The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/hme.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: hme.c,v 1.66.10.4 2009/11/13 20:57:27 sborrill Exp $   */
    2 
    3 /*-
    4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to The NetBSD Foundation
    8  * by Paul Kranenburg.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  * HME Ethernet module driver.
   34  */
   35 
   36 #include <sys/cdefs.h>
   37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.66.10.4 2009/11/13 20:57:27 sborrill Exp $");
   38 
   39 /* #define HMEDEBUG */
   40 
   41 #include "opt_inet.h"
   42 #include "bpfilter.h"
   43 #include "rnd.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/kernel.h>
   48 #include <sys/mbuf.h>
   49 #include <sys/syslog.h>
   50 #include <sys/socket.h>
   51 #include <sys/device.h>
   52 #include <sys/malloc.h>
   53 #include <sys/ioctl.h>
   54 #include <sys/errno.h>
   55 #if NRND > 0
   56 #include <sys/rnd.h>
   57 #endif
   58 
   59 #include <net/if.h>
   60 #include <net/if_dl.h>
   61 #include <net/if_ether.h>
   62 #include <net/if_media.h>
   63 
   64 #ifdef INET
   65 #include <netinet/in.h>
   66 #include <netinet/if_inarp.h>
   67 #include <netinet/in_systm.h>
   68 #include <netinet/in_var.h>
   69 #include <netinet/ip.h>
   70 #include <netinet/tcp.h>
   71 #include <netinet/udp.h>
   72 #endif
   73 
   74 
   75 #if NBPFILTER > 0
   76 #include <net/bpf.h>
   77 #include <net/bpfdesc.h>
   78 #endif
   79 
   80 #include <dev/mii/mii.h>
   81 #include <dev/mii/miivar.h>
   82 
   83 #include <sys/bus.h>
   84 
   85 #include <dev/ic/hmereg.h>
   86 #include <dev/ic/hmevar.h>
   87 
   88 void            hme_start(struct ifnet *);
   89 void            hme_stop(struct hme_softc *,bool);
   90 int             hme_ioctl(struct ifnet *, u_long, void *);
   91 void            hme_tick(void *);
   92 void            hme_watchdog(struct ifnet *);
   93 void            hme_shutdown(void *);
   94 int             hme_init(struct ifnet *);
   95 void            hme_meminit(struct hme_softc *);
   96 void            hme_mifinit(struct hme_softc *);
   97 void            hme_reset(struct hme_softc *);
   98 void            hme_setladrf(struct hme_softc *);
   99 
  100 /* MII methods & callbacks */
  101 static int      hme_mii_readreg(struct device *, int, int);
  102 static void     hme_mii_writereg(struct device *, int, int, int);
  103 static void     hme_mii_statchg(struct device *);
  104 
  105 int             hme_mediachange(struct ifnet *);
  106 
  107 struct mbuf     *hme_get(struct hme_softc *, int, uint32_t);
  108 int             hme_put(struct hme_softc *, int, struct mbuf *);
  109 void            hme_read(struct hme_softc *, int, uint32_t);
  110 int             hme_eint(struct hme_softc *, u_int);
  111 int             hme_rint(struct hme_softc *);
  112 int             hme_tint(struct hme_softc *);
  113 
  114 /* Default buffer copy routines */
  115 void    hme_copytobuf_contig(struct hme_softc *, void *, int, int);
  116 void    hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
  117 void    hme_zerobuf_contig(struct hme_softc *, int, int);
  118 
  119 
  120 void
  121 hme_config(sc)
  122         struct hme_softc *sc;
  123 {
  124         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
  125         struct mii_data *mii = &sc->sc_mii;
  126         struct mii_softc *child;
  127         bus_dma_tag_t dmatag = sc->sc_dmatag;
  128         bus_dma_segment_t seg;
  129         bus_size_t size;
  130         int rseg, error;
  131 
  132         /*
  133          * HME common initialization.
  134          *
  135          * hme_softc fields that must be initialized by the front-end:
  136          *
  137          * the bus tag:
  138          *      sc_bustag
  139          *
  140          * the DMA bus tag:
  141          *      sc_dmatag
  142          *
  143          * the bus handles:
  144          *      sc_seb          (Shared Ethernet Block registers)
  145          *      sc_erx          (Receiver Unit registers)
  146          *      sc_etx          (Transmitter Unit registers)
  147          *      sc_mac          (MAC registers)
  148          *      sc_mif          (Management Interface registers)
  149          *
  150          * the maximum bus burst size:
  151          *      sc_burst
  152          *
  153          * (notyet:DMA capable memory for the ring descriptors & packet buffers:
  154          *      rb_membase, rb_dmabase)
  155          *
  156          * the local Ethernet address:
  157          *      sc_enaddr
  158          *
  159          */
  160 
  161         /* Make sure the chip is stopped. */
  162         hme_stop(sc, true);
  163 
  164 
  165         /*
  166          * Allocate descriptors and buffers
  167          * XXX - do all this differently.. and more configurably,
  168          * eg. use things as `dma_load_mbuf()' on transmit,
  169          *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
  170          *     all the time) on the receiver side.
  171          *
  172          * Note: receive buffers must be 64-byte aligned.
  173          * Also, apparently, the buffers must extend to a DMA burst
  174          * boundary beyond the maximum packet size.
  175          */
  176 #define _HME_NDESC      128
  177 #define _HME_BUFSZ      1600
  178 
  179         /* Note: the # of descriptors must be a multiple of 16 */
  180         sc->sc_rb.rb_ntbuf = _HME_NDESC;
  181         sc->sc_rb.rb_nrbuf = _HME_NDESC;
  182 
  183         /*
  184          * Allocate DMA capable memory
  185          * Buffer descriptors must be aligned on a 2048 byte boundary;
  186          * take this into account when calculating the size. Note that
  187          * the maximum number of descriptors (256) occupies 2048 bytes,
  188          * so we allocate that much regardless of _HME_NDESC.
  189          */
  190         size =  2048 +                                  /* TX descriptors */
  191                 2048 +                                  /* RX descriptors */
  192                 sc->sc_rb.rb_ntbuf * _HME_BUFSZ +       /* TX buffers */
  193                 sc->sc_rb.rb_nrbuf * _HME_BUFSZ;        /* RX buffers */
  194 
  195         /* Allocate DMA buffer */
  196         if ((error = bus_dmamem_alloc(dmatag, size,
  197                                       2048, 0,
  198                                       &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
  199                 aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
  200                         error);
  201                 return;
  202         }
  203 
  204         /* Map DMA memory in CPU addressable space */
  205         if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
  206                                     &sc->sc_rb.rb_membase,
  207                                     BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
  208                 aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
  209                         error);
  210                 bus_dmamap_unload(dmatag, sc->sc_dmamap);
  211                 bus_dmamem_free(dmatag, &seg, rseg);
  212                 return;
  213         }
  214 
  215         if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
  216                                     BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
  217                 aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
  218                         error);
  219                 return;
  220         }
  221 
  222         /* Load the buffer */
  223         if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
  224             sc->sc_rb.rb_membase, size, NULL,
  225             BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
  226                 aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
  227                         error);
  228                 bus_dmamem_free(dmatag, &seg, rseg);
  229                 return;
  230         }
  231         sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
  232 
  233         printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
  234             ether_sprintf(sc->sc_enaddr));
  235 
  236         /* Initialize ifnet structure. */
  237         strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
  238         ifp->if_softc = sc;
  239         ifp->if_start = hme_start;
  240         ifp->if_ioctl = hme_ioctl;
  241         ifp->if_init = hme_init;
  242         ifp->if_watchdog = hme_watchdog;
  243         ifp->if_flags =
  244             IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
  245         sc->sc_if_flags = ifp->if_flags;
  246         ifp->if_capabilities |=
  247             IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
  248             IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
  249         IFQ_SET_READY(&ifp->if_snd);
  250 
  251         /* Initialize ifmedia structures and MII info */
  252         mii->mii_ifp = ifp;
  253         mii->mii_readreg = hme_mii_readreg;
  254         mii->mii_writereg = hme_mii_writereg;
  255         mii->mii_statchg = hme_mii_statchg;
  256 
  257         sc->sc_ethercom.ec_mii = mii;
  258         ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
  259 
  260         hme_mifinit(sc);
  261 
  262         mii_attach(&sc->sc_dev, mii, 0xffffffff,
  263                         MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
  264 
  265         child = LIST_FIRST(&mii->mii_phys);
  266         if (child == NULL) {
  267                 /* No PHY attached */
  268                 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
  269                 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
  270         } else {
  271                 /*
  272                  * Walk along the list of attached MII devices and
  273                  * establish an `MII instance' to `phy number'
  274                  * mapping. We'll use this mapping in media change
  275                  * requests to determine which phy to use to program
  276                  * the MIF configuration register.
  277                  */
  278                 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
  279                         /*
  280                          * Note: we support just two PHYs: the built-in
  281                          * internal device and an external on the MII
  282                          * connector.
  283                          */
  284                         if (child->mii_phy > 1 || child->mii_inst > 1) {
  285                                 aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
  286                                        " at phy %d, instance %d\n",
  287                                        device_xname(child->mii_dev),
  288                                        child->mii_phy, child->mii_inst);
  289                                 continue;
  290                         }
  291 
  292                         sc->sc_phys[child->mii_inst] = child->mii_phy;
  293                 }
  294 
  295                 /*
  296                  * XXX - we can really do the following ONLY if the
  297                  * phy indeed has the auto negotiation capability!!
  298                  */
  299                 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
  300         }
  301 
  302         /* claim 802.1q capability */
  303         sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
  304 
  305         /* Attach the interface. */
  306         if_attach(ifp);
  307         ether_ifattach(ifp, sc->sc_enaddr);
  308 
  309         sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
  310         if (sc->sc_sh == NULL)
  311                 panic("hme_config: can't establish shutdownhook");
  312 
  313 #if NRND > 0
  314         rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
  315                           RND_TYPE_NET, 0);
  316 #endif
  317 
  318         callout_init(&sc->sc_tick_ch, 0);
  319 }
  320 
  321 void
  322 hme_tick(arg)
  323         void *arg;
  324 {
  325         struct hme_softc *sc = arg;
  326         int s;
  327 
  328         s = splnet();
  329         mii_tick(&sc->sc_mii);
  330         splx(s);
  331 
  332         callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
  333 }
  334 
  335 void
  336 hme_reset(sc)
  337         struct hme_softc *sc;
  338 {
  339         int s;
  340 
  341         s = splnet();
  342         (void)hme_init(&sc->sc_ethercom.ec_if);
  343         splx(s);
  344 }
  345 
  346 void
  347 hme_stop(struct hme_softc *sc, bool chip_only)
  348 {
  349         bus_space_tag_t t = sc->sc_bustag;
  350         bus_space_handle_t seb = sc->sc_seb;
  351         int n;
  352 
  353         if (!chip_only) {
  354                 callout_stop(&sc->sc_tick_ch);
  355                 mii_down(&sc->sc_mii);
  356         }
  357 
  358         /* Mask all interrupts */
  359         bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
  360 
  361         /* Reset transmitter and receiver */
  362         bus_space_write_4(t, seb, HME_SEBI_RESET,
  363                           (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
  364 
  365         for (n = 0; n < 20; n++) {
  366                 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
  367                 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
  368                         return;
  369                 DELAY(20);
  370         }
  371 
  372         printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
  373 }
  374 
  375 void
  376 hme_meminit(sc)
  377         struct hme_softc *sc;
  378 {
  379         bus_addr_t txbufdma, rxbufdma;
  380         bus_addr_t dma;
  381         char *p;
  382         unsigned int ntbuf, nrbuf, i;
  383         struct hme_ring *hr = &sc->sc_rb;
  384 
  385         p = hr->rb_membase;
  386         dma = hr->rb_dmabase;
  387 
  388         ntbuf = hr->rb_ntbuf;
  389         nrbuf = hr->rb_nrbuf;
  390 
  391         /*
  392          * Allocate transmit descriptors
  393          */
  394         hr->rb_txd = p;
  395         hr->rb_txddma = dma;
  396         p += ntbuf * HME_XD_SIZE;
  397         dma += ntbuf * HME_XD_SIZE;
  398         /* We have reserved descriptor space until the next 2048 byte boundary.*/
  399         dma = (bus_addr_t)roundup((u_long)dma, 2048);
  400         p = (void *)roundup((u_long)p, 2048);
  401 
  402         /*
  403          * Allocate receive descriptors
  404          */
  405         hr->rb_rxd = p;
  406         hr->rb_rxddma = dma;
  407         p += nrbuf * HME_XD_SIZE;
  408         dma += nrbuf * HME_XD_SIZE;
  409         /* Again move forward to the next 2048 byte boundary.*/
  410         dma = (bus_addr_t)roundup((u_long)dma, 2048);
  411         p = (void *)roundup((u_long)p, 2048);
  412 
  413 
  414         /*
  415          * Allocate transmit buffers
  416          */
  417         hr->rb_txbuf = p;
  418         txbufdma = dma;
  419         p += ntbuf * _HME_BUFSZ;
  420         dma += ntbuf * _HME_BUFSZ;
  421 
  422         /*
  423          * Allocate receive buffers
  424          */
  425         hr->rb_rxbuf = p;
  426         rxbufdma = dma;
  427         p += nrbuf * _HME_BUFSZ;
  428         dma += nrbuf * _HME_BUFSZ;
  429 
  430         /*
  431          * Initialize transmit buffer descriptors
  432          */
  433         for (i = 0; i < ntbuf; i++) {
  434                 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
  435                 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
  436         }
  437 
  438         /*
  439          * Initialize receive buffer descriptors
  440          */
  441         for (i = 0; i < nrbuf; i++) {
  442                 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
  443                 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
  444                                 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
  445         }
  446 
  447         hr->rb_tdhead = hr->rb_tdtail = 0;
  448         hr->rb_td_nbusy = 0;
  449         hr->rb_rdtail = 0;
  450 }
  451 
  452 /*
  453  * Initialization of interface; set up initialization block
  454  * and transmit/receive descriptor rings.
  455  */
  456 int
  457 hme_init(ifp)
  458         struct ifnet *ifp;
  459 {
  460         struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
  461         bus_space_tag_t t = sc->sc_bustag;
  462         bus_space_handle_t seb = sc->sc_seb;
  463         bus_space_handle_t etx = sc->sc_etx;
  464         bus_space_handle_t erx = sc->sc_erx;
  465         bus_space_handle_t mac = sc->sc_mac;
  466         u_int8_t *ea;
  467         u_int32_t v;
  468         int rc;
  469 
  470         /*
  471          * Initialization sequence. The numbered steps below correspond
  472          * to the sequence outlined in section 6.3.5.1 in the Ethernet
  473          * Channel Engine manual (part of the PCIO manual).
  474          * See also the STP2002-STQ document from Sun Microsystems.
  475          */
  476 
  477         /* step 1 & 2. Reset the Ethernet Channel */
  478         hme_stop(sc, false);
  479 
  480         /* Re-initialize the MIF */
  481         hme_mifinit(sc);
  482 
  483         /* Call MI reset function if any */
  484         if (sc->sc_hwreset)
  485                 (*sc->sc_hwreset)(sc);
  486 
  487 #if 0
  488         /* Mask all MIF interrupts, just in case */
  489         bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
  490 #endif
  491 
  492         /* step 3. Setup data structures in host memory */
  493         hme_meminit(sc);
  494 
  495         /* step 4. TX MAC registers & counters */
  496         bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
  497         bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
  498         bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
  499         bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
  500         bus_space_write_4(t, mac, HME_MACI_TXSIZE,
  501             (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
  502             ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
  503         sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
  504 
  505         /* Load station MAC address */
  506         ea = sc->sc_enaddr;
  507         bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
  508         bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
  509         bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
  510 
  511         /*
  512          * Init seed for backoff
  513          * (source suggested by manual: low 10 bits of MAC address)
  514          */
  515         v = ((ea[4] << 8) | ea[5]) & 0x3fff;
  516         bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
  517 
  518 
  519         /* Note: Accepting power-on default for other MAC registers here.. */
  520 
  521 
  522         /* step 5. RX MAC registers & counters */
  523         hme_setladrf(sc);
  524 
  525         /* step 6 & 7. Program Descriptor Ring Base Addresses */
  526         bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
  527         bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
  528 
  529         bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
  530         bus_space_write_4(t, mac, HME_MACI_RXSIZE,
  531             (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
  532             ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
  533 
  534         /* step 8. Global Configuration & Interrupt Mask */
  535         bus_space_write_4(t, seb, HME_SEBI_IMASK,
  536                         ~(
  537                           /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
  538                           HME_SEB_STAT_HOSTTOTX |
  539                           HME_SEB_STAT_RXTOHOST |
  540                           HME_SEB_STAT_TXALL |
  541                           HME_SEB_STAT_TXPERR |
  542                           HME_SEB_STAT_RCNTEXP |
  543                           /*HME_SEB_STAT_MIFIRQ |*/
  544                           HME_SEB_STAT_ALL_ERRORS ));
  545 
  546         switch (sc->sc_burst) {
  547         default:
  548                 v = 0;
  549                 break;
  550         case 16:
  551                 v = HME_SEB_CFG_BURST16;
  552                 break;
  553         case 32:
  554                 v = HME_SEB_CFG_BURST32;
  555                 break;
  556         case 64:
  557                 v = HME_SEB_CFG_BURST64;
  558                 break;
  559         }
  560         bus_space_write_4(t, seb, HME_SEBI_CFG, v);
  561 
  562         /* step 9. ETX Configuration: use mostly default values */
  563 
  564         /* Enable DMA */
  565         v = bus_space_read_4(t, etx, HME_ETXI_CFG);
  566         v |= HME_ETX_CFG_DMAENABLE;
  567         bus_space_write_4(t, etx, HME_ETXI_CFG, v);
  568 
  569         /* Transmit Descriptor ring size: in increments of 16 */
  570         bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
  571 
  572 
  573         /* step 10. ERX Configuration */
  574         v = bus_space_read_4(t, erx, HME_ERXI_CFG);
  575 
  576         /* Encode Receive Descriptor ring size: four possible values */
  577         switch (_HME_NDESC /*XXX*/) {
  578         case 32:
  579                 v |= HME_ERX_CFG_RINGSIZE32;
  580                 break;
  581         case 64:
  582                 v |= HME_ERX_CFG_RINGSIZE64;
  583                 break;
  584         case 128:
  585                 v |= HME_ERX_CFG_RINGSIZE128;
  586                 break;
  587         case 256:
  588                 v |= HME_ERX_CFG_RINGSIZE256;
  589                 break;
  590         default:
  591                 printf("hme: invalid Receive Descriptor ring size\n");
  592                 break;
  593         }
  594 
  595         /* Enable DMA */
  596         v |= HME_ERX_CFG_DMAENABLE;
  597 
  598         /* set h/w rx checksum start offset (# of half-words) */
  599 #ifdef INET
  600         v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
  601                 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
  602                 ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
  603                 HME_ERX_CFG_CSUMSTART;
  604 #endif
  605         bus_space_write_4(t, erx, HME_ERXI_CFG, v);
  606 
  607         /* step 11. XIF Configuration */
  608         v = bus_space_read_4(t, mac, HME_MACI_XIF);
  609         v |= HME_MAC_XIF_OE;
  610         bus_space_write_4(t, mac, HME_MACI_XIF, v);
  611 
  612         /* step 12. RX_MAC Configuration Register */
  613         v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
  614         v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
  615         bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
  616 
  617         /* step 13. TX_MAC Configuration Register */
  618         v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
  619         v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
  620         bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
  621 
  622         /* step 14. Issue Transmit Pending command */
  623 
  624         /* Call MI initialization function if any */
  625         if (sc->sc_hwinit)
  626                 (*sc->sc_hwinit)(sc);
  627 
  628         /* Set the current media. */
  629         if ((rc = hme_mediachange(ifp)) != 0)
  630                 return rc;
  631 
  632         /* Start the one second timer. */
  633         callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
  634 
  635         ifp->if_flags |= IFF_RUNNING;
  636         ifp->if_flags &= ~IFF_OACTIVE;
  637         sc->sc_if_flags = ifp->if_flags;
  638         ifp->if_timer = 0;
  639         hme_start(ifp);
  640         return 0;
  641 }
  642 
  643 /*
  644  * Routine to copy from mbuf chain to transmit buffer in
  645  * network buffer memory.
  646  * Returns the amount of data copied.
  647  */
  648 int
  649 hme_put(sc, ri, m)
  650         struct hme_softc *sc;
  651         int ri;                 /* Ring index */
  652         struct mbuf *m;
  653 {
  654         struct mbuf *n;
  655         int len, tlen = 0;
  656         char *bp;
  657 
  658         bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
  659         for (; m; m = n) {
  660                 len = m->m_len;
  661                 if (len == 0) {
  662                         MFREE(m, n);
  663                         continue;
  664                 }
  665                 memcpy(bp, mtod(m, void *), len);
  666                 bp += len;
  667                 tlen += len;
  668                 MFREE(m, n);
  669         }
  670         return (tlen);
  671 }
  672 
  673 /*
  674  * Pull data off an interface.
  675  * Len is length of data, with local net header stripped.
  676  * We copy the data into mbufs.  When full cluster sized units are present
  677  * we copy into clusters.
  678  */
  679 struct mbuf *
  680 hme_get(sc, ri, flags)
  681         struct hme_softc *sc;
  682         int ri;
  683         u_int32_t flags;
  684 {
  685         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
  686         struct mbuf *m, *m0, *newm;
  687         char *bp;
  688         int len, totlen;
  689 
  690         totlen = HME_XD_DECODE_RSIZE(flags);
  691         MGETHDR(m0, M_DONTWAIT, MT_DATA);
  692         if (m0 == 0)
  693                 return (0);
  694         m0->m_pkthdr.rcvif = ifp;
  695         m0->m_pkthdr.len = totlen;
  696         len = MHLEN;
  697         m = m0;
  698 
  699         bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
  700 
  701         while (totlen > 0) {
  702                 if (totlen >= MINCLSIZE) {
  703                         MCLGET(m, M_DONTWAIT);
  704                         if ((m->m_flags & M_EXT) == 0)
  705                                 goto bad;
  706                         len = MCLBYTES;
  707                 }
  708 
  709                 if (m == m0) {
  710                         char *newdata = (char *)
  711                             ALIGN(m->m_data + sizeof(struct ether_header)) -
  712                             sizeof(struct ether_header);
  713                         len -= newdata - m->m_data;
  714                         m->m_data = newdata;
  715                 }
  716 
  717                 m->m_len = len = min(totlen, len);
  718                 memcpy(mtod(m, void *), bp, len);
  719                 bp += len;
  720 
  721                 totlen -= len;
  722                 if (totlen > 0) {
  723                         MGET(newm, M_DONTWAIT, MT_DATA);
  724                         if (newm == 0)
  725                                 goto bad;
  726                         len = MLEN;
  727                         m = m->m_next = newm;
  728                 }
  729         }
  730 
  731 #ifdef INET
  732         /* hardware checksum */
  733         if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
  734                 struct ether_header *eh;
  735                 struct ip *ip;
  736                 struct udphdr *uh;
  737                 uint16_t *opts;
  738                 int32_t hlen, pktlen;
  739                 uint32_t temp;
  740 
  741                 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
  742                         pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
  743                                 ETHER_VLAN_ENCAP_LEN;
  744                         eh = (struct ether_header *) mtod(m0, void *) +
  745                                 ETHER_VLAN_ENCAP_LEN;
  746                 } else {
  747                         pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
  748                         eh = mtod(m0, struct ether_header *);
  749                 }
  750                 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
  751                         goto swcsum;
  752                 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
  753 
  754                 /* IPv4 only */
  755                 if (ip->ip_v != IPVERSION)
  756                         goto swcsum;
  757 
  758                 hlen = ip->ip_hl << 2;
  759                 if (hlen < sizeof(struct ip))
  760                         goto swcsum;
  761 
  762                 /*
  763                  * bail if too short, has random trailing garbage, truncated,
  764                  * fragment, or has ethernet pad.
  765                  */
  766                 if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
  767                     || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
  768                         goto swcsum;
  769 
  770                 switch (ip->ip_p) {
  771                 case IPPROTO_TCP:
  772                         if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
  773                                 goto swcsum;
  774                         if (pktlen < (hlen + sizeof(struct tcphdr)))
  775                                 goto swcsum;
  776                         m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
  777                         break;
  778                 case IPPROTO_UDP:
  779                         if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
  780                                 goto swcsum;
  781                         if (pktlen < (hlen + sizeof(struct udphdr)))
  782                                 goto swcsum;
  783                         uh = (struct udphdr *)((char *)ip + hlen);
  784                         /* no checksum */
  785                         if (uh->uh_sum == 0)
  786                                 goto swcsum;
  787                         m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
  788                         break;
  789                 default:
  790                         goto swcsum;
  791                 }
  792 
  793                 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
  794                 m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
  795 
  796                 /* if the pkt had ip options, we have to deduct them */
  797                 if (hlen > sizeof(struct ip)) {
  798                         uint32_t optsum;
  799 
  800                         optsum = 0;
  801                         temp = hlen - sizeof(struct ip);
  802                         opts = (uint16_t *)((char *)ip + sizeof(struct ip));
  803 
  804                         while (temp > 1) {
  805                                 optsum += ntohs(*opts++);
  806                                 temp -= 2;
  807                         }
  808                         while (optsum >> 16)
  809                                 optsum = (optsum >> 16) + (optsum & 0xffff);
  810 
  811                         /* Deduct the ip opts sum from the hwsum. */
  812                         m0->m_pkthdr.csum_data += (uint16_t)~optsum;
  813 
  814                         while (m0->m_pkthdr.csum_data >> 16)
  815                                 m0->m_pkthdr.csum_data =
  816                                         (m0->m_pkthdr.csum_data >> 16) +
  817                                         (m0->m_pkthdr.csum_data & 0xffff);
  818                 }
  819 
  820                 m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
  821         } else
  822 swcsum:
  823                 m0->m_pkthdr.csum_flags = 0;
  824 #endif
  825 
  826         return (m0);
  827 
  828 bad:
  829         m_freem(m0);
  830         return (0);
  831 }
  832 
  833 /*
  834  * Pass a packet to the higher levels.
  835  */
  836 void
  837 hme_read(sc, ix, flags)
  838         struct hme_softc *sc;
  839         int ix;
  840         u_int32_t flags;
  841 {
  842         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
  843         struct mbuf *m;
  844         int len;
  845 
  846         len = HME_XD_DECODE_RSIZE(flags);
  847         if (len <= sizeof(struct ether_header) ||
  848             len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
  849             ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
  850             ETHERMTU + sizeof(struct ether_header))) {
  851 #ifdef HMEDEBUG
  852                 printf("%s: invalid packet size %d; dropping\n",
  853                     device_xname(&sc->sc_dev), len);
  854 #endif
  855                 ifp->if_ierrors++;
  856                 return;
  857         }
  858 
  859         /* Pull packet off interface. */
  860         m = hme_get(sc, ix, flags);
  861         if (m == 0) {
  862                 ifp->if_ierrors++;
  863                 return;
  864         }
  865 
  866         ifp->if_ipackets++;
  867 
  868 #if NBPFILTER > 0
  869         /*
  870          * Check if there's a BPF listener on this interface.
  871          * If so, hand off the raw packet to BPF.
  872          */
  873         if (ifp->if_bpf)
  874                 bpf_mtap(ifp->if_bpf, m);
  875 #endif
  876 
  877         /* Pass the packet up. */
  878         (*ifp->if_input)(ifp, m);
  879 }
  880 
  881 void
  882 hme_start(ifp)
  883         struct ifnet *ifp;
  884 {
  885         struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
  886         void *txd = sc->sc_rb.rb_txd;
  887         struct mbuf *m;
  888         unsigned int txflags;
  889         unsigned int ri, len;
  890         unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
  891 
  892         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
  893                 return;
  894 
  895         ri = sc->sc_rb.rb_tdhead;
  896 
  897         for (;;) {
  898                 IFQ_DEQUEUE(&ifp->if_snd, m);
  899                 if (m == 0)
  900                         break;
  901 
  902 #if NBPFILTER > 0
  903                 /*
  904                  * If BPF is listening on this interface, let it see the
  905                  * packet before we commit it to the wire.
  906                  */
  907                 if (ifp->if_bpf)
  908                         bpf_mtap(ifp->if_bpf, m);
  909 #endif
  910 
  911 #ifdef INET
  912                 /* collect bits for h/w csum, before hme_put frees the mbuf */
  913                 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
  914                     m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
  915                         struct ether_header *eh;
  916                         uint16_t offset, start;
  917 
  918                         eh = mtod(m, struct ether_header *);
  919                         switch (ntohs(eh->ether_type)) {
  920                         case ETHERTYPE_IP:
  921                                 start = ETHER_HDR_LEN;
  922                                 break;
  923                         case ETHERTYPE_VLAN:
  924                                 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
  925                                 break;
  926                         default:
  927                                 /* unsupported, drop it */
  928                                 m_free(m);
  929                                 continue;
  930                         }
  931                         start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
  932                         offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
  933                             + start;
  934                         txflags = HME_XD_TXCKSUM |
  935                                   (offset << HME_XD_TXCSSTUFFSHIFT) |
  936                                   (start << HME_XD_TXCSSTARTSHIFT);
  937                 } else
  938 #endif
  939                         txflags = 0;
  940 
  941                 /*
  942                  * Copy the mbuf chain into the transmit buffer.
  943                  */
  944                 len = hme_put(sc, ri, m);
  945 
  946                 /*
  947                  * Initialize transmit registers and start transmission
  948                  */
  949                 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
  950                         HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
  951                         HME_XD_ENCODE_TSIZE(len) | txflags);
  952 
  953                 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
  954                 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
  955                                   HME_ETX_TP_DMAWAKEUP);
  956 
  957                 if (++ri == ntbuf)
  958                         ri = 0;
  959 
  960                 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
  961                         ifp->if_flags |= IFF_OACTIVE;
  962                         break;
  963                 }
  964         }
  965 
  966         sc->sc_rb.rb_tdhead = ri;
  967 }
  968 
  969 /*
  970  * Transmit interrupt.
  971  */
  972 int
  973 hme_tint(sc)
  974         struct hme_softc *sc;
  975 {
  976         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
  977         bus_space_tag_t t = sc->sc_bustag;
  978         bus_space_handle_t mac = sc->sc_mac;
  979         unsigned int ri, txflags;
  980 
  981         /*
  982          * Unload collision counters
  983          */
  984         ifp->if_collisions +=
  985                 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
  986                 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
  987                 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
  988                 bus_space_read_4(t, mac, HME_MACI_LTCNT);
  989 
  990         /*
  991          * then clear the hardware counters.
  992          */
  993         bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
  994         bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
  995         bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
  996         bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
  997 
  998         /* Fetch current position in the transmit ring */
  999         ri = sc->sc_rb.rb_tdtail;
 1000 
 1001         for (;;) {
 1002                 if (sc->sc_rb.rb_td_nbusy <= 0)
 1003                         break;
 1004 
 1005                 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
 1006 
 1007                 if (txflags & HME_XD_OWN)
 1008                         break;
 1009 
 1010                 ifp->if_flags &= ~IFF_OACTIVE;
 1011                 ifp->if_opackets++;
 1012 
 1013                 if (++ri == sc->sc_rb.rb_ntbuf)
 1014                         ri = 0;
 1015 
 1016                 --sc->sc_rb.rb_td_nbusy;
 1017         }
 1018 
 1019         /* Update ring */
 1020         sc->sc_rb.rb_tdtail = ri;
 1021 
 1022         hme_start(ifp);
 1023 
 1024         if (sc->sc_rb.rb_td_nbusy == 0)
 1025                 ifp->if_timer = 0;
 1026 
 1027         return (1);
 1028 }
 1029 
 1030 /*
 1031  * Receive interrupt.
 1032  */
 1033 int
 1034 hme_rint(sc)
 1035         struct hme_softc *sc;
 1036 {
 1037         void *xdr = sc->sc_rb.rb_rxd;
 1038         unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
 1039         unsigned int ri;
 1040         u_int32_t flags;
 1041 
 1042         ri = sc->sc_rb.rb_rdtail;
 1043 
 1044         /*
 1045          * Process all buffers with valid data.
 1046          */
 1047         for (;;) {
 1048                 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
 1049                 if (flags & HME_XD_OWN)
 1050                         break;
 1051 
 1052                 if (flags & HME_XD_OFL) {
 1053                         printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
 1054                                         device_xname(&sc->sc_dev), ri, flags);
 1055                 } else
 1056                         hme_read(sc, ri, flags);
 1057 
 1058                 /* This buffer can be used by the hardware again */
 1059                 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
 1060                                 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
 1061 
 1062                 if (++ri == nrbuf)
 1063                         ri = 0;
 1064         }
 1065 
 1066         sc->sc_rb.rb_rdtail = ri;
 1067 
 1068         return (1);
 1069 }
 1070 
 1071 int
 1072 hme_eint(sc, status)
 1073         struct hme_softc *sc;
 1074         u_int status;
 1075 {
 1076         char bits[128];
 1077 
 1078         if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
 1079                 bus_space_tag_t t = sc->sc_bustag;
 1080                 bus_space_handle_t mif = sc->sc_mif;
 1081                 u_int32_t cf, st, sm;
 1082                 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
 1083                 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
 1084                 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
 1085                 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
 1086                         device_xname(&sc->sc_dev), cf, st, sm);
 1087                 return (1);
 1088         }
 1089 
 1090         printf("%s: status=%s\n", device_xname(&sc->sc_dev),
 1091                 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
 1092         return (1);
 1093 }
 1094 
 1095 int
 1096 hme_intr(v)
 1097         void *v;
 1098 {
 1099         struct hme_softc *sc = (struct hme_softc *)v;
 1100         bus_space_tag_t t = sc->sc_bustag;
 1101         bus_space_handle_t seb = sc->sc_seb;
 1102         u_int32_t status;
 1103         int r = 0;
 1104 
 1105         status = bus_space_read_4(t, seb, HME_SEBI_STAT);
 1106 
 1107         if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
 1108                 r |= hme_eint(sc, status);
 1109 
 1110         if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
 1111                 r |= hme_tint(sc);
 1112 
 1113         if ((status & HME_SEB_STAT_RXTOHOST) != 0)
 1114                 r |= hme_rint(sc);
 1115 
 1116 #if NRND > 0
 1117         rnd_add_uint32(&sc->rnd_source, status);
 1118 #endif
 1119 
 1120         return (r);
 1121 }
 1122 
 1123 
 1124 void
 1125 hme_watchdog(ifp)
 1126         struct ifnet *ifp;
 1127 {
 1128         struct hme_softc *sc = ifp->if_softc;
 1129 
 1130         log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
 1131         ++ifp->if_oerrors;
 1132 
 1133         hme_reset(sc);
 1134 }
 1135 
 1136 /*
 1137  * Initialize the MII Management Interface
 1138  */
 1139 void
 1140 hme_mifinit(sc)
 1141         struct hme_softc *sc;
 1142 {
 1143         bus_space_tag_t t = sc->sc_bustag;
 1144         bus_space_handle_t mif = sc->sc_mif;
 1145         bus_space_handle_t mac = sc->sc_mac;
 1146         int instance, phy;
 1147         u_int32_t v;
 1148 
 1149         if (sc->sc_mii.mii_media.ifm_cur != NULL) {
 1150                 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
 1151                 phy = sc->sc_phys[instance];
 1152         } else
 1153                 /* No media set yet, pick phy arbitrarily.. */
 1154                 phy = HME_PHYAD_EXTERNAL;
 1155 
 1156         /* Configure the MIF in frame mode, no poll, current phy select */
 1157         v = 0;
 1158         if (phy == HME_PHYAD_EXTERNAL)
 1159                 v |= HME_MIF_CFG_PHY;
 1160         bus_space_write_4(t, mif, HME_MIFI_CFG, v);
 1161 
 1162         /* If an external transceiver is selected, enable its MII drivers */
 1163         v = bus_space_read_4(t, mac, HME_MACI_XIF);
 1164         v &= ~HME_MAC_XIF_MIIENABLE;
 1165         if (phy == HME_PHYAD_EXTERNAL)
 1166                 v |= HME_MAC_XIF_MIIENABLE;
 1167         bus_space_write_4(t, mac, HME_MACI_XIF, v);
 1168 }
 1169 
 1170 /*
 1171  * MII interface
 1172  */
 1173 static int
 1174 hme_mii_readreg(self, phy, reg)
 1175         struct device *self;
 1176         int phy, reg;
 1177 {
 1178         struct hme_softc *sc = (void *)self;
 1179         bus_space_tag_t t = sc->sc_bustag;
 1180         bus_space_handle_t mif = sc->sc_mif;
 1181         bus_space_handle_t mac = sc->sc_mac;
 1182         u_int32_t v, xif_cfg, mifi_cfg;
 1183         int n;
 1184 
 1185         /* We can at most have two PHYs */
 1186         if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
 1187                 return (0);
 1188 
 1189         /* Select the desired PHY in the MIF configuration register */
 1190         v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
 1191         v &= ~HME_MIF_CFG_PHY;
 1192         if (phy == HME_PHYAD_EXTERNAL)
 1193                 v |= HME_MIF_CFG_PHY;
 1194         bus_space_write_4(t, mif, HME_MIFI_CFG, v);
 1195 
 1196         /* Enable MII drivers on external transceiver */
 1197         v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
 1198         if (phy == HME_PHYAD_EXTERNAL)
 1199                 v |= HME_MAC_XIF_MIIENABLE;
 1200         else
 1201                 v &= ~HME_MAC_XIF_MIIENABLE;
 1202         bus_space_write_4(t, mac, HME_MACI_XIF, v);
 1203 
 1204 #if 0
 1205 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
 1206         /*
 1207          * Check whether a transceiver is connected by testing
 1208          * the MIF configuration register's MDI_X bits. Note that
 1209          * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
 1210          */
 1211         mif_mdi_bit = 1 << (8 + (1 - phy));
 1212         delay(100);
 1213         v = bus_space_read_4(t, mif, HME_MIFI_CFG);
 1214         if ((v & mif_mdi_bit) == 0)
 1215                 return (0);
 1216 #endif
 1217 
 1218         /* Construct the frame command */
 1219         v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
 1220             HME_MIF_FO_TAMSB |
 1221             (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
 1222             (phy << HME_MIF_FO_PHYAD_SHIFT) |
 1223             (reg << HME_MIF_FO_REGAD_SHIFT);
 1224 
 1225         bus_space_write_4(t, mif, HME_MIFI_FO, v);
 1226         for (n = 0; n < 100; n++) {
 1227                 DELAY(1);
 1228                 v = bus_space_read_4(t, mif, HME_MIFI_FO);
 1229                 if (v & HME_MIF_FO_TALSB) {
 1230                         v &= HME_MIF_FO_DATA;
 1231                         goto out;
 1232                 }
 1233         }
 1234 
 1235         v = 0;
 1236         printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
 1237 
 1238 out:
 1239         /* Restore MIFI_CFG register */
 1240         bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
 1241         /* Restore XIF register */
 1242         bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
 1243         return (v);
 1244 }
 1245 
 1246 static void
 1247 hme_mii_writereg(self, phy, reg, val)
 1248         struct device *self;
 1249         int phy, reg, val;
 1250 {
 1251         struct hme_softc *sc = (void *)self;
 1252         bus_space_tag_t t = sc->sc_bustag;
 1253         bus_space_handle_t mif = sc->sc_mif;
 1254         bus_space_handle_t mac = sc->sc_mac;
 1255         u_int32_t v, xif_cfg, mifi_cfg;
 1256         int n;
 1257 
 1258         /* We can at most have two PHYs */
 1259         if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
 1260                 return;
 1261 
 1262         /* Select the desired PHY in the MIF configuration register */
 1263         v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
 1264         v &= ~HME_MIF_CFG_PHY;
 1265         if (phy == HME_PHYAD_EXTERNAL)
 1266                 v |= HME_MIF_CFG_PHY;
 1267         bus_space_write_4(t, mif, HME_MIFI_CFG, v);
 1268 
 1269         /* Enable MII drivers on external transceiver */
 1270         v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
 1271         if (phy == HME_PHYAD_EXTERNAL)
 1272                 v |= HME_MAC_XIF_MIIENABLE;
 1273         else
 1274                 v &= ~HME_MAC_XIF_MIIENABLE;
 1275         bus_space_write_4(t, mac, HME_MACI_XIF, v);
 1276 
 1277 #if 0
 1278 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
 1279         /*
 1280          * Check whether a transceiver is connected by testing
 1281          * the MIF configuration register's MDI_X bits. Note that
 1282          * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
 1283          */
 1284         mif_mdi_bit = 1 << (8 + (1 - phy));
 1285         delay(100);
 1286         v = bus_space_read_4(t, mif, HME_MIFI_CFG);
 1287         if ((v & mif_mdi_bit) == 0)
 1288                 return;
 1289 #endif
 1290 
 1291         /* Construct the frame command */
 1292         v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)  |
 1293             HME_MIF_FO_TAMSB                            |
 1294             (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
 1295             (phy << HME_MIF_FO_PHYAD_SHIFT)             |
 1296             (reg << HME_MIF_FO_REGAD_SHIFT)             |
 1297             (val & HME_MIF_FO_DATA);
 1298 
 1299         bus_space_write_4(t, mif, HME_MIFI_FO, v);
 1300         for (n = 0; n < 100; n++) {
 1301                 DELAY(1);
 1302                 v = bus_space_read_4(t, mif, HME_MIFI_FO);
 1303                 if (v & HME_MIF_FO_TALSB)
 1304                         goto out;
 1305         }
 1306 
 1307         printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
 1308 out:
 1309         /* Restore MIFI_CFG register */
 1310         bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
 1311         /* Restore XIF register */
 1312         bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
 1313 }
 1314 
 1315 static void
 1316 hme_mii_statchg(dev)
 1317         struct device *dev;
 1318 {
 1319         struct hme_softc *sc = (void *)dev;
 1320         bus_space_tag_t t = sc->sc_bustag;
 1321         bus_space_handle_t mac = sc->sc_mac;
 1322         u_int32_t v;
 1323 
 1324 #ifdef HMEDEBUG
 1325         if (sc->sc_debug)
 1326                 printf("hme_mii_statchg: status change\n");
 1327 #endif
 1328 
 1329         /* Set the MAC Full Duplex bit appropriately */
 1330         /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
 1331            but not otherwise. */
 1332         v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
 1333         if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
 1334                 v |= HME_MAC_TXCFG_FULLDPLX;
 1335                 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
 1336         } else {
 1337                 v &= ~HME_MAC_TXCFG_FULLDPLX;
 1338                 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
 1339         }
 1340         sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
 1341         bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
 1342 }
 1343 
 1344 int
 1345 hme_mediachange(ifp)
 1346         struct ifnet *ifp;
 1347 {
 1348         struct hme_softc *sc = ifp->if_softc;
 1349         bus_space_tag_t t = sc->sc_bustag;
 1350         bus_space_handle_t mif = sc->sc_mif;
 1351         bus_space_handle_t mac = sc->sc_mac;
 1352         int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
 1353         int phy = sc->sc_phys[instance];
 1354         int rc;
 1355         u_int32_t v;
 1356 
 1357 #ifdef HMEDEBUG
 1358         if (sc->sc_debug)
 1359                 printf("hme_mediachange: phy = %d\n", phy);
 1360 #endif
 1361 
 1362         /* Select the current PHY in the MIF configuration register */
 1363         v = bus_space_read_4(t, mif, HME_MIFI_CFG);
 1364         v &= ~HME_MIF_CFG_PHY;
 1365         if (phy == HME_PHYAD_EXTERNAL)
 1366                 v |= HME_MIF_CFG_PHY;
 1367         bus_space_write_4(t, mif, HME_MIFI_CFG, v);
 1368 
 1369         /* If an external transceiver is selected, enable its MII drivers */
 1370         v = bus_space_read_4(t, mac, HME_MACI_XIF);
 1371         v &= ~HME_MAC_XIF_MIIENABLE;
 1372         if (phy == HME_PHYAD_EXTERNAL)
 1373                 v |= HME_MAC_XIF_MIIENABLE;
 1374         bus_space_write_4(t, mac, HME_MACI_XIF, v);
 1375 
 1376         if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
 1377                 return 0;
 1378         return rc;
 1379 }
 1380 
 1381 /*
 1382  * Process an ioctl request.
 1383  */
 1384 int
 1385 hme_ioctl(ifp, cmd, data)
 1386         struct ifnet *ifp;
 1387         u_long cmd;
 1388         void *data;
 1389 {
 1390         struct hme_softc *sc = ifp->if_softc;
 1391         struct ifaddr *ifa = (struct ifaddr *)data;
 1392         int s, error = 0;
 1393 
 1394         s = splnet();
 1395 
 1396         switch (cmd) {
 1397 
 1398         case SIOCSIFADDR:
 1399                 switch (ifa->ifa_addr->sa_family) {
 1400 #ifdef INET
 1401                 case AF_INET:
 1402                         if (ifp->if_flags & IFF_UP)
 1403                                 hme_setladrf(sc);
 1404                         else {
 1405                                 ifp->if_flags |= IFF_UP;
 1406                                 error = hme_init(ifp);
 1407                         }
 1408                         arp_ifinit(ifp, ifa);
 1409                         break;
 1410 #endif
 1411                 default:
 1412                         ifp->if_flags |= IFF_UP;
 1413                         error = hme_init(ifp);
 1414                         break;
 1415                 }
 1416                 break;
 1417 
 1418         case SIOCSIFFLAGS:
 1419 #ifdef HMEDEBUG
 1420                 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
 1421 #endif
 1422 
 1423                 if ((ifp->if_flags & IFF_UP) == 0 &&
 1424                     (ifp->if_flags & IFF_RUNNING) != 0) {
 1425                         /*
 1426                          * If interface is marked down and it is running, then
 1427                          * stop it.
 1428                          */
 1429                         hme_stop(sc, false);
 1430                         ifp->if_flags &= ~IFF_RUNNING;
 1431                 } else if ((ifp->if_flags & IFF_UP) != 0 &&
 1432                            (ifp->if_flags & IFF_RUNNING) == 0) {
 1433                         /*
 1434                          * If interface is marked up and it is stopped, then
 1435                          * start it.
 1436                          */
 1437                         error = hme_init(ifp);
 1438                 } else if ((ifp->if_flags & IFF_UP) != 0) {
 1439                         /*
 1440                          * If setting debug or promiscuous mode, do not reset
 1441                          * the chip; for everything else, call hme_init()
 1442                          * which will trigger a reset.
 1443                          */
 1444 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
 1445                         if (ifp->if_flags != sc->sc_if_flags) {
 1446                                 if ((ifp->if_flags & (~RESETIGN))
 1447                                     == (sc->sc_if_flags & (~RESETIGN)))
 1448                                         hme_setladrf(sc);
 1449                                 else
 1450                                         error = hme_init(ifp);
 1451                         }
 1452 #undef RESETIGN
 1453                 }
 1454 
 1455                 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
 1456                         error = hme_init(ifp);
 1457 
 1458                 break;
 1459 
 1460         default:
 1461                 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
 1462                         break;
 1463 
 1464                 error = 0;
 1465 
 1466                 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
 1467                         ;
 1468                 else if (ifp->if_flags & IFF_RUNNING) {
 1469                         /*
 1470                          * Multicast list has changed; set the hardware filter
 1471                          * accordingly.
 1472                          */
 1473                         hme_setladrf(sc);
 1474                 }
 1475                 break;
 1476         }
 1477 
 1478         sc->sc_if_flags = ifp->if_flags;
 1479         splx(s);
 1480         return (error);
 1481 }
 1482 
 1483 void
 1484 hme_shutdown(arg)
 1485         void *arg;
 1486 {
 1487 
 1488         hme_stop((struct hme_softc *)arg, false);
 1489 }
 1490 
 1491 /*
 1492  * Set up the logical address filter.
 1493  */
 1494 void
 1495 hme_setladrf(sc)
 1496         struct hme_softc *sc;
 1497 {
 1498         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
 1499         struct ether_multi *enm;
 1500         struct ether_multistep step;
 1501         struct ethercom *ec = &sc->sc_ethercom;
 1502         bus_space_tag_t t = sc->sc_bustag;
 1503         bus_space_handle_t mac = sc->sc_mac;
 1504         u_char *cp;
 1505         u_int32_t crc;
 1506         u_int32_t hash[4];
 1507         u_int32_t v;
 1508         int len;
 1509 
 1510         /* Clear hash table */
 1511         hash[3] = hash[2] = hash[1] = hash[0] = 0;
 1512 
 1513         /* Get current RX configuration */
 1514         v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
 1515 
 1516         if ((ifp->if_flags & IFF_PROMISC) != 0) {
 1517                 /* Turn on promiscuous mode; turn off the hash filter */
 1518                 v |= HME_MAC_RXCFG_PMISC;
 1519                 v &= ~HME_MAC_RXCFG_HENABLE;
 1520                 ifp->if_flags |= IFF_ALLMULTI;
 1521                 goto chipit;
 1522         }
 1523 
 1524         /* Turn off promiscuous mode; turn on the hash filter */
 1525         v &= ~HME_MAC_RXCFG_PMISC;
 1526         v |= HME_MAC_RXCFG_HENABLE;
 1527 
 1528         /*
 1529          * Set up multicast address filter by passing all multicast addresses
 1530          * through a crc generator, and then using the high order 6 bits as an
 1531          * index into the 64 bit logical address filter.  The high order bit
 1532          * selects the word, while the rest of the bits select the bit within
 1533          * the word.
 1534          */
 1535 
 1536         ETHER_FIRST_MULTI(step, ec, enm);
 1537         while (enm != NULL) {
 1538                 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
 1539                         /*
 1540                          * We must listen to a range of multicast addresses.
 1541                          * For now, just accept all multicasts, rather than
 1542                          * trying to set only those filter bits needed to match
 1543                          * the range.  (At this time, the only use of address
 1544                          * ranges is for IP multicast routing, for which the
 1545                          * range is big enough to require all bits set.)
 1546                          */
 1547                         hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
 1548                         ifp->if_flags |= IFF_ALLMULTI;
 1549                         goto chipit;
 1550                 }
 1551 
 1552                 cp = enm->enm_addrlo;
 1553                 crc = 0xffffffff;
 1554                 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
 1555                         int octet = *cp++;
 1556                         int i;
 1557 
 1558 #define MC_POLY_LE      0xedb88320UL    /* mcast crc, little endian */
 1559                         for (i = 0; i < 8; i++) {
 1560                                 if ((crc & 1) ^ (octet & 1)) {
 1561                                         crc >>= 1;
 1562                                         crc ^= MC_POLY_LE;
 1563                                 } else {
 1564                                         crc >>= 1;
 1565                                 }
 1566                                 octet >>= 1;
 1567                         }
 1568                 }
 1569                 /* Just want the 6 most significant bits. */
 1570                 crc >>= 26;
 1571 
 1572                 /* Set the corresponding bit in the filter. */
 1573                 hash[crc >> 4] |= 1 << (crc & 0xf);
 1574 
 1575                 ETHER_NEXT_MULTI(step, enm);
 1576         }
 1577 
 1578         ifp->if_flags &= ~IFF_ALLMULTI;
 1579 
 1580 chipit:
 1581         /* Now load the hash table into the chip */
 1582         bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
 1583         bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
 1584         bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
 1585         bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
 1586         bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
 1587 }
 1588 
 1589 /*
 1590  * Routines for accessing the transmit and receive buffers.
 1591  * The various CPU and adapter configurations supported by this
 1592  * driver require three different access methods for buffers
 1593  * and descriptors:
 1594  *      (1) contig (contiguous data; no padding),
 1595  *      (2) gap2 (two bytes of data followed by two bytes of padding),
 1596  *      (3) gap16 (16 bytes of data followed by 16 bytes of padding).
 1597  */
 1598 
 1599 #if 0
 1600 /*
 1601  * contig: contiguous data with no padding.
 1602  *
 1603  * Buffers may have any alignment.
 1604  */
 1605 
 1606 void
 1607 hme_copytobuf_contig(sc, from, ri, len)
 1608         struct hme_softc *sc;
 1609         void *from;
 1610         int ri, len;
 1611 {
 1612         volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
 1613 
 1614         /*
 1615          * Just call memcpy() to do the work.
 1616          */
 1617         memcpy(buf, from, len);
 1618 }
 1619 
 1620 void
 1621 hme_copyfrombuf_contig(sc, to, boff, len)
 1622         struct hme_softc *sc;
 1623         void *to;
 1624         int boff, len;
 1625 {
 1626         volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
 1627 
 1628         /*
 1629          * Just call memcpy() to do the work.
 1630          */
 1631         memcpy(to, buf, len);
 1632 }
 1633 #endif

Cache object: 390959cb3e06c9d4bdf1e91a527fc078


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.