_EEP_DVC_CFG_END;
 1588                 eep_addr++, wbuf++) {
 1589                 wval = AdwReadEEPWord(iot, ioh, eep_addr);
 1590                 chksum += wval;
 1591                 *wbuf = wval;
 1592         }
 1593 
 1594         *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
 1595         wbuf++;
 1596         for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
 1597                         eep_addr < ASC_EEP_MAX_WORD_ADDR;
 1598                         eep_addr++, wbuf++) {
 1599                 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
 1600         }
 1601 
 1602         return chksum;
 1603 }
 1604 
 1605 
 1606 /*
 1607  * Read the EEPROM from specified location
 1608  */
 1609 static u_int16_t
 1610 AdwReadEEPWord(iot, ioh, eep_word_addr)
 1611         bus_space_tag_t         iot;
 1612         bus_space_handle_t      ioh;
 1613         int                     eep_word_addr;
 1614 {
 1615         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1616                 ASC_EEP_CMD_READ | eep_word_addr);
 1617         AdwWaitEEPCmd(iot, ioh);
 1618 
 1619         return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
 1620 }
 1621 
 1622 
 1623 /*
 1624  * Wait for EEPROM command to complete
 1625  */
 1626 static void
 1627 AdwWaitEEPCmd(iot, ioh)
 1628         bus_space_tag_t         iot;
 1629         bus_space_handle_t      ioh;
 1630 {
 1631         int eep_delay_ms;
 1632 
 1633 
 1634         for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
 1635                 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
 1636                                 ASC_EEP_CMD_DONE) {
 1637                         break;
 1638                 }
 1639                 AdwSleepMilliSecond(1);
 1640         }
 1641 
 1642         ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
 1643 }
 1644 
 1645 
 1646 /*
 1647  * Write the EEPROM from 'cfg_buf'.
 1648  */
 1649 static void
 1650 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
 1651         bus_space_tag_t         iot;
 1652         bus_space_handle_t      ioh;
 1653         ADW_EEPROM              *cfg_buf;
 1654 {
 1655         u_int16_t *wbuf;
 1656         u_int16_t addr, chksum;
 1657 
 1658 
 1659         wbuf = (u_int16_t *) cfg_buf;
 1660         chksum = 0;
 1661 
 1662         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
 1663         AdwWaitEEPCmd(iot, ioh);
 1664 
 1665         /*
 1666          * Write EEPROM from word 0 to word 20
 1667          */
 1668         for (addr = ASC_EEP_DVC_CFG_BEGIN;
 1669              addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
 1670                 chksum += *wbuf;
 1671                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
 1672                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1673                                 ASC_EEP_CMD_WRITE | addr);
 1674                 AdwWaitEEPCmd(iot, ioh);
 1675                 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
 1676         }
 1677 
 1678         /*
 1679          * Write EEPROM checksum at word 21
 1680          */
 1681         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
 1682         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1683                         ASC_EEP_CMD_WRITE | addr);
 1684         AdwWaitEEPCmd(iot, ioh);
 1685         wbuf++;        /* skip over check_sum */
 1686 
 1687         /*
 1688          * Write EEPROM OEM name at words 22 to 29
 1689          */
 1690         for (addr = ASC_EEP_DVC_CTL_BEGIN;
 1691              addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
 1692                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
 1693                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1694                                 ASC_EEP_CMD_WRITE | addr);
 1695                 AdwWaitEEPCmd(iot, ioh);
 1696         }
 1697 
 1698         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1699                         ASC_EEP_CMD_WRITE_DISABLE);
 1700         AdwWaitEEPCmd(iot, ioh);
 1701 
 1702         return;
 1703 }
 1704 
 1705 
 1706 /*
 1707  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
 1708  *
 1709  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
 1710  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
 1711  *   RISC to notify it a new command is ready to be executed.
 1712  *
 1713  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
 1714  * set to SCSI_MAX_RETRY.
 1715  *
 1716  * Return:
 1717  *      ADW_SUCCESS(1) - The request was successfully queued.
 1718  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
 1719  *                       request completes.
 1720  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
 1721  *                       host IC error.
 1722  */
 1723 int
 1724 AdwExeScsiQueue(sc, scsiq)
 1725 ADW_SOFTC       *sc;
 1726 ADW_SCSI_REQ_Q  *scsiq;
 1727 {
 1728         bus_space_tag_t iot = sc->sc_iot;
 1729         bus_space_handle_t ioh = sc->sc_ioh;
 1730         ADW_CCB         *ccb;
 1731         u_int32_t       req_paddr;
 1732         ADW_CARRIER     *new_carrp;
 1733 
 1734         /*
 1735          * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
 1736          */
 1737         if (scsiq->target_id > ADW_MAX_TID) {
 1738                 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
 1739                 scsiq->done_status = QD_WITH_ERROR;
 1740                 return ADW_ERROR;
 1741         }
 1742 
 1743         /*
 1744          * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
 1745          */
 1746         
 1747         ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
 1748 
 1749         /*
 1750          * Allocate a carrier and initialize fields.
 1751          */
 1752         if ((new_carrp = sc->carr_freelist) == NULL) {
 1753                 return ADW_BUSY;
 1754         }
 1755         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
 1756                         ASC_GET_CARRP(new_carrp->next_ba));
 1757         sc->carr_pending_cnt++;
 1758 
 1759         /*
 1760          * Set the carrier to be a stopper by setting 'next_ba'
 1761          * to the stopper value. The current stopper will be changed
 1762          * below to point to the new stopper.
 1763          */
 1764         new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
 1765 
 1766         req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
 1767                 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
 1768 
 1769         /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
 1770         scsiq->scsiq_rptr = htole32(req_paddr);
 1771 
 1772         /*
 1773          * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
 1774          * order during initialization.
 1775          */
 1776         scsiq->carr_ba = sc->icq_sp->carr_ba;
 1777         scsiq->carr_va = sc->icq_sp->carr_ba;
 1778 
 1779         /*
 1780          * Use the current stopper to send the ADW_SCSI_REQ_Q command to
 1781          * the microcode. The newly allocated stopper will become the new
 1782          * stopper.
 1783          */
 1784         sc->icq_sp->areq_ba = htole32(req_paddr);
 1785 
 1786         /*
 1787          * Set the 'next_ba' pointer for the old stopper to be the
 1788          * physical address of the new stopper. The RISC can only
 1789          * follow physical addresses.
 1790          */
 1791         sc->icq_sp->next_ba = new_carrp->carr_ba;
 1792 
 1793 #if ADW_DEBUG
 1794         printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
 1795                         sc->icq_sp->carr_id,
 1796                         sc->icq_sp->carr_ba,
 1797                         sc->icq_sp->areq_ba,
 1798                         sc->icq_sp->next_ba);
 1799 #endif
 1800         /*
 1801          * Set the host adapter stopper pointer to point to the new carrier.
 1802          */
 1803         sc->icq_sp = new_carrp;
 1804 
 1805         if (sc->chip_type == ADW_CHIP_ASC3550 ||
 1806             sc->chip_type == ADW_CHIP_ASC38C0800) {
 1807                 /*
 1808                  * Tickle the RISC to tell it to read its Command Queue Head
 1809                  * pointer.
 1810                  */
 1811                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
 1812                 if (sc->chip_type == ADW_CHIP_ASC3550) {
 1813                         /*
 1814                          * Clear the tickle value. In the ASC-3550 the RISC flag
 1815                          * command 'clr_tickle_a' does not work unless the host
 1816                          * value is cleared.
 1817                          */
 1818                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
 1819                                         ADW_TICKLE_NOP);
 1820                 }
 1821         } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1822                 /*
 1823                  * Notify the RISC a carrier is ready by writing the physical
 1824                  * address of the new carrier stopper to the COMMA register.
 1825                  */
 1826                 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
 1827                                 le32toh(new_carrp->carr_ba));
 1828         }
 1829 
 1830         /*
 1831          * End of CRITICAL SECTION: Must be protected within splbio/splx pair
 1832          */
 1833         
 1834         return ADW_SUCCESS;
 1835 }
 1836 
 1837 
 1838 void
 1839 AdwResetChip(iot, ioh)
 1840         bus_space_tag_t iot;
 1841         bus_space_handle_t ioh;
 1842 {
 1843 
 1844         /*
 1845          * Reset Chip.
 1846          */
 1847         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1848                         ADW_CTRL_REG_CMD_RESET);
 1849         AdwSleepMilliSecond(100);
 1850         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1851                         ADW_CTRL_REG_CMD_WR_IO_REG);
 1852 }
 1853 
 1854 
 1855 /*
 1856  * Reset SCSI Bus and purge all outstanding requests.
 1857  *
 1858  * Return Value:
 1859  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
 1860  *      ADW_FALSE(0) -  Microcode command failed.
 1861  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
 1862  *                      may be hung which requires driver recovery.
 1863  */
 1864 int
 1865 AdwResetCCB(sc)
 1866 ADW_SOFTC       *sc;
 1867 {
 1868         int         status;
 1869 
 1870         /*
 1871          * Send the SCSI Bus Reset idle start idle command which asserts
 1872          * the SCSI Bus Reset signal.
 1873          */
 1874         status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
 1875         if (status != ADW_TRUE) {
 1876                 return status;
 1877         }
 1878 
 1879         /*
 1880          * Delay for the specified SCSI Bus Reset hold time.
 1881          *
 1882          * The hold time delay is done on the host because the RISC has no
 1883          * microsecond accurate timer.
 1884          */
 1885         AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
 1886 
 1887         /*
 1888          * Send the SCSI Bus Reset end idle command which de-asserts
 1889          * the SCSI Bus Reset signal and purges any pending requests.
 1890          */
 1891         status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
 1892         if (status != ADW_TRUE) {
 1893                 return status;
 1894         }
 1895 
 1896         AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
 1897 
 1898         return status;
 1899 }
 1900 
 1901 
 1902 /*
 1903  * Reset chip and SCSI Bus.
 1904  *
 1905  * Return Value:
 1906  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
 1907  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
 1908  */
 1909 int
 1910 AdwResetSCSIBus(sc)
 1911 ADW_SOFTC       *sc;
 1912 {
 1913         bus_space_tag_t iot = sc->sc_iot;
 1914         bus_space_handle_t ioh = sc->sc_ioh;
 1915         int             status;
 1916         u_int16_t       wdtr_able, sdtr_able, tagqng_able;
 1917         u_int16_t       ppr_able = 0; /* XXX: gcc */
 1918         u_int8_t        tid, max_cmd[ADW_MAX_TID + 1];
 1919         u_int16_t       bios_sig;
 1920 
 1921 
 1922         /*
 1923          * Save current per TID negotiated values.
 1924          */
 1925         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
 1926         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
 1927         if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1928                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
 1929         }
 1930         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
 1931         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
 1932                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
 1933                         max_cmd[tid]);
 1934         }
 1935 
 1936         /*
 1937          * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
 1938          * by clearing the BIOS signature word.
 1939          * The initialization functions assumes a SCSI Bus Reset is not
 1940          * needed if the BIOS signature word is present.
 1941          */
 1942         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
 1943         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
 1944 
 1945         /*
 1946          * Stop chip and reset it.
 1947          */
 1948         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
 1949         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1950                         ADW_CTRL_REG_CMD_RESET);
 1951         AdwSleepMilliSecond(100);
 1952         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1953                         ADW_CTRL_REG_CMD_WR_IO_REG);
 1954 
 1955         /*
 1956          * Reset Adv Library error code, if any, and try
 1957          * re-initializing the chip.
 1958          * Then translate initialization return value to status value.
 1959          */
 1960         status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
 1961 
 1962         /*
 1963          * Restore the BIOS signature word.
 1964          */
 1965         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
 1966 
 1967         /*
 1968          * Restore per TID negotiated values.
 1969          */
 1970         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
 1971         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
 1972         if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1973                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
 1974         }
 1975         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
 1976         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
 1977                 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
 1978                         max_cmd[tid]);
 1979         }
 1980 
 1981         return status;
 1982 }
 1983 
 1984 
 1985 /*
 1986  * Adv Library Interrupt Service Routine
 1987  *
 1988  *  This function is called by a driver's interrupt service routine.
 1989  *  The function disables and re-enables interrupts.
 1990  *
 1991  *  When a microcode idle command is completed, the ADV_DVC_VAR
 1992  *  'idle_cmd_done' field is set to ADW_TRUE.
 1993  *
 1994  *  Note: AdwISR() can be called when interrupts are disabled or even
 1995  *  when there is no hardware interrupt condition present. It will
 1996  *  always check for completed idle commands and microcode requests.
 1997  *  This is an important feature that shouldn't be changed because it
 1998  *  allows commands to be completed from polling mode loops.
 1999  *
 2000  * Return:
 2001  *   ADW_TRUE(1) - interrupt was pending
 2002  *   ADW_FALSE(0) - no interrupt was pending
 2003  */
 2004 int
 2005 AdwISR(sc)
 2006 ADW_SOFTC       *sc;
 2007 {
 2008         bus_space_tag_t iot = sc->sc_iot;
 2009         bus_space_handle_t ioh = sc->sc_ioh;
 2010         u_int8_t        int_stat;
 2011         ADW_CARRIER     *free_carrp/*, *ccb_carr*/;
 2012         u_int32_t       irq_next_pa;
 2013         ADW_SCSI_REQ_Q  *scsiq;
 2014         ADW_CCB         *ccb;
 2015         int             s;
 2016 
 2017 
 2018         s = splbio();
 2019 
 2020         /* Reading the register clears the interrupt. */
 2021         int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
 2022 
 2023         if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
 2024              ADW_INTR_STATUS_INTRC)) == 0) {
 2025                 splx(s);
 2026                 return ADW_FALSE;
 2027         }
 2028 
 2029         /*
 2030          * Notify the driver of an asynchronous microcode condition by
 2031          * calling the ADV_DVC_VAR.async_callback function. The function
 2032          * is passed the microcode ADW_MC_INTRB_CODE byte value.
 2033          */
 2034         if (int_stat & ADW_INTR_STATUS_INTRB) {
 2035                 u_int8_t intrb_code;
 2036 
 2037                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
 2038 
 2039                 if (sc->chip_type == ADW_CHIP_ASC3550 ||
 2040                     sc->chip_type == ADW_CHIP_ASC38C0800) {
 2041                         if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
 2042                                 sc->carr_pending_cnt != 0) {
 2043                                 ADW_WRITE_BYTE_REGISTER(iot, ioh,
 2044                                         IOPB_TICKLE, ADW_TICKLE_A);
 2045                                 if (sc->chip_type == ADW_CHIP_ASC3550) {
 2046                                         ADW_WRITE_BYTE_REGISTER(iot, ioh,
 2047                                                 IOPB_TICKLE, ADW_TICKLE_NOP);
 2048                                 }
 2049                         }
 2050                 }
 2051 
 2052                 if (sc->async_callback != 0) {
 2053                     (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
 2054                 }
 2055         }
 2056 
 2057         /*
 2058          * Check if the IRQ stopper carrier contains a completed request.
 2059          */
 2060         while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
 2061         {
 2062 #if ADW_DEBUG
 2063                 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
 2064                                 sc->irq_sp->carr_id,
 2065                                 sc->irq_sp->carr_ba,
 2066                                 sc->irq_sp->areq_ba,
 2067                                 sc->irq_sp->next_ba);
 2068 #endif
 2069                 /*
 2070                  * Get a pointer to the newly completed ADW_SCSI_REQ_Q
 2071                  * structure.
 2072                  * The RISC will have set 'areq_ba' to a virtual address.
 2073                  *
 2074                  * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
 2075                  * field to the carrier ADV_CARR_T.areq_ba field.
 2076                  * The conversion below complements the conversion of
 2077                  * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
 2078                  */
 2079                 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
 2080                 scsiq = &ccb->scsiq;
 2081                 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
 2082 
 2083                 /*
 2084                  * Request finished with good status and the queue was not
 2085                  * DMAed to host memory by the firmware. Set all status fields
 2086                  * to indicate good status.
 2087                  */
 2088                 if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
 2089                         scsiq->done_status = QD_NO_ERROR;
 2090                         scsiq->host_status = scsiq->scsi_status = 0;
 2091                         scsiq->data_cnt = 0L;
 2092                 }
 2093 
 2094                 /*
 2095                  * Advance the stopper pointer to the next carrier
 2096                  * ignoring the lower four bits. Free the previous
 2097                  * stopper carrier.
 2098                  */
 2099                 free_carrp = sc->irq_sp;
 2100                 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
 2101 
 2102                 free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
 2103                                         : sc->carr_freelist->carr_ba;
 2104                 sc->carr_freelist = free_carrp;
 2105                 sc->carr_pending_cnt--;
 2106 
 2107                 /*
 2108                  * Clear request microcode control flag.
 2109                  */
 2110                 scsiq->cntl = 0;
 2111 
 2112                 /*
 2113                  * Check Condition handling
 2114                  */
 2115                 /*
 2116                  * If the command that completed was a SCSI INQUIRY and
 2117                  * LUN 0 was sent the command, then process the INQUIRY
 2118                  * command information for the device.
 2119                  */
 2120                 if (scsiq->done_status == QD_NO_ERROR &&
 2121                     scsiq->cdb[0] == INQUIRY &&
 2122                     scsiq->target_lun == 0) {
 2123                         AdwInquiryHandling(sc, scsiq);
 2124                 }
 2125 
 2126                 /*
 2127                  * Notify the driver of the completed request by passing
 2128                  * the ADW_SCSI_REQ_Q pointer to its callback function.
 2129                  */
 2130                 (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
 2131                 /*
 2132                  * Note: After the driver callback function is called, 'scsiq'
 2133                  * can no longer be referenced.
 2134                  *
 2135                  * Fall through and continue processing other completed
 2136                  * requests...
 2137                  */
 2138         }
 2139 
 2140         splx(s);
 2141 
 2142         return ADW_TRUE;
 2143 }
 2144 
 2145 
 2146 /*
 2147  * Send an idle command to the chip and wait for completion.
 2148  *
 2149  * Command completion is polled for once per microsecond.
 2150  *
 2151  * The function can be called from anywhere including an interrupt handler.
 2152  * But the function is not re-entrant, so it uses the splbio/splx()
 2153  * functions to prevent reentrancy.
 2154  *
 2155  * Return Values:
 2156  *   ADW_TRUE - command completed successfully
 2157  *   ADW_FALSE - command failed
 2158  *   ADW_ERROR - command timed out
 2159  */
 2160 int
 2161 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
 2162 ADW_SOFTC      *sc;
 2163 u_int16_t       idle_cmd;
 2164 u_int32_t       idle_cmd_parameter;
 2165 {
 2166         bus_space_tag_t iot = sc->sc_iot;
 2167         bus_space_handle_t ioh = sc->sc_ioh;
 2168         u_int16_t       result;
 2169         u_int32_t       i, j, s;
 2170 
 2171         s = splbio();
 2172 
 2173         /*
 2174          * Clear the idle command status which is set by the microcode
 2175          * to a non-zero value to indicate when the command is completed.
 2176          */
 2177         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
 2178 
 2179         /*
 2180          * Write the idle command value after the idle command parameter
 2181          * has been written to avoid a race condition. If the order is not
 2182          * followed, the microcode may process the idle command before the
 2183          * parameters have been written to LRAM.
 2184          */
 2185         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
 2186                         idle_cmd_parameter);
 2187         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
 2188 
 2189         /*
 2190          * Tickle the RISC to tell it to process the idle command.
 2191          */
 2192         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
 2193         if (sc->chip_type == ADW_CHIP_ASC3550) {
 2194                 /*
 2195                  * Clear the tickle value. In the ASC-3550 the RISC flag
 2196                  * command 'clr_tickle_b' does not work unless the host
 2197                  * value is cleared.
 2198                  */
 2199                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
 2200         }
 2201 
 2202         /* Wait for up to 100 millisecond for the idle command to timeout. */
 2203         for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
 2204                 /* Poll once each microsecond for command completion. */
 2205                 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
 2206                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
 2207                                                                         result);
 2208                         if (result != 0) {
 2209                                 splx(s);
 2210                                 return result;
 2211                         }
 2212                         AdwDelayMicroSecond(1);
 2213                 }
 2214         }
 2215 
 2216         splx(s);
 2217         return ADW_ERROR;
 2218 }
 2219 
 2220 
 2221 /*
 2222  * Inquiry Information Byte 7 Handling
 2223  *
 2224  * Handle SCSI Inquiry Command information for a device by setting
 2225  * microcode operating variables that affect WDTR, SDTR, and Tag
 2226  * Queuing.
 2227  */
 2228 static void
 2229 AdwInquiryHandling(sc, scsiq)
 2230 ADW_SOFTC       *sc;
 2231 ADW_SCSI_REQ_Q *scsiq;
 2232 {
 2233 #ifndef FAILSAFE
 2234         bus_space_tag_t iot = sc->sc_iot;
 2235         bus_space_handle_t ioh = sc->sc_ioh;
 2236         u_int8_t                tid;
 2237         struct scsipi_inquiry_data *inq;
 2238         u_int16_t               tidmask;
 2239         u_int16_t               cfg_word;
 2240 
 2241 
 2242         /*
 2243          * AdwInquiryHandling() requires up to INQUIRY information Byte 7
 2244          * to be available.
 2245          *
 2246          * If less than 8 bytes of INQUIRY information were requested or less
 2247          * than 8 bytes were transferred, then return. cdb[4] is the request
 2248          * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
 2249          * microcode to the transfer residual count.
 2250          */
 2251 
 2252         if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
 2253                 return;
 2254         }
 2255 
 2256         tid = scsiq->target_id;
 2257 
 2258         inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
 2259 
 2260         /*
 2261          * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
 2262          */
 2263         if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
 2264             ((inq->version & SID_ANSII) < 2)) {
 2265                 return;
 2266         } else {
 2267                 /*
 2268                  * INQUIRY Byte 7 Handling
 2269                  *
 2270                  * Use a device's INQUIRY byte 7 to determine whether it
 2271                  * supports WDTR, SDTR, and Tag Queuing. If the feature
 2272                  * is enabled in the EEPROM and the device supports the
 2273                  * feature, then enable it in the microcode.
 2274                  */
 2275 
 2276                 tidmask = ADW_TID_TO_TIDMASK(tid);
 2277 
 2278                 /*
 2279                  * Wide Transfers
 2280                  *
 2281                  * If the EEPROM enabled WDTR for the device and the device
 2282                  * supports wide bus (16 bit) transfers, then turn on the
 2283                  * device's 'wdtr_able' bit and write the new value to the
 2284                  * microcode.
 2285                  */
 2286 #ifdef SCSI_ADW_WDTR_DISABLE
 2287         if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
 2288 #endif /* SCSI_ADW_WDTR_DISABLE */
 2289                 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
 2290                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
 2291                                         cfg_word);
 2292                         if ((cfg_word & tidmask) == 0) {
 2293                                 cfg_word |= tidmask;
 2294                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
 2295                                                 cfg_word);
 2296 
 2297                                 /*
 2298                                  * Clear the microcode "SDTR negotiation" and
 2299                                  * "WDTR negotiation" done indicators for the
 2300                                  * target to cause it to negotiate with the new
 2301                                  * setting set above.
 2302                                  * WDTR when accepted causes the target to enter
 2303                                  * asynchronous mode, so SDTR must be negotiated
 2304                                  */
 2305                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2306                                                 cfg_word);
 2307                                 cfg_word &= ~tidmask;
 2308                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2309                                                 cfg_word);
 2310                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
 2311                                                 cfg_word);
 2312                                 cfg_word &= ~tidmask;
 2313                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
 2314                                                 cfg_word);
 2315                         }
 2316                 }
 2317 
 2318                 /*
 2319                  * Synchronous Transfers
 2320                  *
 2321                  * If the EEPROM enabled SDTR for the device and the device
 2322                  * supports synchronous transfers, then turn on the device's
 2323                  * 'sdtr_able' bit. Write the new value to the microcode.
 2324                  */
 2325 #ifdef SCSI_ADW_SDTR_DISABLE
 2326         if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
 2327 #endif /* SCSI_ADW_SDTR_DISABLE */
 2328                 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
 2329                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
 2330                         if ((cfg_word & tidmask) == 0) {
 2331                                 cfg_word |= tidmask;
 2332                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
 2333                                                 cfg_word);
 2334 
 2335                                 /*
 2336                                  * Clear the microcode "SDTR negotiation"
 2337                                  * done indicator for the target to cause it
 2338                                  * to negotiate with the new setting set above.
 2339                                  */
 2340                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2341                                                 cfg_word);
 2342                                 cfg_word &= ~tidmask;
 2343                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2344                                                 cfg_word);
 2345                         }
 2346                 }
 2347                 /*
 2348                  * If the Inquiry data included enough space for the SPI-3
 2349                  * Clocking field, then check if DT mode is supported.
 2350                  */
 2351                 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
 2352                    (scsiq->cdb[4] >= 57 ||
 2353                    (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
 2354                         /*
 2355                          * PPR (Parallel Protocol Request) Capable
 2356                          *
 2357                          * If the device supports DT mode, then it must be
 2358                          * PPR capable.
 2359                          * The PPR message will be used in place of the SDTR
 2360                          * and WDTR messages to negotiate synchronous speed
 2361                          * and offset, transfer width, and protocol options.
 2362                          */
 2363                         if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
 2364                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
 2365                                                 sc->ppr_able);
 2366                                 sc->ppr_able |= tidmask;
 2367                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
 2368                                                 sc->ppr_able);
 2369                         }
 2370                 }
 2371 
 2372                 /*
 2373                  * If the EEPROM enabled Tag Queuing for the device and the
 2374                  * device supports Tag Queueing, then turn on the device's
 2375                  * 'tagqng_enable' bit in the microcode and set the microcode
 2376                  * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
 2377                  * value.
 2378                  *
 2379                  * Tag Queuing is disabled for the BIOS which runs in polled
 2380                  * mode and would see no benefit from Tag Queuing. Also by
 2381                  * disabling Tag Queuing in the BIOS devices with Tag Queuing
 2382                  * bugs will at least work with the BIOS.
 2383                  */
 2384 #ifdef SCSI_ADW_TAGQ_DISABLE
 2385         if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
 2386 #endif /* SCSI_ADW_TAGQ_DISABLE */
 2387                 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
 2388                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
 2389                                         cfg_word);
 2390                         cfg_word |= tidmask;
 2391                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
 2392                                         cfg_word);
 2393 
 2394                         ADW_WRITE_BYTE_LRAM(iot, ioh,
 2395                                         ADW_MC_NUMBER_OF_MAX_CMD + tid,
 2396                                         sc->max_dvc_qng);
 2397                 }
 2398         }
 2399 #endif /* FAILSAFE */
 2400 }
 2401 
 2402 
 2403 static void
 2404 AdwSleepMilliSecond(n)
 2405 u_int32_t       n;
 2406 {
 2407 
 2408         DELAY(n * 1000);
 2409 }
 2410 
 2411 
 2412 static void
 2413 AdwDelayMicroSecond(n)
 2414 u_int32_t       n;
 2415 {
 2416 
 2417         DELAY(n);
 2418 }
 2419 

Cache object: eede13842b1b416776391ff9fe35f62f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.