The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/adwlib.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* $NetBSD: adwlib.c,v 1.45 2022/09/25 18:43:32 thorpej Exp $        */
    2 
    3 /*
    4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
    5  *
    6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
    7  * All rights reserved.
    8  *
    9  * Author: Baldassare Dante Profeta <dante@mclink.it>
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30  * POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 /*
   33  * Ported from:
   34  */
   35 /*
   36  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   37  *
   38  * Copyright (c) 1995-2000 Advanced System Products, Inc.
   39  * All Rights Reserved.
   40  *
   41  * Redistribution and use in source and binary forms, with or without
   42  * modification, are permitted provided that redistributions of source
   43  * code retain the above copyright notice and this comment without
   44  * modification.
   45  */
   46 
   47 #include <sys/cdefs.h>
   48 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.45 2022/09/25 18:43:32 thorpej Exp $");
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/kernel.h>
   53 #include <sys/queue.h>
   54 #include <sys/device.h>
   55 
   56 #include <sys/bus.h>
   57 #include <sys/intr.h>
   58 
   59 #include <dev/scsipi/scsi_all.h>
   60 #include <dev/scsipi/scsipi_all.h>
   61 #include <dev/scsipi/scsiconf.h>
   62 
   63 #include <dev/pci/pcidevs.h>
   64 
   65 #include <dev/ic/adwlib.h>
   66 #include <dev/ic/adwmcode.h>
   67 #include <dev/ic/adw.h>
   68 
   69 
   70 /* Static Functions */
   71 
   72 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
   73 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
   74 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
   75 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
   76 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
   77 
   78 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
   79                                                         ADW_EEPROM *);
   80 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
   81                                                          ADW_EEPROM *);
   82 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
   83 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
   84 
   85 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
   86 
   87 static void AdwSleepMilliSecond(u_int32_t);
   88 static void AdwDelayMicroSecond(u_int32_t);
   89 
   90 
   91 /*
   92  * EEPROM Configuration.
   93  *
   94  * All drivers should use this structure to set the default EEPROM
   95  * configuration. The BIOS now uses this structure when it is built.
   96  * Additional structure information can be found in adwlib.h where
   97  * the structure is defined.
   98  */
   99 static const ADW_EEPROM adw_3550_Default_EEPROM = {
  100         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  101         0x0000,                 /* 01 cfg_msw */
  102         0xFFFF,                 /* 02 disc_enable */
  103         0xFFFF,                 /* 03 wdtr_able */
  104         { 0xFFFF },             /* 04 sdtr_able */
  105         0xFFFF,                 /* 05 start_motor */
  106         0xFFFF,                 /* 06 tagqng_able */
  107         0xFFFF,                 /* 07 bios_scan */
  108         0,                      /* 08 scam_tolerant */
  109         7,                      /* 09 adapter_scsi_id */
  110         0,                      /*    bios_boot_delay */
  111         3,                      /* 10 scsi_reset_delay */
  112         0,                      /*    bios_id_lun */
  113         0,                      /* 11 termination */
  114         0,                      /*    reserved1 */
  115         0xFFE7,                 /* 12 bios_ctrl */
  116         { 0xFFFF },             /* 13 ultra_able */
  117         { 0 },                  /* 14 reserved2 */
  118         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  119         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  120         0,                      /* 16 dvc_cntl */
  121         { 0 },                  /* 17 bug_fix */
  122         { 0,0,0 },              /* 18-20 serial_number[3] */
  123         0,                      /* 21 check_sum */
  124         {                       /* 22-29 oem_name[16] */
  125           0,0,0,0,0,0,0,0,
  126           0,0,0,0,0,0,0,0
  127         },
  128         0,                      /* 30 dvc_err_code */
  129         0,                      /* 31 adv_err_code */
  130         0,                      /* 32 adv_err_addr */
  131         0,                      /* 33 saved_dvc_err_code */
  132         0,                      /* 34 saved_adv_err_code */
  133         0,                      /* 35 saved_adv_err_addr */
  134         {                       /* 36-55 reserved1[16] */
  135           0,0,0,0,0,0,0,0,0,0,
  136           0,0,0,0,0,0,0,0,0,0
  137         },
  138         0,                      /* 56 cisptr_lsw */
  139         0,                      /* 57 cisprt_msw */
  140         0,                      /* 58 subsysvid */
  141         0,                      /* 59 subsysid */
  142         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  143 };
  144 
  145 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
  146         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  147         0x0000,                 /* 01 cfg_msw */
  148         0xFFFF,                 /* 02 disc_enable */
  149         0xFFFF,                 /* 03 wdtr_able */
  150         { 0x4444 },             /* 04 sdtr_speed1 */
  151         0xFFFF,                 /* 05 start_motor */
  152         0xFFFF,                 /* 06 tagqng_able */
  153         0xFFFF,                 /* 07 bios_scan */
  154         0,                      /* 08 scam_tolerant */
  155         7,                      /* 09 adapter_scsi_id */
  156         0,                      /*    bios_boot_delay */
  157         3,                      /* 10 scsi_reset_delay */
  158         0,                      /*    bios_id_lun */
  159         0,                      /* 11 termination_se */
  160         0,                      /*    termination_lvd */
  161         0xFFE7,                 /* 12 bios_ctrl */
  162         { 0x4444 },             /* 13 sdtr_speed2 */
  163         { 0x4444 },             /* 14 sdtr_speed3 */
  164         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  165         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  166         0,                      /* 16 dvc_cntl */
  167         { 0x4444 },             /* 17 sdtr_speed4 */
  168         { 0,0,0 },              /* 18-20 serial_number[3] */
  169         0,                      /* 21 check_sum */
  170         {                       /* 22-29 oem_name[16] */
  171           0,0,0,0,0,0,0,0,
  172           0,0,0,0,0,0,0,0
  173         },
  174         0,                      /* 30 dvc_err_code */
  175         0,                      /* 31 adv_err_code */
  176         0,                      /* 32 adv_err_addr */
  177         0,                      /* 33 saved_dvc_err_code */
  178         0,                      /* 34 saved_adv_err_code */
  179         0,                      /* 35 saved_adv_err_addr */
  180         {                       /* 36-55 reserved1[16] */
  181           0,0,0,0,0,0,0,0,0,0,
  182           0,0,0,0,0,0,0,0,0,0
  183         },
  184         0,                      /* 56 cisptr_lsw */
  185         0,                      /* 57 cisprt_msw */
  186         PCI_VENDOR_ADVSYS,      /* 58 subsysvid */
  187         PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
  188         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  189 };
  190 
  191 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
  192         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  193         0x0000,                 /* 01 cfg_msw */
  194         0xFFFF,                 /* 02 disc_enable */
  195         0xFFFF,                 /* 03 wdtr_able */
  196         { 0x5555 },             /* 04 sdtr_speed1 */
  197         0xFFFF,                 /* 05 start_motor */
  198         0xFFFF,                 /* 06 tagqng_able */
  199         0xFFFF,                 /* 07 bios_scan */
  200         0,                      /* 08 scam_tolerant */
  201         7,                      /* 09 adapter_scsi_id */
  202         0,                      /*    bios_boot_delay */
  203         3,                      /* 10 scsi_reset_delay */
  204         0,                      /*    bios_id_lun */
  205         0,                      /* 11 termination_se */
  206         0,                      /*    termination_lvd */
  207         0xFFE7,                 /* 12 bios_ctrl */
  208         { 0x5555 },             /* 13 sdtr_speed2 */
  209         { 0x5555 },             /* 14 sdtr_speed3 */
  210         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  211         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  212         0,                      /* 16 dvc_cntl */
  213         { 0x5555 },             /* 17 sdtr_speed4 */
  214         { 0,0,0 },              /* 18-20 serial_number[3] */
  215         0,                      /* 21 check_sum */
  216         {                       /* 22-29 oem_name[16] */
  217           0,0,0,0,0,0,0,0,
  218           0,0,0,0,0,0,0,0
  219         },
  220         0,                      /* 30 dvc_err_code */
  221         0,                      /* 31 adv_err_code */
  222         0,                      /* 32 adv_err_addr */
  223         0,                      /* 33 saved_dvc_err_code */
  224         0,                      /* 34 saved_adv_err_code */
  225         0,                      /* 35 saved_adv_err_addr */
  226         {                       /* 36-55 reserved1[16] */
  227           0,0,0,0,0,0,0,0,0,0,
  228           0,0,0,0,0,0,0,0,0,0
  229         },
  230         0,                      /* 56 cisptr_lsw */
  231         0,                      /* 57 cisprt_msw */
  232         PCI_VENDOR_ADVSYS,      /* 58 subsysvid */
  233         PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
  234         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  235 };
  236 
  237 
  238 /*
  239  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
  240  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
  241  * all of this is done.
  242  *
  243  * For a non-fatal error return a warning code. If there are no warnings
  244  * then 0 is returned.
  245  *
  246  * Note: Chip is stopped on entry.
  247  */
  248 int
  249 AdwInitFromEEPROM(ADW_SOFTC *sc)
  250 {
  251         bus_space_tag_t iot = sc->sc_iot;
  252         bus_space_handle_t ioh = sc->sc_ioh;
  253         ADW_EEPROM              eep_config;
  254         u_int16_t               warn_code;
  255         u_int16_t               sdtr_speed = 0;
  256         u_int8_t                tid, termination;
  257         int                     i, j;
  258 
  259 
  260         warn_code = 0;
  261 
  262         /*
  263          * Read the board's EEPROM configuration.
  264          *
  265          * Set default values if a bad checksum is found.
  266          *
  267          * XXX - Don't handle big-endian access to EEPROM yet.
  268          */
  269         if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
  270                 warn_code |= ADW_WARN_EEPROM_CHKSUM;
  271 
  272                 /*
  273                  * Set EEPROM default values.
  274                  */
  275                 switch(sc->chip_type) {
  276                 case ADW_CHIP_ASC3550:
  277                         eep_config = adw_3550_Default_EEPROM;
  278                         break;
  279                 case ADW_CHIP_ASC38C0800:
  280                         eep_config = adw_38C0800_Default_EEPROM;
  281                         break;
  282                 case ADW_CHIP_ASC38C1600:
  283                         eep_config = adw_38C1600_Default_EEPROM;
  284 
  285 #if 0
  286 XXX       TODO!!!       if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
  287 #endif
  288                         if (sc->cfg.pci_slot_info != 0) {
  289                                 u_int8_t lsw_msb;
  290 
  291                                 lsw_msb = eep_config.cfg_lsw >> 8;
  292                                 /*
  293                                  * Set Function 1 EEPROM Word 0 MSB
  294                                  *
  295                                  * Clear the BIOS_ENABLE (bit 14) and
  296                                  * INTAB (bit 11) EEPROM bits.
  297                                  *
  298                                  * Disable Bit 14 (BIOS_ENABLE) to fix
  299                                  * SPARC Ultra 60 and old Mac system booting
  300                                  * problem. The Expansion ROM must
  301                                  * be disabled in Function 1 for these systems.
  302                                  */
  303                                 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
  304                                                 ADW_EEPROM_INTAB) >> 8) & 0xFF);
  305                                 /*
  306                                  * Set the INTAB (bit 11) if the GPIO 0 input
  307                                  * indicates the Function 1 interrupt line is
  308                                  * wired to INTA.
  309                                  *
  310                                  * Set/Clear Bit 11 (INTAB) from
  311                                  * the GPIO bit 0 input:
  312                                  *   1 - Function 1 intr line wired to INT A.
  313                                  *   0 - Function 1 intr line wired to INT B.
  314                                  *
  315                                  * Note: Adapter boards always have Function 0
  316                                  * wired to INTA.
  317                                  * Put all 5 GPIO bits in input mode and then
  318                                  * read their input values.
  319                                  */
  320                                 ADW_WRITE_BYTE_REGISTER(iot, ioh,
  321                                                         IOPB_GPIO_CNTL, 0);
  322                                 if (ADW_READ_BYTE_REGISTER(iot, ioh,
  323                                                 IOPB_GPIO_DATA) & 0x01) {
  324                                         /*
  325                                          * Function 1 interrupt wired to INTA;
  326                                          * Set EEPROM bit.
  327                                          */
  328                                         lsw_msb |= (ADW_EEPROM_INTAB >> 8)
  329                                                          & 0xFF;
  330                                  }
  331                                  eep_config.cfg_lsw &= 0x00FF;
  332                                  eep_config.cfg_lsw |= lsw_msb << 8;
  333                         }
  334                         break;
  335                 }
  336 
  337                 /*
  338                  * Assume the 6 byte board serial number that was read
  339                  * from EEPROM is correct even if the EEPROM checksum
  340                  * failed.
  341                  */
  342                 for (i=2, j=1; i>=0; i--, j++) {
  343                 eep_config.serial_number[i] =
  344                         AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
  345                 }
  346 
  347                 AdwSetEEPROMConfig(iot, ioh, &eep_config);
  348         }
  349         /*
  350          * Set sc and sc->cfg variables from the EEPROM configuration
  351          * that was read.
  352          *
  353          * This is the mapping of EEPROM fields to Adw Library fields.
  354          */
  355         sc->wdtr_able = eep_config.wdtr_able;
  356         if (sc->chip_type == ADW_CHIP_ASC3550) {
  357                 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
  358                 sc->ultra_able = eep_config.sdtr2.ultra_able;
  359         } else {
  360                 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
  361                 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
  362                 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
  363                 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
  364         }
  365         sc->ppr_able = 0;
  366         sc->tagqng_able = eep_config.tagqng_able;
  367         sc->cfg.disc_enable = eep_config.disc_enable;
  368         sc->max_host_qng = eep_config.max_host_qng;
  369         sc->max_dvc_qng = eep_config.max_dvc_qng;
  370         sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
  371         sc->start_motor = eep_config.start_motor;
  372         sc->scsi_reset_wait = eep_config.scsi_reset_delay;
  373         sc->bios_ctrl = eep_config.bios_ctrl;
  374         sc->no_scam = eep_config.scam_tolerant;
  375         sc->cfg.serial1 = eep_config.serial_number[0];
  376         sc->cfg.serial2 = eep_config.serial_number[1];
  377         sc->cfg.serial3 = eep_config.serial_number[2];
  378 
  379         if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
  380             sc->chip_type == ADW_CHIP_ASC38C1600) {
  381                 sc->sdtr_able = 0;
  382                 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  383                         if (tid == 0) {
  384                                 sdtr_speed = sc->sdtr_speed1;
  385                         } else if (tid == 4) {
  386                                 sdtr_speed = sc->sdtr_speed2;
  387                         } else if (tid == 8) {
  388                                 sdtr_speed = sc->sdtr_speed3;
  389                         } else if (tid == 12) {
  390                                 sdtr_speed = sc->sdtr_speed4;
  391                         }
  392                         if (sdtr_speed & ADW_MAX_TID) {
  393                                 sc->sdtr_able |= (1 << tid);
  394                         }
  395                         sdtr_speed >>= 4;
  396                 }
  397         }
  398 
  399         /*
  400          * Set the host maximum queuing (max. 253, min. 16) and the per device
  401          * maximum queuing (max. 63, min. 4).
  402          */
  403         if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
  404                 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
  405         } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
  406         {
  407                 /* If the value is zero, assume it is uninitialized. */
  408                 if (eep_config.max_host_qng == 0) {
  409                         eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
  410                 } else {
  411                         eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
  412                 }
  413         }
  414 
  415         if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
  416                 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
  417         } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
  418                 /* If the value is zero, assume it is uninitialized. */
  419                 if (eep_config.max_dvc_qng == 0) {
  420                         eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
  421                 } else {
  422                         eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
  423                 }
  424         }
  425 
  426         /*
  427          * If 'max_dvc_qng' is greater than 'max_host_qng', then
  428          * set 'max_dvc_qng' to 'max_host_qng'.
  429          */
  430         if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
  431                 eep_config.max_dvc_qng = eep_config.max_host_qng;
  432         }
  433 
  434         /*
  435          * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
  436          * values based on possibly adjusted EEPROM values.
  437          */
  438         sc->max_host_qng = eep_config.max_host_qng;
  439         sc->max_dvc_qng = eep_config.max_dvc_qng;
  440 
  441 
  442         /*
  443          * If the EEPROM 'termination' field is set to automatic (0), then set
  444          * the ADV_DVC_CFG 'termination' field to automatic also.
  445          *
  446          * If the termination is specified with a non-zero 'termination'
  447          * value check that a legal value is set and set the ADV_DVC_CFG
  448          * 'termination' field appropriately.
  449          */
  450 
  451         switch(sc->chip_type) {
  452         case ADW_CHIP_ASC3550:
  453                 sc->cfg.termination = 0;        /* auto termination */
  454                 switch(eep_config.termination_se) {
  455                 case 3:
  456                         /* Enable manual control with low on / high on. */
  457                         sc->cfg.termination |= ADW_TERM_CTL_L;
  458                         /* FALLTHROUGH */
  459                 case 2:
  460                         /* Enable manual control with low off / high on. */
  461                         sc->cfg.termination |= ADW_TERM_CTL_H;
  462                         /* FALLTHROUGH */
  463                 case 1:
  464                         /* Enable manual control with low off / high off. */
  465                         sc->cfg.termination |= ADW_TERM_CTL_SEL;
  466                         /* FALLTHROUGH */
  467                 case 0:
  468                         break;
  469                 default:
  470                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  471                 }
  472                 break;
  473 
  474         case ADW_CHIP_ASC38C0800:
  475         case ADW_CHIP_ASC38C1600:
  476                 switch(eep_config.termination_se) {
  477                 case 0:
  478                         /* auto termination for SE */
  479                         termination = 0;
  480                         break;
  481                 case 1:
  482                         /* Enable manual control with low off / high off. */
  483                         termination = 0;
  484                         break;
  485                 case 2:
  486                         /* Enable manual control with low off / high on. */
  487                         termination = ADW_TERM_SE_HI;
  488                         break;
  489                 case 3:
  490                         /* Enable manual control with low on / high on. */
  491                         termination = ADW_TERM_SE;
  492                         break;
  493                 default:
  494                         /*
  495                          * The EEPROM 'termination_se' field contains a
  496                          * bad value. Use automatic termination instead.
  497                          */
  498                         termination = 0;
  499                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  500                 }
  501 
  502                 switch(eep_config.termination_lvd) {
  503                 case 0:
  504                         /* auto termination for LVD */
  505                         sc->cfg.termination = termination;
  506                         break;
  507                 case 1:
  508                         /* Enable manual control with low off / high off. */
  509                         sc->cfg.termination = termination;
  510                         break;
  511                 case 2:
  512                         /* Enable manual control with low off / high on. */
  513                         sc->cfg.termination = termination | ADW_TERM_LVD_HI;
  514                         break;
  515                 case 3:
  516                         /* Enable manual control with low on / high on. */
  517                         sc->cfg.termination = termination | ADW_TERM_LVD;
  518                         break;
  519                 default:
  520                         /*
  521                          * The EEPROM 'termination_lvd' field contains a
  522                          * bad value. Use automatic termination instead.
  523                          */
  524                         sc->cfg.termination = termination;
  525                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  526                 }
  527                 break;
  528         }
  529 
  530         return warn_code;
  531 }
  532 
  533 
  534 /*
  535  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
  536  *
  537  * On failure return the error code.
  538  */
  539 int
  540 AdwInitDriver(ADW_SOFTC *sc)
  541 {
  542         bus_space_tag_t iot = sc->sc_iot;
  543         bus_space_handle_t ioh = sc->sc_ioh;
  544         u_int16_t       error_code;
  545         int             word;
  546         int             i;
  547         u_int16_t       bios_mem[ADW_MC_BIOSLEN/2];     /* BIOS RISC Memory
  548                                                                 0x40-0x8F. */
  549         u_int16_t       wdtr_able = 0, sdtr_able, /* ppr_able, */ tagqng_able;
  550         u_int8_t        max_cmd[ADW_MAX_TID + 1];
  551         u_int8_t        tid;
  552 
  553 
  554         error_code = 0;
  555 
  556         /*
  557          * Save the RISC memory BIOS region before writing the microcode.
  558          * The BIOS may already be loaded and using its RISC LRAM region
  559          * so its region must be saved and restored.
  560          *
  561          * Note: This code makes the assumption, which is currently true,
  562          * that a chip reset does not clear RISC LRAM.
  563          */
  564         for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
  565                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
  566         }
  567 
  568         /*
  569          * Save current per TID negotiated values.
  570          */
  571         switch (sc->chip_type) {
  572         case ADW_CHIP_ASC3550:
  573                 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
  574 
  575                         u_int16_t  bios_version, major, minor;
  576 
  577                         bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
  578                                         ADW_MC_BIOSMEM) / 2];
  579                         major = (bios_version  >> 12) & 0xF;
  580                         minor = (bios_version  >> 8) & 0xF;
  581                         if (major < 3 || (major == 3 && minor == 1)) {
  582                             /*
  583                              * BIOS 3.1 and earlier location of
  584                              * 'wdtr_able' variable.
  585                              */
  586                             ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
  587                         } else {
  588                             ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
  589                                             wdtr_able);
  590                         }
  591                 }
  592                 break;
  593 
  594         case ADW_CHIP_ASC38C1600:
  595                 /* ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); */
  596                 /* FALLTHROUGH */
  597         case ADW_CHIP_ASC38C0800:
  598                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
  599                 break;
  600         }
  601         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
  602         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
  603         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  604                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
  605                         max_cmd[tid]);
  606         }
  607 
  608         /*
  609          * Perform a RAM Built-In Self Test
  610          */
  611         if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
  612                 return error_code;
  613         }
  614 
  615         /*
  616          * Load the Microcode
  617          */
  618         ;
  619         if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
  620                 return error_code;
  621         }
  622 
  623         /*
  624          * Read microcode version and date.
  625          */
  626         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
  627         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
  628 
  629         /*
  630          * If the PCI Configuration Command Register "Parity Error Response
  631          * Control" Bit was clear (0), then set the microcode variable
  632          * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
  633          * to ignore DMA parity errors.
  634          */
  635         if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
  636                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
  637                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
  638                                         word | CONTROL_FLAG_IGNORE_PERR);
  639         }
  640 
  641         switch (sc->chip_type) {
  642         case ADW_CHIP_ASC3550:
  643                 /*
  644                  * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
  645                  * FIFO threshold of 128 bytes.
  646                  * This register is only accessible to the host.
  647                  */
  648                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  649                                 START_CTL_EMFU | READ_CMD_MRM);
  650                 break;
  651 
  652         case ADW_CHIP_ASC38C0800:
  653                 /*
  654                  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
  655                  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
  656                  * cable detection and then we are able to read C_DET[3:0].
  657                  *
  658                  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
  659                  * Microcode Default Value' section below.
  660                  */
  661                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
  662                                 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
  663                                 | ADW_DIS_TERM_DRV);
  664 
  665                 /*
  666                  * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
  667                  * START_CTL_TH [3:2] bits for the default FIFO threshold.
  668                  *
  669                  * Note: ASC-38C0800 FIFO threshold has been changed to
  670                  * 256 bytes.
  671                  *
  672                  * For DMA Errata #4 set the BC_THRESH_ENB bit.
  673                  */
  674                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  675                                                 BC_THRESH_ENB | FIFO_THRESH_80B
  676                                                 | START_CTL_TH | READ_CMD_MRM);
  677                 break;
  678 
  679         case ADW_CHIP_ASC38C1600:
  680                 /*
  681                  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
  682                  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
  683                  * cable detection and then we are able to read C_DET[3:0].
  684                  *
  685                  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
  686                  * Microcode Default Value' section below.
  687                  */
  688                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
  689                                 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
  690                                 | ADW_DIS_TERM_DRV);
  691 
  692                 /*
  693                  * If the BIOS control flag AIPP (Asynchronous Information
  694                  * Phase Protection) disable bit is not set, then set the
  695                  * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
  696                  * enable AIPP checking and encoding.
  697                  */
  698                 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
  699                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
  700                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
  701                                         word | CONTROL_FLAG_ENABLE_AIPP);
  702                 }
  703 
  704                 /*
  705                  * For ASC-38C1600 use DMA_CFG0 default values:
  706                  * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
  707                  */
  708                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  709                                 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
  710                 break;
  711         }
  712 
  713         /*
  714          * Microcode operating variables for WDTR, SDTR, and command tag
  715          * queuing will be set in AdvInquiryHandling() based on what a
  716          * device reports it is capable of in Inquiry byte 7.
  717          *
  718          * If SCSI Bus Resets have been disabled, then directly set
  719          * SDTR and WDTR from the EEPROM configuration. This will allow
  720          * the BIOS and warm boot to work without a SCSI bus hang on
  721          * the Inquiry caused by host and target mismatched DTR values.
  722          * Without the SCSI Bus Reset, before an Inquiry a device can't
  723          * be assumed to be in Asynchronous, Narrow mode.
  724          */
  725         if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
  726                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
  727                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
  728         }
  729 
  730         /*
  731          * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
  732          * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
  733          * bitmask. These values determine the maximum SDTR speed negotiated
  734          * with a device.
  735          *
  736          * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
  737          * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
  738          * without determining here whether the device supports SDTR.
  739          */
  740         switch (sc->chip_type) {
  741         case ADW_CHIP_ASC3550:
  742                 word = 0;
  743                 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  744                         if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
  745                                 /* Set Ultra speed for TID 'tid'. */
  746                                 word |= (0x3 << (4 * (tid % 4)));
  747                         } else {
  748                                 /* Set Fast speed for TID 'tid'. */
  749                                 word |= (0x2 << (4 * (tid % 4)));
  750                         }
  751                         /* Check if done with sdtr_speed1. */
  752                         if (tid == 3) {
  753                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  754                                                 ADW_MC_SDTR_SPEED1, word);
  755                                 word = 0;
  756                         /* Check if done with sdtr_speed2. */
  757                         } else if (tid == 7) {
  758                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  759                                                 ADW_MC_SDTR_SPEED2, word);
  760                                 word = 0;
  761                         /* Check if done with sdtr_speed3. */
  762                         } else if (tid == 11) {
  763                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  764                                                 ADW_MC_SDTR_SPEED3, word);
  765                                 word = 0;
  766                         /* Check if done with sdtr_speed4. */
  767                         } else if (tid == 15) {
  768                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  769                                                 ADW_MC_SDTR_SPEED4, word);
  770                                 /* End of loop. */
  771                         }
  772                 }
  773 
  774                 /*
  775                  * Set microcode operating variable for the
  776                  * disconnect per TID bitmask.
  777                  */
  778                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
  779                                                         sc->cfg.disc_enable);
  780                 break;
  781 
  782         case ADW_CHIP_ASC38C0800:
  783                 /* FALLTHROUGH */
  784         case ADW_CHIP_ASC38C1600:
  785                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
  786                                                         sc->cfg.disc_enable);
  787                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
  788                                                         sc->sdtr_speed1);
  789                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
  790                                                         sc->sdtr_speed2);
  791                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
  792                                                         sc->sdtr_speed3);
  793                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
  794                                                         sc->sdtr_speed4);
  795                 break;
  796         }
  797 
  798 
  799         /*
  800          * Set SCSI_CFG0 Microcode Default Value.
  801          *
  802          * The microcode will set the SCSI_CFG0 register using this value
  803          * after it is started below.
  804          */
  805         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
  806                 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
  807                 ADW_OUR_ID_EN | sc->chip_scsi_id);
  808 
  809 
  810         switch(sc->chip_type) {
  811         case ADW_CHIP_ASC3550:
  812                 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
  813                 break;
  814 
  815         case ADW_CHIP_ASC38C0800:
  816                 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
  817                 break;
  818 
  819         case ADW_CHIP_ASC38C1600:
  820                 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
  821                 break;
  822         }
  823         if(error_code) {
  824                 return error_code;
  825         }
  826 
  827         /*
  828          * Set SEL_MASK Microcode Default Value
  829          *
  830          * The microcode will set the SEL_MASK register using this value
  831          * after it is started below.
  832          */
  833         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
  834                 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
  835 
  836         /*
  837          * Create and Initialize Host->RISC Carrier lists
  838          */
  839         sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
  840                                                 sc->sc_control->carriers);
  841 
  842         /*
  843          * Set-up the Host->RISC Initiator Command Queue (ICQ).
  844          */
  845 
  846         if ((sc->icq_sp = sc->carr_freelist) == NULL) {
  847                 return ADW_IERR_NO_CARRIER;
  848         }
  849         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
  850                         ASC_GET_CARRP(sc->icq_sp->next_ba));
  851 
  852         /*
  853          * The first command issued will be placed in the stopper carrier.
  854          */
  855         sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
  856 
  857         /*
  858          * Set RISC ICQ physical address start value.
  859          */
  860         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
  861 
  862         /*
  863          * Initialize the COMMA register to the same value otherwise
  864          * the RISC will prematurely detect a command is available.
  865          */
  866         if(sc->chip_type == ADW_CHIP_ASC38C1600) {
  867                 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
  868                                                 le32toh(sc->icq_sp->carr_ba));
  869         }
  870 
  871         /*
  872          * Set-up the RISC->Host Initiator Response Queue (IRQ).
  873          */
  874         if ((sc->irq_sp = sc->carr_freelist) == NULL) {
  875                 return ADW_IERR_NO_CARRIER;
  876         }
  877         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
  878                         ASC_GET_CARRP(sc->irq_sp->next_ba));
  879 
  880         /*
  881          * The first command completed by the RISC will be placed in
  882          * the stopper.
  883          *
  884          * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
  885          * completed the RISC will set the ASC_RQ_DONE bit.
  886          */
  887         sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
  888 
  889         /*
  890          * Set RISC IRQ physical address start value.
  891          */
  892         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
  893         sc->carr_pending_cnt = 0;
  894 
  895         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
  896                 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
  897         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
  898         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
  899 
  900         /* finally, finally, gentlemen, start your engine */
  901         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
  902 
  903         /*
  904          * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
  905          * Resets should be performed. The RISC has to be running
  906          * to issue a SCSI Bus Reset.
  907          */
  908         if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
  909         {
  910                 /*
  911                  * If the BIOS Signature is present in memory, restore the
  912                  * BIOS Handshake Configuration Table and do not perform
  913                  * a SCSI Bus Reset.
  914                  */
  915                 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
  916                                 0x55AA) {
  917                         /*
  918                          * Restore per TID negotiated values.
  919                          */
  920                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
  921                                         wdtr_able);
  922                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
  923                                         sdtr_able);
  924                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
  925                                         tagqng_able);
  926                         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  927                                 ADW_WRITE_BYTE_LRAM(iot, ioh,
  928                                                 ADW_MC_NUMBER_OF_MAX_CMD + tid,
  929                                                 max_cmd[tid]);
  930                         }
  931                 } else {
  932                         if (AdwResetCCB(sc) != ADW_TRUE) {
  933                                 error_code = ADW_WARN_BUSRESET_ERROR;
  934                         }
  935                 }
  936         }
  937 
  938         return error_code;
  939 }
  940 
  941 
  942 int
  943 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
  944 {
  945         int             i;
  946         u_int8_t        byte;
  947 
  948 
  949         if ((chip_type == ADW_CHIP_ASC38C0800) ||
  950             (chip_type == ADW_CHIP_ASC38C1600)) {
  951                 /*
  952                  * RAM BIST (RAM Built-In Self Test)
  953                  *
  954                  * Address : I/O base + offset 0x38h register (byte).
  955                  * Function: Bit 7-6(RW) : RAM mode
  956                  *                          Normal Mode   : 0x00
  957                  *                          Pre-test Mode : 0x40
  958                  *                          RAM Test Mode : 0x80
  959                  *           Bit 5       : unused
  960                  *           Bit 4(RO)   : Done bit
  961                  *           Bit 3-0(RO) : Status
  962                  *                          Host Error    : 0x08
  963                  *                          Int_RAM Error : 0x04
  964                  *                          RISC Error    : 0x02
  965                  *                          SCSI Error    : 0x01
  966                  *                          No Error      : 0x00
  967                  *
  968                  * Note: RAM BIST code should be put right here, before loading
  969                  * the microcode and after saving the RISC memory BIOS region.
  970                  */
  971 
  972                 /*
  973                  * LRAM Pre-test
  974                  *
  975                  * Write PRE_TEST_MODE (0x40) to register and wait for
  976                  * 10 milliseconds.
  977                  * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
  978                  * return an error. Reset to NORMAL_MODE (0x00) and do again.
  979                  * If cannot reset to NORMAL_MODE, return an error too.
  980                  */
  981                 for (i = 0; i < 2; i++) {
  982                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
  983                                         PRE_TEST_MODE);
  984                          /* Wait for 10ms before reading back. */
  985                         AdwSleepMilliSecond(10);
  986                         byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
  987                         if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
  988                                         PRE_TEST_VALUE) {
  989                                 return ADW_IERR_BIST_PRE_TEST;
  990                         }
  991 
  992                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
  993                                                                 NORMAL_MODE);
  994                         /* Wait for 10ms before reading back. */
  995                         AdwSleepMilliSecond(10);
  996                         if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
  997                             != NORMAL_VALUE) {
  998                                 return ADW_IERR_BIST_PRE_TEST;
  999                         }
 1000                 }
 1001 
 1002                 /*
 1003                  * LRAM Test - It takes about 1.5 ms to run through the test.
 1004                  *
 1005                  * Write RAM_TEST_MODE (0x80) to register and wait for
 1006                  * 10 milliseconds.
 1007                  * If Done bit not set or Status not 0, save register byte,
 1008                  * set the err_code, and return an error.
 1009                  */
 1010                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
 1011                 /* Wait for 10ms before checking status. */
 1012                 AdwSleepMilliSecond(10);
 1013 
 1014                 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
 1015                 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
 1016                         /* Get here if Done bit not set or Status not 0. */
 1017                         return ADW_IERR_BIST_RAM_TEST;
 1018                 }
 1019 
 1020                 /* We need to reset back to normal mode after LRAM test passes*/
 1021                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
 1022         }
 1023 
 1024         return 0;
 1025 }
 1026 
 1027 
 1028 int
 1029 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
 1030 {
 1031         const u_int8_t  *mcode_data;
 1032         u_int32_t        mcode_chksum;
 1033         u_int16_t        mcode_size;
 1034         u_int32_t       sum;
 1035         u_int16_t       code_sum;
 1036         int             begin_addr;
 1037         int             end_addr;
 1038         int             word;
 1039         int             adw_memsize;
 1040         int             adw_mcode_expanded_size;
 1041         int             i, j;
 1042 
 1043 
 1044         switch(chip_type) {
 1045         case ADW_CHIP_ASC3550:
 1046                 mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
 1047                 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
 1048                 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
 1049                 adw_memsize = ADW_3550_MEMSIZE;
 1050                 break;
 1051 
 1052         case ADW_CHIP_ASC38C0800:
 1053                 mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
 1054                 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
 1055                 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
 1056                 adw_memsize = ADW_38C0800_MEMSIZE;
 1057                 break;
 1058 
 1059         case ADW_CHIP_ASC38C1600:
 1060                 mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
 1061                 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
 1062                 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
 1063                 adw_memsize = ADW_38C1600_MEMSIZE;
 1064                 break;
 1065 
 1066         default:
 1067                 return (EINVAL);
 1068         }
 1069 
 1070         /*
 1071          * Write the microcode image to RISC memory starting at address 0.
 1072          */
 1073         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
 1074 
 1075         /* Assume the following compressed format of the microcode buffer:
 1076          *
 1077          *  254 word (508 byte) table indexed by byte code followed
 1078          *  by the following byte codes:
 1079          *
 1080          *    1-Byte Code:
 1081          *      00: Emit word 0 in table.
 1082          *      01: Emit word 1 in table.
 1083          *      .
 1084          *      FD: Emit word 253 in table.
 1085          *
 1086          *    Multi-Byte Code:
 1087          *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
 1088          *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
 1089          */
 1090         word = 0;
 1091         for (i = 253 * 2; i < mcode_size; i++) {
 1092                 if (mcode_data[i] == 0xff) {
 1093                         for (j = 0; j < mcode_data[i + 1]; j++) {
 1094                                 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
 1095                                   (((u_int16_t)mcode_data[i + 3] << 8) |
 1096                                   mcode_data[i + 2]));
 1097                                 word++;
 1098                         }
 1099                         i += 3;
 1100                 } else if (mcode_data[i] == 0xfe) {
 1101                         ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
 1102                             (((u_int16_t)mcode_data[i + 2] << 8) |
 1103                             mcode_data[i + 1]));
 1104                         i += 2;
 1105                         word++;
 1106                 } else {
 1107                         ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
 1108                          mcode_data[(mcode_data[i] * 2) + 1] <<8) |
 1109                          mcode_data[mcode_data[i] * 2]));
 1110                         word++;
 1111                 }
 1112         }
 1113 
 1114         /*
 1115          * Set 'word' for later use to clear the rest of memory and save
 1116          * the expanded mcode size.
 1117          */
 1118         word *= 2;
 1119         adw_mcode_expanded_size = word;
 1120 
 1121         /*
 1122          * Clear the rest of the Internal RAM.
 1123          */
 1124         for (; word < adw_memsize; word += 2) {
 1125                 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
 1126         }
 1127 
 1128         /*
 1129          * Verify the microcode checksum.
 1130          */
 1131         sum = 0;
 1132         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
 1133 
 1134         for (word = 0; word < adw_mcode_expanded_size; word += 2) {
 1135                 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
 1136         }
 1137 
 1138         if (sum != mcode_chksum) {
 1139                 return ADW_IERR_MCODE_CHKSUM;
 1140         }
 1141 
 1142         /*
 1143          * Restore the RISC memory BIOS region.
 1144          */
 1145         for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
 1146                 if(chip_type == ADW_CHIP_ASC3550) {
 1147                         ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
 1148                                                                 bios_mem[i]);
 1149                 } else {
 1150                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
 1151                                                                 bios_mem[i]);
 1152                 }
 1153         }
 1154 
 1155         /*
 1156          * Calculate and write the microcode code checksum to the microcode
 1157          * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
 1158          */
 1159         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
 1160         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
 1161         code_sum = 0;
 1162         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
 1163         for (word = begin_addr; word < end_addr; word += 2) {
 1164                 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
 1165         }
 1166         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
 1167 
 1168         /*
 1169          * Set the chip type.
 1170          */
 1171         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
 1172 
 1173         return 0;
 1174 }
 1175 
 1176 
 1177 int
 1178 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
 1179 {
 1180         u_int16_t       scsi_cfg1;
 1181 
 1182 
 1183         /*
 1184          * Determine SCSI_CFG1 Microcode Default Value.
 1185          *
 1186          * The microcode will set the SCSI_CFG1 register using this value
 1187          * after it is started below.
 1188          */
 1189 
 1190         /* Read current SCSI_CFG1 Register value. */
 1191         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1192 
 1193         /*
 1194          * If all three connectors are in use in ASC3550, return an error.
 1195          */
 1196         if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
 1197              (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
 1198                 return ADW_IERR_ILLEGAL_CONNECTION;
 1199         }
 1200 
 1201         /*
 1202          * If the cable is reversed all of the SCSI_CTRL register signals
 1203          * will be set. Check for and return an error if this condition is
 1204          * found.
 1205          */
 1206         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1207                 return ADW_IERR_REVERSED_CABLE;
 1208         }
 1209 
 1210         /*
 1211          * If this is a differential board and a single-ended device
 1212          * is attached to one of the connectors, return an error.
 1213          */
 1214         if ((scsi_cfg1 & ADW_DIFF_MODE) &&
 1215             (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
 1216                 return ADW_IERR_SINGLE_END_DEVICE;
 1217         }
 1218 
 1219         /*
 1220          * If automatic termination control is enabled, then set the
 1221          * termination value based on a table listed in a_condor.h.
 1222          *
 1223          * If manual termination was specified with an EEPROM setting
 1224          * then 'termination' was set-up in AdwInitFromEEPROM() and
 1225          * is ready to be 'ored' into SCSI_CFG1.
 1226          */
 1227         if (cfg->termination == 0) {
 1228                 /*
 1229                  * The software always controls termination by setting
 1230                  * TERM_CTL_SEL.
 1231                  * If TERM_CTL_SEL were set to 0, the hardware would set
 1232                  * termination.
 1233                  */
 1234                 cfg->termination |= ADW_TERM_CTL_SEL;
 1235 
 1236                 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
 1237                         /* TERM_CTL_H: on, TERM_CTL_L: on */
 1238                         case 0x3: case 0x7: case 0xB:
 1239                         case 0xD: case 0xE: case 0xF:
 1240                                 cfg->termination |=
 1241                                 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
 1242                                 break;
 1243 
 1244                         /* TERM_CTL_H: on, TERM_CTL_L: off */
 1245                         case 0x1: case 0x5: case 0x9:
 1246                         case 0xA: case 0xC:
 1247                                 cfg->termination |= ADW_TERM_CTL_H;
 1248                                 break;
 1249 
 1250                         /* TERM_CTL_H: off, TERM_CTL_L: off */
 1251                         case 0x2: case 0x6:
 1252                                 break;
 1253                 }
 1254         }
 1255 
 1256         /*
 1257          * Clear any set TERM_CTL_H and TERM_CTL_L bits.
 1258          */
 1259         scsi_cfg1 &= ~ADW_TERM_CTL;
 1260 
 1261         /*
 1262          * Invert the TERM_CTL_H and TERM_CTL_L bits and then
 1263          * set 'scsi_cfg1'. The TERM_POL bit does not need to be
 1264          * referenced, because the hardware internally inverts
 1265          * the Termination High and Low bits if TERM_POL is set.
 1266          */
 1267         scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
 1268 
 1269         /*
 1270          * Set SCSI_CFG1 Microcode Default Value
 1271          *
 1272          * Set filter value and possibly modified termination control
 1273          * bits in the Microcode SCSI_CFG1 Register Value.
 1274          *
 1275          * The microcode will set the SCSI_CFG1 register using this value
 1276          * after it is started below.
 1277          */
 1278         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
 1279                                                 ADW_FLTR_DISABLE | scsi_cfg1);
 1280 
 1281         /*
 1282          * Set MEM_CFG Microcode Default Value
 1283          *
 1284          * The microcode will set the MEM_CFG register using this value
 1285          * after it is started below.
 1286          *
 1287          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1288          * are defined.
 1289          *
 1290          * ASC-3550 has 8KB internal memory.
 1291          */
 1292         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1293                                                 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
 1294 
 1295         return 0;
 1296 }
 1297 
 1298 
 1299 int
 1300 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
 1301 {
 1302         u_int16_t       scsi_cfg1;
 1303 
 1304 
 1305         /*
 1306          * Determine SCSI_CFG1 Microcode Default Value.
 1307          *
 1308          * The microcode will set the SCSI_CFG1 register using this value
 1309          * after it is started below.
 1310          */
 1311 
 1312         /* Read current SCSI_CFG1 Register value. */
 1313         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1314 
 1315         /*
 1316          * If the cable is reversed all of the SCSI_CTRL register signals
 1317          * will be set. Check for and return an error if this condition is
 1318          * found.
 1319          */
 1320         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1321                 return ADW_IERR_REVERSED_CABLE;
 1322         }
 1323 
 1324         /*
 1325          * All kind of combinations of devices attached to one of four
 1326          * connectors are acceptable except HVD device attached.
 1327          * For example, LVD device can be attached to SE connector while
 1328          * SE device attached to LVD connector.
 1329          * If LVD device attached to SE connector, it only runs up to
 1330          * Ultra speed.
 1331          *
 1332          * If an HVD device is attached to one of LVD connectors, return
 1333          * an error.
 1334          * However, there is no way to detect HVD device attached to
 1335          * SE connectors.
 1336          */
 1337         if (scsi_cfg1 & ADW_HVD) {
 1338                 return ADW_IERR_HVD_DEVICE;
 1339         }
 1340 
 1341         /*
 1342          * If either SE or LVD automatic termination control is enabled, then
 1343          * set the termination value based on a table listed in a_condor.h.
 1344          *
 1345          * If manual termination was specified with an EEPROM setting then
 1346          * 'termination' was set-up in AdwInitFromEEPROM() and is ready
 1347          * to be 'ored' into SCSI_CFG1.
 1348          */
 1349         if ((cfg->termination & ADW_TERM_SE) == 0) {
 1350                 /* SE automatic termination control is enabled. */
 1351                 switch(scsi_cfg1 & ADW_C_DET_SE) {
 1352                         /* TERM_SE_HI: on, TERM_SE_LO: on */
 1353                         case 0x1: case 0x2: case 0x3:
 1354                                 cfg->termination |= ADW_TERM_SE;
 1355                                 break;
 1356 
 1357                         /* TERM_SE_HI: on, TERM_SE_LO: off */
 1358                         case 0x0:
 1359                                 cfg->termination |= ADW_TERM_SE_HI;
 1360                                 break;
 1361                 }
 1362         }
 1363 
 1364         if ((cfg->termination & ADW_TERM_LVD) == 0) {
 1365                 /* LVD automatic termination control is enabled. */
 1366                 switch(scsi_cfg1 & ADW_C_DET_LVD) {
 1367                         /* TERM_LVD_HI: on, TERM_LVD_LO: on */
 1368                         case 0x4: case 0x8: case 0xC:
 1369                                 cfg->termination |= ADW_TERM_LVD;
 1370                                 break;
 1371 
 1372                         /* TERM_LVD_HI: off, TERM_LVD_LO: off */
 1373                         case 0x0:
 1374                                 break;
 1375                 }
 1376         }
 1377 
 1378         /*
 1379          * Clear any set TERM_SE and TERM_LVD bits.
 1380          */
 1381         scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
 1382 
 1383         /*
 1384          * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
 1385          */
 1386         scsi_cfg1 |= (~cfg->termination & 0xF0);
 1387 
 1388         /*
 1389          * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
 1390          * HVD/LVD/SE bits and set possibly modified termination control bits
 1391          * in the Microcode SCSI_CFG1 Register Value.
 1392          */
 1393         scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
 1394                                         ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
 1395 
 1396         /*
 1397          * Set SCSI_CFG1 Microcode Default Value
 1398          *
 1399          * Set possibly modified termination control and reset DIS_TERM_DRV
 1400          * bits in the Microcode SCSI_CFG1 Register Value.
 1401          *
 1402          * The microcode will set the SCSI_CFG1 register using this value
 1403          * after it is started below.
 1404          */
 1405         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
 1406 
 1407         /*
 1408          * Set MEM_CFG Microcode Default Value
 1409          *
 1410          * The microcode will set the MEM_CFG register using this value
 1411          * after it is started below.
 1412          *
 1413          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1414          * are defined.
 1415          *
 1416          * ASC-38C0800 has 16KB internal memory.
 1417          */
 1418         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1419                                                 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
 1420 
 1421         return 0;
 1422 }
 1423 
 1424 
 1425 int
 1426 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
 1427 {
 1428         u_int16_t       scsi_cfg1;
 1429 
 1430 
 1431         /*
 1432          * Determine SCSI_CFG1 Microcode Default Value.
 1433          *
 1434          * The microcode will set the SCSI_CFG1 register using this value
 1435          * after it is started below.
 1436          * Each ASC-38C1600 function has only two cable detect bits.
 1437          * The bus mode override bits are in IOPB_SOFT_OVER_WR.
 1438          */
 1439 
 1440         /* Read current SCSI_CFG1 Register value. */
 1441         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1442 
 1443         /*
 1444          * If the cable is reversed all of the SCSI_CTRL register signals
 1445          * will be set. Check for and return an error if this condition is
 1446          * found.
 1447          */
 1448         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1449                 return ADW_IERR_REVERSED_CABLE;
 1450         }
 1451 
 1452         /*
 1453          * Each ASC-38C1600 function has two connectors. Only an HVD device
 1454          * cannot be connected to either connector. An LVD device or SE device
 1455          * may be connected to either connector. If an SE device is connected,
 1456          * then at most Ultra speed (20 MHz) can be used on both connectors.
 1457          *
 1458          * If an HVD device is attached, return an error.
 1459          */
 1460         if (scsi_cfg1 & ADW_HVD) {
 1461                 return ADW_IERR_HVD_DEVICE;
 1462         }
 1463 
 1464         /*
 1465          * Each function in the ASC-38C1600 uses only the SE cable detect and
 1466          * termination because there are two connectors for each function.
 1467          * Each function may use either LVD or SE mode.
 1468          * Corresponding the SE automatic termination control EEPROM bits are
 1469          * used for each function.
 1470          * Each function has its own EEPROM. If SE automatic control is enabled
 1471          * for the function, then set the termination value based on a table
 1472          * listed in adwlib.h.
 1473          *
 1474          * If manual termination is specified in the EEPROM for the function,
 1475          * then 'termination' was set-up in AdwInitFromEEPROM() and is
 1476          * ready to be 'ored' into SCSI_CFG1.
 1477          */
 1478         if ((cfg->termination & ADW_TERM_SE) == 0) {
 1479                 /* SE automatic termination control is enabled. */
 1480                 switch(scsi_cfg1 & ADW_C_DET_SE) {
 1481                         /* TERM_SE_HI: on, TERM_SE_LO: on */
 1482                         case 0x1: case 0x2: case 0x3:
 1483                                 cfg->termination |= ADW_TERM_SE;
 1484                                 break;
 1485 
 1486                         case 0x0:
 1487 #if 0
 1488         /* !!!!TODO!!!! */
 1489                                 if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
 1490                                 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
 1491                                 }
 1492                                 else
 1493 #endif
 1494                                 {
 1495                                 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
 1496                                         cfg->termination |= ADW_TERM_SE_HI;
 1497                                 }
 1498                                 break;
 1499                         }
 1500         }
 1501 
 1502         /*
 1503          * Clear any set TERM_SE bits.
 1504          */
 1505         scsi_cfg1 &= ~ADW_TERM_SE;
 1506 
 1507         /*
 1508          * Invert the TERM_SE bits and then set 'scsi_cfg1'.
 1509          */
 1510         scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
 1511 
 1512         /*
 1513          * Clear Big Endian and Terminator Polarity bits and set possibly
 1514          * modified termination control bits in the Microcode SCSI_CFG1
 1515          * Register Value.
 1516          */
 1517         scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
 1518 
 1519         /*
 1520          * Set SCSI_CFG1 Microcode Default Value
 1521          *
 1522          * Set possibly modified termination control bits in the Microcode
 1523          * SCSI_CFG1 Register Value.
 1524          *
 1525          * The microcode will set the SCSI_CFG1 register using this value
 1526          * after it is started below.
 1527          */
 1528         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
 1529 
 1530         /*
 1531          * Set MEM_CFG Microcode Default Value
 1532          *
 1533          * The microcode will set the MEM_CFG register using this value
 1534          * after it is started below.
 1535          *
 1536          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1537          * are defined.
 1538          *
 1539          * ASC-38C1600 has 32KB internal memory.
 1540          */
 1541         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1542                                                 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
 1543 
 1544         return 0;
 1545 }
 1546 
 1547 
 1548 /*
 1549  * Read EEPROM configuration into the specified buffer.
 1550  *
 1551  * Return a checksum based on the EEPROM configuration read.
 1552  */
 1553 static u_int16_t
 1554 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
 1555 {
 1556         u_int16_t              wval, chksum;
 1557         u_int16_t              *wbuf;
 1558         int                 eep_addr;
 1559 
 1560 
 1561         wbuf = (u_int16_t *) cfg_buf;
 1562         chksum = 0;
 1563 
 1564         for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
 1565                 eep_addr < ASC_EEP_DVC_CFG_END;
 1566                 eep_addr++, wbuf++) {
 1567                 wval = AdwReadEEPWord(iot, ioh, eep_addr);
 1568                 chksum += wval;
 1569                 *wbuf = wval;
 1570         }
 1571 
 1572         *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
 1573         wbuf++;
 1574         for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
 1575                         eep_addr < ASC_EEP_MAX_WORD_ADDR;
 1576                         eep_addr++, wbuf++) {
 1577                 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
 1578         }
 1579 
 1580         return chksum;
 1581 }
 1582 
 1583 
 1584 /*
 1585  * Read the EEPROM from specified location
 1586  */
 1587 static u_int16_t
 1588 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
 1589 {
 1590         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1591                 ASC_EEP_CMD_READ | eep_word_addr);
 1592         AdwWaitEEPCmd(iot, ioh);
 1593 
 1594         return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
 1595 }
 1596 
 1597 
 1598 /*
 1599  * Wait for EEPROM command to complete
 1600  */
 1601 static void
 1602 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
 1603 {
 1604         int eep_delay_ms;
 1605 
 1606 
 1607         for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
 1608                 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
 1609                                 ASC_EEP_CMD_DONE) {
 1610                         break;
 1611                 }
 1612                 AdwSleepMilliSecond(1);
 1613         }
 1614 
 1615         (void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
 1616 }
 1617 
 1618 
 1619 /*
 1620  * Write the EEPROM from 'cfg_buf'.
 1621  */
 1622 static void
 1623 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
 1624 {
 1625         u_int16_t *wbuf;
 1626         u_int16_t addr, chksum;
 1627 
 1628 
 1629         wbuf = (u_int16_t *) cfg_buf;
 1630         chksum = 0;
 1631 
 1632         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
 1633         AdwWaitEEPCmd(iot, ioh);
 1634 
 1635         /*
 1636          * Write EEPROM from word 0 to word 20
 1637          */
 1638         for (addr = ASC_EEP_DVC_CFG_BEGIN;
 1639              addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
 1640                 chksum += *wbuf;
 1641                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
 1642                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1643                                 ASC_EEP_CMD_WRITE | addr);
 1644                 AdwWaitEEPCmd(iot, ioh);
 1645                 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
 1646         }
 1647 
 1648         /*
 1649          * Write EEPROM checksum at word 21
 1650          */
 1651         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
 1652         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1653                         ASC_EEP_CMD_WRITE | addr);
 1654         AdwWaitEEPCmd(iot, ioh);
 1655         wbuf++;        /* skip over check_sum */
 1656 
 1657         /*
 1658          * Write EEPROM OEM name at words 22 to 29
 1659          */
 1660         for (addr = ASC_EEP_DVC_CTL_BEGIN;
 1661              addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
 1662                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
 1663                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1664                                 ASC_EEP_CMD_WRITE | addr);
 1665                 AdwWaitEEPCmd(iot, ioh);
 1666         }
 1667 
 1668         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1669                         ASC_EEP_CMD_WRITE_DISABLE);
 1670         AdwWaitEEPCmd(iot, ioh);
 1671 
 1672         return;
 1673 }
 1674 
 1675 
 1676 /*
 1677  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
 1678  *
 1679  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
 1680  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
 1681  *   RISC to notify it a new command is ready to be executed.
 1682  *
 1683  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
 1684  * set to SCSI_MAX_RETRY.
 1685  *
 1686  * Return:
 1687  *      ADW_SUCCESS(1) - The request was successfully queued.
 1688  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
 1689  *                       request completes.
 1690  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
 1691  *                       host IC error.
 1692  */
 1693 int
 1694 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
 1695 {
 1696         bus_space_tag_t iot = sc->sc_iot;
 1697         bus_space_handle_t ioh = sc->sc_ioh;
 1698         ADW_CCB         *ccb;
 1699         u_int32_t       req_paddr;
 1700         ADW_CARRIER     *new_carrp;
 1701 
 1702         /*
 1703          * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
 1704          */
 1705         if (scsiq->target_id > ADW_MAX_TID) {
 1706                 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
 1707                 scsiq->done_status = QD_WITH_ERROR;
 1708                 return ADW_ERROR;
 1709         }
 1710 
 1711         /*
 1712          * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
 1713          */
 1714 
 1715         ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
 1716 
 1717         /*
 1718          * Allocate a carrier and initialize fields.
 1719          */
 1720         if ((new_carrp = sc->carr_freelist) == NULL) {
 1721                 return ADW_BUSY;
 1722         }
 1723         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
 1724                         ASC_GET_CARRP(new_carrp->next_ba));
 1725         sc->carr_pending_cnt++;
 1726 
 1727         /*
 1728          * Set the carrier to be a stopper by setting 'next_ba'
 1729          * to the stopper value. The current stopper will be changed
 1730          * below to point to the new stopper.
 1731          */
 1732         new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
 1733 
 1734         req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
 1735                 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
 1736 
 1737         /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
 1738         scsiq->scsiq_rptr = htole32(req_paddr);
 1739 
 1740         /*
 1741          * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
 1742          * order during initialization.
 1743          */
 1744         scsiq->carr_ba = sc->icq_sp->carr_ba;
 1745         scsiq->carr_va = sc->icq_sp->carr_ba;
 1746 
 1747         /*
 1748          * Use the current stopper to send the ADW_SCSI_REQ_Q command to
 1749          * the microcode. The newly allocated stopper will become the new
 1750          * stopper.
 1751          */
 1752         sc->icq_sp->areq_ba = htole32(req_paddr);
 1753 
 1754         /*
 1755          * Set the 'next_ba' pointer for the old stopper to be the
 1756          * physical address of the new stopper. The RISC can only
 1757          * follow physical addresses.
 1758          */
 1759         sc->icq_sp->next_ba = new_carrp->carr_ba;
 1760 
 1761 #if ADW_DEBUG
 1762         printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
 1763                         sc->icq_sp->carr_id,
 1764                         sc->icq_sp->carr_ba,
 1765                         sc->icq_sp->areq_ba,
 1766                         sc->icq_sp->next_ba);
 1767 #endif
 1768         /*
 1769          * Set the host adapter stopper pointer to point to the new carrier.
 1770          */
 1771         sc->icq_sp = new_carrp;
 1772 
 1773         if (sc->chip_type == ADW_CHIP_ASC3550 ||
 1774             sc->chip_type == ADW_CHIP_ASC38C0800) {
 1775                 /*
 1776                  * Tickle the RISC to tell it to read its Command Queue Head
 1777                  * pointer.
 1778                  */
 1779                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
 1780                 if (sc->chip_type == ADW_CHIP_ASC3550) {
 1781                         /*
 1782                          * Clear the tickle value. In the ASC-3550 the RISC flag
 1783                          * command 'clr_tickle_a' does not work unless the host
 1784                          * value is cleared.
 1785                          */
 1786                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
 1787                                         ADW_TICKLE_NOP);
 1788                 }
 1789         } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1790                 /*
 1791                  * Notify the RISC a carrier is ready by writing the physical
 1792                  * address of the new carrier stopper to the COMMA register.
 1793                  */
 1794                 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
 1795                                 le32toh(new_carrp->carr_ba));
 1796         }
 1797 
 1798         /*
 1799          * End of CRITICAL SECTION: Must be protected within splbio/splx pair
 1800          */
 1801 
 1802         return ADW_SUCCESS;
 1803 }
 1804 
 1805 
 1806 void
 1807 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
 1808 {
 1809 
 1810         /*
 1811          * Reset Chip.
 1812          */
 1813         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1814                         ADW_CTRL_REG_CMD_RESET);
 1815         AdwSleepMilliSecond(100);
 1816         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1817                         ADW_CTRL_REG_CMD_WR_IO_REG);
 1818 }
 1819 
 1820 
 1821 /*
 1822  * Reset SCSI Bus and purge all outstanding requests.
 1823  *
 1824  * Return Value:
 1825  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
 1826  *      ADW_FALSE(0) -  Microcode command failed.
 1827  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
 1828  *                      may be hung which requires driver recovery.
 1829  */
 1830 int
 1831 AdwResetCCB(ADW_SOFTC *sc)
 1832 {
 1833         int         status;
 1834 
 1835         /*
 1836          * Send the SCSI Bus Reset idle start idle command which asserts
 1837          * the SCSI Bus Reset signal.
 1838          */
 1839         status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
 1840         if (status != ADW_TRUE) {
 1841                 return status;
 1842         }
 1843 
 1844         /*
 1845          * Delay for the specified SCSI Bus Reset hold time.
 1846          *
 1847          * The hold time delay is done on the host because the RISC has no
 1848          * microsecond accurate timer.
 1849          */
 1850         AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
 1851 
 1852         /*
 1853          * Send the SCSI Bus Reset end idle command which de-asserts
 1854          * the SCSI Bus Reset signal and purges any pending requests.
 1855          */
 1856         status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
 1857         if (status != ADW_TRUE) {
 1858                 return status;
 1859         }
 1860 
 1861         AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
 1862 
 1863         return status;
 1864 }
 1865 
 1866 
 1867 /*
 1868  * Reset chip and SCSI Bus.
 1869  *
 1870  * Return Value:
 1871  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
 1872  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
 1873  */
 1874 int
 1875 AdwResetSCSIBus(ADW_SOFTC *sc)
 1876 {
 1877         bus_space_tag_t iot = sc->sc_iot;
 1878         bus_space_handle_t ioh = sc->sc_ioh;
 1879         int             status;
 1880         u_int16_t       wdtr_able, sdtr_able, tagqng_able;
 1881         u_int16_t       ppr_able = 0; /* XXX: gcc */
 1882         u_int8_t        tid, max_cmd[ADW_MAX_TID + 1];
 1883         u_int16_t       bios_sig;
 1884 
 1885 
 1886         /*
 1887          * Save current per TID negotiated values.
 1888          */
 1889         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
 1890         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
 1891         if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1892                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
 1893         }
 1894         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
 1895         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
 1896                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
 1897                         max_cmd[tid]);
 1898         }
 1899 
 1900         /*
 1901          * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
 1902          * by clearing the BIOS signature word.
 1903          * The initialization functions assumes a SCSI Bus Reset is not
 1904          * needed if the BIOS signature word is present.
 1905          */
 1906         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
 1907         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
 1908 
 1909         /*
 1910          * Stop chip and reset it.
 1911          */
 1912         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
 1913         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1914                         ADW_CTRL_REG_CMD_RESET);
 1915         AdwSleepMilliSecond(100);
 1916         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1917                         ADW_CTRL_REG_CMD_WR_IO_REG);
 1918 
 1919         /*
 1920          * Reset Adv Library error code, if any, and try
 1921          * re-initializing the chip.
 1922          * Then translate initialization return value to status value.
 1923          */
 1924         status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
 1925 
 1926         /*
 1927          * Restore the BIOS signature word.
 1928          */
 1929         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
 1930 
 1931         /*
 1932          * Restore per TID negotiated values.
 1933          */
 1934         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
 1935         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
 1936         if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1937                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
 1938         }
 1939         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
 1940         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
 1941                 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
 1942                         max_cmd[tid]);
 1943         }
 1944 
 1945         return status;
 1946 }
 1947 
 1948 
 1949 /*
 1950  * Adv Library Interrupt Service Routine
 1951  *
 1952  *  This function is called by a driver's interrupt service routine.
 1953  *  The function disables and re-enables interrupts.
 1954  *
 1955  *  When a microcode idle command is completed, the ADV_DVC_VAR
 1956  *  'idle_cmd_done' field is set to ADW_TRUE.
 1957  *
 1958  *  Note: AdwISR() can be called when interrupts are disabled or even
 1959  *  when there is no hardware interrupt condition present. It will
 1960  *  always check for completed idle commands and microcode requests.
 1961  *  This is an important feature that shouldn't be changed because it
 1962  *  allows commands to be completed from polling mode loops.
 1963  *
 1964  * Return:
 1965  *   ADW_TRUE(1) - interrupt was pending
 1966  *   ADW_FALSE(0) - no interrupt was pending
 1967  */
 1968 int
 1969 AdwISR(ADW_SOFTC *sc)
 1970 {
 1971         bus_space_tag_t iot = sc->sc_iot;
 1972         bus_space_handle_t ioh = sc->sc_ioh;
 1973         u_int8_t        int_stat;
 1974         ADW_CARRIER     *free_carrp/*, *ccb_carr*/;
 1975         u_int32_t       irq_next_pa;
 1976         ADW_SCSI_REQ_Q  *scsiq;
 1977         ADW_CCB         *ccb;
 1978         int             s;
 1979 
 1980 
 1981         s = splbio();
 1982 
 1983         /* Reading the register clears the interrupt. */
 1984         int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
 1985 
 1986         if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
 1987              ADW_INTR_STATUS_INTRC)) == 0) {
 1988                 splx(s);
 1989                 return ADW_FALSE;
 1990         }
 1991 
 1992         /*
 1993          * Notify the driver of an asynchronous microcode condition by
 1994          * calling the ADV_DVC_VAR.async_callback function. The function
 1995          * is passed the microcode ADW_MC_INTRB_CODE byte value.
 1996          */
 1997         if (int_stat & ADW_INTR_STATUS_INTRB) {
 1998                 u_int8_t intrb_code;
 1999 
 2000                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
 2001 
 2002                 if (sc->chip_type == ADW_CHIP_ASC3550 ||
 2003                     sc->chip_type == ADW_CHIP_ASC38C0800) {
 2004                         if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
 2005                                 sc->carr_pending_cnt != 0) {
 2006                                 ADW_WRITE_BYTE_REGISTER(iot, ioh,
 2007                                         IOPB_TICKLE, ADW_TICKLE_A);
 2008                                 if (sc->chip_type == ADW_CHIP_ASC3550) {
 2009                                         ADW_WRITE_BYTE_REGISTER(iot, ioh,
 2010                                                 IOPB_TICKLE, ADW_TICKLE_NOP);
 2011                                 }
 2012                         }
 2013                 }
 2014 
 2015                 if (sc->async_callback != 0) {
 2016                         (*sc->async_callback)(sc, intrb_code);
 2017                 }
 2018         }
 2019 
 2020         /*
 2021          * Check if the IRQ stopper carrier contains a completed request.
 2022          */
 2023         while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
 2024         {
 2025 #if ADW_DEBUG
 2026                 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
 2027                                 sc->irq_sp->carr_id,
 2028                                 sc->irq_sp->carr_ba,
 2029                                 sc->irq_sp->areq_ba,
 2030                                 sc->irq_sp->next_ba);
 2031 #endif
 2032                 /*
 2033                  * Get a pointer to the newly completed ADW_SCSI_REQ_Q
 2034                  * structure.
 2035                  * The RISC will have set 'areq_ba' to a virtual address.
 2036                  *
 2037                  * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
 2038                  * field to the carrier ADV_CARR_T.areq_ba field.
 2039                  * The conversion below complements the conversion of
 2040                  * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
 2041                  */
 2042                 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
 2043                 scsiq = &ccb->scsiq;
 2044                 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
 2045 
 2046                 /*
 2047                  * Request finished with good status and the queue was not
 2048                  * DMAed to host memory by the firmware. Set all status fields
 2049                  * to indicate good status.
 2050                  */
 2051                 if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
 2052                         scsiq->done_status = QD_NO_ERROR;
 2053                         scsiq->host_status = scsiq->scsi_status = 0;
 2054                         scsiq->data_cnt = 0L;
 2055                 }
 2056 
 2057                 /*
 2058                  * Advance the stopper pointer to the next carrier
 2059                  * ignoring the lower four bits. Free the previous
 2060                  * stopper carrier.
 2061                  */
 2062                 free_carrp = sc->irq_sp;
 2063                 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
 2064 
 2065                 free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
 2066                                         : sc->carr_freelist->carr_ba;
 2067                 sc->carr_freelist = free_carrp;
 2068                 sc->carr_pending_cnt--;
 2069 
 2070                 /*
 2071                  * Clear request microcode control flag.
 2072                  */
 2073                 scsiq->cntl = 0;
 2074 
 2075                 /*
 2076                  * Check Condition handling
 2077                  */
 2078                 /*
 2079                  * If the command that completed was a SCSI INQUIRY and
 2080                  * LUN 0 was sent the command, then process the INQUIRY
 2081                  * command information for the device.
 2082                  */
 2083                 if (scsiq->done_status == QD_NO_ERROR &&
 2084                     scsiq->cdb[0] == INQUIRY &&
 2085                     scsiq->target_lun == 0) {
 2086                         AdwInquiryHandling(sc, scsiq);
 2087                 }
 2088 
 2089                 /*
 2090                  * Notify the driver of the completed request by passing
 2091                  * the ADW_SCSI_REQ_Q pointer to its callback function.
 2092                  */
 2093                 (*sc->isr_callback)(sc, scsiq);
 2094                 /*
 2095                  * Note: After the driver callback function is called, 'scsiq'
 2096                  * can no longer be referenced.
 2097                  *
 2098                  * Fall through and continue processing other completed
 2099                  * requests...
 2100                  */
 2101         }
 2102 
 2103         splx(s);
 2104 
 2105         return ADW_TRUE;
 2106 }
 2107 
 2108 
 2109 /*
 2110  * Send an idle command to the chip and wait for completion.
 2111  *
 2112  * Command completion is polled for once per microsecond.
 2113  *
 2114  * The function can be called from anywhere including an interrupt handler.
 2115  * But the function is not re-entrant, so it uses the splbio/splx()
 2116  * functions to prevent reentrancy.
 2117  *
 2118  * Return Values:
 2119  *   ADW_TRUE - command completed successfully
 2120  *   ADW_FALSE - command failed
 2121  *   ADW_ERROR - command timed out
 2122  */
 2123 int
 2124 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
 2125 {
 2126         bus_space_tag_t iot = sc->sc_iot;
 2127         bus_space_handle_t ioh = sc->sc_ioh;
 2128         u_int16_t       result;
 2129         u_int32_t       i, j, s;
 2130 
 2131         s = splbio();
 2132 
 2133         /*
 2134          * Clear the idle command status which is set by the microcode
 2135          * to a non-zero value to indicate when the command is completed.
 2136          */
 2137         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
 2138 
 2139         /*
 2140          * Write the idle command value after the idle command parameter
 2141          * has been written to avoid a race condition. If the order is not
 2142          * followed, the microcode may process the idle command before the
 2143          * parameters have been written to LRAM.
 2144          */
 2145         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
 2146                         idle_cmd_parameter);
 2147         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
 2148 
 2149         /*
 2150          * Tickle the RISC to tell it to process the idle command.
 2151          */
 2152         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
 2153         if (sc->chip_type == ADW_CHIP_ASC3550) {
 2154                 /*
 2155                  * Clear the tickle value. In the ASC-3550 the RISC flag
 2156                  * command 'clr_tickle_b' does not work unless the host
 2157                  * value is cleared.
 2158                  */
 2159                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
 2160         }
 2161 
 2162         /* Wait for up to 100 millisecond for the idle command to timeout. */
 2163         for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
 2164                 /* Poll once each microsecond for command completion. */
 2165                 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
 2166                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
 2167                                                                         result);
 2168                         if (result != 0) {
 2169                                 splx(s);
 2170                                 return result;
 2171                         }
 2172                         AdwDelayMicroSecond(1);
 2173                 }
 2174         }
 2175 
 2176         splx(s);
 2177         return ADW_ERROR;
 2178 }
 2179 
 2180 
 2181 /*
 2182  * Inquiry Information Byte 7 Handling
 2183  *
 2184  * Handle SCSI Inquiry Command information for a device by setting
 2185  * microcode operating variables that affect WDTR, SDTR, and Tag
 2186  * Queuing.
 2187  */
 2188 static void
 2189 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
 2190 {
 2191 #ifndef FAILSAFE
 2192         bus_space_tag_t iot = sc->sc_iot;
 2193         bus_space_handle_t ioh = sc->sc_ioh;
 2194         u_int8_t                tid;
 2195         struct scsipi_inquiry_data *inq;
 2196         u_int16_t               tidmask;
 2197         u_int16_t               cfg_word;
 2198 
 2199 
 2200         /*
 2201          * AdwInquiryHandling() requires up to INQUIRY information Byte 7
 2202          * to be available.
 2203          *
 2204          * If less than 8 bytes of INQUIRY information were requested or less
 2205          * than 8 bytes were transferred, then return. cdb[4] is the request
 2206          * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
 2207          * microcode to the transfer residual count.
 2208          */
 2209 
 2210         if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
 2211                 return;
 2212         }
 2213 
 2214         tid = scsiq->target_id;
 2215 
 2216         inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
 2217 
 2218         /*
 2219          * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
 2220          */
 2221         if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
 2222             ((inq->version & SID_ANSII) < 2)) {
 2223                 return;
 2224         } else {
 2225                 /*
 2226                  * INQUIRY Byte 7 Handling
 2227                  *
 2228                  * Use a device's INQUIRY byte 7 to determine whether it
 2229                  * supports WDTR, SDTR, and Tag Queuing. If the feature
 2230                  * is enabled in the EEPROM and the device supports the
 2231                  * feature, then enable it in the microcode.
 2232                  */
 2233 
 2234                 tidmask = ADW_TID_TO_TIDMASK(tid);
 2235 
 2236                 /*
 2237                  * Wide Transfers
 2238                  *
 2239                  * If the EEPROM enabled WDTR for the device and the device
 2240                  * supports wide bus (16 bit) transfers, then turn on the
 2241                  * device's 'wdtr_able' bit and write the new value to the
 2242                  * microcode.
 2243                  */
 2244 #ifdef SCSI_ADW_WDTR_DISABLE
 2245         if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
 2246 #endif /* SCSI_ADW_WDTR_DISABLE */
 2247                 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
 2248                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
 2249                                         cfg_word);
 2250                         if ((cfg_word & tidmask) == 0) {
 2251                                 cfg_word |= tidmask;
 2252                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
 2253                                                 cfg_word);
 2254 
 2255                                 /*
 2256                                  * Clear the microcode "SDTR negotiation" and
 2257                                  * "WDTR negotiation" done indicators for the
 2258                                  * target to cause it to negotiate with the new
 2259                                  * setting set above.
 2260                                  * WDTR when accepted causes the target to enter
 2261                                  * asynchronous mode, so SDTR must be negotiated
 2262                                  */
 2263                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2264                                                 cfg_word);
 2265                                 cfg_word &= ~tidmask;
 2266                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2267                                                 cfg_word);
 2268                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
 2269                                                 cfg_word);
 2270                                 cfg_word &= ~tidmask;
 2271                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
 2272                                                 cfg_word);
 2273                         }
 2274                 }
 2275 
 2276                 /*
 2277                  * Synchronous Transfers
 2278                  *
 2279                  * If the EEPROM enabled SDTR for the device and the device
 2280                  * supports synchronous transfers, then turn on the device's
 2281                  * 'sdtr_able' bit. Write the new value to the microcode.
 2282                  */
 2283 #ifdef SCSI_ADW_SDTR_DISABLE
 2284         if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
 2285 #endif /* SCSI_ADW_SDTR_DISABLE */
 2286                 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
 2287                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
 2288                         if ((cfg_word & tidmask) == 0) {
 2289                                 cfg_word |= tidmask;
 2290                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
 2291                                                 cfg_word);
 2292 
 2293                                 /*
 2294                                  * Clear the microcode "SDTR negotiation"
 2295                                  * done indicator for the target to cause it
 2296                                  * to negotiate with the new setting set above.
 2297                                  */
 2298                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2299                                                 cfg_word);
 2300                                 cfg_word &= ~tidmask;
 2301                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2302                                                 cfg_word);
 2303                         }
 2304                 }
 2305                 /*
 2306                  * If the Inquiry data included enough space for the SPI-3
 2307                  * Clocking field, then check if DT mode is supported.
 2308                  */
 2309                 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
 2310                    (scsiq->cdb[4] >= 57 ||
 2311                    (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
 2312                         /*
 2313                          * PPR (Parallel Protocol Request) Capable
 2314                          *
 2315                          * If the device supports DT mode, then it must be
 2316                          * PPR capable.
 2317                          * The PPR message will be used in place of the SDTR
 2318                          * and WDTR messages to negotiate synchronous speed
 2319                          * and offset, transfer width, and protocol options.
 2320                          */
 2321                         if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
 2322                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
 2323                                                 sc->ppr_able);
 2324                                 sc->ppr_able |= tidmask;
 2325                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
 2326                                                 sc->ppr_able);
 2327                         }
 2328                 }
 2329 
 2330                 /*
 2331                  * If the EEPROM enabled Tag Queuing for the device and the
 2332                  * device supports Tag Queueing, then turn on the device's
 2333                  * 'tagqng_enable' bit in the microcode and set the microcode
 2334                  * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
 2335                  * value.
 2336                  *
 2337                  * Tag Queuing is disabled for the BIOS which runs in polled
 2338                  * mode and would see no benefit from Tag Queuing. Also by
 2339                  * disabling Tag Queuing in the BIOS devices with Tag Queuing
 2340                  * bugs will at least work with the BIOS.
 2341                  */
 2342 #ifdef SCSI_ADW_TAGQ_DISABLE
 2343         if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
 2344 #endif /* SCSI_ADW_TAGQ_DISABLE */
 2345                 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
 2346                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
 2347                                         cfg_word);
 2348                         cfg_word |= tidmask;
 2349                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
 2350                                         cfg_word);
 2351 
 2352                         ADW_WRITE_BYTE_LRAM(iot, ioh,
 2353                                         ADW_MC_NUMBER_OF_MAX_CMD + tid,
 2354                                         sc->max_dvc_qng);
 2355                 }
 2356         }
 2357 #endif /* FAILSAFE */
 2358 }
 2359 
 2360 
 2361 static void
 2362 AdwSleepMilliSecond(u_int32_t n)
 2363 {
 2364 
 2365         DELAY(n * 1000);
 2366 }
 2367 
 2368 
 2369 static void
 2370 AdwDelayMicroSecond(u_int32_t n)
 2371 {
 2372 
 2373         DELAY(n);
 2374 }
 2375 

Cache object: 422d0c0a5e2508abb741ca5f8bd48ed6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.