The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/adwlib.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* $NetBSD: adwlib.c,v 1.33 2005/02/27 00:27:00 perry Exp $        */
    2 
    3 /*
    4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
    5  *
    6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
    7  * All rights reserved.
    8  *
    9  * Author: Baldassare Dante Profeta <dante@mclink.it>
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *        This product includes software developed by the NetBSD
   22  *        Foundation, Inc. and its contributors.
   23  * 4. Neither the name of The NetBSD Foundation nor the names of its
   24  *    contributors may be used to endorse or promote products derived
   25  *    from this software without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   37  * POSSIBILITY OF SUCH DAMAGE.
   38  */
   39 /*
   40  * Ported from:
   41  */
   42 /*
   43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   44  *
   45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
   46  * All Rights Reserved.
   47  *
   48  * Redistribution and use in source and binary forms, with or without
   49  * modification, are permitted provided that redistributions of source
   50  * code retain the above copyright notice and this comment without
   51  * modification.
   52  */
   53 
   54 #include <sys/cdefs.h>
   55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.33 2005/02/27 00:27:00 perry Exp $");
   56 
   57 #include <sys/param.h>
   58 #include <sys/systm.h>
   59 #include <sys/malloc.h>
   60 #include <sys/kernel.h>
   61 #include <sys/queue.h>
   62 #include <sys/device.h>
   63 
   64 #include <machine/bus.h>
   65 #include <machine/intr.h>
   66 
   67 #include <dev/scsipi/scsi_all.h>
   68 #include <dev/scsipi/scsipi_all.h>
   69 #include <dev/scsipi/scsiconf.h>
   70 
   71 #include <dev/pci/pcidevs.h>
   72 
   73 #include <uvm/uvm_extern.h>
   74 
   75 #include <dev/ic/adwlib.h>
   76 #include <dev/ic/adwmcode.h>
   77 #include <dev/ic/adw.h>
   78 
   79 
   80 /* Static Functions */
   81 
   82 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
   83 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
   84 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
   85 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
   86 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
   87 
   88 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
   89                                                         ADW_EEPROM *);
   90 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
   91                                                          ADW_EEPROM *);
   92 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
   93 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
   94 
   95 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
   96 
   97 static void AdwSleepMilliSecond(u_int32_t);
   98 static void AdwDelayMicroSecond(u_int32_t);
   99 
  100 
  101 /*
  102  * EEPROM Configuration.
  103  *
  104  * All drivers should use this structure to set the default EEPROM
  105  * configuration. The BIOS now uses this structure when it is built.
  106  * Additional structure information can be found in adwlib.h where
  107  * the structure is defined.
  108  */
  109 const static ADW_EEPROM adw_3550_Default_EEPROM = {
  110         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  111         0x0000,                 /* 01 cfg_msw */
  112         0xFFFF,                 /* 02 disc_enable */
  113         0xFFFF,                 /* 03 wdtr_able */
  114         { 0xFFFF },             /* 04 sdtr_able */
  115         0xFFFF,                 /* 05 start_motor */
  116         0xFFFF,                 /* 06 tagqng_able */
  117         0xFFFF,                 /* 07 bios_scan */
  118         0,                      /* 08 scam_tolerant */
  119         7,                      /* 09 adapter_scsi_id */
  120         0,                      /*    bios_boot_delay */
  121         3,                      /* 10 scsi_reset_delay */
  122         0,                      /*    bios_id_lun */
  123         0,                      /* 11 termination */
  124         0,                      /*    reserved1 */
  125         0xFFE7,                 /* 12 bios_ctrl */
  126         { 0xFFFF },             /* 13 ultra_able */
  127         { 0 },                  /* 14 reserved2 */
  128         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  129         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  130         0,                      /* 16 dvc_cntl */
  131         { 0 },                  /* 17 bug_fix */
  132         { 0,0,0 },              /* 18-20 serial_number[3] */
  133         0,                      /* 21 check_sum */
  134         {                       /* 22-29 oem_name[16] */
  135           0,0,0,0,0,0,0,0,
  136           0,0,0,0,0,0,0,0
  137         },
  138         0,                      /* 30 dvc_err_code */
  139         0,                      /* 31 adv_err_code */
  140         0,                      /* 32 adv_err_addr */
  141         0,                      /* 33 saved_dvc_err_code */
  142         0,                      /* 34 saved_adv_err_code */
  143         0                       /* 35 saved_adv_err_addr */
  144 };
  145 
  146 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
  147         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  148         0x0000,                 /* 01 cfg_msw */
  149         0xFFFF,                 /* 02 disc_enable */
  150         0xFFFF,                 /* 03 wdtr_able */
  151         { 0x4444 },             /* 04 sdtr_speed1 */
  152         0xFFFF,                 /* 05 start_motor */
  153         0xFFFF,                 /* 06 tagqng_able */
  154         0xFFFF,                 /* 07 bios_scan */
  155         0,                      /* 08 scam_tolerant */
  156         7,                      /* 09 adapter_scsi_id */
  157         0,                      /*    bios_boot_delay */
  158         3,                      /* 10 scsi_reset_delay */
  159         0,                      /*    bios_id_lun */
  160         0,                      /* 11 termination_se */
  161         0,                      /*    termination_lvd */
  162         0xFFE7,                 /* 12 bios_ctrl */
  163         { 0x4444 },             /* 13 sdtr_speed2 */
  164         { 0x4444 },             /* 14 sdtr_speed3 */
  165         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  166         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  167         0,                      /* 16 dvc_cntl */
  168         { 0x4444 },             /* 17 sdtr_speed4 */
  169         { 0,0,0 },              /* 18-20 serial_number[3] */
  170         0,                      /* 21 check_sum */
  171         {                       /* 22-29 oem_name[16] */
  172           0,0,0,0,0,0,0,0,
  173           0,0,0,0,0,0,0,0
  174         },
  175         0,                      /* 30 dvc_err_code */
  176         0,                      /* 31 adv_err_code */
  177         0,                      /* 32 adv_err_addr */
  178         0,                      /* 33 saved_dvc_err_code */
  179         0,                      /* 34 saved_adv_err_code */
  180         0,                      /* 35 saved_adv_err_addr */
  181         {                       /* 36-55 reserved1[16] */
  182           0,0,0,0,0,0,0,0,0,0,
  183           0,0,0,0,0,0,0,0,0,0
  184         },
  185         0,                      /* 56 cisptr_lsw */
  186         0,                      /* 57 cisprt_msw */
  187         PCI_VENDOR_ADVSYS,      /* 58 subsysvid */
  188         PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
  189         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  190 };
  191 
  192 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
  193         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  194         0x0000,                 /* 01 cfg_msw */
  195         0xFFFF,                 /* 02 disc_enable */
  196         0xFFFF,                 /* 03 wdtr_able */
  197         { 0x5555 },             /* 04 sdtr_speed1 */
  198         0xFFFF,                 /* 05 start_motor */
  199         0xFFFF,                 /* 06 tagqng_able */
  200         0xFFFF,                 /* 07 bios_scan */
  201         0,                      /* 08 scam_tolerant */
  202         7,                      /* 09 adapter_scsi_id */
  203         0,                      /*    bios_boot_delay */
  204         3,                      /* 10 scsi_reset_delay */
  205         0,                      /*    bios_id_lun */
  206         0,                      /* 11 termination_se */
  207         0,                      /*    termination_lvd */
  208         0xFFE7,                 /* 12 bios_ctrl */
  209         { 0x5555 },             /* 13 sdtr_speed2 */
  210         { 0x5555 },             /* 14 sdtr_speed3 */
  211         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  212         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  213         0,                      /* 16 dvc_cntl */
  214         { 0x5555 },             /* 17 sdtr_speed4 */
  215         { 0,0,0 },              /* 18-20 serial_number[3] */
  216         0,                      /* 21 check_sum */
  217         {                       /* 22-29 oem_name[16] */
  218           0,0,0,0,0,0,0,0,
  219           0,0,0,0,0,0,0,0
  220         },
  221         0,                      /* 30 dvc_err_code */
  222         0,                      /* 31 adv_err_code */
  223         0,                      /* 32 adv_err_addr */
  224         0,                      /* 33 saved_dvc_err_code */
  225         0,                      /* 34 saved_adv_err_code */
  226         0,                      /* 35 saved_adv_err_addr */
  227         {                       /* 36-55 reserved1[16] */
  228           0,0,0,0,0,0,0,0,0,0,
  229           0,0,0,0,0,0,0,0,0,0
  230         },
  231         0,                      /* 56 cisptr_lsw */
  232         0,                      /* 57 cisprt_msw */
  233         PCI_VENDOR_ADVSYS,      /* 58 subsysvid */
  234         PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
  235         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  236 };
  237 
  238 
  239 /*
  240  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
  241  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
  242  * all of this is done.
  243  *
  244  * For a non-fatal error return a warning code. If there are no warnings
  245  * then 0 is returned.
  246  *
  247  * Note: Chip is stopped on entry.
  248  */
  249 int
  250 AdwInitFromEEPROM(sc)
  251 ADW_SOFTC      *sc;
  252 {
  253         bus_space_tag_t iot = sc->sc_iot;
  254         bus_space_handle_t ioh = sc->sc_ioh;
  255         ADW_EEPROM              eep_config;
  256         u_int16_t               warn_code;
  257         u_int16_t               sdtr_speed = 0;
  258         u_int8_t                tid, termination;
  259         int                     i, j;
  260 
  261 
  262         warn_code = 0;
  263 
  264         /*
  265          * Read the board's EEPROM configuration.
  266          *
  267          * Set default values if a bad checksum is found.
  268          *
  269          * XXX - Don't handle big-endian access to EEPROM yet.
  270          */
  271         if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
  272                 warn_code |= ADW_WARN_EEPROM_CHKSUM;
  273 
  274                 /*
  275                  * Set EEPROM default values.
  276                  */
  277                 switch(sc->chip_type) {
  278                 case ADW_CHIP_ASC3550:
  279                         eep_config = adw_3550_Default_EEPROM;
  280                         break;
  281                 case ADW_CHIP_ASC38C0800:
  282                         eep_config = adw_38C0800_Default_EEPROM;
  283                         break;
  284                 case ADW_CHIP_ASC38C1600:
  285                         eep_config = adw_38C1600_Default_EEPROM;
  286 
  287 #if 0
  288 XXX       TODO!!!       if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
  289 #endif
  290                         if (sc->cfg.pci_slot_info != 0) {
  291                                 u_int8_t lsw_msb;
  292 
  293                                 lsw_msb = eep_config.cfg_lsw >> 8;
  294                                 /*
  295                                  * Set Function 1 EEPROM Word 0 MSB
  296                                  *
  297                                  * Clear the BIOS_ENABLE (bit 14) and
  298                                  * INTAB (bit 11) EEPROM bits.
  299                                  *
  300                                  * Disable Bit 14 (BIOS_ENABLE) to fix
  301                                  * SPARC Ultra 60 and old Mac system booting
  302                                  * problem. The Expansion ROM must
  303                                  * be disabled in Function 1 for these systems.
  304                                  */
  305                                 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
  306                                                 ADW_EEPROM_INTAB) >> 8) & 0xFF);
  307                                 /*
  308                                  * Set the INTAB (bit 11) if the GPIO 0 input
  309                                  * indicates the Function 1 interrupt line is
  310                                  * wired to INTA.
  311                                  *
  312                                  * Set/Clear Bit 11 (INTAB) from
  313                                  * the GPIO bit 0 input:
  314                                  *   1 - Function 1 intr line wired to INT A.
  315                                  *   0 - Function 1 intr line wired to INT B.
  316                                  *
  317                                  * Note: Adapter boards always have Function 0
  318                                  * wired to INTA.
  319                                  * Put all 5 GPIO bits in input mode and then
  320                                  * read their input values.
  321                                  */
  322                                 ADW_WRITE_BYTE_REGISTER(iot, ioh,
  323                                                         IOPB_GPIO_CNTL, 0);
  324                                 if (ADW_READ_BYTE_REGISTER(iot, ioh,
  325                                                 IOPB_GPIO_DATA) & 0x01) {
  326                                         /*
  327                                          * Function 1 interrupt wired to INTA;
  328                                          * Set EEPROM bit.
  329                                          */
  330                                         lsw_msb |= (ADW_EEPROM_INTAB >> 8)
  331                                                          & 0xFF;
  332                                  }
  333                                  eep_config.cfg_lsw &= 0x00FF;
  334                                  eep_config.cfg_lsw |= lsw_msb << 8;
  335                         }
  336                         break;
  337                 }
  338 
  339                 /*
  340                  * Assume the 6 byte board serial number that was read
  341                  * from EEPROM is correct even if the EEPROM checksum
  342                  * failed.
  343                  */
  344                 for (i=2, j=1; i>=0; i--, j++) {
  345                 eep_config.serial_number[i] =
  346                         AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
  347                 }
  348 
  349                 AdwSetEEPROMConfig(iot, ioh, &eep_config);
  350         }
  351         /*
  352          * Set sc and sc->cfg variables from the EEPROM configuration
  353          * that was read.
  354          *
  355          * This is the mapping of EEPROM fields to Adw Library fields.
  356          */
  357         sc->wdtr_able = eep_config.wdtr_able;
  358         if (sc->chip_type == ADW_CHIP_ASC3550) {
  359                 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
  360                 sc->ultra_able = eep_config.sdtr2.ultra_able;
  361         } else {
  362                 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
  363                 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
  364                 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
  365                 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
  366         }
  367         sc->ppr_able = 0;
  368         sc->tagqng_able = eep_config.tagqng_able;
  369         sc->cfg.disc_enable = eep_config.disc_enable;
  370         sc->max_host_qng = eep_config.max_host_qng;
  371         sc->max_dvc_qng = eep_config.max_dvc_qng;
  372         sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
  373         sc->start_motor = eep_config.start_motor;
  374         sc->scsi_reset_wait = eep_config.scsi_reset_delay;
  375         sc->bios_ctrl = eep_config.bios_ctrl;
  376         sc->no_scam = eep_config.scam_tolerant;
  377         sc->cfg.serial1 = eep_config.serial_number[0];
  378         sc->cfg.serial2 = eep_config.serial_number[1];
  379         sc->cfg.serial3 = eep_config.serial_number[2];
  380 
  381         if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
  382             sc->chip_type == ADW_CHIP_ASC38C1600) {
  383                 sc->sdtr_able = 0;
  384                 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  385                         if (tid == 0) {
  386                                 sdtr_speed = sc->sdtr_speed1;
  387                         } else if (tid == 4) {
  388                                 sdtr_speed = sc->sdtr_speed2;
  389                         } else if (tid == 8) {
  390                                 sdtr_speed = sc->sdtr_speed3;
  391                         } else if (tid == 12) {
  392                                 sdtr_speed = sc->sdtr_speed4;
  393                         }
  394                         if (sdtr_speed & ADW_MAX_TID) {
  395                                 sc->sdtr_able |= (1 << tid);
  396                         }
  397                         sdtr_speed >>= 4;
  398                 }
  399         }
  400 
  401         /*
  402          * Set the host maximum queuing (max. 253, min. 16) and the per device
  403          * maximum queuing (max. 63, min. 4).
  404          */
  405         if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
  406                 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
  407         } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
  408         {
  409                 /* If the value is zero, assume it is uninitialized. */
  410                 if (eep_config.max_host_qng == 0) {
  411                         eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
  412                 } else {
  413                         eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
  414                 }
  415         }
  416 
  417         if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
  418                 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
  419         } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
  420                 /* If the value is zero, assume it is uninitialized. */
  421                 if (eep_config.max_dvc_qng == 0) {
  422                         eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
  423                 } else {
  424                         eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
  425                 }
  426         }
  427 
  428         /*
  429          * If 'max_dvc_qng' is greater than 'max_host_qng', then
  430          * set 'max_dvc_qng' to 'max_host_qng'.
  431          */
  432         if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
  433                 eep_config.max_dvc_qng = eep_config.max_host_qng;
  434         }
  435 
  436         /*
  437          * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
  438          * values based on possibly adjusted EEPROM values.
  439          */
  440         sc->max_host_qng = eep_config.max_host_qng;
  441         sc->max_dvc_qng = eep_config.max_dvc_qng;
  442 
  443 
  444         /*
  445          * If the EEPROM 'termination' field is set to automatic (0), then set
  446          * the ADV_DVC_CFG 'termination' field to automatic also.
  447          *
  448          * If the termination is specified with a non-zero 'termination'
  449          * value check that a legal value is set and set the ADV_DVC_CFG
  450          * 'termination' field appropriately.
  451          */
  452 
  453         switch(sc->chip_type) {
  454         case ADW_CHIP_ASC3550:
  455                 sc->cfg.termination = 0;        /* auto termination */
  456                 switch(eep_config.termination_se) {
  457                 case 3:
  458                         /* Enable manual control with low on / high on. */
  459                         sc->cfg.termination |= ADW_TERM_CTL_L;
  460                 case 2:
  461                         /* Enable manual control with low off / high on. */
  462                         sc->cfg.termination |= ADW_TERM_CTL_H;
  463                 case 1:
  464                         /* Enable manual control with low off / high off. */
  465                         sc->cfg.termination |= ADW_TERM_CTL_SEL;
  466                 case 0:
  467                         break;
  468                 default:
  469                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  470                 }
  471                 break;
  472 
  473         case ADW_CHIP_ASC38C0800:
  474         case ADW_CHIP_ASC38C1600:
  475                 switch(eep_config.termination_se) {
  476                 case 0:
  477                         /* auto termination for SE */
  478                         termination = 0;
  479                         break;
  480                 case 1:
  481                         /* Enable manual control with low off / high off. */
  482                         termination = 0;
  483                         break;
  484                 case 2:
  485                         /* Enable manual control with low off / high on. */
  486                         termination = ADW_TERM_SE_HI;
  487                         break;
  488                 case 3:
  489                         /* Enable manual control with low on / high on. */
  490                         termination = ADW_TERM_SE;
  491                         break;
  492                 default:
  493                         /*
  494                          * The EEPROM 'termination_se' field contains a
  495                          * bad value. Use automatic termination instead.
  496                          */
  497                         termination = 0;
  498                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  499                 }
  500 
  501                 switch(eep_config.termination_lvd) {
  502                 case 0:
  503                         /* auto termination for LVD */
  504                         sc->cfg.termination = termination;
  505                         break;
  506                 case 1:
  507                         /* Enable manual control with low off / high off. */
  508                         sc->cfg.termination = termination;
  509                         break;
  510                 case 2:
  511                         /* Enable manual control with low off / high on. */
  512                         sc->cfg.termination = termination | ADW_TERM_LVD_HI;
  513                         break;
  514                 case 3:
  515                         /* Enable manual control with low on / high on. */
  516                         sc->cfg.termination = termination | ADW_TERM_LVD;
  517                         break;
  518                 default:
  519                         /*
  520                          * The EEPROM 'termination_lvd' field contains a
  521                          * bad value. Use automatic termination instead.
  522                          */
  523                         sc->cfg.termination = termination;
  524                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  525                 }
  526                 break;
  527         }
  528 
  529         return warn_code;
  530 }
  531 
  532 
  533 /*
  534  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
  535  *
  536  * On failure return the error code.
  537  */
  538 int
  539 AdwInitDriver(sc)
  540 ADW_SOFTC      *sc;
  541 {
  542         bus_space_tag_t iot = sc->sc_iot;
  543         bus_space_handle_t ioh = sc->sc_ioh;
  544         u_int16_t       error_code;
  545         int             word;
  546         int             i;
  547         u_int16_t       bios_mem[ADW_MC_BIOSLEN/2];     /* BIOS RISC Memory
  548                                                                 0x40-0x8F. */
  549         u_int16_t       wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
  550         u_int8_t        max_cmd[ADW_MAX_TID + 1];
  551         u_int8_t        tid;
  552 
  553 
  554         error_code = 0;
  555 
  556         /*
  557          * Save the RISC memory BIOS region before writing the microcode.
  558          * The BIOS may already be loaded and using its RISC LRAM region
  559          * so its region must be saved and restored.
  560          *
  561          * Note: This code makes the assumption, which is currently true,
  562          * that a chip reset does not clear RISC LRAM.
  563          */
  564         for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
  565                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
  566         }
  567 
  568         /*
  569          * Save current per TID negotiated values.
  570          */
  571         switch (sc->chip_type) {
  572         case ADW_CHIP_ASC3550:
  573                 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
  574 
  575                         u_int16_t  bios_version, major, minor;
  576 
  577                         bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
  578                                         ADW_MC_BIOSMEM) / 2];
  579                         major = (bios_version  >> 12) & 0xF;
  580                         minor = (bios_version  >> 8) & 0xF;
  581                         if (major < 3 || (major == 3 && minor == 1)) {
  582                             /*
  583                              * BIOS 3.1 and earlier location of
  584                              * 'wdtr_able' variable.
  585                              */
  586                             ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
  587                         } else {
  588                             ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
  589                                             wdtr_able);
  590                         }
  591                 }
  592                 break;
  593 
  594         case ADW_CHIP_ASC38C1600:
  595                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
  596                 /* FALLTHROUGH */
  597         case ADW_CHIP_ASC38C0800:
  598                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
  599                 break;
  600         }
  601         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
  602         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
  603         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  604                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
  605                         max_cmd[tid]);
  606         }
  607 
  608         /*
  609          * Perform a RAM Built-In Self Test
  610          */
  611         if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
  612                 return error_code;
  613         }
  614 
  615         /*
  616          * Load the Microcode
  617          */
  618         ;
  619         if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
  620                 return error_code;
  621         }
  622 
  623         /*
  624          * Read microcode version and date.
  625          */
  626         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
  627         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
  628 
  629         /*
  630          * If the PCI Configuration Command Register "Parity Error Response
  631          * Control" Bit was clear (0), then set the microcode variable
  632          * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
  633          * to ignore DMA parity errors.
  634          */
  635         if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
  636                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
  637                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
  638                                         word | CONTROL_FLAG_IGNORE_PERR);
  639         }
  640 
  641         switch (sc->chip_type) {
  642         case ADW_CHIP_ASC3550:
  643                 /*
  644                  * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
  645                  * FIFO threshold of 128 bytes.
  646                  * This register is only accessible to the host.
  647                  */
  648                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  649                                 START_CTL_EMFU | READ_CMD_MRM);
  650                 break;
  651 
  652         case ADW_CHIP_ASC38C0800:
  653                 /*
  654                  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
  655                  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
  656                  * cable detection and then we are able to read C_DET[3:0].
  657                  *
  658                  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
  659                  * Microcode Default Value' section below.
  660                  */
  661                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
  662                                 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
  663                                 | ADW_DIS_TERM_DRV);
  664 
  665                 /*
  666                  * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
  667                  * START_CTL_TH [3:2] bits for the default FIFO threshold.
  668                  *
  669                  * Note: ASC-38C0800 FIFO threshold has been changed to
  670                  * 256 bytes.
  671                  *
  672                  * For DMA Errata #4 set the BC_THRESH_ENB bit.
  673                  */
  674                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  675                                                 BC_THRESH_ENB | FIFO_THRESH_80B
  676                                                 | START_CTL_TH | READ_CMD_MRM);
  677                 break;
  678 
  679         case ADW_CHIP_ASC38C1600:
  680                 /*
  681                  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
  682                  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
  683                  * cable detection and then we are able to read C_DET[3:0].
  684                  *
  685                  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
  686                  * Microcode Default Value' section below.
  687                  */
  688                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
  689                                 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
  690                                 | ADW_DIS_TERM_DRV);
  691 
  692                 /*
  693                  * If the BIOS control flag AIPP (Asynchronous Information
  694                  * Phase Protection) disable bit is not set, then set the
  695                  * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
  696                  * enable AIPP checking and encoding.
  697                  */
  698                 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
  699                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
  700                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
  701                                         word | CONTROL_FLAG_ENABLE_AIPP);
  702                 }
  703 
  704                 /*
  705                  * For ASC-38C1600 use DMA_CFG0 default values:
  706                  * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
  707                  */
  708                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  709                                 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
  710                 break;
  711         }
  712 
  713         /*
  714          * Microcode operating variables for WDTR, SDTR, and command tag
  715          * queuing will be set in AdvInquiryHandling() based on what a
  716          * device reports it is capable of in Inquiry byte 7.
  717          *
  718          * If SCSI Bus Resets have been disabled, then directly set
  719          * SDTR and WDTR from the EEPROM configuration. This will allow
  720          * the BIOS and warm boot to work without a SCSI bus hang on
  721          * the Inquiry caused by host and target mismatched DTR values.
  722          * Without the SCSI Bus Reset, before an Inquiry a device can't
  723          * be assumed to be in Asynchronous, Narrow mode.
  724          */
  725         if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
  726                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
  727                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
  728         }
  729 
  730         /*
  731          * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
  732          * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
  733          * bitmask. These values determine the maximum SDTR speed negotiated
  734          * with a device.
  735          *
  736          * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
  737          * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
  738          * without determining here whether the device supports SDTR.
  739          */
  740         switch (sc->chip_type) {
  741         case ADW_CHIP_ASC3550:
  742                 word = 0;
  743                 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  744                         if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
  745                                 /* Set Ultra speed for TID 'tid'. */
  746                                 word |= (0x3 << (4 * (tid % 4)));
  747                         } else {
  748                                 /* Set Fast speed for TID 'tid'. */
  749                                 word |= (0x2 << (4 * (tid % 4)));
  750                         }
  751                         /* Check if done with sdtr_speed1. */
  752                         if (tid == 3) {
  753                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  754                                                 ADW_MC_SDTR_SPEED1, word);
  755                                 word = 0;
  756                         /* Check if done with sdtr_speed2. */
  757                         } else if (tid == 7) {
  758                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  759                                                 ADW_MC_SDTR_SPEED2, word);
  760                                 word = 0;
  761                         /* Check if done with sdtr_speed3. */
  762                         } else if (tid == 11) {
  763                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  764                                                 ADW_MC_SDTR_SPEED3, word);
  765                                 word = 0;
  766                         /* Check if done with sdtr_speed4. */
  767                         } else if (tid == 15) {
  768                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  769                                                 ADW_MC_SDTR_SPEED4, word);
  770                                 /* End of loop. */
  771                         }
  772                 }
  773 
  774                 /*
  775                  * Set microcode operating variable for the
  776                  * disconnect per TID bitmask.
  777                  */
  778                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
  779                                                         sc->cfg.disc_enable);
  780                 break;
  781 
  782         case ADW_CHIP_ASC38C0800:
  783                 /* FALLTHROUGH */
  784         case ADW_CHIP_ASC38C1600:
  785                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
  786                                                         sc->cfg.disc_enable);
  787                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
  788                                                         sc->sdtr_speed1);
  789                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
  790                                                         sc->sdtr_speed2);
  791                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
  792                                                         sc->sdtr_speed3);
  793                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
  794                                                         sc->sdtr_speed4);
  795                 break;
  796         }
  797 
  798 
  799         /*
  800          * Set SCSI_CFG0 Microcode Default Value.
  801          *
  802          * The microcode will set the SCSI_CFG0 register using this value
  803          * after it is started below.
  804          */
  805         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
  806                 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
  807                 ADW_OUR_ID_EN | sc->chip_scsi_id);
  808 
  809 
  810         switch(sc->chip_type) {
  811         case ADW_CHIP_ASC3550:
  812                 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
  813                 break;
  814 
  815         case ADW_CHIP_ASC38C0800:
  816                 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
  817                 break;
  818 
  819         case ADW_CHIP_ASC38C1600:
  820                 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
  821                 break;
  822         }
  823         if(error_code) {
  824                 return error_code;
  825         }
  826 
  827         /*
  828          * Set SEL_MASK Microcode Default Value
  829          *
  830          * The microcode will set the SEL_MASK register using this value
  831          * after it is started below.
  832          */
  833         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
  834                 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
  835 
  836         /*
  837          * Create and Initialize Host->RISC Carrier lists
  838          */
  839         sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
  840                                                 sc->sc_control->carriers);
  841 
  842         /*
  843          * Set-up the Host->RISC Initiator Command Queue (ICQ).
  844          */
  845 
  846         if ((sc->icq_sp = sc->carr_freelist) == NULL) {
  847                 return ADW_IERR_NO_CARRIER;
  848         }
  849         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
  850                         ASC_GET_CARRP(sc->icq_sp->next_ba));
  851 
  852         /*
  853          * The first command issued will be placed in the stopper carrier.
  854          */
  855         sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
  856 
  857         /*
  858          * Set RISC ICQ physical address start value.
  859          */
  860         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
  861 
  862         /*
  863          * Initialize the COMMA register to the same value otherwise
  864          * the RISC will prematurely detect a command is available.
  865          */
  866         if(sc->chip_type == ADW_CHIP_ASC38C1600) {
  867                 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
  868                                                 le32toh(sc->icq_sp->carr_ba));
  869         }
  870 
  871         /*
  872          * Set-up the RISC->Host Initiator Response Queue (IRQ).
  873          */
  874         if ((sc->irq_sp = sc->carr_freelist) == NULL) {
  875                 return ADW_IERR_NO_CARRIER;
  876         }
  877         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
  878                         ASC_GET_CARRP(sc->irq_sp->next_ba));
  879 
  880         /*
  881          * The first command completed by the RISC will be placed in
  882          * the stopper.
  883          *
  884          * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
  885          * completed the RISC will set the ASC_RQ_DONE bit.
  886          */
  887         sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
  888 
  889         /*
  890          * Set RISC IRQ physical address start value.
  891          */
  892         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
  893         sc->carr_pending_cnt = 0;
  894 
  895         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
  896                 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
  897         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
  898         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
  899 
  900         /* finally, finally, gentlemen, start your engine */
  901         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
  902 
  903         /*
  904          * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
  905          * Resets should be performed. The RISC has to be running
  906          * to issue a SCSI Bus Reset.
  907          */
  908         if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
  909         {
  910                 /*
  911                  * If the BIOS Signature is present in memory, restore the
  912                  * BIOS Handshake Configuration Table and do not perform
  913                  * a SCSI Bus Reset.
  914                  */
  915                 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
  916                                 0x55AA) {
  917                         /*
  918                          * Restore per TID negotiated values.
  919                          */
  920                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
  921                                         wdtr_able);
  922                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
  923                                         sdtr_able);
  924                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
  925                                         tagqng_able);
  926                         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  927                                 ADW_WRITE_BYTE_LRAM(iot, ioh,
  928                                                 ADW_MC_NUMBER_OF_MAX_CMD + tid,
  929                                                 max_cmd[tid]);
  930                         }
  931                 } else {
  932                         if (AdwResetCCB(sc) != ADW_TRUE) {
  933                                 error_code = ADW_WARN_BUSRESET_ERROR;
  934                         }
  935                 }
  936         }
  937 
  938         return error_code;
  939 }
  940 
  941 
  942 int
  943 AdwRamSelfTest(iot, ioh, chip_type)
  944         bus_space_tag_t iot;
  945         bus_space_handle_t ioh;
  946         u_int8_t chip_type;
  947 {
  948         int             i;
  949         u_int8_t        byte;
  950 
  951 
  952         if ((chip_type == ADW_CHIP_ASC38C0800) ||
  953             (chip_type == ADW_CHIP_ASC38C1600)) {
  954                 /*
  955                  * RAM BIST (RAM Built-In Self Test)
  956                  *
  957                  * Address : I/O base + offset 0x38h register (byte).
  958                  * Function: Bit 7-6(RW) : RAM mode
  959                  *                          Normal Mode   : 0x00
  960                  *                          Pre-test Mode : 0x40
  961                  *                          RAM Test Mode : 0x80
  962                  *           Bit 5       : unused
  963                  *           Bit 4(RO)   : Done bit
  964                  *           Bit 3-0(RO) : Status
  965                  *                          Host Error    : 0x08
  966                  *                          Int_RAM Error : 0x04
  967                  *                          RISC Error    : 0x02
  968                  *                          SCSI Error    : 0x01
  969                  *                          No Error      : 0x00
  970                  *
  971                  * Note: RAM BIST code should be put right here, before loading
  972                  * the microcode and after saving the RISC memory BIOS region.
  973                  */
  974 
  975                 /*
  976                  * LRAM Pre-test
  977                  *
  978                  * Write PRE_TEST_MODE (0x40) to register and wait for
  979                  * 10 milliseconds.
  980                  * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
  981                  * return an error. Reset to NORMAL_MODE (0x00) and do again.
  982                  * If cannot reset to NORMAL_MODE, return an error too.
  983                  */
  984                 for (i = 0; i < 2; i++) {
  985                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
  986                                         PRE_TEST_MODE);
  987                          /* Wait for 10ms before reading back. */
  988                         AdwSleepMilliSecond(10);
  989                         byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
  990                         if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
  991                                         PRE_TEST_VALUE) {
  992                                 return ADW_IERR_BIST_PRE_TEST;
  993                         }
  994 
  995                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
  996                                                                 NORMAL_MODE);
  997                         /* Wait for 10ms before reading back. */
  998                         AdwSleepMilliSecond(10);
  999                         if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
 1000                             != NORMAL_VALUE) {
 1001                                 return ADW_IERR_BIST_PRE_TEST;
 1002                         }
 1003                 }
 1004 
 1005                 /*
 1006                  * LRAM Test - It takes about 1.5 ms to run through the test.
 1007                  *
 1008                  * Write RAM_TEST_MODE (0x80) to register and wait for
 1009                  * 10 milliseconds.
 1010                  * If Done bit not set or Status not 0, save register byte,
 1011                  * set the err_code, and return an error.
 1012                  */
 1013                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
 1014                 /* Wait for 10ms before checking status. */
 1015                 AdwSleepMilliSecond(10);
 1016 
 1017                 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
 1018                 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
 1019                         /* Get here if Done bit not set or Status not 0. */
 1020                         return ADW_IERR_BIST_RAM_TEST;
 1021                 }
 1022 
 1023                 /* We need to reset back to normal mode after LRAM test passes*/
 1024                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
 1025         }
 1026 
 1027         return 0;
 1028 }
 1029 
 1030 
 1031 int
 1032 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
 1033         bus_space_tag_t iot;
 1034         bus_space_handle_t ioh;
 1035         u_int16_t *bios_mem;
 1036         u_int8_t chip_type;
 1037 {
 1038         u_int8_t        *mcode_data;
 1039         u_int32_t        mcode_chksum;
 1040         u_int16_t        mcode_size;
 1041         u_int32_t       sum;
 1042         u_int16_t       code_sum;
 1043         int             begin_addr;
 1044         int             end_addr;
 1045         int             word;
 1046         int             adw_memsize;
 1047         int             adw_mcode_expanded_size;
 1048         int             i, j;
 1049 
 1050 
 1051         switch(chip_type) {
 1052         case ADW_CHIP_ASC3550:
 1053                 mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
 1054                 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
 1055                 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
 1056                 adw_memsize = ADW_3550_MEMSIZE;
 1057                 break;
 1058 
 1059         case ADW_CHIP_ASC38C0800:
 1060                 mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
 1061                 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
 1062                 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
 1063                 adw_memsize = ADW_38C0800_MEMSIZE;
 1064                 break;
 1065 
 1066         case ADW_CHIP_ASC38C1600:
 1067                 mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
 1068                 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
 1069                 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
 1070                 adw_memsize = ADW_38C1600_MEMSIZE;
 1071                 break;
 1072 
 1073         default:
 1074                 return (EINVAL);
 1075         }
 1076 
 1077         /*
 1078          * Write the microcode image to RISC memory starting at address 0.
 1079          */
 1080         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
 1081 
 1082         /* Assume the following compressed format of the microcode buffer:
 1083          *
 1084          *  254 word (508 byte) table indexed by byte code followed
 1085          *  by the following byte codes:
 1086          *
 1087          *    1-Byte Code:
 1088          *      00: Emit word 0 in table.
 1089          *      01: Emit word 1 in table.
 1090          *      .
 1091          *      FD: Emit word 253 in table.
 1092          *
 1093          *    Multi-Byte Code:
 1094          *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
 1095          *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
 1096          */
 1097         word = 0;
 1098         for (i = 253 * 2; i < mcode_size; i++) {
 1099                 if (mcode_data[i] == 0xff) {
 1100                         for (j = 0; j < mcode_data[i + 1]; j++) {
 1101                                 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
 1102                                   (((u_int16_t)mcode_data[i + 3] << 8) |
 1103                                   mcode_data[i + 2]));
 1104                                 word++;
 1105                         }
 1106                         i += 3;
 1107                 } else if (mcode_data[i] == 0xfe) {
 1108                         ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
 1109                             (((u_int16_t)mcode_data[i + 2] << 8) |
 1110                             mcode_data[i + 1]));
 1111                         i += 2;
 1112                         word++;
 1113                 } else {
 1114                         ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
 1115                          mcode_data[(mcode_data[i] * 2) + 1] <<8) |
 1116                          mcode_data[mcode_data[i] * 2]));
 1117                         word++;
 1118                 }
 1119         }
 1120 
 1121         /*
 1122          * Set 'word' for later use to clear the rest of memory and save
 1123          * the expanded mcode size.
 1124          */
 1125         word *= 2;
 1126         adw_mcode_expanded_size = word;
 1127 
 1128         /*
 1129          * Clear the rest of the Internal RAM.
 1130          */
 1131         for (; word < adw_memsize; word += 2) {
 1132                 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
 1133         }
 1134 
 1135         /*
 1136          * Verify the microcode checksum.
 1137          */
 1138         sum = 0;
 1139         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
 1140 
 1141         for (word = 0; word < adw_mcode_expanded_size; word += 2) {
 1142                 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
 1143         }
 1144 
 1145         if (sum != mcode_chksum) {
 1146                 return ADW_IERR_MCODE_CHKSUM;
 1147         }
 1148 
 1149         /*
 1150          * Restore the RISC memory BIOS region.
 1151          */
 1152         for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
 1153                 if(chip_type == ADW_CHIP_ASC3550) {
 1154                         ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
 1155                                                                 bios_mem[i]);
 1156                 } else {
 1157                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
 1158                                                                 bios_mem[i]);
 1159                 }
 1160         }
 1161 
 1162         /*
 1163          * Calculate and write the microcode code checksum to the microcode
 1164          * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
 1165          */
 1166         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
 1167         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
 1168         code_sum = 0;
 1169         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
 1170         for (word = begin_addr; word < end_addr; word += 2) {
 1171                 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
 1172         }
 1173         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
 1174 
 1175         /*
 1176          * Set the chip type.
 1177          */
 1178         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
 1179 
 1180         return 0;
 1181 }
 1182 
 1183 
 1184 int
 1185 AdwASC3550Cabling(iot, ioh, cfg)
 1186         bus_space_tag_t iot;
 1187         bus_space_handle_t ioh;
 1188         ADW_DVC_CFG *cfg;
 1189 {
 1190         u_int16_t       scsi_cfg1;
 1191 
 1192 
 1193         /*
 1194          * Determine SCSI_CFG1 Microcode Default Value.
 1195          *
 1196          * The microcode will set the SCSI_CFG1 register using this value
 1197          * after it is started below.
 1198          */
 1199 
 1200         /* Read current SCSI_CFG1 Register value. */
 1201         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1202 
 1203         /*
 1204          * If all three connectors are in use in ASC3550, return an error.
 1205          */
 1206         if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
 1207              (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
 1208                 return ADW_IERR_ILLEGAL_CONNECTION;
 1209         }
 1210 
 1211         /*
 1212          * If the cable is reversed all of the SCSI_CTRL register signals
 1213          * will be set. Check for and return an error if this condition is
 1214          * found.
 1215          */
 1216         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1217                 return ADW_IERR_REVERSED_CABLE;
 1218         }
 1219 
 1220         /*
 1221          * If this is a differential board and a single-ended device
 1222          * is attached to one of the connectors, return an error.
 1223          */
 1224         if ((scsi_cfg1 & ADW_DIFF_MODE) &&
 1225             (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
 1226                 return ADW_IERR_SINGLE_END_DEVICE;
 1227         }
 1228 
 1229         /*
 1230          * If automatic termination control is enabled, then set the
 1231          * termination value based on a table listed in a_condor.h.
 1232          *
 1233          * If manual termination was specified with an EEPROM setting
 1234          * then 'termination' was set-up in AdwInitFromEEPROM() and
 1235          * is ready to be 'ored' into SCSI_CFG1.
 1236          */
 1237         if (cfg->termination == 0) {
 1238                 /*
 1239                  * The software always controls termination by setting
 1240                  * TERM_CTL_SEL.
 1241                  * If TERM_CTL_SEL were set to 0, the hardware would set
 1242                  * termination.
 1243                  */
 1244                 cfg->termination |= ADW_TERM_CTL_SEL;
 1245 
 1246                 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
 1247                         /* TERM_CTL_H: on, TERM_CTL_L: on */
 1248                         case 0x3: case 0x7: case 0xB:
 1249                         case 0xD: case 0xE: case 0xF:
 1250                                 cfg->termination |=
 1251                                 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
 1252                                 break;
 1253 
 1254                         /* TERM_CTL_H: on, TERM_CTL_L: off */
 1255                         case 0x1: case 0x5: case 0x9:
 1256                         case 0xA: case 0xC:
 1257                                 cfg->termination |= ADW_TERM_CTL_H;
 1258                                 break;
 1259 
 1260                         /* TERM_CTL_H: off, TERM_CTL_L: off */
 1261                         case 0x2: case 0x6:
 1262                                 break;
 1263                 }
 1264         }
 1265 
 1266         /*
 1267          * Clear any set TERM_CTL_H and TERM_CTL_L bits.
 1268          */
 1269         scsi_cfg1 &= ~ADW_TERM_CTL;
 1270 
 1271         /*
 1272          * Invert the TERM_CTL_H and TERM_CTL_L bits and then
 1273          * set 'scsi_cfg1'. The TERM_POL bit does not need to be
 1274          * referenced, because the hardware internally inverts
 1275          * the Termination High and Low bits if TERM_POL is set.
 1276          */
 1277         scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
 1278 
 1279         /*
 1280          * Set SCSI_CFG1 Microcode Default Value
 1281          *
 1282          * Set filter value and possibly modified termination control
 1283          * bits in the Microcode SCSI_CFG1 Register Value.
 1284          *
 1285          * The microcode will set the SCSI_CFG1 register using this value
 1286          * after it is started below.
 1287          */
 1288         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
 1289                                                 ADW_FLTR_DISABLE | scsi_cfg1);
 1290 
 1291         /*
 1292          * Set MEM_CFG Microcode Default Value
 1293          *
 1294          * The microcode will set the MEM_CFG register using this value
 1295          * after it is started below.
 1296          *
 1297          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1298          * are defined.
 1299          *
 1300          * ASC-3550 has 8KB internal memory.
 1301          */
 1302         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1303                                                 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
 1304 
 1305         return 0;
 1306 }
 1307 
 1308 
 1309 int
 1310 AdwASC38C0800Cabling(iot, ioh, cfg)
 1311         bus_space_tag_t iot;
 1312         bus_space_handle_t ioh;
 1313         ADW_DVC_CFG *cfg;
 1314 {
 1315         u_int16_t       scsi_cfg1;
 1316 
 1317 
 1318         /*
 1319          * Determine SCSI_CFG1 Microcode Default Value.
 1320          *
 1321          * The microcode will set the SCSI_CFG1 register using this value
 1322          * after it is started below.
 1323          */
 1324 
 1325         /* Read current SCSI_CFG1 Register value. */
 1326         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1327 
 1328         /*
 1329          * If the cable is reversed all of the SCSI_CTRL register signals
 1330          * will be set. Check for and return an error if this condition is
 1331          * found.
 1332          */
 1333         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1334                 return ADW_IERR_REVERSED_CABLE;
 1335         }
 1336 
 1337         /*
 1338          * All kind of combinations of devices attached to one of four
 1339          * connectors are acceptable except HVD device attached.
 1340          * For example, LVD device can be attached to SE connector while
 1341          * SE device attached to LVD connector.
 1342          * If LVD device attached to SE connector, it only runs up to
 1343          * Ultra speed.
 1344          *
 1345          * If an HVD device is attached to one of LVD connectors, return
 1346          * an error.
 1347          * However, there is no way to detect HVD device attached to
 1348          * SE connectors.
 1349          */
 1350         if (scsi_cfg1 & ADW_HVD) {
 1351                 return ADW_IERR_HVD_DEVICE;
 1352         }
 1353 
 1354         /*
 1355          * If either SE or LVD automatic termination control is enabled, then
 1356          * set the termination value based on a table listed in a_condor.h.
 1357          *
 1358          * If manual termination was specified with an EEPROM setting then
 1359          * 'termination' was set-up in AdwInitFromEEPROM() and is ready
 1360          * to be 'ored' into SCSI_CFG1.
 1361          */
 1362         if ((cfg->termination & ADW_TERM_SE) == 0) {
 1363                 /* SE automatic termination control is enabled. */
 1364                 switch(scsi_cfg1 & ADW_C_DET_SE) {
 1365                         /* TERM_SE_HI: on, TERM_SE_LO: on */
 1366                         case 0x1: case 0x2: case 0x3:
 1367                                 cfg->termination |= ADW_TERM_SE;
 1368                                 break;
 1369 
 1370                         /* TERM_SE_HI: on, TERM_SE_LO: off */
 1371                         case 0x0:
 1372                                 cfg->termination |= ADW_TERM_SE_HI;
 1373                                 break;
 1374                 }
 1375         }
 1376 
 1377         if ((cfg->termination & ADW_TERM_LVD) == 0) {
 1378                 /* LVD automatic termination control is enabled. */
 1379                 switch(scsi_cfg1 & ADW_C_DET_LVD) {
 1380                         /* TERM_LVD_HI: on, TERM_LVD_LO: on */
 1381                         case 0x4: case 0x8: case 0xC:
 1382                                 cfg->termination |= ADW_TERM_LVD;
 1383                                 break;
 1384 
 1385                         /* TERM_LVD_HI: off, TERM_LVD_LO: off */
 1386                         case 0x0:
 1387                                 break;
 1388                 }
 1389         }
 1390 
 1391         /*
 1392          * Clear any set TERM_SE and TERM_LVD bits.
 1393          */
 1394         scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
 1395 
 1396         /*
 1397          * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
 1398          */
 1399         scsi_cfg1 |= (~cfg->termination & 0xF0);
 1400 
 1401         /*
 1402          * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
 1403          * HVD/LVD/SE bits and set possibly modified termination control bits
 1404          * in the Microcode SCSI_CFG1 Register Value.
 1405          */
 1406         scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
 1407                                         ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
 1408 
 1409         /*
 1410          * Set SCSI_CFG1 Microcode Default Value
 1411          *
 1412          * Set possibly modified termination control and reset DIS_TERM_DRV
 1413          * bits in the Microcode SCSI_CFG1 Register Value.
 1414          *
 1415          * The microcode will set the SCSI_CFG1 register using this value
 1416          * after it is started below.
 1417          */
 1418         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
 1419 
 1420         /*
 1421          * Set MEM_CFG Microcode Default Value
 1422          *
 1423          * The microcode will set the MEM_CFG register using this value
 1424          * after it is started below.
 1425          *
 1426          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1427          * are defined.
 1428          *
 1429          * ASC-38C0800 has 16KB internal memory.
 1430          */
 1431         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1432                                                 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
 1433 
 1434         return 0;
 1435 }
 1436 
 1437 
 1438 int
 1439 AdwASC38C1600Cabling(iot, ioh, cfg)
 1440         bus_space_tag_t iot;
 1441         bus_space_handle_t ioh;
 1442         ADW_DVC_CFG *cfg;
 1443 {
 1444         u_int16_t       scsi_cfg1;
 1445 
 1446 
 1447         /*
 1448          * Determine SCSI_CFG1 Microcode Default Value.
 1449          *
 1450          * The microcode will set the SCSI_CFG1 register using this value
 1451          * after it is started below.
 1452          * Each ASC-38C1600 function has only two cable detect bits.
 1453          * The bus mode override bits are in IOPB_SOFT_OVER_WR.
 1454          */
 1455 
 1456         /* Read current SCSI_CFG1 Register value. */
 1457         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1458 
 1459         /*
 1460          * If the cable is reversed all of the SCSI_CTRL register signals
 1461          * will be set. Check for and return an error if this condition is
 1462          * found.
 1463          */
 1464         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1465                 return ADW_IERR_REVERSED_CABLE;
 1466         }
 1467 
 1468         /*
 1469          * Each ASC-38C1600 function has two connectors. Only an HVD device
 1470          * cannot be connected to either connector. An LVD device or SE device
 1471          * may be connected to either connector. If an SE device is connected,
 1472          * then at most Ultra speed (20 MHz) can be used on both connectors.
 1473          *
 1474          * If an HVD device is attached, return an error.
 1475          */
 1476         if (scsi_cfg1 & ADW_HVD) {
 1477                 return ADW_IERR_HVD_DEVICE;
 1478         }
 1479 
 1480         /*
 1481          * Each function in the ASC-38C1600 uses only the SE cable detect and
 1482          * termination because there are two connectors for each function.
 1483          * Each function may use either LVD or SE mode.
 1484          * Corresponding the SE automatic termination control EEPROM bits are
 1485          * used for each function.
 1486          * Each function has its own EEPROM. If SE automatic control is enabled
 1487          * for the function, then set the termination value based on a table
 1488          * listed in adwlib.h.
 1489          *
 1490          * If manual termination is specified in the EEPROM for the function,
 1491          * then 'termination' was set-up in AdwInitFromEEPROM() and is
 1492          * ready to be 'ored' into SCSI_CFG1.
 1493          */
 1494         if ((cfg->termination & ADW_TERM_SE) == 0) {
 1495                 /* SE automatic termination control is enabled. */
 1496                 switch(scsi_cfg1 & ADW_C_DET_SE) {
 1497                         /* TERM_SE_HI: on, TERM_SE_LO: on */
 1498                         case 0x1: case 0x2: case 0x3:
 1499                                 cfg->termination |= ADW_TERM_SE;
 1500                                 break;
 1501 
 1502                         case 0x0:
 1503 #if 0
 1504         /* !!!!TODO!!!! */
 1505                                 if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
 1506                                 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
 1507                                 }
 1508                                 else
 1509 #endif
 1510                                 {
 1511                                 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
 1512                                         cfg->termination |= ADW_TERM_SE_HI;
 1513                                 }
 1514                                 break;
 1515                         }
 1516         }
 1517 
 1518         /*
 1519          * Clear any set TERM_SE bits.
 1520          */
 1521         scsi_cfg1 &= ~ADW_TERM_SE;
 1522 
 1523         /*
 1524          * Invert the TERM_SE bits and then set 'scsi_cfg1'.
 1525          */
 1526         scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
 1527 
 1528         /*
 1529          * Clear Big Endian and Terminator Polarity bits and set possibly
 1530          * modified termination control bits in the Microcode SCSI_CFG1
 1531          * Register Value.
 1532          */
 1533         scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
 1534 
 1535         /*
 1536          * Set SCSI_CFG1 Microcode Default Value
 1537          *
 1538          * Set possibly modified termination control bits in the Microcode
 1539          * SCSI_CFG1 Register Value.
 1540          *
 1541          * The microcode will set the SCSI_CFG1 register using this value
 1542          * after it is started below.
 1543          */
 1544         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
 1545 
 1546         /*
 1547          * Set MEM_CFG Microcode Default Value
 1548          *
 1549          * The microcode will set the MEM_CFG register using this value
 1550          * after it is started below.
 1551          *
 1552          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1553          * are defined.
 1554          *
 1555          * ASC-38C1600 has 32KB internal memory.
 1556          */
 1557         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1558                                                 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
 1559 
 1560         return 0;
 1561 }
 1562 
 1563 
 1564 /*
 1565  * Read EEPROM configuration into the specified buffer.
 1566  *
 1567  * Return a checksum based on the EEPROM configuration read.
 1568  */
 1569 static u_int16_t
 1570 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
 1571         bus_space_tag_t         iot;
 1572         bus_space_handle_t      ioh;
 1573         ADW_EEPROM              *cfg_buf;
 1574 {
 1575         u_int16_t              wval, chksum;
 1576         u_int16_t              *wbuf;
 1577         int                 eep_addr;
 1578 
 1579 
 1580         wbuf = (u_int16_t *) cfg_buf;
 1581         chksum = 0;
 1582 
 1583         for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
 1584                 eep_addr < ASC_EEP_DVC_CFG_END;
 1585                 eep_addr++, wbuf++) {
 1586                 wval = AdwReadEEPWord(iot, ioh, eep_addr);
 1587                 chksum += wval;
 1588                 *wbuf = wval;
 1589         }
 1590 
 1591         *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
 1592         wbuf++;
 1593         for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
 1594                         eep_addr < ASC_EEP_MAX_WORD_ADDR;
 1595                         eep_addr++, wbuf++) {
 1596                 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
 1597         }
 1598 
 1599         return chksum;
 1600 }
 1601 
 1602 
 1603 /*
 1604  * Read the EEPROM from specified location
 1605  */
 1606 static u_int16_t
 1607 AdwReadEEPWord(iot, ioh, eep_word_addr)
 1608         bus_space_tag_t         iot;
 1609         bus_space_handle_t      ioh;
 1610         int                     eep_word_addr;
 1611 {
 1612         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1613                 ASC_EEP_CMD_READ | eep_word_addr);
 1614         AdwWaitEEPCmd(iot, ioh);
 1615 
 1616         return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
 1617 }
 1618 
 1619 
 1620 /*
 1621  * Wait for EEPROM command to complete
 1622  */
 1623 static void
 1624 AdwWaitEEPCmd(iot, ioh)
 1625         bus_space_tag_t         iot;
 1626         bus_space_handle_t      ioh;
 1627 {
 1628         int eep_delay_ms;
 1629 
 1630 
 1631         for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
 1632                 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
 1633                                 ASC_EEP_CMD_DONE) {
 1634                         break;
 1635                 }
 1636                 AdwSleepMilliSecond(1);
 1637         }
 1638 
 1639         ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
 1640 }
 1641 
 1642 
 1643 /*
 1644  * Write the EEPROM from 'cfg_buf'.
 1645  */
 1646 static void
 1647 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
 1648         bus_space_tag_t         iot;
 1649         bus_space_handle_t      ioh;
 1650         ADW_EEPROM              *cfg_buf;
 1651 {
 1652         u_int16_t *wbuf;
 1653         u_int16_t addr, chksum;
 1654 
 1655 
 1656         wbuf = (u_int16_t *) cfg_buf;
 1657         chksum = 0;
 1658 
 1659         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
 1660         AdwWaitEEPCmd(iot, ioh);
 1661 
 1662         /*
 1663          * Write EEPROM from word 0 to word 20
 1664          */
 1665         for (addr = ASC_EEP_DVC_CFG_BEGIN;
 1666              addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
 1667                 chksum += *wbuf;
 1668                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
 1669                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1670                                 ASC_EEP_CMD_WRITE | addr);
 1671                 AdwWaitEEPCmd(iot, ioh);
 1672                 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
 1673         }
 1674 
 1675         /*
 1676          * Write EEPROM checksum at word 21
 1677          */
 1678         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
 1679         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1680                         ASC_EEP_CMD_WRITE | addr);
 1681         AdwWaitEEPCmd(iot, ioh);
 1682         wbuf++;        /* skip over check_sum */
 1683 
 1684         /*
 1685          * Write EEPROM OEM name at words 22 to 29
 1686          */
 1687         for (addr = ASC_EEP_DVC_CTL_BEGIN;
 1688              addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
 1689                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
 1690                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1691                                 ASC_EEP_CMD_WRITE | addr);
 1692                 AdwWaitEEPCmd(iot, ioh);
 1693         }
 1694 
 1695         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1696                         ASC_EEP_CMD_WRITE_DISABLE);
 1697         AdwWaitEEPCmd(iot, ioh);
 1698 
 1699         return;
 1700 }
 1701 
 1702 
 1703 /*
 1704  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
 1705  *
 1706  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
 1707  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
 1708  *   RISC to notify it a new command is ready to be executed.
 1709  *
 1710  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
 1711  * set to SCSI_MAX_RETRY.
 1712  *
 1713  * Return:
 1714  *      ADW_SUCCESS(1) - The request was successfully queued.
 1715  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
 1716  *                       request completes.
 1717  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
 1718  *                       host IC error.
 1719  */
 1720 int
 1721 AdwExeScsiQueue(sc, scsiq)
 1722 ADW_SOFTC       *sc;
 1723 ADW_SCSI_REQ_Q  *scsiq;
 1724 {
 1725         bus_space_tag_t iot = sc->sc_iot;
 1726         bus_space_handle_t ioh = sc->sc_ioh;
 1727         ADW_CCB         *ccb;
 1728         u_int32_t       req_paddr;
 1729         ADW_CARRIER     *new_carrp;
 1730 
 1731         /*
 1732          * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
 1733          */
 1734         if (scsiq->target_id > ADW_MAX_TID) {
 1735                 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
 1736                 scsiq->done_status = QD_WITH_ERROR;
 1737                 return ADW_ERROR;
 1738         }
 1739 
 1740         /*
 1741          * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
 1742          */
 1743 
 1744         ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
 1745 
 1746         /*
 1747          * Allocate a carrier and initialize fields.
 1748          */
 1749         if ((new_carrp = sc->carr_freelist) == NULL) {
 1750                 return ADW_BUSY;
 1751         }
 1752         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
 1753                         ASC_GET_CARRP(new_carrp->next_ba));
 1754         sc->carr_pending_cnt++;
 1755 
 1756         /*
 1757          * Set the carrier to be a stopper by setting 'next_ba'
 1758          * to the stopper value. The current stopper will be changed
 1759          * below to point to the new stopper.
 1760          */
 1761         new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
 1762 
 1763         req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
 1764                 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
 1765 
 1766         /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
 1767         scsiq->scsiq_rptr = htole32(req_paddr);
 1768 
 1769         /*
 1770          * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
 1771          * order during initialization.
 1772          */
 1773         scsiq->carr_ba = sc->icq_sp->carr_ba;
 1774         scsiq->carr_va = sc->icq_sp->carr_ba;
 1775 
 1776         /*
 1777          * Use the current stopper to send the ADW_SCSI_REQ_Q command to
 1778          * the microcode. The newly allocated stopper will become the new
 1779          * stopper.
 1780          */
 1781         sc->icq_sp->areq_ba = htole32(req_paddr);
 1782 
 1783         /*
 1784          * Set the 'next_ba' pointer for the old stopper to be the
 1785          * physical address of the new stopper. The RISC can only
 1786          * follow physical addresses.
 1787          */
 1788         sc->icq_sp->next_ba = new_carrp->carr_ba;
 1789 
 1790 #if ADW_DEBUG
 1791         printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
 1792                         sc->icq_sp->carr_id,
 1793                         sc->icq_sp->carr_ba,
 1794                         sc->icq_sp->areq_ba,
 1795                         sc->icq_sp->next_ba);
 1796 #endif
 1797         /*
 1798          * Set the host adapter stopper pointer to point to the new carrier.
 1799          */
 1800         sc->icq_sp = new_carrp;
 1801 
 1802         if (sc->chip_type == ADW_CHIP_ASC3550 ||
 1803             sc->chip_type == ADW_CHIP_ASC38C0800) {
 1804                 /*
 1805                  * Tickle the RISC to tell it to read its Command Queue Head
 1806                  * pointer.
 1807                  */
 1808                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
 1809                 if (sc->chip_type == ADW_CHIP_ASC3550) {
 1810                         /*
 1811                          * Clear the tickle value. In the ASC-3550 the RISC flag
 1812                          * command 'clr_tickle_a' does not work unless the host
 1813                          * value is cleared.
 1814                          */
 1815                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
 1816                                         ADW_TICKLE_NOP);
 1817                 }
 1818         } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1819                 /*
 1820                  * Notify the RISC a carrier is ready by writing the physical
 1821                  * address of the new carrier stopper to the COMMA register.
 1822                  */
 1823                 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
 1824                                 le32toh(new_carrp->carr_ba));
 1825         }
 1826 
 1827         /*
 1828          * End of CRITICAL SECTION: Must be protected within splbio/splx pair
 1829          */
 1830 
 1831         return ADW_SUCCESS;
 1832 }
 1833 
 1834 
 1835 void
 1836 AdwResetChip(iot, ioh)
 1837         bus_space_tag_t iot;
 1838         bus_space_handle_t ioh;
 1839 {
 1840 
 1841         /*
 1842          * Reset Chip.
 1843          */
 1844         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1845                         ADW_CTRL_REG_CMD_RESET);
 1846         AdwSleepMilliSecond(100);
 1847         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1848                         ADW_CTRL_REG_CMD_WR_IO_REG);
 1849 }
 1850 
 1851 
 1852 /*
 1853  * Reset SCSI Bus and purge all outstanding requests.
 1854  *
 1855  * Return Value:
 1856  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
 1857  *      ADW_FALSE(0) -  Microcode command failed.
 1858  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
 1859  *                      may be hung which requires driver recovery.
 1860  */
 1861 int
 1862 AdwResetCCB(sc)
 1863 ADW_SOFTC       *sc;
 1864 {
 1865         int         status;
 1866 
 1867         /*
 1868          * Send the SCSI Bus Reset idle start idle command which asserts
 1869          * the SCSI Bus Reset signal.
 1870          */
 1871         status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
 1872         if (status != ADW_TRUE) {
 1873                 return status;
 1874         }
 1875 
 1876         /*
 1877          * Delay for the specified SCSI Bus Reset hold time.
 1878          *
 1879          * The hold time delay is done on the host because the RISC has no
 1880          * microsecond accurate timer.
 1881          */
 1882         AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
 1883 
 1884         /*
 1885          * Send the SCSI Bus Reset end idle command which de-asserts
 1886          * the SCSI Bus Reset signal and purges any pending requests.
 1887          */
 1888         status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
 1889         if (status != ADW_TRUE) {
 1890                 return status;
 1891         }
 1892 
 1893         AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
 1894 
 1895         return status;
 1896 }
 1897 
 1898 
 1899 /*
 1900  * Reset chip and SCSI Bus.
 1901  *
 1902  * Return Value:
 1903  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
 1904  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
 1905  */
 1906 int
 1907 AdwResetSCSIBus(sc)
 1908 ADW_SOFTC       *sc;
 1909 {
 1910         bus_space_tag_t iot = sc->sc_iot;
 1911         bus_space_handle_t ioh = sc->sc_ioh;
 1912         int             status;
 1913         u_int16_t       wdtr_able, sdtr_able, tagqng_able;
 1914         u_int16_t       ppr_able = 0; /* XXX: gcc */
 1915         u_int8_t        tid, max_cmd[ADW_MAX_TID + 1];
 1916         u_int16_t       bios_sig;
 1917 
 1918 
 1919         /*
 1920          * Save current per TID negotiated values.
 1921          */
 1922         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
 1923         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
 1924         if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1925                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
 1926         }
 1927         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
 1928         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
 1929                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
 1930                         max_cmd[tid]);
 1931         }
 1932 
 1933         /*
 1934          * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
 1935          * by clearing the BIOS signature word.
 1936          * The initialization functions assumes a SCSI Bus Reset is not
 1937          * needed if the BIOS signature word is present.
 1938          */
 1939         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
 1940         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
 1941 
 1942         /*
 1943          * Stop chip and reset it.
 1944          */
 1945         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
 1946         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1947                         ADW_CTRL_REG_CMD_RESET);
 1948         AdwSleepMilliSecond(100);
 1949         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1950                         ADW_CTRL_REG_CMD_WR_IO_REG);
 1951 
 1952         /*
 1953          * Reset Adv Library error code, if any, and try
 1954          * re-initializing the chip.
 1955          * Then translate initialization return value to status value.
 1956          */
 1957         status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
 1958 
 1959         /*
 1960          * Restore the BIOS signature word.
 1961          */
 1962         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
 1963 
 1964         /*
 1965          * Restore per TID negotiated values.
 1966          */
 1967         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
 1968         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
 1969         if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1970                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
 1971         }
 1972         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
 1973         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
 1974                 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
 1975                         max_cmd[tid]);
 1976         }
 1977 
 1978         return status;
 1979 }
 1980 
 1981 
 1982 /*
 1983  * Adv Library Interrupt Service Routine
 1984  *
 1985  *  This function is called by a driver's interrupt service routine.
 1986  *  The function disables and re-enables interrupts.
 1987  *
 1988  *  When a microcode idle command is completed, the ADV_DVC_VAR
 1989  *  'idle_cmd_done' field is set to ADW_TRUE.
 1990  *
 1991  *  Note: AdwISR() can be called when interrupts are disabled or even
 1992  *  when there is no hardware interrupt condition present. It will
 1993  *  always check for completed idle commands and microcode requests.
 1994  *  This is an important feature that shouldn't be changed because it
 1995  *  allows commands to be completed from polling mode loops.
 1996  *
 1997  * Return:
 1998  *   ADW_TRUE(1) - interrupt was pending
 1999  *   ADW_FALSE(0) - no interrupt was pending
 2000  */
 2001 int
 2002 AdwISR(sc)
 2003 ADW_SOFTC       *sc;
 2004 {
 2005         bus_space_tag_t iot = sc->sc_iot;
 2006         bus_space_handle_t ioh = sc->sc_ioh;
 2007         u_int8_t        int_stat;
 2008         ADW_CARRIER     *free_carrp/*, *ccb_carr*/;
 2009         u_int32_t       irq_next_pa;
 2010         ADW_SCSI_REQ_Q  *scsiq;
 2011         ADW_CCB         *ccb;
 2012         int             s;
 2013 
 2014 
 2015         s = splbio();
 2016 
 2017         /* Reading the register clears the interrupt. */
 2018         int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
 2019 
 2020         if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
 2021              ADW_INTR_STATUS_INTRC)) == 0) {
 2022                 splx(s);
 2023                 return ADW_FALSE;
 2024         }
 2025 
 2026         /*
 2027          * Notify the driver of an asynchronous microcode condition by
 2028          * calling the ADV_DVC_VAR.async_callback function. The function
 2029          * is passed the microcode ADW_MC_INTRB_CODE byte value.
 2030          */
 2031         if (int_stat & ADW_INTR_STATUS_INTRB) {
 2032                 u_int8_t intrb_code;
 2033 
 2034                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
 2035 
 2036                 if (sc->chip_type == ADW_CHIP_ASC3550 ||
 2037                     sc->chip_type == ADW_CHIP_ASC38C0800) {
 2038                         if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
 2039                                 sc->carr_pending_cnt != 0) {
 2040                                 ADW_WRITE_BYTE_REGISTER(iot, ioh,
 2041                                         IOPB_TICKLE, ADW_TICKLE_A);
 2042                                 if (sc->chip_type == ADW_CHIP_ASC3550) {
 2043                                         ADW_WRITE_BYTE_REGISTER(iot, ioh,
 2044                                                 IOPB_TICKLE, ADW_TICKLE_NOP);
 2045                                 }
 2046                         }
 2047                 }
 2048 
 2049                 if (sc->async_callback != 0) {
 2050                     (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
 2051                 }
 2052         }
 2053 
 2054         /*
 2055          * Check if the IRQ stopper carrier contains a completed request.
 2056          */
 2057         while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
 2058         {
 2059 #if ADW_DEBUG
 2060                 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
 2061                                 sc->irq_sp->carr_id,
 2062                                 sc->irq_sp->carr_ba,
 2063                                 sc->irq_sp->areq_ba,
 2064                                 sc->irq_sp->next_ba);
 2065 #endif
 2066                 /*
 2067                  * Get a pointer to the newly completed ADW_SCSI_REQ_Q
 2068                  * structure.
 2069                  * The RISC will have set 'areq_ba' to a virtual address.
 2070                  *
 2071                  * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
 2072                  * field to the carrier ADV_CARR_T.areq_ba field.
 2073                  * The conversion below complements the conversion of
 2074                  * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
 2075                  */
 2076                 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
 2077                 scsiq = &ccb->scsiq;
 2078                 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
 2079 
 2080                 /*
 2081                  * Request finished with good status and the queue was not
 2082                  * DMAed to host memory by the firmware. Set all status fields
 2083                  * to indicate good status.
 2084                  */
 2085                 if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
 2086                         scsiq->done_status = QD_NO_ERROR;
 2087                         scsiq->host_status = scsiq->scsi_status = 0;
 2088                         scsiq->data_cnt = 0L;
 2089                 }
 2090 
 2091                 /*
 2092                  * Advance the stopper pointer to the next carrier
 2093                  * ignoring the lower four bits. Free the previous
 2094                  * stopper carrier.
 2095                  */
 2096                 free_carrp = sc->irq_sp;
 2097                 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
 2098 
 2099                 free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
 2100                                         : sc->carr_freelist->carr_ba;
 2101                 sc->carr_freelist = free_carrp;
 2102                 sc->carr_pending_cnt--;
 2103 
 2104                 /*
 2105                  * Clear request microcode control flag.
 2106                  */
 2107                 scsiq->cntl = 0;
 2108 
 2109                 /*
 2110                  * Check Condition handling
 2111                  */
 2112                 /*
 2113                  * If the command that completed was a SCSI INQUIRY and
 2114                  * LUN 0 was sent the command, then process the INQUIRY
 2115                  * command information for the device.
 2116                  */
 2117                 if (scsiq->done_status == QD_NO_ERROR &&
 2118                     scsiq->cdb[0] == INQUIRY &&
 2119                     scsiq->target_lun == 0) {
 2120                         AdwInquiryHandling(sc, scsiq);
 2121                 }
 2122 
 2123                 /*
 2124                  * Notify the driver of the completed request by passing
 2125                  * the ADW_SCSI_REQ_Q pointer to its callback function.
 2126                  */
 2127                 (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
 2128                 /*
 2129                  * Note: After the driver callback function is called, 'scsiq'
 2130                  * can no longer be referenced.
 2131                  *
 2132                  * Fall through and continue processing other completed
 2133                  * requests...
 2134                  */
 2135         }
 2136 
 2137         splx(s);
 2138 
 2139         return ADW_TRUE;
 2140 }
 2141 
 2142 
 2143 /*
 2144  * Send an idle command to the chip and wait for completion.
 2145  *
 2146  * Command completion is polled for once per microsecond.
 2147  *
 2148  * The function can be called from anywhere including an interrupt handler.
 2149  * But the function is not re-entrant, so it uses the splbio/splx()
 2150  * functions to prevent reentrancy.
 2151  *
 2152  * Return Values:
 2153  *   ADW_TRUE - command completed successfully
 2154  *   ADW_FALSE - command failed
 2155  *   ADW_ERROR - command timed out
 2156  */
 2157 int
 2158 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
 2159 ADW_SOFTC      *sc;
 2160 u_int16_t       idle_cmd;
 2161 u_int32_t       idle_cmd_parameter;
 2162 {
 2163         bus_space_tag_t iot = sc->sc_iot;
 2164         bus_space_handle_t ioh = sc->sc_ioh;
 2165         u_int16_t       result;
 2166         u_int32_t       i, j, s;
 2167 
 2168         s = splbio();
 2169 
 2170         /*
 2171          * Clear the idle command status which is set by the microcode
 2172          * to a non-zero value to indicate when the command is completed.
 2173          */
 2174         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
 2175 
 2176         /*
 2177          * Write the idle command value after the idle command parameter
 2178          * has been written to avoid a race condition. If the order is not
 2179          * followed, the microcode may process the idle command before the
 2180          * parameters have been written to LRAM.
 2181          */
 2182         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
 2183                         idle_cmd_parameter);
 2184         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
 2185 
 2186         /*
 2187          * Tickle the RISC to tell it to process the idle command.
 2188          */
 2189         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
 2190         if (sc->chip_type == ADW_CHIP_ASC3550) {
 2191                 /*
 2192                  * Clear the tickle value. In the ASC-3550 the RISC flag
 2193                  * command 'clr_tickle_b' does not work unless the host
 2194                  * value is cleared.
 2195                  */
 2196                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
 2197         }
 2198 
 2199         /* Wait for up to 100 millisecond for the idle command to timeout. */
 2200         for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
 2201                 /* Poll once each microsecond for command completion. */
 2202                 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
 2203                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
 2204                                                                         result);
 2205                         if (result != 0) {
 2206                                 splx(s);
 2207                                 return result;
 2208                         }
 2209                         AdwDelayMicroSecond(1);
 2210                 }
 2211         }
 2212 
 2213         splx(s);
 2214         return ADW_ERROR;
 2215 }
 2216 
 2217 
 2218 /*
 2219  * Inquiry Information Byte 7 Handling
 2220  *
 2221  * Handle SCSI Inquiry Command information for a device by setting
 2222  * microcode operating variables that affect WDTR, SDTR, and Tag
 2223  * Queuing.
 2224  */
 2225 static void
 2226 AdwInquiryHandling(sc, scsiq)
 2227 ADW_SOFTC       *sc;
 2228 ADW_SCSI_REQ_Q *scsiq;
 2229 {
 2230 #ifndef FAILSAFE
 2231         bus_space_tag_t iot = sc->sc_iot;
 2232         bus_space_handle_t ioh = sc->sc_ioh;
 2233         u_int8_t                tid;
 2234         struct scsipi_inquiry_data *inq;
 2235         u_int16_t               tidmask;
 2236         u_int16_t               cfg_word;
 2237 
 2238 
 2239         /*
 2240          * AdwInquiryHandling() requires up to INQUIRY information Byte 7
 2241          * to be available.
 2242          *
 2243          * If less than 8 bytes of INQUIRY information were requested or less
 2244          * than 8 bytes were transferred, then return. cdb[4] is the request
 2245          * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
 2246          * microcode to the transfer residual count.
 2247          */
 2248 
 2249         if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
 2250                 return;
 2251         }
 2252 
 2253         tid = scsiq->target_id;
 2254 
 2255         inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
 2256 
 2257         /*
 2258          * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
 2259          */
 2260         if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
 2261             ((inq->version & SID_ANSII) < 2)) {
 2262                 return;
 2263         } else {
 2264                 /*
 2265                  * INQUIRY Byte 7 Handling
 2266                  *
 2267                  * Use a device's INQUIRY byte 7 to determine whether it
 2268                  * supports WDTR, SDTR, and Tag Queuing. If the feature
 2269                  * is enabled in the EEPROM and the device supports the
 2270                  * feature, then enable it in the microcode.
 2271                  */
 2272 
 2273                 tidmask = ADW_TID_TO_TIDMASK(tid);
 2274 
 2275                 /*
 2276                  * Wide Transfers
 2277                  *
 2278                  * If the EEPROM enabled WDTR for the device and the device
 2279                  * supports wide bus (16 bit) transfers, then turn on the
 2280                  * device's 'wdtr_able' bit and write the new value to the
 2281                  * microcode.
 2282                  */
 2283 #ifdef SCSI_ADW_WDTR_DISABLE
 2284         if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
 2285 #endif /* SCSI_ADW_WDTR_DISABLE */
 2286                 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
 2287                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
 2288                                         cfg_word);
 2289                         if ((cfg_word & tidmask) == 0) {
 2290                                 cfg_word |= tidmask;
 2291                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
 2292                                                 cfg_word);
 2293 
 2294                                 /*
 2295                                  * Clear the microcode "SDTR negotiation" and
 2296                                  * "WDTR negotiation" done indicators for the
 2297                                  * target to cause it to negotiate with the new
 2298                                  * setting set above.
 2299                                  * WDTR when accepted causes the target to enter
 2300                                  * asynchronous mode, so SDTR must be negotiated
 2301                                  */
 2302                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2303                                                 cfg_word);
 2304                                 cfg_word &= ~tidmask;
 2305                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2306                                                 cfg_word);
 2307                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
 2308                                                 cfg_word);
 2309                                 cfg_word &= ~tidmask;
 2310                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
 2311                                                 cfg_word);
 2312                         }
 2313                 }
 2314 
 2315                 /*
 2316                  * Synchronous Transfers
 2317                  *
 2318                  * If the EEPROM enabled SDTR for the device and the device
 2319                  * supports synchronous transfers, then turn on the device's
 2320                  * 'sdtr_able' bit. Write the new value to the microcode.
 2321                  */
 2322 #ifdef SCSI_ADW_SDTR_DISABLE
 2323         if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
 2324 #endif /* SCSI_ADW_SDTR_DISABLE */
 2325                 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
 2326                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
 2327                         if ((cfg_word & tidmask) == 0) {
 2328                                 cfg_word |= tidmask;
 2329                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
 2330                                                 cfg_word);
 2331 
 2332                                 /*
 2333                                  * Clear the microcode "SDTR negotiation"
 2334                                  * done indicator for the target to cause it
 2335                                  * to negotiate with the new setting set above.
 2336                                  */
 2337                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2338                                                 cfg_word);
 2339                                 cfg_word &= ~tidmask;
 2340                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2341                                                 cfg_word);
 2342                         }
 2343                 }
 2344                 /*
 2345                  * If the Inquiry data included enough space for the SPI-3
 2346                  * Clocking field, then check if DT mode is supported.
 2347                  */
 2348                 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
 2349                    (scsiq->cdb[4] >= 57 ||
 2350                    (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
 2351                         /*
 2352                          * PPR (Parallel Protocol Request) Capable
 2353                          *
 2354                          * If the device supports DT mode, then it must be
 2355                          * PPR capable.
 2356                          * The PPR message will be used in place of the SDTR
 2357                          * and WDTR messages to negotiate synchronous speed
 2358                          * and offset, transfer width, and protocol options.
 2359                          */
 2360                         if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
 2361                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
 2362                                                 sc->ppr_able);
 2363                                 sc->ppr_able |= tidmask;
 2364                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
 2365                                                 sc->ppr_able);
 2366                         }
 2367                 }
 2368 
 2369                 /*
 2370                  * If the EEPROM enabled Tag Queuing for the device and the
 2371                  * device supports Tag Queueing, then turn on the device's
 2372                  * 'tagqng_enable' bit in the microcode and set the microcode
 2373                  * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
 2374                  * value.
 2375                  *
 2376                  * Tag Queuing is disabled for the BIOS which runs in polled
 2377                  * mode and would see no benefit from Tag Queuing. Also by
 2378                  * disabling Tag Queuing in the BIOS devices with Tag Queuing
 2379                  * bugs will at least work with the BIOS.
 2380                  */
 2381 #ifdef SCSI_ADW_TAGQ_DISABLE
 2382         if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
 2383 #endif /* SCSI_ADW_TAGQ_DISABLE */
 2384                 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
 2385                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
 2386                                         cfg_word);
 2387                         cfg_word |= tidmask;
 2388                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
 2389                                         cfg_word);
 2390 
 2391                         ADW_WRITE_BYTE_LRAM(iot, ioh,
 2392                                         ADW_MC_NUMBER_OF_MAX_CMD + tid,
 2393                                         sc->max_dvc_qng);
 2394                 }
 2395         }
 2396 #endif /* FAILSAFE */
 2397 }
 2398 
 2399 
 2400 static void
 2401 AdwSleepMilliSecond(n)
 2402 u_int32_t       n;
 2403 {
 2404 
 2405         DELAY(n * 1000);
 2406 }
 2407 
 2408 
 2409 static void
 2410 AdwDelayMicroSecond(n)
 2411 u_int32_t       n;
 2412 {
 2413 
 2414         DELAY(n);
 2415 }
 2416 

Cache object: 5af8adb052b34e638b9e4025f18b7dcd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.