The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/adwlib.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $OpenBSD: adwlib.c,v 1.29 2022/08/29 06:08:03 jsg Exp $ */
    2 /* $NetBSD: adwlib.c,v 1.20 2000/07/04 04:17:03 itojun Exp $        */
    3 
    4 /*
    5  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
    6  *
    7  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
    8  * All rights reserved.
    9  *
   10  * Author: Baldassare Dante Profeta <dante@mclink.it>
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   31  * POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 /*
   34  * Ported from:
   35  */
   36 /*
   37  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   38  *
   39  * Copyright (c) 1995-2000 Advanced System Products, Inc.
   40  * All Rights Reserved.
   41  *
   42  * Redistribution and use in source and binary forms, with or without
   43  * modification, are permitted provided that redistributions of source
   44  * code retain the above copyright notice and this comment without
   45  * modification.
   46  */
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/malloc.h>
   51 #include <sys/kernel.h>
   52 #include <sys/queue.h>
   53 #include <sys/device.h>
   54 
   55 #include <machine/bus.h>
   56 #include <machine/intr.h>
   57 
   58 #include <scsi/scsi_all.h>
   59 #include <scsi/scsiconf.h>
   60 
   61 #include <dev/pci/pcidevs.h>
   62 
   63 #include <dev/ic/adwlib.h>
   64 #include <dev/microcode/adw/adwmcode.h>
   65 #include <dev/ic/adw.h>
   66 
   67 
   68 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
   69 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *,
   70     u_int8_t);
   71 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
   72 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t,
   73     ADW_DVC_CFG *);
   74 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t,
   75     ADW_DVC_CFG *);
   76 
   77 u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
   78     ADW_EEPROM *);
   79 void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
   80     ADW_EEPROM *);
   81 u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
   82 void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
   83 
   84 void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
   85 
   86 void AdwSleepMilliSecond(u_int32_t);
   87 void AdwDelayMicroSecond(u_int32_t);
   88 
   89 
   90 /*
   91  * EEPROM Configuration.
   92  *
   93  * All drivers should use this structure to set the default EEPROM
   94  * configuration. The BIOS now uses this structure when it is built.
   95  * Additional structure information can be found in adwlib.h where
   96  * the structure is defined.
   97  */
   98 static const ADW_EEPROM adw_3550_Default_EEPROM = {
   99         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  100         0x0000,                 /* 01 cfg_msw */
  101         0xFFFF,                 /* 02 disc_enable */
  102         0xFFFF,                 /* 03 wdtr_able */
  103         { 0xFFFF },             /* 04 sdtr_able */
  104         0xFFFF,                 /* 05 start_motor */
  105         0xFFFF,                 /* 06 tagqng_able */
  106         0xFFFF,                 /* 07 bios_scan */
  107         0,                      /* 08 scam_tolerant */
  108         7,                      /* 09 adapter_scsi_id */
  109         0,                      /*    bios_boot_delay */
  110         3,                      /* 10 scsi_reset_delay */
  111         0,                      /*    bios_id_lun */
  112         0,                      /* 11 termination */
  113         0,                      /*    reserved1 */
  114         0xFFE7,                 /* 12 bios_ctrl */
  115         { 0xFFFF },             /* 13 ultra_able */
  116         { 0 },                  /* 14 reserved2 */
  117         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  118         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  119         0,                      /* 16 dvc_cntl */
  120         { 0 },                  /* 17 bug_fix */
  121         { 0,0,0 },              /* 18-20 serial_number[3] */
  122         0,                      /* 21 check_sum */
  123         {                       /* 22-29 oem_name[16] */
  124           0,0,0,0,0,0,0,0,
  125           0,0,0,0,0,0,0,0
  126         },
  127         0,                      /* 30 dvc_err_code */
  128         0,                      /* 31 adw_err_code */
  129         0,                      /* 32 adw_err_addr */
  130         0,                      /* 33 saved_dvc_err_code */
  131         0,                      /* 34 saved_adw_err_code */
  132         0                       /* 35 saved_adw_err_addr */
  133 };
  134 
  135 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
  136         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  137         0x0000,                 /* 01 cfg_msw */
  138         0xFFFF,                 /* 02 disc_enable */
  139         0xFFFF,                 /* 03 wdtr_able */
  140         { 0x4444 },             /* 04 sdtr_speed1 */
  141         0xFFFF,                 /* 05 start_motor */
  142         0xFFFF,                 /* 06 tagqng_able */
  143         0xFFFF,                 /* 07 bios_scan */
  144         0,                      /* 08 scam_tolerant */
  145         7,                      /* 09 adapter_scsi_id */
  146         0,                      /*    bios_boot_delay */
  147         3,                      /* 10 scsi_reset_delay */
  148         0,                      /*    bios_id_lun */
  149         0,                      /* 11 termination_se */
  150         0,                      /*    termination_lvd */
  151         0xFFE7,                 /* 12 bios_ctrl */
  152         { 0x4444 },             /* 13 sdtr_speed2 */
  153         { 0x4444 },             /* 14 sdtr_speed3 */
  154         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  155         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  156         0,                      /* 16 dvc_cntl */
  157         { 0x4444 },             /* 17 sdtr_speed4 */
  158         { 0,0,0 },              /* 18-20 serial_number[3] */
  159         0,                      /* 21 check_sum */
  160         {                       /* 22-29 oem_name[16] */
  161           0,0,0,0,0,0,0,0,
  162           0,0,0,0,0,0,0,0
  163         },
  164         0,                      /* 30 dvc_err_code */
  165         0,                      /* 31 adw_err_code */
  166         0,                      /* 32 adw_err_addr */
  167         0,                      /* 33 saved_dvc_err_code */
  168         0,                      /* 34 saved_adw_err_code */
  169         0,                      /* 35 saved_adw_err_addr */
  170         {                       /* 36-55 reserved1[16] */
  171           0,0,0,0,0,0,0,0,0,0,
  172           0,0,0,0,0,0,0,0,0,0
  173         },
  174         0,                      /* 56 cisptr_lsw */
  175         0,                      /* 57 cisprt_msw */
  176         PCI_VENDOR_ADVSYS,      /* 58 subsysvid */
  177         PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
  178         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  179 };
  180 
  181 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
  182         ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
  183         0x0000,                 /* 01 cfg_msw */
  184         0xFFFF,                 /* 02 disc_enable */
  185         0xFFFF,                 /* 03 wdtr_able */
  186         { 0x5555 },             /* 04 sdtr_speed1 */
  187         0xFFFF,                 /* 05 start_motor */
  188         0xFFFF,                 /* 06 tagqng_able */
  189         0xFFFF,                 /* 07 bios_scan */
  190         0,                      /* 08 scam_tolerant */
  191         7,                      /* 09 adapter_scsi_id */
  192         0,                      /*    bios_boot_delay */
  193         3,                      /* 10 scsi_reset_delay */
  194         0,                      /*    bios_id_lun */
  195         0,                      /* 11 termination_se */
  196         0,                      /*    termination_lvd */
  197         0xFFE7,                 /* 12 bios_ctrl */
  198         { 0x5555 },             /* 13 sdtr_speed2 */
  199         { 0x5555 },             /* 14 sdtr_speed3 */
  200         ADW_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
  201         ADW_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
  202         0,                      /* 16 dvc_cntl */
  203         { 0x5555 },             /* 17 sdtr_speed4 */
  204         { 0,0,0 },              /* 18-20 serial_number[3] */
  205         0,                      /* 21 check_sum */
  206         {                       /* 22-29 oem_name[16] */
  207           0,0,0,0,0,0,0,0,
  208           0,0,0,0,0,0,0,0
  209         },
  210         0,                      /* 30 dvc_err_code */
  211         0,                      /* 31 adw_err_code */
  212         0,                      /* 32 adw_err_addr */
  213         0,                      /* 33 saved_dvc_err_code */
  214         0,                      /* 34 saved_adw_err_code */
  215         0,                      /* 35 saved_adw_err_addr */
  216         {                       /* 36-55 reserved1[16] */
  217           0,0,0,0,0,0,0,0,0,0,
  218           0,0,0,0,0,0,0,0,0,0
  219         },
  220         0,                      /* 56 cisptr_lsw */
  221         0,                      /* 57 cisprt_msw */
  222         PCI_VENDOR_ADVSYS,      /* 58 subsysvid */
  223         PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
  224         { 0,0,0,0 }             /* 60-63 reserved2[4] */
  225 };
  226 
  227 
  228 /*
  229  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
  230  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
  231  * all of this is done.
  232  *
  233  * For a non-fatal error return a warning code. If there are no warnings
  234  * then 0 is returned.
  235  *
  236  * Note: Chip is stopped on entry.
  237  */
  238 int
  239 AdwInitFromEEPROM(ADW_SOFTC *sc)
  240 {
  241         bus_space_tag_t iot = sc->sc_iot;
  242         bus_space_handle_t ioh = sc->sc_ioh;
  243         ADW_EEPROM              eep_config;
  244         u_int16_t               warn_code;
  245         u_int16_t               sdtr_speed = 0;
  246         u_int8_t                tid, termination;
  247         int                     i, j;
  248 
  249 
  250         warn_code = 0;
  251 
  252         /*
  253          * Read the board's EEPROM configuration.
  254          *
  255          * Set default values if a bad checksum is found.
  256          *
  257          * XXX - Don't handle big-endian access to EEPROM yet.
  258          */
  259         if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
  260                 warn_code |= ADW_WARN_EEPROM_CHKSUM;
  261 
  262                 /*
  263                  * Set EEPROM default values.
  264                  */
  265                 switch(sc->chip_type) {
  266                 case ADW_CHIP_ASC3550:
  267                         eep_config = adw_3550_Default_EEPROM;
  268                         break;
  269                 case ADW_CHIP_ASC38C0800:
  270                         eep_config = adw_38C0800_Default_EEPROM;
  271                         break;
  272                 case ADW_CHIP_ASC38C1600:
  273                         eep_config = adw_38C1600_Default_EEPROM;
  274 
  275 // XXX    TODO!!!       if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
  276                         if (sc->cfg.pci_slot_info != 0) {
  277                                 u_int8_t lsw_msb;
  278 
  279                                 lsw_msb = eep_config.cfg_lsw >> 8;
  280                                 /*
  281                                  * Set Function 1 EEPROM Word 0 MSB
  282                                  *
  283                                  * Clear the BIOS_ENABLE (bit 14) and
  284                                  * INTAB (bit 11) EEPROM bits.
  285                                  *
  286                                  * Disable Bit 14 (BIOS_ENABLE) to fix
  287                                  * SPARC Ultra 60 and old Mac system booting
  288                                  * problem. The Expansion ROM must
  289                                  * be disabled in Function 1 for these systems.
  290                                  */
  291                                 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
  292                                                 ADW_EEPROM_INTAB) >> 8) & 0xFF);
  293                                 /*
  294                                  * Set the INTAB (bit 11) if the GPIO 0 input
  295                                  * indicates the Function 1 interrupt line is
  296                                  * wired to INTA.
  297                                  *
  298                                  * Set/Clear Bit 11 (INTAB) from
  299                                  * the GPIO bit 0 input:
  300                                  *   1 - Function 1 intr line wired to INT A.
  301                                  *   0 - Function 1 intr line wired to INT B.
  302                                  *
  303                                  * Note: Adapter boards always have Function 0
  304                                  * wired to INTA.
  305                                  * Put all 5 GPIO bits in input mode and then
  306                                  * read their input values.
  307                                  */
  308                                 ADW_WRITE_BYTE_REGISTER(iot, ioh,
  309                                                         IOPB_GPIO_CNTL, 0);
  310                                 if (ADW_READ_BYTE_REGISTER(iot, ioh,
  311                                                 IOPB_GPIO_DATA) & 0x01) {
  312                                         /*
  313                                          * Function 1 interrupt wired to INTA;
  314                                          * Set EEPROM bit.
  315                                          */
  316                                         lsw_msb |= (ADW_EEPROM_INTAB >> 8)
  317                                                          & 0xFF;
  318                                  }
  319                                  eep_config.cfg_lsw &= 0x00FF;
  320                                  eep_config.cfg_lsw |= lsw_msb << 8;
  321                         }
  322                         break;
  323                 }
  324 
  325                 /*
  326                  * Assume the 6 byte board serial number that was read
  327                  * from EEPROM is correct even if the EEPROM checksum
  328                  * failed.
  329                  */
  330                 for (i = 2, j = 1; i >= 0; i--, j++) {
  331                         eep_config.serial_number[i] =
  332                             AdwReadEEPWord(iot, ioh, ADW_EEP_DVC_CFG_END - j);
  333                 }
  334 
  335                 AdwSetEEPROMConfig(iot, ioh, &eep_config);
  336         }
  337         /*
  338          * Set sc and sc->cfg variables from the EEPROM configuration
  339          * that was read.
  340          *
  341          * This is the mapping of EEPROM fields to Adw Library fields.
  342          */
  343         sc->wdtr_able = eep_config.wdtr_able;
  344         if (sc->chip_type == ADW_CHIP_ASC3550) {
  345                 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
  346                 sc->ultra_able = eep_config.sdtr2.ultra_able;
  347         } else {
  348                 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
  349                 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
  350                 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
  351                 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
  352         }
  353         sc->ppr_able = 0;
  354         sc->tagqng_able = eep_config.tagqng_able;
  355         sc->cfg.disc_enable = eep_config.disc_enable;
  356         sc->max_host_qng = eep_config.max_host_qng;
  357         sc->max_dvc_qng = eep_config.max_dvc_qng;
  358         sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
  359         sc->start_motor = eep_config.start_motor;
  360         sc->scsi_reset_wait = eep_config.scsi_reset_delay;
  361         sc->bios_ctrl = eep_config.bios_ctrl;
  362         sc->no_scam = eep_config.scam_tolerant;
  363         sc->cfg.serial1 = eep_config.serial_number[0];
  364         sc->cfg.serial2 = eep_config.serial_number[1];
  365         sc->cfg.serial3 = eep_config.serial_number[2];
  366 
  367         if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
  368             sc->chip_type == ADW_CHIP_ASC38C1600) {
  369                 sc->sdtr_able = 0;
  370                 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  371                         if (tid == 0) {
  372                                 sdtr_speed = sc->sdtr_speed1;
  373                         } else if (tid == 4) {
  374                                 sdtr_speed = sc->sdtr_speed2;
  375                         } else if (tid == 8) {
  376                                 sdtr_speed = sc->sdtr_speed3;
  377                         } else if (tid == 12) {
  378                                 sdtr_speed = sc->sdtr_speed4;
  379                         }
  380                         if (sdtr_speed & ADW_MAX_TID) {
  381                                 sc->sdtr_able |= (1 << tid);
  382                         }
  383                         sdtr_speed >>= 4;
  384                 }
  385         }
  386 
  387         /*
  388          * Set the host maximum queuing (max. 253, min. 16) and the per device
  389          * maximum queuing (max. 63, min. 4).
  390          */
  391         if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
  392                 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
  393         } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
  394         {
  395                 /* If the value is zero, assume it is uninitialized. */
  396                 if (eep_config.max_host_qng == 0) {
  397                         eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
  398                 } else {
  399                         eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
  400                 }
  401         }
  402 
  403         if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
  404                 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
  405         } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
  406                 /* If the value is zero, assume it is uninitialized. */
  407                 if (eep_config.max_dvc_qng == 0) {
  408                         eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
  409                 } else {
  410                         eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
  411                 }
  412         }
  413 
  414         /*
  415          * If 'max_dvc_qng' is greater than 'max_host_qng', then
  416          * set 'max_dvc_qng' to 'max_host_qng'.
  417          */
  418         if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
  419                 eep_config.max_dvc_qng = eep_config.max_host_qng;
  420         }
  421 
  422         /*
  423          * Set ADW_SOFTC 'max_host_qng' and 'max_dvc_qng'
  424          * values based on possibly adjusted EEPROM values.
  425          */
  426         sc->max_host_qng = eep_config.max_host_qng;
  427         sc->max_dvc_qng = eep_config.max_dvc_qng;
  428 
  429 
  430         /*
  431          * If the EEPROM 'termination' field is set to automatic (0), then set
  432          * the ADW_SOFTC.cfg 'termination' field to automatic also.
  433          *
  434          * If the termination is specified with a non-zero 'termination'
  435          * value check that a legal value is set and set the ADW_SOFTC.cfg
  436          * 'termination' field appropriately.
  437          */
  438 
  439         switch(sc->chip_type) {
  440         case ADW_CHIP_ASC3550:
  441                 sc->cfg.termination = 0;        /* auto termination */
  442                 switch(eep_config.termination_se) {
  443                 case 3:
  444                         /* Enable manual control with low on / high on. */
  445                         sc->cfg.termination |= ADW_TERM_CTL_L;
  446                 case 2:
  447                         /* Enable manual control with low off / high on. */
  448                         sc->cfg.termination |= ADW_TERM_CTL_H;
  449                 case 1:
  450                         /* Enable manual control with low off / high off. */
  451                         sc->cfg.termination |= ADW_TERM_CTL_SEL;
  452                 case 0:
  453                         break;
  454                 default:
  455                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  456                 }
  457                 break;
  458 
  459         case ADW_CHIP_ASC38C0800:
  460         case ADW_CHIP_ASC38C1600:
  461                 switch(eep_config.termination_se) {
  462                 case 0:
  463                         /* auto termination for SE */
  464                         termination = 0;
  465                         break;
  466                 case 1:
  467                         /* Enable manual control with low off / high off. */
  468                         termination = 0;
  469                         break;
  470                 case 2:
  471                         /* Enable manual control with low off / high on. */
  472                         termination = ADW_TERM_SE_HI;
  473                         break;
  474                 case 3:
  475                         /* Enable manual control with low on / high on. */
  476                         termination = ADW_TERM_SE;
  477                         break;
  478                 default:
  479                         /*
  480                          * The EEPROM 'termination_se' field contains a
  481                          * bad value. Use automatic termination instead.
  482                          */
  483                         termination = 0;
  484                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  485                 }
  486 
  487                 switch(eep_config.termination_lvd) {
  488                 case 0:
  489                         /* auto termination for LVD */
  490                         sc->cfg.termination = termination;
  491                         break;
  492                 case 1:
  493                         /* Enable manual control with low off / high off. */
  494                         sc->cfg.termination = termination;
  495                         break;
  496                 case 2:
  497                         /* Enable manual control with low off / high on. */
  498                         sc->cfg.termination = termination | ADW_TERM_LVD_HI;
  499                         break;
  500                 case 3:
  501                         /* Enable manual control with low on / high on. */
  502                         sc->cfg.termination = termination | ADW_TERM_LVD;
  503                         break;
  504                 default:
  505                         /*
  506                          * The EEPROM 'termination_lvd' field contains a
  507                          * bad value. Use automatic termination instead.
  508                          */
  509                         sc->cfg.termination = termination;
  510                         warn_code |= ADW_WARN_EEPROM_TERMINATION;
  511                 }
  512                 break;
  513         }
  514 
  515         return warn_code;
  516 }
  517 
  518 
  519 /*
  520  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
  521  *
  522  * On failure return the error code.
  523  */
  524 int
  525 AdwInitDriver(ADW_SOFTC *sc)
  526 {
  527         bus_space_tag_t iot = sc->sc_iot;
  528         bus_space_handle_t ioh = sc->sc_ioh;
  529         u_int16_t       error_code;
  530         int             word;
  531         int             i;
  532         u_int16_t       bios_mem[ADW_MC_BIOSLEN/2];     /* BIOS RISC Memory
  533                                                                 0x40-0x8F. */
  534         u_int16_t       wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
  535         u_int8_t        max_cmd[ADW_MAX_TID + 1];
  536         u_int8_t        tid;
  537 
  538 
  539         error_code = 0;
  540 
  541         /*
  542          * Save the RISC memory BIOS region before writing the microcode.
  543          * The BIOS may already be loaded and using its RISC LRAM region
  544          * so its region must be saved and restored.
  545          *
  546          * Note: This code makes the assumption, which is currently true,
  547          * that a chip reset does not clear RISC LRAM.
  548          */
  549         for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
  550                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
  551         }
  552 
  553         /*
  554          * Save current per TID negotiated values.
  555          */
  556         switch (sc->chip_type) {
  557         case ADW_CHIP_ASC3550:
  558                 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
  559 
  560                         u_int16_t  bios_version, major, minor;
  561 
  562                         bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
  563                                         ADW_MC_BIOSMEM) / 2];
  564                         major = (bios_version  >> 12) & 0xF;
  565                         minor = (bios_version  >> 8) & 0xF;
  566                         if (major < 3 || (major == 3 && minor == 1)) {
  567                             /*
  568                              * BIOS 3.1 and earlier location of
  569                              * 'wdtr_able' variable.
  570                              */
  571                             ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
  572                         } else {
  573                             ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
  574                                             wdtr_able);
  575                         }
  576                 }
  577                 break;
  578 
  579         case ADW_CHIP_ASC38C1600:
  580                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
  581                 /* FALLTHROUGH */
  582         case ADW_CHIP_ASC38C0800:
  583                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
  584                 break;
  585         }
  586         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
  587         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
  588         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  589                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
  590                         max_cmd[tid]);
  591         }
  592 
  593         /*
  594          * Perform a RAM Built-In Self Test
  595          */
  596         if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
  597                 return error_code;
  598         }
  599 
  600         /*
  601          * Load the Microcode
  602          */
  603         ;
  604         if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
  605                 return error_code;
  606         }
  607 
  608         /*
  609          * Read microcode version and date.
  610          */
  611         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
  612         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
  613 
  614         /*
  615          * If the PCI Configuration Command Register "Parity Error Response
  616          * Control" Bit was clear (0), then set the microcode variable
  617          * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
  618          * to ignore DMA parity errors.
  619          */
  620         if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
  621                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
  622                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
  623                                         word | CONTROL_FLAG_IGNORE_PERR);
  624         }
  625 
  626         switch (sc->chip_type) {
  627         case ADW_CHIP_ASC3550:
  628                 /*
  629                  * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
  630                  * FIFO threshold of 128 bytes.
  631                  * This register is only accessible to the host.
  632                  */
  633                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  634                                 START_CTL_EMFU | READ_CMD_MRM);
  635                 break;
  636 
  637         case ADW_CHIP_ASC38C0800:
  638                 /*
  639                  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
  640                  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
  641                  * cable detection and then we are able to read C_DET[3:0].
  642                  *
  643                  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
  644                  * Microcode Default Value' section below.
  645                  */
  646                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
  647                                 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
  648                                 | ADW_DIS_TERM_DRV);
  649 
  650                 /*
  651                  * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
  652                  * START_CTL_TH [3:2] bits for the default FIFO threshold.
  653                  *
  654                  * Note: ASC-38C0800 FIFO threshold has been changed to
  655                  * 256 bytes.
  656                  *
  657                  * For DMA Errata #4 set the BC_THRESH_ENB bit.
  658                  */
  659                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  660                                                 BC_THRESH_ENB | FIFO_THRESH_80B
  661                                                 | START_CTL_TH | READ_CMD_MRM);
  662                 break;
  663 
  664         case ADW_CHIP_ASC38C1600:
  665                 /*
  666                  * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
  667                  * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
  668                  * cable detection and then we are able to read C_DET[3:0].
  669                  *
  670                  * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
  671                  * Microcode Default Value' section below.
  672                  */
  673                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
  674                                 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
  675                                 | ADW_DIS_TERM_DRV);
  676 
  677                 /*
  678                  * If the BIOS control flag AIPP (Asynchronous Information
  679                  * Phase Protection) disable bit is not set, then set the
  680                  * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
  681                  * enable AIPP checking and encoding.
  682                  */
  683                 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
  684                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
  685                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
  686                                         word | CONTROL_FLAG_ENABLE_AIPP);
  687                 }
  688 
  689                 /*
  690                  * For ASC-38C1600 use DMA_CFG0 default values:
  691                  * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
  692                  */
  693                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
  694                                 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
  695                 break;
  696         }
  697 
  698         /*
  699          * Microcode operating variables for WDTR, SDTR, and command tag
  700          * queuing will be set in AdwInquiryHandling() based on what a
  701          * device reports it is capable of in Inquiry byte 7.
  702          *
  703          * If SCSI Bus Resets have been disabled, then directly set
  704          * SDTR and WDTR from the EEPROM configuration. This will allow
  705          * the BIOS and warm boot to work without a SCSI bus hang on
  706          * the Inquiry caused by host and target mismatched DTR values.
  707          * Without the SCSI Bus Reset, before an Inquiry a device can't
  708          * be assumed to be in Asynchronous, Narrow mode.
  709          */
  710         if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
  711                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
  712                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
  713         }
  714 
  715         /*
  716          * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
  717          * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
  718          * bitmask. These values determine the maximum SDTR speed negotiated
  719          * with a device.
  720          *
  721          * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
  722          * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
  723          * without determining here whether the device supports SDTR.
  724          */
  725         switch (sc->chip_type) {
  726         case ADW_CHIP_ASC3550:
  727                 word = 0;
  728                 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  729                         if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
  730                                 /* Set Ultra speed for TID 'tid'. */
  731                                 word |= (0x3 << (4 * (tid % 4)));
  732                         } else {
  733                                 /* Set Fast speed for TID 'tid'. */
  734                                 word |= (0x2 << (4 * (tid % 4)));
  735                         }
  736                         /* Check if done with sdtr_speed1. */
  737                         if (tid == 3) {
  738                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  739                                                 ADW_MC_SDTR_SPEED1, word);
  740                                 word = 0;
  741                         /* Check if done with sdtr_speed2. */
  742                         } else if (tid == 7) {
  743                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  744                                                 ADW_MC_SDTR_SPEED2, word);
  745                                 word = 0;
  746                         /* Check if done with sdtr_speed3. */
  747                         } else if (tid == 11) {
  748                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  749                                                 ADW_MC_SDTR_SPEED3, word);
  750                                 word = 0;
  751                         /* Check if done with sdtr_speed4. */
  752                         } else if (tid == 15) {
  753                                 ADW_WRITE_WORD_LRAM(iot, ioh,
  754                                                 ADW_MC_SDTR_SPEED4, word);
  755                                 /* End of loop. */
  756                         }
  757                 }
  758 
  759                 /*
  760                  * Set microcode operating variable for the
  761                  * disconnect per TID bitmask.
  762                  */
  763                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
  764                                                         sc->cfg.disc_enable);
  765                 break;
  766 
  767         case ADW_CHIP_ASC38C0800:
  768                 /* FALLTHROUGH */
  769         case ADW_CHIP_ASC38C1600:
  770                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
  771                                                         sc->cfg.disc_enable);
  772                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
  773                                                         sc->sdtr_speed1);
  774                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
  775                                                         sc->sdtr_speed2);
  776                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
  777                                                         sc->sdtr_speed3);
  778                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
  779                                                         sc->sdtr_speed4);
  780                 break;
  781         }
  782 
  783 
  784         /*
  785          * Set SCSI_CFG0 Microcode Default Value.
  786          *
  787          * The microcode will set the SCSI_CFG0 register using this value
  788          * after it is started below.
  789          */
  790         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
  791                 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
  792                 ADW_OUR_ID_EN | sc->chip_scsi_id);
  793 
  794 
  795         switch(sc->chip_type) {
  796         case ADW_CHIP_ASC3550:
  797                 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
  798                 break;
  799 
  800         case ADW_CHIP_ASC38C0800:
  801                 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
  802                 break;
  803 
  804         case ADW_CHIP_ASC38C1600:
  805                 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
  806                 break;
  807         }
  808         if(error_code) {
  809                 return error_code;
  810         }
  811 
  812         /*
  813          * Set SEL_MASK Microcode Default Value
  814          *
  815          * The microcode will set the SEL_MASK register using this value
  816          * after it is started below.
  817          */
  818         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
  819                 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
  820 
  821         /*
  822          * Create and Initialize Host->RISC Carrier lists
  823          */
  824         sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
  825                                                 sc->sc_control->carriers);
  826 
  827         /*
  828          * Set-up the Host->RISC Initiator Command Queue (ICQ).
  829          */
  830 
  831         if ((sc->icq_sp = sc->carr_freelist) == NULL) {
  832                 return ADW_IERR_NO_CARRIER;
  833         }
  834         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
  835                         ADW_GET_CARRP(sc->icq_sp->next_ba));
  836 
  837         /*
  838          * The first command issued will be placed in the stopper carrier.
  839          */
  840         sc->icq_sp->next_ba = ADW_CQ_STOPPER;
  841 
  842         /*
  843          * Set RISC ICQ physical address start value.
  844          */
  845         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
  846 
  847         /*
  848          * Initialize the COMMA register to the same value otherwise
  849          * the RISC will prematurely detect a command is available.
  850          */
  851         if(sc->chip_type == ADW_CHIP_ASC38C1600) {
  852                 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
  853                                                         sc->icq_sp->carr_ba);
  854         }
  855 
  856         /*
  857          * Set-up the RISC->Host Initiator Response Queue (IRQ).
  858          */
  859         if ((sc->irq_sp = sc->carr_freelist) == NULL) {
  860                 return ADW_IERR_NO_CARRIER;
  861         }
  862         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
  863                         ADW_GET_CARRP(sc->irq_sp->next_ba));
  864 
  865         /*
  866          * The first command completed by the RISC will be placed in
  867          * the stopper.
  868          *
  869          * Note: Set 'next_ba' to ADW_CQ_STOPPER. When the request is
  870          * completed the RISC will set the ADW_RQ_DONE bit.
  871          */
  872         sc->irq_sp->next_ba = ADW_CQ_STOPPER;
  873 
  874         /*
  875          * Set RISC IRQ physical address start value.
  876          */
  877         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
  878         sc->carr_pending_cnt = 0;
  879 
  880         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
  881                 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
  882         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
  883         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
  884 
  885         /* finally, finally, gentlemen, start your engine */
  886         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
  887 
  888         /*
  889          * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
  890          * Resets should be performed. The RISC has to be running
  891          * to issue a SCSI Bus Reset.
  892          */
  893         if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
  894         {
  895                 /*
  896                  * If the BIOS Signature is present in memory, restore the
  897                  * BIOS Handshake Configuration Table and do not perform
  898                  * a SCSI Bus Reset.
  899                  */
  900                 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
  901                                 0x55AA) {
  902                         /*
  903                          * Restore per TID negotiated values.
  904                          */
  905                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
  906                                         wdtr_able);
  907                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
  908                                         sdtr_able);
  909                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
  910                                         tagqng_able);
  911                         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
  912                                 ADW_WRITE_BYTE_LRAM(iot, ioh,
  913                                                 ADW_MC_NUMBER_OF_MAX_CMD + tid,
  914                                                 max_cmd[tid]);
  915                         }
  916                 } else {
  917                         if (AdwResetCCB(sc) != ADW_TRUE) {
  918                                 error_code = ADW_WARN_BUSRESET_ERROR;
  919                         }
  920                 }
  921         }
  922 
  923         return error_code;
  924 }
  925 
  926 
  927 int
  928 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
  929 {
  930         int             i;
  931         u_int8_t        byte;
  932 
  933 
  934         if ((chip_type == ADW_CHIP_ASC38C0800) ||
  935             (chip_type == ADW_CHIP_ASC38C1600)) {
  936                 /*
  937                  * RAM BIST (RAM Built-In Self Test)
  938                  *
  939                  * Address : I/O base + offset 0x38h register (byte).
  940                  * Function: Bit 7-6(RW) : RAM mode
  941                  *                          Normal Mode   : 0x00
  942                  *                          Pre-test Mode : 0x40
  943                  *                          RAM Test Mode : 0x80
  944                  *           Bit 5       : unused
  945                  *           Bit 4(RO)   : Done bit
  946                  *           Bit 3-0(RO) : Status
  947                  *                          Host Error    : 0x08
  948                  *                          Int_RAM Error : 0x04
  949                  *                          RISC Error    : 0x02
  950                  *                          SCSI Error    : 0x01
  951                  *                          No Error      : 0x00
  952                  *
  953                  * Note: RAM BIST code should be put right here, before loading
  954                  * the microcode and after saving the RISC memory BIOS region.
  955                  */
  956 
  957                 /*
  958                  * LRAM Pre-test
  959                  *
  960                  * Write PRE_TEST_MODE (0x40) to register and wait for
  961                  * 10 milliseconds.
  962                  * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
  963                  * return an error. Reset to NORMAL_MODE (0x00) and do again.
  964                  * If cannot reset to NORMAL_MODE, return an error too.
  965                  */
  966                 for (i = 0; i < 2; i++) {
  967                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
  968                                         PRE_TEST_MODE);
  969                          /* Wait for 10ms before reading back. */
  970                         AdwSleepMilliSecond(10);
  971                         byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
  972                         if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
  973                                         PRE_TEST_VALUE) {
  974                                 return ADW_IERR_BIST_PRE_TEST;
  975                         }
  976 
  977                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
  978                                                                 NORMAL_MODE);
  979                         /* Wait for 10ms before reading back. */
  980                         AdwSleepMilliSecond(10);
  981                         if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
  982                             != NORMAL_VALUE) {
  983                                 return ADW_IERR_BIST_PRE_TEST;
  984                         }
  985                 }
  986 
  987                 /*
  988                  * LRAM Test - It takes about 1.5 ms to run through the test.
  989                  *
  990                  * Write RAM_TEST_MODE (0x80) to register and wait for
  991                  * 10 milliseconds.
  992                  * If Done bit not set or Status not 0, save register byte,
  993                  * set the err_code, and return an error.
  994                  */
  995                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
  996                 /* Wait for 10ms before checking status. */
  997                 AdwSleepMilliSecond(10);
  998 
  999                 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
 1000                 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
 1001                         /* Get here if Done bit not set or Status not 0. */
 1002                         return ADW_IERR_BIST_RAM_TEST;
 1003                 }
 1004 
 1005                 /* We need to reset back to normal mode after LRAM test passes*/
 1006                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
 1007         }
 1008 
 1009         return 0;
 1010 }
 1011 
 1012 
 1013 int
 1014 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem,
 1015     u_int8_t chip_type)
 1016 {
 1017         u_int8_t        *mcode_data = NULL;
 1018         u_int32_t        mcode_chksum = 0;
 1019         u_int16_t        mcode_size = 0;
 1020         u_int32_t       sum;
 1021         u_int16_t       code_sum;
 1022         int             begin_addr;
 1023         int             end_addr;
 1024         int             word;
 1025         int             adw_memsize = 0;
 1026         int             adw_mcode_expanded_size;
 1027         int             i, j;
 1028 
 1029 
 1030         switch(chip_type) {
 1031         case ADW_CHIP_ASC3550:
 1032                 mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
 1033                 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
 1034                 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
 1035                 adw_memsize = ADW_3550_MEMSIZE;
 1036                 break;
 1037 
 1038         case ADW_CHIP_ASC38C0800:
 1039                 mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
 1040                 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
 1041                 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
 1042                 adw_memsize = ADW_38C0800_MEMSIZE;
 1043                 break;
 1044 
 1045         case ADW_CHIP_ASC38C1600:
 1046                 mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
 1047                 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
 1048                 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
 1049                 adw_memsize = ADW_38C1600_MEMSIZE;
 1050                 break;
 1051         }
 1052 
 1053         /*
 1054          * Write the microcode image to RISC memory starting at address 0.
 1055          */
 1056         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
 1057 
 1058         /* Assume the following compressed format of the microcode buffer:
 1059          *
 1060          *  254 word (508 byte) table indexed by byte code followed
 1061          *  by the following byte codes:
 1062          *
 1063          *    1-Byte Code:
 1064          *      00: Emit word 0 in table.
 1065          *      01: Emit word 1 in table.
 1066          *      .
 1067          *      FD: Emit word 253 in table.
 1068          *
 1069          *    Multi-Byte Code:
 1070          *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
 1071          *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
 1072          */
 1073         word = 0;
 1074         for (i = 253 * 2; i < mcode_size; i++) {
 1075                 if (mcode_data[i] == 0xff) {
 1076                         for (j = 0; j < mcode_data[i + 1]; j++) {
 1077                                 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
 1078                                   (((u_int16_t)mcode_data[i + 3] << 8) |
 1079                                   mcode_data[i + 2]));
 1080                                 word++;
 1081                         }
 1082                         i += 3;
 1083                 } else if (mcode_data[i] == 0xfe) {
 1084                         ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
 1085                             (((u_int16_t)mcode_data[i + 2] << 8) |
 1086                             mcode_data[i + 1]));
 1087                         i += 2;
 1088                         word++;
 1089                 } else {
 1090                         ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
 1091                          mcode_data[(mcode_data[i] * 2) + 1] <<8) |
 1092                          mcode_data[mcode_data[i] * 2]));
 1093                         word++;
 1094                 }
 1095         }
 1096 
 1097         /*
 1098          * Set 'word' for later use to clear the rest of memory and save
 1099          * the expanded mcode size.
 1100          */
 1101         word *= 2;
 1102         adw_mcode_expanded_size = word;
 1103 
 1104         /*
 1105          * Clear the rest of the Internal RAM.
 1106          */
 1107         for (; word < adw_memsize; word += 2) {
 1108                 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
 1109         }
 1110 
 1111         /*
 1112          * Verify the microcode checksum.
 1113          */
 1114         sum = 0;
 1115         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
 1116 
 1117         for (word = 0; word < adw_mcode_expanded_size; word += 2) {
 1118                 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
 1119         }
 1120 
 1121         if (sum != mcode_chksum) {
 1122                 return ADW_IERR_MCODE_CHKSUM;
 1123         }
 1124 
 1125         /*
 1126          * Restore the RISC memory BIOS region.
 1127          */
 1128         for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
 1129                 if(chip_type == ADW_CHIP_ASC3550) {
 1130                         ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
 1131                                                                 bios_mem[i]);
 1132                 } else {
 1133                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
 1134                                                                 bios_mem[i]);
 1135                 }
 1136         }
 1137 
 1138         /*
 1139          * Calculate and write the microcode code checksum to the microcode
 1140          * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
 1141          */
 1142         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
 1143         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
 1144         code_sum = 0;
 1145         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
 1146         for (word = begin_addr; word < end_addr; word += 2) {
 1147                 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
 1148         }
 1149         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
 1150 
 1151         /*
 1152          * Set the chip type.
 1153          */
 1154         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
 1155 
 1156         return 0;
 1157 }
 1158 
 1159 
 1160 int
 1161 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
 1162 {
 1163         u_int16_t       scsi_cfg1;
 1164 
 1165 
 1166         /*
 1167          * Determine SCSI_CFG1 Microcode Default Value.
 1168          *
 1169          * The microcode will set the SCSI_CFG1 register using this value
 1170          * after it is started below.
 1171          */
 1172 
 1173         /* Read current SCSI_CFG1 Register value. */
 1174         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1175 
 1176         /*
 1177          * If all three connectors are in use in ASC3550, return an error.
 1178          */
 1179         if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
 1180              (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
 1181                 return ADW_IERR_ILLEGAL_CONNECTION;
 1182         }
 1183 
 1184         /*
 1185          * If the cable is reversed all of the SCSI_CTRL register signals
 1186          * will be set. Check for and return an error if this condition is
 1187          * found.
 1188          */
 1189         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1190                 return ADW_IERR_REVERSED_CABLE;
 1191         }
 1192 
 1193         /*
 1194          * If this is a differential board and a single-ended device
 1195          * is attached to one of the connectors, return an error.
 1196          */
 1197         if ((scsi_cfg1 & ADW_DIFF_MODE) &&
 1198             (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
 1199                 return ADW_IERR_SINGLE_END_DEVICE;
 1200         }
 1201 
 1202         /*
 1203          * If automatic termination control is enabled, then set the
 1204          * termination value based on a table listed in a_condor.h.
 1205          *
 1206          * If manual termination was specified with an EEPROM setting
 1207          * then 'termination' was set-up in AdwInitFromEEPROM() and
 1208          * is ready to be 'ored' into SCSI_CFG1.
 1209          */
 1210         if (cfg->termination == 0) {
 1211                 /*
 1212                  * The software always controls termination by setting
 1213                  * TERM_CTL_SEL.
 1214                  * If TERM_CTL_SEL were set to 0, the hardware would set
 1215                  * termination.
 1216                  */
 1217                 cfg->termination |= ADW_TERM_CTL_SEL;
 1218 
 1219                 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
 1220                         /* TERM_CTL_H: on, TERM_CTL_L: on */
 1221                         case 0x3: case 0x7: case 0xB:
 1222                         case 0xD: case 0xE: case 0xF:
 1223                                 cfg->termination |=
 1224                                 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
 1225                                 break;
 1226 
 1227                         /* TERM_CTL_H: on, TERM_CTL_L: off */
 1228                         case 0x1: case 0x5: case 0x9:
 1229                         case 0xA: case 0xC:
 1230                                 cfg->termination |= ADW_TERM_CTL_H;
 1231                                 break;
 1232 
 1233                         /* TERM_CTL_H: off, TERM_CTL_L: off */
 1234                         case 0x2: case 0x6:
 1235                                 break;
 1236                 }
 1237         }
 1238 
 1239         /*
 1240          * Clear any set TERM_CTL_H and TERM_CTL_L bits.
 1241          */
 1242         scsi_cfg1 &= ~ADW_TERM_CTL;
 1243 
 1244         /*
 1245          * Invert the TERM_CTL_H and TERM_CTL_L bits and then
 1246          * set 'scsi_cfg1'. The TERM_POL bit does not need to be
 1247          * referenced, because the hardware internally inverts
 1248          * the Termination High and Low bits if TERM_POL is set.
 1249          */
 1250         scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
 1251 
 1252         /*
 1253          * Set SCSI_CFG1 Microcode Default Value
 1254          *
 1255          * Set filter value and possibly modified termination control
 1256          * bits in the Microcode SCSI_CFG1 Register Value.
 1257          *
 1258          * The microcode will set the SCSI_CFG1 register using this value
 1259          * after it is started below.
 1260          */
 1261         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
 1262                                                 ADW_FLTR_DISABLE | scsi_cfg1);
 1263 
 1264         /*
 1265          * Set MEM_CFG Microcode Default Value
 1266          *
 1267          * The microcode will set the MEM_CFG register using this value
 1268          * after it is started below.
 1269          *
 1270          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1271          * are defined.
 1272          *
 1273          * ASC-3550 has 8KB internal memory.
 1274          */
 1275         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1276                                                 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
 1277 
 1278         return 0;
 1279 }
 1280 
 1281 
 1282 int
 1283 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh,
 1284     ADW_DVC_CFG *cfg)
 1285 {
 1286         u_int16_t       scsi_cfg1;
 1287 
 1288 
 1289         /*
 1290          * Determine SCSI_CFG1 Microcode Default Value.
 1291          *
 1292          * The microcode will set the SCSI_CFG1 register using this value
 1293          * after it is started below.
 1294          */
 1295 
 1296         /* Read current SCSI_CFG1 Register value. */
 1297         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1298 
 1299         /*
 1300          * If the cable is reversed all of the SCSI_CTRL register signals
 1301          * will be set. Check for and return an error if this condition is
 1302          * found.
 1303          */
 1304         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1305                 return ADW_IERR_REVERSED_CABLE;
 1306         }
 1307 
 1308         /*
 1309          * All kind of combinations of devices attached to one of four
 1310          * connectors are acceptable except HVD device attached.
 1311          * For example, LVD device can be attached to SE connector while
 1312          * SE device attached to LVD connector.
 1313          * If LVD device attached to SE connector, it only runs up to
 1314          * Ultra speed.
 1315          *
 1316          * If an HVD device is attached to one of LVD connectors, return
 1317          * an error.
 1318          * However, there is no way to detect HVD device attached to
 1319          * SE connectors.
 1320          */
 1321         if (scsi_cfg1 & ADW_HVD) {
 1322                 return ADW_IERR_HVD_DEVICE;
 1323         }
 1324 
 1325         /*
 1326          * If either SE or LVD automatic termination control is enabled, then
 1327          * set the termination value based on a table listed in a_condor.h.
 1328          *
 1329          * If manual termination was specified with an EEPROM setting then
 1330          * 'termination' was set-up in AdwInitFromEEPROM() and is ready
 1331          * to be 'ored' into SCSI_CFG1.
 1332          */
 1333         if ((cfg->termination & ADW_TERM_SE) == 0) {
 1334                 /* SE automatic termination control is enabled. */
 1335                 switch(scsi_cfg1 & ADW_C_DET_SE) {
 1336                         /* TERM_SE_HI: on, TERM_SE_LO: on */
 1337                         case 0x1: case 0x2: case 0x3:
 1338                                 cfg->termination |= ADW_TERM_SE;
 1339                                 break;
 1340 
 1341                         /* TERM_SE_HI: on, TERM_SE_LO: off */
 1342                         case 0x0:
 1343                                 cfg->termination |= ADW_TERM_SE_HI;
 1344                                 break;
 1345                 }
 1346         }
 1347 
 1348         if ((cfg->termination & ADW_TERM_LVD) == 0) {
 1349                 /* LVD automatic termination control is enabled. */
 1350                 switch(scsi_cfg1 & ADW_C_DET_LVD) {
 1351                         /* TERM_LVD_HI: on, TERM_LVD_LO: on */
 1352                         case 0x4: case 0x8: case 0xC:
 1353                                 cfg->termination |= ADW_TERM_LVD;
 1354                                 break;
 1355 
 1356                         /* TERM_LVD_HI: off, TERM_LVD_LO: off */
 1357                         case 0x0:
 1358                                 break;
 1359                 }
 1360         }
 1361 
 1362         /*
 1363          * Clear any set TERM_SE and TERM_LVD bits.
 1364          */
 1365         scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
 1366 
 1367         /*
 1368          * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
 1369          */
 1370         scsi_cfg1 |= (~cfg->termination & 0xF0);
 1371 
 1372         /*
 1373          * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
 1374          * HVD/LVD/SE bits and set possibly modified termination control bits
 1375          * in the Microcode SCSI_CFG1 Register Value.
 1376          */
 1377         scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
 1378                                         ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
 1379 
 1380         /*
 1381          * Set SCSI_CFG1 Microcode Default Value
 1382          *
 1383          * Set possibly modified termination control and reset DIS_TERM_DRV
 1384          * bits in the Microcode SCSI_CFG1 Register Value.
 1385          *
 1386          * The microcode will set the SCSI_CFG1 register using this value
 1387          * after it is started below.
 1388          */
 1389         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
 1390 
 1391         /*
 1392          * Set MEM_CFG Microcode Default Value
 1393          *
 1394          * The microcode will set the MEM_CFG register using this value
 1395          * after it is started below.
 1396          *
 1397          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1398          * are defined.
 1399          *
 1400          * ASC-38C0800 has 16KB internal memory.
 1401          */
 1402         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1403                                                 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
 1404 
 1405         return 0;
 1406 }
 1407 
 1408 
 1409 int
 1410 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh,
 1411     ADW_DVC_CFG *cfg)
 1412 {
 1413         u_int16_t       scsi_cfg1;
 1414 
 1415 
 1416         /*
 1417          * Determine SCSI_CFG1 Microcode Default Value.
 1418          *
 1419          * The microcode will set the SCSI_CFG1 register using this value
 1420          * after it is started below.
 1421          * Each ASC-38C1600 function has only two cable detect bits.
 1422          * The bus mode override bits are in IOPB_SOFT_OVER_WR.
 1423          */
 1424 
 1425         /* Read current SCSI_CFG1 Register value. */
 1426         scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
 1427 
 1428         /*
 1429          * If the cable is reversed all of the SCSI_CTRL register signals
 1430          * will be set. Check for and return an error if this condition is
 1431          * found.
 1432          */
 1433         if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
 1434                 return ADW_IERR_REVERSED_CABLE;
 1435         }
 1436 
 1437         /*
 1438          * Each ASC-38C1600 function has two connectors. Only an HVD device
 1439          * cannot be connected to either connector. An LVD device or SE device
 1440          * may be connected to either connector. If an SE device is connected,
 1441          * then at most Ultra speed (20 MHz) can be used on both connectors.
 1442          *
 1443          * If an HVD device is attached, return an error.
 1444          */
 1445         if (scsi_cfg1 & ADW_HVD) {
 1446                 return ADW_IERR_HVD_DEVICE;
 1447         }
 1448 
 1449         /*
 1450          * Each function in the ASC-38C1600 uses only the SE cable detect and
 1451          * termination because there are two connectors for each function.
 1452          * Each function may use either LVD or SE mode.
 1453          * Corresponding the SE automatic termination control EEPROM bits are
 1454          * used for each function.
 1455          * Each function has its own EEPROM. If SE automatic control is enabled
 1456          * for the function, then set the termination value based on a table
 1457          * listed in adwlib.h.
 1458          *
 1459          * If manual termination is specified in the EEPROM for the function,
 1460          * then 'termination' was set-up in AdwInitFromEEPROM() and is
 1461          * ready to be 'ored' into SCSI_CFG1.
 1462          */
 1463         if ((cfg->termination & ADW_TERM_SE) == 0) {
 1464                 /* SE automatic termination control is enabled. */
 1465                 switch(scsi_cfg1 & ADW_C_DET_SE) {
 1466                         /* TERM_SE_HI: on, TERM_SE_LO: on */
 1467                         case 0x1: case 0x2: case 0x3:
 1468                                 cfg->termination |= ADW_TERM_SE;
 1469                                 break;
 1470 
 1471                         case 0x0:
 1472         /* !!!!TODO!!!! */
 1473 //                              if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
 1474                                 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
 1475 //                              }
 1476 //                              else
 1477 //                              {
 1478                                 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
 1479                                         cfg->termination |= ADW_TERM_SE_HI;
 1480 //                              }
 1481                                 break;
 1482                         }
 1483         }
 1484 
 1485         /*
 1486          * Clear any set TERM_SE bits.
 1487          */
 1488         scsi_cfg1 &= ~ADW_TERM_SE;
 1489 
 1490         /*
 1491          * Invert the TERM_SE bits and then set 'scsi_cfg1'.
 1492          */
 1493         scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
 1494 
 1495         /*
 1496          * Clear Big Endian and Terminator Polarity bits and set possibly
 1497          * modified termination control bits in the Microcode SCSI_CFG1
 1498          * Register Value.
 1499          */
 1500         scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
 1501 
 1502         /*
 1503          * Set SCSI_CFG1 Microcode Default Value
 1504          *
 1505          * Set possibly modified termination control bits in the Microcode
 1506          * SCSI_CFG1 Register Value.
 1507          *
 1508          * The microcode will set the SCSI_CFG1 register using this value
 1509          * after it is started below.
 1510          */
 1511         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
 1512 
 1513         /*
 1514          * Set MEM_CFG Microcode Default Value
 1515          *
 1516          * The microcode will set the MEM_CFG register using this value
 1517          * after it is started below.
 1518          *
 1519          * MEM_CFG may be accessed as a word or byte, but only bits 0-7
 1520          * are defined.
 1521          *
 1522          * ASC-38C1600 has 32KB internal memory.
 1523          */
 1524         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
 1525                                                 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
 1526 
 1527         return 0;
 1528 }
 1529 
 1530 
 1531 /*
 1532  * Read EEPROM configuration into the specified buffer.
 1533  *
 1534  * Return a checksum based on the EEPROM configuration read.
 1535  */
 1536 u_int16_t
 1537 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh,
 1538     ADW_EEPROM *cfg_buf)
 1539 {
 1540         u_int16_t              wval, chksum;
 1541         u_int16_t              *wbuf;
 1542         int                 eep_addr;
 1543 
 1544 
 1545         wbuf = (u_int16_t *) cfg_buf;
 1546         chksum = 0;
 1547 
 1548         for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
 1549                 eep_addr < ADW_EEP_DVC_CFG_END;
 1550                 eep_addr++, wbuf++) {
 1551                 wval = AdwReadEEPWord(iot, ioh, eep_addr);
 1552                 chksum += wval;
 1553                 *wbuf = wval;
 1554         }
 1555 
 1556         *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
 1557         wbuf++;
 1558         for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
 1559                         eep_addr < ADW_EEP_MAX_WORD_ADDR;
 1560                         eep_addr++, wbuf++) {
 1561                 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
 1562         }
 1563 
 1564         return chksum;
 1565 }
 1566 
 1567 
 1568 /*
 1569  * Read the EEPROM from specified location
 1570  */
 1571 u_int16_t
 1572 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
 1573 {
 1574         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1575                 ADW_EEP_CMD_READ | eep_word_addr);
 1576         AdwWaitEEPCmd(iot, ioh);
 1577 
 1578         return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
 1579 }
 1580 
 1581 
 1582 /*
 1583  * Wait for EEPROM command to complete
 1584  */
 1585 void
 1586 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
 1587 {
 1588         int eep_delay_ms;
 1589 
 1590 
 1591         for (eep_delay_ms = 0; eep_delay_ms < ADW_EEP_DELAY_MS; eep_delay_ms++){
 1592                 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
 1593                                 ADW_EEP_CMD_DONE) {
 1594                         break;
 1595                 }
 1596                 AdwSleepMilliSecond(1);
 1597         }
 1598 
 1599         ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
 1600 }
 1601 
 1602 
 1603 /*
 1604  * Write the EEPROM from 'cfg_buf'.
 1605  */
 1606 void
 1607 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh,
 1608     ADW_EEPROM *cfg_buf)
 1609 {
 1610         u_int16_t *wbuf;
 1611         u_int16_t addr, chksum;
 1612 
 1613 
 1614         wbuf = (u_int16_t *) cfg_buf;
 1615         chksum = 0;
 1616 
 1617         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ADW_EEP_CMD_WRITE_ABLE);
 1618         AdwWaitEEPCmd(iot, ioh);
 1619 
 1620         /*
 1621          * Write EEPROM from word 0 to word 20
 1622          */
 1623         for (addr = ADW_EEP_DVC_CFG_BEGIN;
 1624              addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
 1625                 chksum += *wbuf;
 1626                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
 1627                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1628                                 ADW_EEP_CMD_WRITE | addr);
 1629                 AdwWaitEEPCmd(iot, ioh);
 1630                 AdwSleepMilliSecond(ADW_EEP_DELAY_MS);
 1631         }
 1632 
 1633         /*
 1634          * Write EEPROM checksum at word 21
 1635          */
 1636         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
 1637         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1638                         ADW_EEP_CMD_WRITE | addr);
 1639         AdwWaitEEPCmd(iot, ioh);
 1640         wbuf++;        /* skip over check_sum */
 1641 
 1642         /*
 1643          * Write EEPROM OEM name at words 22 to 29
 1644          */
 1645         for (addr = ADW_EEP_DVC_CTL_BEGIN;
 1646              addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
 1647                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
 1648                 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1649                                 ADW_EEP_CMD_WRITE | addr);
 1650                 AdwWaitEEPCmd(iot, ioh);
 1651         }
 1652 
 1653         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
 1654                         ADW_EEP_CMD_WRITE_DISABLE);
 1655         AdwWaitEEPCmd(iot, ioh);
 1656 
 1657         return;
 1658 }
 1659 
 1660 
 1661 /*
 1662  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
 1663  *
 1664  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
 1665  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
 1666  *   RISC to notify it a new command is ready to be executed.
 1667  *
 1668  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
 1669  * set to SCSI_MAX_RETRY.
 1670  *
 1671  * Return:
 1672  *      ADW_SUCCESS(1) - The request was successfully queued.
 1673  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
 1674  *                       request completes.
 1675  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
 1676  *                       host IC error.
 1677  */
 1678 int
 1679 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
 1680 {
 1681         bus_space_tag_t iot = sc->sc_iot;
 1682         bus_space_handle_t ioh = sc->sc_ioh;
 1683         ADW_CCB         *ccb;
 1684         long            req_size;
 1685         u_int32_t       req_paddr;
 1686         ADW_CARRIER     *new_carrp;
 1687 
 1688         /*
 1689          * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
 1690          */
 1691         if (scsiq->target_id > ADW_MAX_TID) {
 1692                 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
 1693                 scsiq->done_status = QD_WITH_ERROR;
 1694                 return ADW_ERROR;
 1695         }
 1696 
 1697         /*
 1698          * Beginning of CRITICAL SECTION: ASSUME splbio() in effect
 1699          */
 1700 
 1701         ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
 1702 
 1703         /*
 1704          * Allocate a carrier and initialize fields.
 1705          */
 1706         if ((new_carrp = sc->carr_freelist) == NULL) {
 1707                 return ADW_BUSY;
 1708         }
 1709         sc->carr_freelist = ADW_CARRIER_VADDR(sc,
 1710                         ADW_GET_CARRP(new_carrp->next_ba));
 1711         sc->carr_pending_cnt++;
 1712 
 1713         /*
 1714          * Set the carrier to be a stopper by setting 'next_ba'
 1715          * to the stopper value. The current stopper will be changed
 1716          * below to point to the new stopper.
 1717          */
 1718         new_carrp->next_ba = ADW_CQ_STOPPER;
 1719 
 1720         req_size = sizeof(ADW_SCSI_REQ_Q);
 1721         req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
 1722                 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
 1723 
 1724         /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
 1725         scsiq->scsiq_rptr = req_paddr;
 1726 
 1727         /*
 1728          * Every ADW_SCSI_REQ_Q.carr_ba is byte swapped to little-endian
 1729          * order during initialization.
 1730          */
 1731         scsiq->carr_ba = sc->icq_sp->carr_ba;
 1732         scsiq->carr_va = sc->icq_sp->carr_ba;
 1733 
 1734         /*
 1735          * Use the current stopper to send the ADW_SCSI_REQ_Q command to
 1736          * the microcode. The newly allocated stopper will become the new
 1737          * stopper.
 1738          */
 1739         sc->icq_sp->areq_ba = req_paddr;
 1740 
 1741         /*
 1742          * Set the 'next_ba' pointer for the old stopper to be the
 1743          * physical address of the new stopper. The RISC can only
 1744          * follow physical addresses.
 1745          */
 1746         sc->icq_sp->next_ba = new_carrp->carr_ba;
 1747 
 1748 #if ADW_DEBUG
 1749         printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
 1750                         sc->icq_sp->carr_id,
 1751                         sc->icq_sp->carr_ba,
 1752                         sc->icq_sp->areq_ba,
 1753                         sc->icq_sp->next_ba);
 1754 #endif
 1755         /*
 1756          * Set the host adapter stopper pointer to point to the new carrier.
 1757          */
 1758         sc->icq_sp = new_carrp;
 1759 
 1760         if (sc->chip_type == ADW_CHIP_ASC3550 ||
 1761             sc->chip_type == ADW_CHIP_ASC38C0800) {
 1762                 /*
 1763                  * Tickle the RISC to tell it to read its Command Queue Head
 1764                  * pointer.
 1765                  */
 1766                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
 1767                 if (sc->chip_type == ADW_CHIP_ASC3550) {
 1768                         /*
 1769                          * Clear the tickle value. In the ASC-3550 the RISC flag
 1770                          * command 'clr_tickle_a' does not work unless the host
 1771                          * value is cleared.
 1772                          */
 1773                         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
 1774                                         ADW_TICKLE_NOP);
 1775                 }
 1776         } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1777                 /*
 1778                  * Notify the RISC a carrier is ready by writing the physical
 1779                  * address of the new carrier stopper to the COMMA register.
 1780                  */
 1781                 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
 1782                                 new_carrp->carr_ba);
 1783         }
 1784 
 1785         /*
 1786          * End of CRITICAL SECTION: Must be protected within splbio/splx pair
 1787          */
 1788 
 1789         return ADW_SUCCESS;
 1790 }
 1791 
 1792 
 1793 void
 1794 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
 1795 {
 1796 
 1797         /*
 1798          * Reset Chip.
 1799          */
 1800         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1801                         ADW_CTRL_REG_CMD_RESET);
 1802         AdwSleepMilliSecond(100);
 1803         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1804                         ADW_CTRL_REG_CMD_WR_IO_REG);
 1805 }
 1806 
 1807 
 1808 /*
 1809  * Reset SCSI Bus and purge all outstanding requests.
 1810  *
 1811  * Return Value:
 1812  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
 1813  *      ADW_FALSE(0) -  Microcode command failed.
 1814  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
 1815  *                      may be hung which requires driver recovery.
 1816  */
 1817 int
 1818 AdwResetCCB(ADW_SOFTC *sc)
 1819 {
 1820         int         status;
 1821 
 1822         /*
 1823          * Send the SCSI Bus Reset idle start idle command which asserts
 1824          * the SCSI Bus Reset signal.
 1825          */
 1826         status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
 1827         if (status != ADW_TRUE) {
 1828                 return status;
 1829         }
 1830 
 1831         /*
 1832          * Delay for the specified SCSI Bus Reset hold time.
 1833          *
 1834          * The hold time delay is done on the host because the RISC has no
 1835          * microsecond accurate timer.
 1836          */
 1837         AdwDelayMicroSecond((u_int16_t) ADW_SCSI_RESET_HOLD_TIME_US);
 1838 
 1839         /*
 1840          * Send the SCSI Bus Reset end idle command which de-asserts
 1841          * the SCSI Bus Reset signal and purges any pending requests.
 1842          */
 1843         status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
 1844         if (status != ADW_TRUE) {
 1845                 return status;
 1846         }
 1847 
 1848         AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
 1849 
 1850         return status;
 1851 }
 1852 
 1853 
 1854 /*
 1855  * Reset chip and SCSI Bus.
 1856  *
 1857  * Return Value:
 1858  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
 1859  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
 1860  */
 1861 int
 1862 AdwResetSCSIBus(ADW_SOFTC *sc)
 1863 {
 1864         bus_space_tag_t iot = sc->sc_iot;
 1865         bus_space_handle_t ioh = sc->sc_ioh;
 1866         int             status;
 1867         u_int16_t       wdtr_able, sdtr_able, ppr_able = 0, tagqng_able;
 1868         u_int8_t        tid, max_cmd[ADW_MAX_TID + 1];
 1869         u_int16_t       bios_sig;
 1870 
 1871 
 1872         /*
 1873          * Save current per TID negotiated values.
 1874          */
 1875         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
 1876         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
 1877         if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1878                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
 1879         }
 1880         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
 1881         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
 1882                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
 1883                         max_cmd[tid]);
 1884         }
 1885 
 1886         /*
 1887          * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
 1888          * by clearing the BIOS signature word.
 1889          * The initialization functions assumes a SCSI Bus Reset is not
 1890          * needed if the BIOS signature word is present.
 1891          */
 1892         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
 1893         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
 1894 
 1895         /*
 1896          * Stop chip and reset it.
 1897          */
 1898         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
 1899         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1900                         ADW_CTRL_REG_CMD_RESET);
 1901         AdwSleepMilliSecond(100);
 1902         ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
 1903                         ADW_CTRL_REG_CMD_WR_IO_REG);
 1904 
 1905         /*
 1906          * Reset Adw Library error code, if any, and try
 1907          * re-initializing the chip.
 1908          * Then translate initialization return value to status value.
 1909          */
 1910         status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
 1911 
 1912         /*
 1913          * Restore the BIOS signature word.
 1914          */
 1915         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
 1916 
 1917         /*
 1918          * Restore per TID negotiated values.
 1919          */
 1920         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
 1921         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
 1922         if (sc->chip_type == ADW_CHIP_ASC38C1600) {
 1923                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
 1924         }
 1925         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
 1926         for (tid = 0; tid <= ADW_MAX_TID; tid++) {
 1927                 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
 1928                         max_cmd[tid]);
 1929         }
 1930 
 1931         return status;
 1932 }
 1933 
 1934 
 1935 /*
 1936  * Adw Library Interrupt Service Routine
 1937  *
 1938  *  This function is called by a driver's interrupt service routine.
 1939  *  The function disables and re-enables interrupts.
 1940  *
 1941  *  Note: AdwISR() can be called when interrupts are disabled or even
 1942  *  when there is no hardware interrupt condition present. It will
 1943  *  always check for completed idle commands and microcode requests.
 1944  *  This is an important feature that shouldn't be changed because it
 1945  *  allows commands to be completed from polling mode loops.
 1946  *
 1947  * Return:
 1948  *   ADW_TRUE(1) - interrupt was pending
 1949  *   ADW_FALSE(0) - no interrupt was pending
 1950  */
 1951 int
 1952 AdwISR(ADW_SOFTC *sc)
 1953 {
 1954         bus_space_tag_t iot = sc->sc_iot;
 1955         bus_space_handle_t ioh = sc->sc_ioh;
 1956         u_int8_t        int_stat;
 1957         u_int16_t       target_bit;
 1958         ADW_CARRIER     *free_carrp/*, *ccb_carr*/;
 1959         u_int32_t       irq_next_pa;
 1960         ADW_SCSI_REQ_Q  *scsiq;
 1961         ADW_CCB         *ccb;
 1962         int             s;
 1963 
 1964 
 1965         s = splbio();
 1966 
 1967         /* Reading the register clears the interrupt. */
 1968         int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
 1969 
 1970         if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
 1971              ADW_INTR_STATUS_INTRC)) == 0) {
 1972                 splx(s);
 1973                 return ADW_FALSE;
 1974         }
 1975 
 1976         /*
 1977          * Notify the driver of an asynchronous microcode condition by
 1978          * calling the ADW_SOFTC.async_callback function. The function
 1979          * is passed the microcode ADW_MC_INTRB_CODE byte value.
 1980          */
 1981         if (int_stat & ADW_INTR_STATUS_INTRB) {
 1982                 u_int8_t intrb_code;
 1983 
 1984                 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
 1985 
 1986                 if (sc->chip_type == ADW_CHIP_ASC3550 ||
 1987                     sc->chip_type == ADW_CHIP_ASC38C0800) {
 1988                         if (intrb_code == ADW_ASYNC_CARRIER_READY_FAILURE &&
 1989                                 sc->carr_pending_cnt != 0) {
 1990                                 ADW_WRITE_BYTE_REGISTER(iot, ioh,
 1991                                         IOPB_TICKLE, ADW_TICKLE_A);
 1992                                 if (sc->chip_type == ADW_CHIP_ASC3550) {
 1993                                         ADW_WRITE_BYTE_REGISTER(iot, ioh,
 1994                                                 IOPB_TICKLE, ADW_TICKLE_NOP);
 1995                                 }
 1996                         }
 1997                 }
 1998 
 1999                 if (sc->async_callback != 0) {
 2000                     (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
 2001                 }
 2002         }
 2003 
 2004         /*
 2005          * Check if the IRQ stopper carrier contains a completed request.
 2006          */
 2007         while (((irq_next_pa = sc->irq_sp->next_ba) & ADW_RQ_DONE) != 0)
 2008         {
 2009 #if ADW_DEBUG
 2010                 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
 2011                                 sc->irq_sp->carr_id,
 2012                                 sc->irq_sp->carr_ba,
 2013                                 sc->irq_sp->areq_ba,
 2014                                 sc->irq_sp->next_ba);
 2015 #endif
 2016                 /*
 2017                  * Get a pointer to the newly completed ADW_SCSI_REQ_Q
 2018                  * structure.
 2019                  * The RISC will have set 'areq_ba' to a virtual address.
 2020                  *
 2021                  * The firmware will have copied the ADW_SCSI_REQ_Q.ccb_ptr
 2022                  * field to the carrier ADW_CARRIER.areq_ba field.
 2023                  * The conversion below complements the conversion of
 2024                  * ADW_SCSI_REQ_Q.ccb_ptr' in AdwExeScsiQueue().
 2025                  */
 2026                 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
 2027                 scsiq = &ccb->scsiq;
 2028                 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
 2029 
 2030                 /*
 2031                  * Request finished with good status and the queue was not
 2032                  * DMAed to host memory by the firmware. Set all status fields
 2033                  * to indicate good status.
 2034                  */
 2035                 if ((irq_next_pa & ADW_RQ_GOOD) != 0) {
 2036                         scsiq->done_status = QD_NO_ERROR;
 2037                         scsiq->host_status = scsiq->scsi_status = 0;
 2038                         scsiq->data_cnt = 0L;
 2039                 }
 2040 
 2041                 /*
 2042                  * Advance the stopper pointer to the next carrier
 2043                  * ignoring the lower four bits. Free the previous
 2044                  * stopper carrier.
 2045                  */
 2046                 free_carrp = sc->irq_sp;
 2047                 sc->irq_sp = ADW_CARRIER_VADDR(sc, ADW_GET_CARRP(irq_next_pa));
 2048 
 2049                 free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
 2050                                         : sc->carr_freelist->carr_ba;
 2051                 sc->carr_freelist = free_carrp;
 2052                 sc->carr_pending_cnt--;
 2053 
 2054                 target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
 2055 
 2056                 /*
 2057                  * Clear request microcode control flag.
 2058                  */
 2059                 scsiq->cntl = 0;
 2060 
 2061                 /*
 2062                  * Check Condition handling
 2063                  */
 2064                 /*
 2065                  * If the command that completed was a SCSI INQUIRY and
 2066                  * LUN 0 was sent the command, then process the INQUIRY
 2067                  * command information for the device.
 2068                  */
 2069                 if (scsiq->done_status == QD_NO_ERROR &&
 2070                     scsiq->cdb[0] == INQUIRY &&
 2071                     scsiq->target_lun == 0) {
 2072                         AdwInquiryHandling(sc, scsiq);
 2073                 }
 2074 
 2075                 /*
 2076                  * Notify the driver of the completed request by passing
 2077                  * the ADW_SCSI_REQ_Q pointer to its callback function.
 2078                  */
 2079                 (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
 2080                 /*
 2081                  * Note: After the driver callback function is called, 'scsiq'
 2082                  * can no longer be referenced.
 2083                  *
 2084                  * Fall through and continue processing other completed
 2085                  * requests...
 2086                  */
 2087         }
 2088 
 2089         splx(s);
 2090 
 2091         return ADW_TRUE;
 2092 }
 2093 
 2094 
 2095 /*
 2096  * Send an idle command to the chip and wait for completion.
 2097  *
 2098  * Command completion is polled for once per microsecond.
 2099  *
 2100  * The function can be called from anywhere including an interrupt handler.
 2101  * But the function is not re-entrant, so it uses the splbio/splx()
 2102  * functions to prevent reentrancy.
 2103  *
 2104  * Return Values:
 2105  *   ADW_TRUE - command completed successfully
 2106  *   ADW_FALSE - command failed
 2107  *   ADW_ERROR - command timed out
 2108  */
 2109 int
 2110 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
 2111 {
 2112         bus_space_tag_t iot = sc->sc_iot;
 2113         bus_space_handle_t ioh = sc->sc_ioh;
 2114         u_int16_t       result;
 2115         u_int32_t       i, j, s;
 2116 
 2117         s = splbio();
 2118 
 2119         /*
 2120          * Clear the idle command status which is set by the microcode
 2121          * to a non-zero value to indicate when the command is completed.
 2122          */
 2123         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
 2124 
 2125         /*
 2126          * Write the idle command value after the idle command parameter
 2127          * has been written to avoid a race condition. If the order is not
 2128          * followed, the microcode may process the idle command before the
 2129          * parameters have been written to LRAM.
 2130          */
 2131         ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
 2132                         idle_cmd_parameter);
 2133         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
 2134 
 2135         /*
 2136          * Tickle the RISC to tell it to process the idle command.
 2137          */
 2138         ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
 2139         if (sc->chip_type == ADW_CHIP_ASC3550) {
 2140                 /*
 2141                  * Clear the tickle value. In the ASC-3550 the RISC flag
 2142                  * command 'clr_tickle_b' does not work unless the host
 2143                  * value is cleared.
 2144                  */
 2145                 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
 2146         }
 2147 
 2148         /* Wait for up to 100 millisecond for the idle command to timeout. */
 2149         for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
 2150                 /* Poll once each microsecond for command completion. */
 2151                 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
 2152                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
 2153                                                                         result);
 2154                         if (result != 0) {
 2155                                 splx(s);
 2156                                 return result;
 2157                         }
 2158                         AdwDelayMicroSecond(1);
 2159                 }
 2160         }
 2161 
 2162         splx(s);
 2163         return ADW_ERROR;
 2164 }
 2165 
 2166 
 2167 /*
 2168  * Inquiry Information Byte 7 Handling
 2169  *
 2170  * Handle SCSI Inquiry Command information for a device by setting
 2171  * microcode operating variables that affect WDTR, SDTR, and Tag
 2172  * Queuing.
 2173  */
 2174 void
 2175 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
 2176 {
 2177 #ifndef FAILSAFE
 2178         bus_space_tag_t iot = sc->sc_iot;
 2179         bus_space_handle_t ioh = sc->sc_ioh;
 2180         u_int8_t                tid;
 2181         ADW_SCSI_INQUIRY        *inq;
 2182         u_int16_t               tidmask;
 2183         u_int16_t               cfg_word;
 2184 
 2185 
 2186         /*
 2187          * AdwInquiryHandling() requires up to INQUIRY information Byte 7
 2188          * to be available.
 2189          *
 2190          * If less than 8 bytes of INQUIRY information were requested or less
 2191          * than 8 bytes were transferred, then return. cdb[4] is the request
 2192          * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
 2193          * microcode to the transfer residual count.
 2194          */
 2195 
 2196         if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
 2197                 return;
 2198         }
 2199 
 2200         tid = scsiq->target_id;
 2201 
 2202         inq = (ADW_SCSI_INQUIRY *) scsiq->vdata_addr;
 2203 
 2204         /*
 2205          * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
 2206          */
 2207         if ((inq->rsp_data_fmt < 2) /*SCSI-1 | CCS*/ &&
 2208             (inq->ansi_apr_ver < 2)) {
 2209                 return;
 2210         } else {
 2211                 /*
 2212                  * INQUIRY Byte 7 Handling
 2213                  *
 2214                  * Use a device's INQUIRY byte 7 to determine whether it
 2215                  * supports WDTR, SDTR, and Tag Queuing. If the feature
 2216                  * is enabled in the EEPROM and the device supports the
 2217                  * feature, then enable it in the microcode.
 2218                  */
 2219 
 2220                 tidmask = ADW_TID_TO_TIDMASK(tid);
 2221 
 2222                 /*
 2223                  * Wide Transfers
 2224                  *
 2225                  * If the EEPROM enabled WDTR for the device and the device
 2226                  * supports wide bus (16 bit) transfers, then turn on the
 2227                  * device's 'wdtr_able' bit and write the new value to the
 2228                  * microcode.
 2229                  */
 2230 #ifdef SCSI_ADW_WDTR_DISABLE
 2231         if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
 2232 #endif /* SCSI_ADW_WDTR_DISABLE */
 2233                 if ((sc->wdtr_able & tidmask) && inq->WBus16) {
 2234                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
 2235                                         cfg_word);
 2236                         if ((cfg_word & tidmask) == 0) {
 2237                                 cfg_word |= tidmask;
 2238                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
 2239                                                 cfg_word);
 2240 
 2241                                 /*
 2242                                  * Clear the microcode "SDTR negotiation" and
 2243                                  * "WDTR negotiation" done indicators for the
 2244                                  * target to cause it to negotiate with the new
 2245                                  * setting set above.
 2246                                  * WDTR when accepted causes the target to enter
 2247                                  * asynchronous mode, so SDTR must be negotiated
 2248                                  */
 2249                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2250                                                 cfg_word);
 2251                                 cfg_word &= ~tidmask;
 2252                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2253                                                 cfg_word);
 2254                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
 2255                                                 cfg_word);
 2256                                 cfg_word &= ~tidmask;
 2257                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
 2258                                                 cfg_word);
 2259                         }
 2260                 }
 2261 
 2262                 /*
 2263                  * Synchronous Transfers
 2264                  *
 2265                  * If the EEPROM enabled SDTR for the device and the device
 2266                  * supports synchronous transfers, then turn on the device's
 2267                  * 'sdtr_able' bit. Write the new value to the microcode.
 2268                  */
 2269 #ifdef SCSI_ADW_SDTR_DISABLE
 2270         if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
 2271 #endif /* SCSI_ADW_SDTR_DISABLE */
 2272                 if ((sc->sdtr_able & tidmask) && inq->Sync) {
 2273                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
 2274                         if ((cfg_word & tidmask) == 0) {
 2275                                 cfg_word |= tidmask;
 2276                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
 2277                                                 cfg_word);
 2278 
 2279                                 /*
 2280                                  * Clear the microcode "SDTR negotiation"
 2281                                  * done indicator for the target to cause it
 2282                                  * to negotiate with the new setting set above.
 2283                                  */
 2284                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2285                                                 cfg_word);
 2286                                 cfg_word &= ~tidmask;
 2287                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
 2288                                                 cfg_word);
 2289                         }
 2290                 }
 2291                 /*
 2292                  * If the Inquiry data included enough space for the SPI-3
 2293                  * Clocking field, then check if DT mode is supported.
 2294                  */
 2295                 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
 2296                    (scsiq->cdb[4] >= 57 ||
 2297                    (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
 2298                         /*
 2299                          * PPR (Parallel Protocol Request) Capable
 2300                          *
 2301                          * If the device supports DT mode, then it must be
 2302                          * PPR capable.
 2303                          * The PPR message will be used in place of the SDTR
 2304                          * and WDTR messages to negotiate synchronous speed
 2305                          * and offset, transfer width, and protocol options.
 2306                          */
 2307                         if((inq->Clocking) & INQ_CLOCKING_DT_ONLY){
 2308                                 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
 2309                                                 sc->ppr_able);
 2310                                 sc->ppr_able |= tidmask;
 2311                                 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
 2312                                                 sc->ppr_able);
 2313                         }
 2314                 }
 2315 
 2316                 /*
 2317                  * If the EEPROM enabled Tag Queuing for the device and the
 2318                  * device supports Tag Queueing, then turn on the device's
 2319                  * 'tagqng_enable' bit in the microcode and set the microcode
 2320                  * maximum command count to the ADW_SOFTC 'max_dvc_qng'
 2321                  * value.
 2322                  *
 2323                  * Tag Queuing is disabled for the BIOS which runs in polled
 2324                  * mode and would see no benefit from Tag Queuing. Also by
 2325                  * disabling Tag Queuing in the BIOS devices with Tag Queuing
 2326                  * bugs will at least work with the BIOS.
 2327                  */
 2328 #ifdef SCSI_ADW_TAGQ_DISABLE
 2329         if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
 2330 #endif /* SCSI_ADW_TAGQ_DISABLE */
 2331                 if ((sc->tagqng_able & tidmask) && inq->CmdQue) {
 2332                         ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
 2333                                         cfg_word);
 2334                         cfg_word |= tidmask;
 2335                         ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
 2336                                         cfg_word);
 2337 
 2338                         ADW_WRITE_BYTE_LRAM(iot, ioh,
 2339                                         ADW_MC_NUMBER_OF_MAX_CMD + tid,
 2340                                         sc->max_dvc_qng);
 2341                 }
 2342         }
 2343 #endif /* FAILSAFE */
 2344 }
 2345 
 2346 
 2347 void
 2348 AdwSleepMilliSecond(u_int32_t n)
 2349 {
 2350 
 2351         DELAY(n * 1000);
 2352 }
 2353 
 2354 
 2355 void
 2356 AdwDelayMicroSecond(u_int32_t n)
 2357 {
 2358 
 2359         DELAY(n);
 2360 }
 2361 

Cache object: 400a28894cd03e3b25b5ee622fb456de


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.