The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/dm9000.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: dm9000.c,v 1.35 2022/09/25 18:43:32 thorpej Exp $      */
    2 
    3 /*
    4  * Copyright (c) 2009 Paul Fleischer
    5  * All rights reserved.
    6  *
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  * 3. The name of the company nor the name of the author may be used to
   13  *    endorse or promote products derived from this software without specific
   14  *    prior written permission.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
   17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 /* based on sys/dev/ic/cs89x0.c */
   30 /*
   31  * Copyright (c) 2004 Christopher Gilbert
   32  * All rights reserved.
   33  *
   34  * 1. Redistributions of source code must retain the above copyright
   35  *    notice, this list of conditions and the following disclaimer.
   36  * 2. Redistributions in binary form must reproduce the above copyright
   37  *    notice, this list of conditions and the following disclaimer in the
   38  *    documentation and/or other materials provided with the distribution.
   39  * 3. The name of the company nor the name of the author may be used to
   40  *    endorse or promote products derived from this software without specific
   41  *    prior written permission.
   42  *
   43  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
   44  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   45  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   46  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
   47  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   48  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   49  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   50  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   51  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   52  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   53  * SUCH DAMAGE.
   54  */
   55 
   56 /*
   57  * Copyright 1997
   58  * Digital Equipment Corporation. All rights reserved.
   59  *
   60  * This software is furnished under license and may be used and
   61  * copied only in accordance with the following terms and conditions.
   62  * Subject to these conditions, you may download, copy, install,
   63  * use, modify and distribute this software in source and/or binary
   64  * form. No title or ownership is transferred hereby.
   65  *
   66  * 1) Any source code used, modified or distributed must reproduce
   67  *    and retain this copyright notice and list of conditions as
   68  *    they appear in the source file.
   69  *
   70  * 2) No right is granted to use any trade name, trademark, or logo of
   71  *    Digital Equipment Corporation. Neither the "Digital Equipment
   72  *    Corporation" name nor any trademark or logo of Digital Equipment
   73  *    Corporation may be used to endorse or promote products derived
   74  *    from this software without the prior written permission of
   75  *    Digital Equipment Corporation.
   76  *
   77  * 3) This software is provided "AS-IS" and any express or implied
   78  *    warranties, including but not limited to, any implied warranties
   79  *    of merchantability, fitness for a particular purpose, or
   80  *    non-infringement are disclaimed. In no event shall DIGITAL be
   81  *    liable for any damages whatsoever, and in particular, DIGITAL
   82  *    shall not be liable for special, indirect, consequential, or
   83  *    incidental damages or damages for lost profits, loss of
   84  *    revenue or loss of use, whether such damages arise in contract,
   85  *    negligence, tort, under statute, in equity, at law or otherwise,
   86  *    even if advised of the possibility of such damage.
   87  */
   88 
   89 #include <sys/cdefs.h>
   90 
   91 #include <sys/param.h>
   92 #include <sys/bus.h>
   93 #include <sys/intr.h>
   94 #include <sys/device.h>
   95 #include <sys/mbuf.h>
   96 #include <sys/sockio.h>
   97 #include <sys/errno.h>
   98 #include <sys/cprng.h>
   99 #include <sys/rndsource.h>
  100 #include <sys/kernel.h>
  101 #include <sys/systm.h>
  102 
  103 #include <net/if.h>
  104 #include <net/if_dl.h>
  105 #include <net/if_ether.h>
  106 #include <net/if_media.h>
  107 #include <dev/mii/mii.h>
  108 #include <dev/mii/miivar.h>
  109 #include <net/bpf.h>
  110 
  111 #include <dev/ic/dm9000var.h>
  112 #include <dev/ic/dm9000reg.h>
  113 
  114 #if 1
  115 #undef DM9000_DEBUG
  116 #undef DM9000_TX_DEBUG
  117 #undef DM9000_TX_DATA_DEBUG
  118 #undef DM9000_RX_DEBUG
  119 #undef  DM9000_RX_DATA_DEBUG
  120 #else
  121 #define DM9000_DEBUG
  122 #define  DM9000_TX_DEBUG
  123 #define DM9000_TX_DATA_DEBUG
  124 #define DM9000_RX_DEBUG
  125 #define  DM9000_RX_DATA_DEBUG
  126 #endif
  127 
  128 #ifdef DM9000_DEBUG
  129 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
  130 #else
  131 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
  132 #endif
  133 
  134 #ifdef DM9000_TX_DEBUG
  135 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
  136 #else
  137 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
  138 #endif
  139 
  140 #ifdef DM9000_RX_DEBUG
  141 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
  142 #else
  143 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
  144 #endif
  145 
  146 #ifdef DM9000_RX_DATA_DEBUG
  147 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
  148 #else
  149 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
  150 #endif
  151 
  152 #ifdef DM9000_TX_DATA_DEBUG
  153 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
  154 #else
  155 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
  156 #endif
  157 
  158 static void dme_reset(struct dme_softc *);
  159 static int dme_init(struct ifnet *);
  160 static void dme_stop(struct ifnet *, int);
  161 static void dme_start(struct ifnet *);
  162 static int dme_ioctl(struct ifnet *, u_long, void *);
  163 
  164 static void dme_set_rcvfilt(struct dme_softc *);
  165 static void mii_statchg(struct ifnet *);
  166 static void lnkchg(struct dme_softc *);
  167 static void phy_tick(void *);
  168 static int mii_readreg(device_t, int, int, uint16_t *);
  169 static int mii_writereg(device_t, int, int, uint16_t);
  170 
  171 static void dme_prepare(struct ifnet *);
  172 static void dme_transmit(struct ifnet *);
  173 static void dme_receive(struct ifnet *);
  174 
  175 static int pkt_read_2(struct dme_softc *, struct mbuf **);
  176 static int pkt_write_2(struct dme_softc *, struct mbuf *);
  177 static int pkt_read_1(struct dme_softc *, struct mbuf **);
  178 static int pkt_write_1(struct dme_softc *, struct mbuf *);
  179 #define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
  180 #define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
  181 
  182 #define ETHER_IS_ONE(x) \
  183            (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
  184 #define ETHER_IS_ZERO(x) \
  185            (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
  186 
  187 int
  188 dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
  189 {
  190         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
  191         struct mii_data *mii = &sc->sc_mii;
  192         struct ifmedia *ifm = &mii->mii_media;
  193         uint8_t b[2];
  194         uint16_t io_mode;
  195         uint8_t enaddr[ETHER_ADDR_LEN];
  196         prop_dictionary_t dict;
  197         prop_data_t ea;
  198 
  199         dme_read_c(sc, DM9000_VID0, b, 2);
  200         sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
  201         dme_read_c(sc, DM9000_PID0, b, 2);
  202         sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
  203 
  204         /* TODO: Check the vendor ID as well */
  205         if (sc->sc_product_id != 0x9000) {
  206                 panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
  207                     sc->sc_product_id);
  208         }
  209 #if 1 || DM9000_DEBUG
  210         {
  211                 dme_read_c(sc, DM9000_PAB0, enaddr, 6);
  212                 aprint_normal_dev(sc->sc_dev,
  213                     "DM9000 was configured with MAC address: %s\n",
  214                     ether_sprintf(enaddr));
  215         }
  216 #endif
  217         dict = device_properties(sc->sc_dev);
  218         ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
  219         if (ea != NULL) {
  220                /*
  221                  * If the MAC address is overridden by a device property,
  222                  * use that.
  223                  */
  224                 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
  225                 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
  226                 memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
  227                 aprint_debug_dev(sc->sc_dev, "got MAC address!\n");
  228         } else {
  229                 /*
  230                  * If we did not get an externaly configure address,
  231                  * try to read one from the current setup, before
  232                  * resetting the chip.
  233                  */
  234                 dme_read_c(sc, DM9000_PAB0, enaddr, 6);
  235                 if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
  236                         /* make a random MAC address */
  237                         uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
  238                         uint32_t machi = cprng_strong32();
  239                         enaddr[0] = maclo;
  240                         enaddr[1] = maclo >> 8;
  241                         enaddr[2] = maclo >> 16;
  242                         enaddr[3] = maclo >> 26;
  243                         enaddr[4] = machi;
  244                         enaddr[5] = machi >> 8;
  245                 }
  246         }
  247         /* TODO: perform explicit EEPROM read op if it's availble */
  248 
  249         dme_reset(sc);
  250 
  251         mii->mii_ifp = ifp;
  252         mii->mii_readreg = mii_readreg;
  253         mii->mii_writereg = mii_writereg;
  254         mii->mii_statchg = mii_statchg;
  255 
  256         /* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
  257         sc->sc_ethercom.ec_mii = mii;
  258         ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
  259         mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
  260                 MII_OFFSET_ANY, 0);
  261         if (LIST_FIRST(&mii->mii_phys) == NULL) {
  262                 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
  263                 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
  264         } else
  265                 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
  266         ifm->ifm_media = ifm->ifm_cur->ifm_media;
  267 
  268         strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
  269         ifp->if_softc = sc;
  270         ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
  271         ifp->if_init = dme_init;
  272         ifp->if_start = dme_start;
  273         ifp->if_stop = dme_stop;
  274         ifp->if_ioctl = dme_ioctl;
  275         ifp->if_watchdog = NULL; /* no watchdog used */
  276         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
  277         IFQ_SET_READY(&ifp->if_snd);
  278 
  279         if_attach(ifp);
  280         ether_ifattach(ifp, enaddr);
  281         if_deferred_start_init(ifp, NULL);
  282 
  283         rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
  284             RND_TYPE_NET, RND_FLAG_DEFAULT);
  285 
  286         /* might be unnecessary as link change interrupt works well */
  287         callout_init(&sc->sc_link_callout, 0);
  288         callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
  289 
  290         io_mode = (dme_read(sc, DM9000_ISR) &
  291             DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
  292 
  293         /* frame body read/write ops in 2 byte quantity or byte-wise. */
  294         DPRINTF(("DM9000 Operation Mode: "));
  295         switch (io_mode) {
  296         case DM9000_MODE_8BIT:
  297                 DPRINTF(("8-bit mode"));
  298                 sc->sc_data_width = 1;
  299                 sc->sc_pkt_write = pkt_write_1;
  300                 sc->sc_pkt_read = pkt_read_1;
  301                 break;
  302         case DM9000_MODE_16BIT:
  303                 DPRINTF(("16-bit mode"));
  304                 sc->sc_data_width = 2;
  305                 sc->sc_pkt_write = pkt_write_2;
  306                 sc->sc_pkt_read = pkt_read_2;
  307                 break;
  308         case DM9000_MODE_32BIT:
  309                 DPRINTF(("32-bit mode"));
  310                 sc->sc_data_width = 4;
  311                 panic("32bit mode is unsupported\n");
  312                 break;
  313         default:
  314                 DPRINTF(("Invalid mode"));
  315                 break;
  316         }
  317         DPRINTF(("\n"));
  318 
  319         return 0;
  320 }
  321 
  322 int
  323 dme_detach(struct dme_softc *sc)
  324 {
  325         return 0;
  326 }
  327 
  328 /* Software Initialize/Reset of the DM9000 */
  329 static void
  330 dme_reset(struct dme_softc *sc)
  331 {
  332         uint8_t misc;
  333 
  334         /* We only re-initialized the PHY in this function the first time it is
  335          * called. */
  336         if (!sc->sc_phy_initialized) {
  337                 /* PHY Reset */
  338                 mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
  339 
  340                 /* PHY Power Down */
  341                 misc = dme_read(sc, DM9000_GPR);
  342                 dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
  343         }
  344 
  345         /* Reset the DM9000 twice, as described in section 2 of the Programming
  346          * Guide.
  347          * The PHY is initialized and enabled between those two resets.
  348          */
  349 
  350         /* Software Reset */
  351         dme_write(sc, DM9000_NCR,
  352             DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
  353         delay(20);
  354         dme_write(sc, DM9000_NCR, 0x0);
  355 
  356         if (!sc->sc_phy_initialized) {
  357                 /* PHY Enable */
  358                 misc = dme_read(sc, DM9000_GPR);
  359                 dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
  360                 misc = dme_read(sc, DM9000_GPCR);
  361                 dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
  362 
  363                 dme_write(sc, DM9000_NCR,
  364                     DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
  365                 delay(20);
  366                 dme_write(sc, DM9000_NCR, 0x0);
  367         }
  368 
  369         /* Select internal PHY, no wakeup event, no collosion mode,
  370          * normal loopback mode.
  371          */
  372         dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
  373 
  374         /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
  375         dme_read(sc, DM9000_NSR);
  376 
  377         /* Enable wraparound of read/write pointer, frame received latch,
  378          * and frame transmitted latch.
  379          */
  380         dme_write(sc, DM9000_IMR,
  381             DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
  382 
  383         dme_write(sc, DM9000_RCR,
  384             DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
  385 
  386         sc->sc_phy_initialized = 1;
  387 }
  388 
  389 static int
  390 dme_init(struct ifnet *ifp)
  391 {
  392         struct dme_softc *sc = ifp->if_softc;
  393 
  394         dme_stop(ifp, 0);
  395         dme_reset(sc);
  396         dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
  397         dme_set_rcvfilt(sc);
  398         (void)ether_mediachange(ifp);
  399 
  400         sc->txbusy = sc->txready = 0;
  401 
  402         ifp->if_flags |= IFF_RUNNING;
  403         callout_schedule(&sc->sc_link_callout, hz);
  404 
  405         return 0;
  406 }
  407 
  408 /* Configure multicast filter */
  409 static void
  410 dme_set_rcvfilt(struct dme_softc *sc)
  411 {
  412         struct ethercom *ec = &sc->sc_ethercom;
  413         struct ifnet *ifp = &ec->ec_if;
  414         struct ether_multi *enm;
  415         struct ether_multistep step;
  416         uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
  417         uint32_t h = 0;
  418         int rcr;
  419 
  420         rcr = dme_read(sc, DM9000_RCR);
  421         rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
  422         dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
  423 
  424         ETHER_LOCK(ec);
  425         if (ifp->if_flags & IFF_PROMISC) {
  426                 ec->ec_flags |= ETHER_F_ALLMULTI;
  427                 ETHER_UNLOCK(ec);
  428                 /* run promisc. mode */
  429                 rcr |= DM9000_RCR_PRMSC;
  430                 goto update;
  431         }
  432         ec->ec_flags &= ~ETHER_F_ALLMULTI;
  433         ETHER_FIRST_MULTI(step, ec, enm);
  434         while (enm != NULL) {
  435                 if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
  436                         /*
  437                          * We must listen to a range of multicast addresses.
  438                          * For now, just accept all multicasts, rather than
  439                          * trying to set only those filter bits needed to match
  440                          * the range.  (At this time, the only use of address
  441                          * ranges is for IP multicast routing, for which the
  442                          * range is big enough to require all bits set.)
  443                          */
  444                         ec->ec_flags |= ETHER_F_ALLMULTI;
  445                         ETHER_UNLOCK(ec);
  446                         memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
  447                         /* accept all mulicast frame */
  448                         rcr |= DM9000_RCR_ALL;
  449                         break;
  450                 }
  451                 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
  452                 /* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
  453                 mchash[h / 8] |= 1 << (h % 8);
  454                 ETHER_NEXT_MULTI(step, enm);
  455         }
  456         ETHER_UNLOCK(ec);
  457         /* DM9000 receive filter is always on */
  458         mchash[7] |= 0x80; /* to catch bcast frame */
  459  update:
  460         dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
  461         dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
  462         return;
  463 }
  464 
  465 void
  466 lnkchg(struct dme_softc *sc)
  467 {
  468         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
  469         struct ifmediareq ifmr;
  470 
  471         ether_mediastatus(ifp, &ifmr);
  472 }
  473 
  474 static void
  475 mii_statchg(struct ifnet *ifp)
  476 {
  477         struct dme_softc *sc = ifp->if_softc;
  478         struct mii_data *mii = &sc->sc_mii;
  479         uint8_t fcr, ncr;
  480 
  481 #if 0
  482         const uint8_t Mbps[2] = { 10, 100 };
  483         uint8_t nsr = dme_read(sc, DM9000_NSR);
  484         int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
  485         /* speed/duplexity available also in reg 0x11 of internal PHY */
  486         if (nsr & DM9000_NSR_LINKST)
  487                 printf("link up,spd%d", spd);
  488         else
  489                 printf("link down");
  490 
  491         /* show resolved mii(4) parameters */
  492         printf("MII spd%d",
  493             (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
  494         if (mii->mii_media_active & IFM_FDX)
  495                 printf(",full-duplex");
  496         printf("\n");
  497 #endif
  498 
  499         /* Adjust duplexity and PAUSE flow control. */
  500         fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
  501         ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
  502         if ((mii->mii_media_active & IFM_FDX)
  503             && (mii->mii_media_active & IFM_FLOW)) {
  504                 fcr |= DM9000_FCR_FLCE;
  505                 ncr |= DM9000_NCR_FDX;
  506         }
  507         dme_write(sc, DM9000_FCR, fcr);
  508         dme_write(sc, DM9000_NCR, ncr);
  509 }
  510 
  511 static void
  512 phy_tick(void *arg)
  513 {
  514         struct dme_softc *sc = arg;
  515         struct mii_data *mii = &sc->sc_mii;
  516         int s;
  517 
  518         s = splnet();
  519         mii_tick(mii);
  520         splx(s);
  521 
  522         callout_schedule(&sc->sc_link_callout, hz);
  523 }
  524 
  525 static int
  526 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
  527 {
  528         struct dme_softc *sc = device_private(self);
  529 
  530         if (phy != 1)
  531                 return EINVAL;
  532 
  533         /* Select Register to read*/
  534         dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
  535             (reg & DM9000_EPAR_EROA_MASK));
  536         /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
  537         dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
  538 
  539         /* Wait until access to PHY has completed */
  540         while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
  541                 ;
  542 
  543         /* Reset ERPRR-bit */
  544         dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
  545 
  546         *val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
  547         return 0;
  548 }
  549 
  550 static int
  551 mii_writereg(device_t self, int phy, int reg, uint16_t val)
  552 {
  553         struct dme_softc *sc = device_private(self);
  554 
  555         if (phy != 1)
  556                 return EINVAL;
  557 
  558         /* Select Register to write */
  559         dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
  560             (reg & DM9000_EPAR_EROA_MASK));
  561 
  562         /* Write data to the two data registers */
  563         dme_write(sc, DM9000_EPDRL, val & 0xFF);
  564         dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
  565 
  566         /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
  567         dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
  568 
  569         /* Wait until access to PHY has completed */
  570         while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
  571                 ;
  572 
  573         /* Reset ERPRR-bit */
  574         dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
  575 
  576         return 0;
  577 }
  578 
  579 void
  580 dme_stop(struct ifnet *ifp, int disable)
  581 {
  582         struct dme_softc *sc = ifp->if_softc;
  583 
  584         /* Not quite sure what to do when called with disable == 0 */
  585         if (disable) {
  586                 /* Disable RX */
  587                 dme_write(sc, DM9000_RCR, 0x0);
  588         }
  589         mii_down(&sc->sc_mii);
  590         callout_stop(&sc->sc_link_callout);
  591 
  592         ifp->if_flags &= ~IFF_RUNNING;
  593         ifp->if_timer = 0;
  594 }
  595 
  596 static void
  597 dme_start(struct ifnet *ifp)
  598 {
  599         struct dme_softc *sc = ifp->if_softc;
  600 
  601         if ((ifp->if_flags & IFF_RUNNING) == 0) {
  602                 return;
  603         }
  604         if (!sc->txready) {
  605                 dme_prepare(ifp);
  606         }
  607         if (sc->txbusy) {
  608                 /*
  609                  * We need to wait until the current frame has
  610                  * been transmitted.
  611                  */
  612                 return;
  613         }
  614         if (sc->txready) {
  615                 /* We are ready to transmit right away */
  616                 dme_transmit(ifp);
  617         }
  618         dme_prepare(ifp); /* Prepare next one */
  619 }
  620 
  621 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
  622 static void
  623 dme_prepare(struct ifnet *ifp)
  624 {
  625         struct dme_softc *sc = ifp->if_softc;
  626         uint16_t length;
  627         struct mbuf *m;
  628 
  629         KASSERT(!sc->txready);
  630 
  631         IFQ_DEQUEUE(&ifp->if_snd, m);
  632         if (m == NULL) {
  633                 TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
  634                 return; /* Nothing to transmit */
  635         }
  636 
  637         /* Element has now been removed from the queue, so we better send it */
  638 
  639         bpf_mtap(ifp, m, BPF_D_OUT);
  640 
  641         /* Setup the DM9000 to accept the writes, and then write each buf in
  642            the chain. */
  643 
  644         TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
  645         bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
  646         length = PKT_WRITE(sc, m);
  647         bpf_mtap(ifp, m, BPF_D_OUT);
  648         TX_DATA_DPRINTF(("\n"));
  649 
  650         if (length % sc->sc_data_width != 0)
  651                 panic("dme_prepare: length is not compatible with IO_MODE");
  652 
  653         sc->txready_length = length;
  654         sc->txready = 1;
  655         m_freem(m);
  656 }
  657 
  658 /* Transmit prepared data */
  659 static void
  660 dme_transmit(struct ifnet *ifp)
  661 {
  662         struct dme_softc *sc = ifp->if_softc;
  663 
  664         TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
  665                 sc->txready, sc->txbusy));
  666 
  667         /* prime frame length first */
  668         dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
  669         dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
  670         /* read isr next */
  671         dme_read(sc, DM9000_ISR);
  672         /* finally issue a request to send */
  673         dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
  674         sc->txready = 0;
  675         sc->txbusy = 1;
  676         sc->txready_length = 0;
  677 }
  678 
  679 /* Receive data */
  680 static void
  681 dme_receive(struct ifnet *ifp)
  682 {
  683         struct dme_softc *sc = ifp->if_softc;
  684         struct mbuf *m;
  685         uint8_t avail, rsr;
  686 
  687         DPRINTF(("inside dme_receive\n"));
  688 
  689         /* frame has just arrived, retrieve it */
  690         /* called right after Rx frame available interrupt */
  691         do {
  692                 /* "no increment" read to get the avail byte without
  693                    moving past it. */
  694                 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
  695                         DM9000_MRCMDX);
  696                 /* Read twice */
  697                 avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
  698                 avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
  699                 avail &= 03;    /* 1:0 we only want these bits */
  700                 if (avail == 01) {
  701                         /* Read with address increment. */
  702                         bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
  703                                 DM9000_MRCMD);
  704                         rsr = PKT_READ(sc, &m);
  705                         if (m == NULL) {
  706                                 /* failed to allocate a receive buffer */
  707                                 RX_DPRINTF(("dme_receive: "
  708                                         "Error allocating buffer\n"));
  709                                 if_statinc(ifp, if_ierrors);
  710                                 continue;
  711                         }
  712                         if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
  713                                 /* Error while receiving the frame,
  714                                  * discard it and keep track of counters
  715                                  */
  716                                 RX_DPRINTF(("dme_receive: "
  717                                         "Error reciving frame\n"));
  718                                 if_statinc(ifp, if_ierrors);
  719                                 continue;
  720                         }
  721                         if (rsr & DM9000_RSR_LCS) {
  722                                 if_statinc(ifp, if_collisions);
  723                                 continue;
  724                         }
  725                         /* pick and forward this frame to ifq */
  726                         if_percpuq_enqueue(ifp->if_percpuq, m);
  727                 } else if (avail != 00) {
  728                         /* Should this be logged somehow? */
  729                         printf("%s: Resetting chip\n",
  730                                device_xname(sc->sc_dev));
  731                         dme_reset(sc);
  732                         break;
  733                 }
  734         } while (avail == 01);
  735         /* frame received successfully */
  736 }
  737 
  738 int
  739 dme_intr(void *arg)
  740 {
  741         struct dme_softc *sc = arg;
  742         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
  743         uint8_t isr, nsr, tsr;
  744 
  745         DPRINTF(("dme_intr: Begin\n"));
  746 
  747         /* Disable interrupts */
  748         dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
  749 
  750         isr = dme_read(sc, DM9000_ISR);
  751         dme_write(sc, DM9000_ISR, isr); /* write to clear */
  752 
  753         if (isr & DM9000_ISR_PRS) {
  754                 KASSERT(ifp->if_flags & IFF_RUNNING);
  755                 dme_receive(ifp);
  756         }
  757         if (isr & DM9000_ISR_LNKCHNG)
  758                 lnkchg(sc);
  759         if (isr & DM9000_ISR_PTS) {
  760                 tsr = 0x01; /* Initialize to an error value */
  761 
  762                 /* A frame has been transmitted */
  763                 sc->txbusy = 0;
  764 
  765                 nsr = dme_read(sc, DM9000_NSR);
  766                 if (nsr & DM9000_NSR_TX1END) {
  767                         tsr = dme_read(sc, DM9000_TSR1);
  768                         TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
  769                 } else if (nsr & DM9000_NSR_TX2END) {
  770                         tsr = dme_read(sc, DM9000_TSR2);
  771                         TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
  772                 }
  773 
  774                 if (tsr == 0x0) {
  775                         /* Frame successfully sent */
  776                         if_statinc(ifp, if_opackets);
  777                 } else {
  778                         if_statinc(ifp, if_oerrors);
  779                 }
  780 
  781                 /* If we have nothing ready to transmit, prepare something */
  782                 if (!sc->txready)
  783                         dme_prepare(ifp);
  784 
  785                 if (sc->txready)
  786                         dme_transmit(ifp);
  787 
  788                 /* Prepare the next frame */
  789                 dme_prepare(ifp);
  790 
  791                 if_schedule_deferred_start(ifp);
  792         }
  793 
  794         /* Enable interrupts again */
  795         dme_write(sc, DM9000_IMR,
  796             DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
  797 
  798         DPRINTF(("dme_intr: End\n"));
  799 
  800         return (isr != 0);
  801 }
  802 
  803 static int
  804 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
  805 {
  806         struct dme_softc *sc = ifp->if_softc;
  807         struct ifreq *ifr = (struct ifreq *)data;
  808         struct ifmedia *ifm = &sc->sc_mii.mii_media;
  809         int s, error;
  810 
  811         s = splnet();
  812         switch (cmd) {
  813         case SIOCSIFMEDIA:
  814                 /* Flow control requires full-duplex mode. */
  815                 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
  816                     (ifr->ifr_media & IFM_FDX) == 0)
  817                         ifr->ifr_media &= ~IFM_ETH_FMASK;
  818                 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
  819                         if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
  820                                 ifr->ifr_media |=
  821                                         IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
  822                         }
  823                 }
  824                 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
  825                 break;
  826         default:
  827                 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
  828                         break;
  829                 error = 0;
  830                 if (cmd == SIOCSIFCAP)
  831                         error = if_init(ifp);
  832                 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
  833                         ;
  834                 else if (ifp->if_flags && IFF_RUNNING) {
  835                         /* Address list has changed, reconfigure filter */
  836                         dme_set_rcvfilt(sc);
  837                 }
  838                 break;
  839         }
  840         splx(s);
  841         return error;
  842 }
  843 
  844 static struct mbuf *
  845 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
  846 {
  847         struct dme_softc *sc = ifp->if_softc;
  848         struct mbuf *m;
  849         int pad, quantum;
  850 
  851         quantum = sc->sc_data_width;
  852         MGETHDR(m, M_DONTWAIT, MT_DATA);
  853         if (m == NULL)
  854                 return NULL;
  855 
  856         m_set_rcvif(m, ifp);
  857         /* Ensure that we always allocate an even number of
  858          * bytes in order to avoid writing beyond the buffer
  859          */
  860         m->m_pkthdr.len = frame_length + (frame_length % quantum);
  861         pad = ALIGN(sizeof(struct ether_header)) -
  862                 sizeof(struct ether_header);
  863         /* All our frames have the CRC attached */
  864         m->m_flags |= M_HASFCS;
  865         if (m->m_pkthdr.len + pad > MHLEN) {
  866                 MCLGET(m, M_DONTWAIT);
  867                 if ((m->m_flags & M_EXT) == 0) {
  868                         m_freem(m);
  869                         return NULL;
  870                 }
  871         }
  872 
  873         m->m_data += pad;
  874         m->m_len = frame_length + (frame_length % quantum);
  875 
  876         return m;
  877 }
  878 
  879 static int
  880 pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
  881 {
  882         int left_over_count = 0; /* Number of bytes from previous mbuf, which
  883                                     need to be written with the next.*/
  884         uint16_t left_over_buf = 0;
  885         int length = 0;
  886         struct mbuf *buf;
  887         uint8_t *write_ptr;
  888 
  889         /* We expect that the DM9000 has been setup to accept writes before
  890            this function is called. */
  891 
  892         for (buf = bufChain; buf != NULL; buf = buf->m_next) {
  893                 int to_write = buf->m_len;
  894 
  895                 length += to_write;
  896 
  897                 write_ptr = buf->m_data;
  898                 while (to_write > 0 ||
  899                     (buf->m_next == NULL && left_over_count > 0)) {
  900                         if (left_over_count > 0) {
  901                                 uint8_t b = 0;
  902                                 DPRINTF(("pkt_write_16: "
  903                                          "Writing left over byte\n"));
  904 
  905                                 if (to_write > 0) {
  906                                         b = *write_ptr;
  907                                         to_write--;
  908                                         write_ptr++;
  909 
  910                                         DPRINTF(("Took single byte\n"));
  911                                 } else {
  912                                         DPRINTF(("Leftover in last run\n"));
  913                                         length++;
  914                                 }
  915 
  916                                 /* Does shift direction depend on endianness? */
  917                                 left_over_buf = left_over_buf | (b << 8);
  918 
  919                                 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
  920                                                   sc->dme_data, left_over_buf);
  921                                 TX_DATA_DPRINTF(("%02X ", left_over_buf));
  922                                 left_over_count = 0;
  923                         } else if ((long)write_ptr % 2 != 0) {
  924                                 /* Misaligned data */
  925                                 DPRINTF(("pkt_write_16: "
  926                                          "Detected misaligned data\n"));
  927                                 left_over_buf = *write_ptr;
  928                                 left_over_count = 1;
  929                                 write_ptr++;
  930                                 to_write--;
  931                         } else {
  932                                 int i;
  933                                 uint16_t *dptr = (uint16_t *)write_ptr;
  934 
  935                                 /* A block of aligned data. */
  936                                 for (i = 0; i < to_write / 2; i++) {
  937                                         /* buf will be half-word aligned
  938                                          * all the time
  939                                          */
  940                                         bus_space_write_2(sc->sc_iot,
  941                                             sc->sc_ioh, sc->dme_data, *dptr);
  942                                         TX_DATA_DPRINTF(("%02X %02X ",
  943                                             *dptr & 0xFF, (*dptr >> 8) & 0xFF));
  944                                         dptr++;
  945                                 }
  946 
  947                                 write_ptr += i * 2;
  948                                 if (to_write % 2 != 0) {
  949                                         DPRINTF(("pkt_write_16: "
  950                                                  "to_write %% 2: %d\n",
  951                                                  to_write % 2));
  952                                         left_over_count = 1;
  953                                         /* XXX: Does this depend on
  954                                          * the endianness?
  955                                          */
  956                                         left_over_buf = *write_ptr;
  957 
  958                                         write_ptr++;
  959                                         to_write--;
  960                                         DPRINTF(("pkt_write_16: "
  961                                                  "to_write (after): %d\n",
  962                                                  to_write));
  963                                         DPRINTF(("pkt_write_16: i * 2: %d\n",
  964                                                  i*2));
  965                                 }
  966                                 to_write -= i * 2;
  967                         }
  968                 } /* while (...) */
  969         } /* for (...) */
  970 
  971         return length;
  972 }
  973 
  974 static int
  975 pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
  976 {
  977         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
  978         uint8_t rx_status;
  979         struct mbuf *m;
  980         uint16_t data;
  981         uint16_t frame_length;
  982         uint16_t i;
  983         uint16_t *buf;
  984 
  985         data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
  986         rx_status = data & 0xFF;
  987 
  988         frame_length = bus_space_read_2(sc->sc_iot,
  989                                         sc->sc_ioh, sc->dme_data);
  990         if (frame_length > ETHER_MAX_LEN) {
  991                 printf("Got frame of length: %d\n", frame_length);
  992                 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
  993                 panic("Something is rotten");
  994         }
  995         RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
  996                 rx_status, frame_length));
  997 
  998         m = dme_alloc_receive_buffer(ifp, frame_length);
  999         if (m == NULL) {
 1000                 /*
 1001                  * didn't get a receive buffer, so we read the rest of the
 1002                  * frame, throw it away and return an error
 1003                  */
 1004                 for (i = 0; i < frame_length; i += 2) {
 1005                         data = bus_space_read_2(sc->sc_iot,
 1006                                         sc->sc_ioh, sc->dme_data);
 1007                 }
 1008                 *outBuf = NULL;
 1009                 return 0;
 1010         }
 1011 
 1012         buf = mtod(m, uint16_t*);
 1013 
 1014         RX_DPRINTF(("dme_receive: "));
 1015 
 1016         for (i = 0; i < frame_length; i += 2) {
 1017                 data = bus_space_read_2(sc->sc_iot,
 1018                                         sc->sc_ioh, sc->dme_data);
 1019                 if ( (frame_length % 2 != 0) &&
 1020                      (i == frame_length - 1) ) {
 1021                         data = data & 0xff;
 1022                         RX_DPRINTF((" L "));
 1023                 }
 1024                 *buf = data;
 1025                 buf++;
 1026                 RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
 1027                                  (data >> 8) & 0xff));
 1028         }
 1029 
 1030         RX_DATA_DPRINTF(("\n"));
 1031         RX_DPRINTF(("Read %d bytes\n", i));
 1032 
 1033         *outBuf = m;
 1034         return rx_status;
 1035 }
 1036 
 1037 static int
 1038 pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
 1039 {
 1040         int length = 0, i;
 1041         struct mbuf *buf;
 1042         uint8_t *write_ptr;
 1043 
 1044         /*
 1045          * We expect that the DM9000 has been setup to accept writes before
 1046          * this function is called.
 1047          */
 1048 
 1049         for (buf = bufChain; buf != NULL; buf = buf->m_next) {
 1050                 int to_write = buf->m_len;
 1051 
 1052                 length += to_write;
 1053 
 1054                 write_ptr = buf->m_data;
 1055                 for (i = 0; i < to_write; i++) {
 1056                         bus_space_write_1(sc->sc_iot, sc->sc_ioh,
 1057                             sc->dme_data, *write_ptr);
 1058                         write_ptr++;
 1059                 }
 1060         } /* for (...) */
 1061 
 1062         return length;
 1063 }
 1064 
 1065 static int
 1066 pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
 1067 {
 1068         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
 1069         uint8_t rx_status;
 1070         struct mbuf *m;
 1071         uint8_t *buf;
 1072         uint16_t frame_length;
 1073         uint16_t i, reg;
 1074         uint8_t data;
 1075 
 1076         reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
 1077         reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
 1078         rx_status = reg & 0xFF;
 1079 
 1080         reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
 1081         reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
 1082         frame_length = reg;
 1083 
 1084         if (frame_length > ETHER_MAX_LEN) {
 1085                 printf("Got frame of length: %d\n", frame_length);
 1086                 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
 1087                 panic("Something is rotten");
 1088         }
 1089         RX_DPRINTF(("dme_receive: "
 1090                     "rx_statux: 0x%x, frame_length: %d\n",
 1091                     rx_status, frame_length));
 1092 
 1093         m = dme_alloc_receive_buffer(ifp, frame_length);
 1094         if (m == NULL) {
 1095                 /*
 1096                  * didn't get a receive buffer, so we read the rest of the
 1097                  * frame, throw it away and return an error
 1098                  */
 1099                 for (i = 0; i < frame_length; i++ ) {
 1100                         data = bus_space_read_2(sc->sc_iot,
 1101                                         sc->sc_ioh, sc->dme_data);
 1102                 }
 1103                 *outBuf = NULL;
 1104                 return 0;
 1105         }
 1106 
 1107         buf = mtod(m, uint8_t *);
 1108 
 1109         RX_DPRINTF(("dme_receive: "));
 1110         for (i = 0; i< frame_length; i += 1) {
 1111                 data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
 1112                 *buf = data;
 1113                 buf++;
 1114                 RX_DATA_DPRINTF(("%02X ", data));
 1115         }
 1116 
 1117         RX_DATA_DPRINTF(("\n"));
 1118         RX_DPRINTF(("Read %d bytes\n", i));
 1119 
 1120         *outBuf = m;
 1121         return rx_status;
 1122 }

Cache object: f6419ece866d90ba4bd51886fc5811cd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.