The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/i82557.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: i82557.c,v 1.115.4.1 2008/12/14 11:52:40 bouyer Exp $  */
    2 
    3 /*-
    4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to The NetBSD Foundation
    8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
    9  * NASA Ames Research Center.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30  * POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 /*
   34  * Copyright (c) 1995, David Greenman
   35  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
   36  * All rights reserved.
   37  *
   38  * Redistribution and use in source and binary forms, with or without
   39  * modification, are permitted provided that the following conditions
   40  * are met:
   41  * 1. Redistributions of source code must retain the above copyright
   42  *    notice unmodified, this list of conditions, and the following
   43  *    disclaimer.
   44  * 2. Redistributions in binary form must reproduce the above copyright
   45  *    notice, this list of conditions and the following disclaimer in the
   46  *    documentation and/or other materials provided with the distribution.
   47  *
   48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   58  * SUCH DAMAGE.
   59  *
   60  *      Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
   61  */
   62 
   63 /*
   64  * Device driver for the Intel i82557 fast Ethernet controller,
   65  * and its successors, the i82558 and i82559.
   66  */
   67 
   68 #include <sys/cdefs.h>
   69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.115.4.1 2008/12/14 11:52:40 bouyer Exp $");
   70 
   71 #include "bpfilter.h"
   72 #include "rnd.h"
   73 
   74 #include <sys/param.h>
   75 #include <sys/systm.h>
   76 #include <sys/callout.h>
   77 #include <sys/mbuf.h>
   78 #include <sys/malloc.h>
   79 #include <sys/kernel.h>
   80 #include <sys/socket.h>
   81 #include <sys/ioctl.h>
   82 #include <sys/errno.h>
   83 #include <sys/device.h>
   84 #include <sys/syslog.h>
   85 
   86 #include <machine/endian.h>
   87 
   88 #include <uvm/uvm_extern.h>
   89 
   90 #if NRND > 0
   91 #include <sys/rnd.h>
   92 #endif
   93 
   94 #include <net/if.h>
   95 #include <net/if_dl.h>
   96 #include <net/if_media.h>
   97 #include <net/if_ether.h>
   98 
   99 #if NBPFILTER > 0
  100 #include <net/bpf.h>
  101 #endif
  102 
  103 #include <sys/bus.h>
  104 #include <sys/intr.h>
  105 
  106 #include <dev/mii/miivar.h>
  107 
  108 #include <dev/ic/i82557reg.h>
  109 #include <dev/ic/i82557var.h>
  110 
  111 #include <dev/microcode/i8255x/rcvbundl.h>
  112 
  113 /*
  114  * NOTE!  On the Alpha, we have an alignment constraint.  The
  115  * card DMAs the packet immediately following the RFA.  However,
  116  * the first thing in the packet is a 14-byte Ethernet header.
  117  * This means that the packet is misaligned.  To compensate,
  118  * we actually offset the RFA 2 bytes into the cluster.  This
  119  * alignes the packet after the Ethernet header at a 32-bit
  120  * boundary.  HOWEVER!  This means that the RFA is misaligned!
  121  */
  122 #define RFA_ALIGNMENT_FUDGE     2
  123 
  124 /*
  125  * The configuration byte map has several undefined fields which
  126  * must be one or must be zero.  Set up a template for these bits
  127  * only (assuming an i82557 chip), leaving the actual configuration
  128  * for fxp_init().
  129  *
  130  * See the definition of struct fxp_cb_config for the bit definitions.
  131  */
  132 const u_int8_t fxp_cb_config_template[] = {
  133         0x0, 0x0,               /* cb_status */
  134         0x0, 0x0,               /* cb_command */
  135         0x0, 0x0, 0x0, 0x0,     /* link_addr */
  136         0x0,    /*  0 */
  137         0x0,    /*  1 */
  138         0x0,    /*  2 */
  139         0x0,    /*  3 */
  140         0x0,    /*  4 */
  141         0x0,    /*  5 */
  142         0x32,   /*  6 */
  143         0x0,    /*  7 */
  144         0x0,    /*  8 */
  145         0x0,    /*  9 */
  146         0x6,    /* 10 */
  147         0x0,    /* 11 */
  148         0x0,    /* 12 */
  149         0x0,    /* 13 */
  150         0xf2,   /* 14 */
  151         0x48,   /* 15 */
  152         0x0,    /* 16 */
  153         0x40,   /* 17 */
  154         0xf0,   /* 18 */
  155         0x0,    /* 19 */
  156         0x3f,   /* 20 */
  157         0x5,    /* 21 */
  158         0x0,    /* 22 */
  159         0x0,    /* 23 */
  160         0x0,    /* 24 */
  161         0x0,    /* 25 */
  162         0x0,    /* 26 */
  163         0x0,    /* 27 */
  164         0x0,    /* 28 */
  165         0x0,    /* 29 */
  166         0x0,    /* 30 */
  167         0x0,    /* 31 */
  168 };
  169 
  170 void    fxp_mii_initmedia(struct fxp_softc *);
  171 void    fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
  172 
  173 void    fxp_80c24_initmedia(struct fxp_softc *);
  174 int     fxp_80c24_mediachange(struct ifnet *);
  175 void    fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
  176 
  177 void    fxp_start(struct ifnet *);
  178 int     fxp_ioctl(struct ifnet *, u_long, void *);
  179 void    fxp_watchdog(struct ifnet *);
  180 int     fxp_init(struct ifnet *);
  181 void    fxp_stop(struct ifnet *, int);
  182 
  183 void    fxp_txintr(struct fxp_softc *);
  184 int     fxp_rxintr(struct fxp_softc *);
  185 
  186 int     fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
  187 
  188 void    fxp_rxdrain(struct fxp_softc *);
  189 int     fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
  190 int     fxp_mdi_read(device_t, int, int);
  191 void    fxp_statchg(device_t);
  192 void    fxp_mdi_write(device_t, int, int, int);
  193 void    fxp_autosize_eeprom(struct fxp_softc*);
  194 void    fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
  195 void    fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
  196 void    fxp_eeprom_update_cksum(struct fxp_softc *);
  197 void    fxp_get_info(struct fxp_softc *, u_int8_t *);
  198 void    fxp_tick(void *);
  199 void    fxp_mc_setup(struct fxp_softc *);
  200 void    fxp_load_ucode(struct fxp_softc *);
  201 
  202 int     fxp_copy_small = 0;
  203 
  204 /*
  205  * Variables for interrupt mitigating microcode.
  206  */
  207 int     fxp_int_delay = 1000;           /* usec */
  208 int     fxp_bundle_max = 6;             /* packets */
  209 
  210 struct fxp_phytype {
  211         int     fp_phy;         /* type of PHY, -1 for MII at the end. */
  212         void    (*fp_init)(struct fxp_softc *);
  213 } fxp_phytype_table[] = {
  214         { FXP_PHY_80C24,                fxp_80c24_initmedia },
  215         { -1,                           fxp_mii_initmedia },
  216 };
  217 
  218 /*
  219  * Set initial transmit threshold at 64 (512 bytes). This is
  220  * increased by 64 (512 bytes) at a time, to maximum of 192
  221  * (1536 bytes), if an underrun occurs.
  222  */
  223 static int tx_threshold = 64;
  224 
  225 /*
  226  * Wait for the previous command to be accepted (but not necessarily
  227  * completed).
  228  */
  229 static inline void
  230 fxp_scb_wait(struct fxp_softc *sc)
  231 {
  232         int i = 10000;
  233 
  234         while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
  235                 delay(2);
  236         if (i == 0)
  237                 log(LOG_WARNING,
  238                     "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
  239 }
  240 
  241 /*
  242  * Submit a command to the i82557.
  243  */
  244 static inline void
  245 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
  246 {
  247 
  248         CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
  249 }
  250 
  251 /*
  252  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
  253  */
  254 void
  255 fxp_attach(struct fxp_softc *sc)
  256 {
  257         u_int8_t enaddr[ETHER_ADDR_LEN];
  258         struct ifnet *ifp;
  259         bus_dma_segment_t seg;
  260         int rseg, i, error;
  261         struct fxp_phytype *fp;
  262 
  263         callout_init(&sc->sc_callout, 0);
  264 
  265         /*
  266          * Enable some good stuff on i82558 and later.
  267          */
  268         if (sc->sc_rev >= FXP_REV_82558_A4) {
  269                 /* Enable the extended TxCB. */
  270                 sc->sc_flags |= FXPF_EXT_TXCB;
  271         }
  272 
  273         /*
  274          * Enable use of extended RFDs and TCBs for 82550
  275          * and later chips. Note: we need extended TXCB support
  276          * too, but that's already enabled by the code above.
  277          * Be careful to do this only on the right devices.
  278          */
  279         if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
  280                 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
  281                 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
  282         } else {
  283                 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
  284         }
  285 
  286         sc->sc_rfa_size =
  287             (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
  288 
  289         /*
  290          * Allocate the control data structures, and create and load the
  291          * DMA map for it.
  292          */
  293         if ((error = bus_dmamem_alloc(sc->sc_dmat,
  294             sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
  295             0)) != 0) {
  296                 aprint_error_dev(sc->sc_dev,
  297                     "unable to allocate control data, error = %d\n",
  298                     error);
  299                 goto fail_0;
  300         }
  301 
  302         if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
  303             sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
  304             BUS_DMA_COHERENT)) != 0) {
  305                 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
  306                     error);
  307                 goto fail_1;
  308         }
  309         sc->sc_cdseg = seg;
  310         sc->sc_cdnseg = rseg;
  311 
  312         memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
  313 
  314         if ((error = bus_dmamap_create(sc->sc_dmat,
  315             sizeof(struct fxp_control_data), 1,
  316             sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
  317                 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
  318                     "error = %d\n", error);
  319                 goto fail_2;
  320         }
  321 
  322         if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
  323             sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
  324             0)) != 0) {
  325                 aprint_error_dev(sc->sc_dev,
  326                     "can't load control data DMA map, error = %d\n",
  327                     error);
  328                 goto fail_3;
  329         }
  330 
  331         /*
  332          * Create the transmit buffer DMA maps.
  333          */
  334         for (i = 0; i < FXP_NTXCB; i++) {
  335                 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
  336                     (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
  337                     MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
  338                         aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
  339                             "error = %d\n", i, error);
  340                         goto fail_4;
  341                 }
  342         }
  343 
  344         /*
  345          * Create the receive buffer DMA maps.
  346          */
  347         for (i = 0; i < FXP_NRFABUFS; i++) {
  348                 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
  349                     MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
  350                         aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
  351                             "error = %d\n", i, error);
  352                         goto fail_5;
  353                 }
  354         }
  355 
  356         /* Initialize MAC address and media structures. */
  357         fxp_get_info(sc, enaddr);
  358 
  359         aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
  360             ether_sprintf(enaddr));
  361 
  362         ifp = &sc->sc_ethercom.ec_if;
  363 
  364         /*
  365          * Get info about our media interface, and initialize it.  Note
  366          * the table terminates itself with a phy of -1, indicating
  367          * that we're using MII.
  368          */
  369         for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
  370                 if (fp->fp_phy == sc->phy_primary_device)
  371                         break;
  372         (*fp->fp_init)(sc);
  373 
  374         strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
  375         ifp->if_softc = sc;
  376         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  377         ifp->if_ioctl = fxp_ioctl;
  378         ifp->if_start = fxp_start;
  379         ifp->if_watchdog = fxp_watchdog;
  380         ifp->if_init = fxp_init;
  381         ifp->if_stop = fxp_stop;
  382         IFQ_SET_READY(&ifp->if_snd);
  383 
  384         if (sc->sc_flags & FXPF_IPCB) {
  385                 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
  386                 /*
  387                  * IFCAP_CSUM_IPv4_Tx seems to have a problem,
  388                  * at least, on i82550 rev.12.
  389                  * specifically, it doesn't set ipv4 checksum properly
  390                  * when sending UDP (and probably TCP) packets with
  391                  * 20 byte ipv4 header + 1 or 2 byte data,
  392                  * though ICMP packets seem working.
  393                  * FreeBSD driver has related comments.
  394                  * We've added a workaround to handle the bug by padding
  395                  * such packets manually.
  396                  */
  397                 ifp->if_capabilities =
  398                     IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
  399                     IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
  400                     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
  401                 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
  402         }
  403 
  404         /*
  405          * We can support 802.1Q VLAN-sized frames.
  406          */
  407         sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
  408 
  409         /*
  410          * Attach the interface.
  411          */
  412         if_attach(ifp);
  413         ether_ifattach(ifp, enaddr);
  414 #if NRND > 0
  415         rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
  416             RND_TYPE_NET, 0);
  417 #endif
  418 
  419 #ifdef FXP_EVENT_COUNTERS
  420         evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
  421             NULL, device_xname(sc->sc_dev), "txstall");
  422         evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
  423             NULL, device_xname(sc->sc_dev), "txintr");
  424         evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
  425             NULL, device_xname(sc->sc_dev), "rxintr");
  426         if (sc->sc_rev >= FXP_REV_82558_A4) {
  427                 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
  428                     NULL, device_xname(sc->sc_dev), "txpause");
  429                 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
  430                     NULL, device_xname(sc->sc_dev), "rxpause");
  431         }
  432 #endif /* FXP_EVENT_COUNTERS */
  433 
  434         /* The attach is successful. */
  435         sc->sc_flags |= FXPF_ATTACHED;
  436 
  437         return;
  438 
  439         /*
  440          * Free any resources we've allocated during the failed attach
  441          * attempt.  Do this in reverse order and fall though.
  442          */
  443  fail_5:
  444         for (i = 0; i < FXP_NRFABUFS; i++) {
  445                 if (sc->sc_rxmaps[i] != NULL)
  446                         bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
  447         }
  448  fail_4:
  449         for (i = 0; i < FXP_NTXCB; i++) {
  450                 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
  451                         bus_dmamap_destroy(sc->sc_dmat,
  452                             FXP_DSTX(sc, i)->txs_dmamap);
  453         }
  454         bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
  455  fail_3:
  456         bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
  457  fail_2:
  458         bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
  459             sizeof(struct fxp_control_data));
  460  fail_1:
  461         bus_dmamem_free(sc->sc_dmat, &seg, rseg);
  462  fail_0:
  463         return;
  464 }
  465 
  466 void
  467 fxp_mii_initmedia(struct fxp_softc *sc)
  468 {
  469         int flags;
  470 
  471         sc->sc_flags |= FXPF_MII;
  472 
  473         sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
  474         sc->sc_mii.mii_readreg = fxp_mdi_read;
  475         sc->sc_mii.mii_writereg = fxp_mdi_write;
  476         sc->sc_mii.mii_statchg = fxp_statchg;
  477 
  478         sc->sc_ethercom.ec_mii = &sc->sc_mii;
  479         ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
  480             fxp_mii_mediastatus);
  481 
  482         flags = MIIF_NOISOLATE;
  483         if (sc->sc_rev >= FXP_REV_82558_A4)
  484                 flags |= MIIF_DOPAUSE;
  485         /*
  486          * The i82557 wedges if all of its PHYs are isolated!
  487          */
  488         mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
  489             MII_OFFSET_ANY, flags);
  490         if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
  491                 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
  492                 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
  493         } else
  494                 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
  495 }
  496 
  497 void
  498 fxp_80c24_initmedia(struct fxp_softc *sc)
  499 {
  500 
  501         /*
  502          * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
  503          * doesn't have a programming interface of any sort.  The
  504          * media is sensed automatically based on how the link partner
  505          * is configured.  This is, in essence, manual configuration.
  506          */
  507         aprint_normal_dev(sc->sc_dev, "Seeq 80c24 AutoDUPLEX media interface present\n");
  508         ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
  509             fxp_80c24_mediastatus);
  510         ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
  511         ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
  512 }
  513 
  514 /*
  515  * Initialize the interface media.
  516  */
  517 void
  518 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
  519 {
  520         u_int16_t data, myea[ETHER_ADDR_LEN / 2];
  521 
  522         /*
  523          * Reset to a stable state.
  524          */
  525         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
  526         DELAY(100);
  527 
  528         sc->sc_eeprom_size = 0;
  529         fxp_autosize_eeprom(sc);
  530         if (sc->sc_eeprom_size == 0) {
  531                 aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
  532                 sc->sc_eeprom_size = 6; /* XXX panic here? */
  533         }
  534 #ifdef DEBUG
  535         aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
  536             1 << sc->sc_eeprom_size);
  537 #endif
  538 
  539         /*
  540          * Get info about the primary PHY
  541          */
  542         fxp_read_eeprom(sc, &data, 6, 1);
  543         sc->phy_primary_device =
  544             (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
  545 
  546         /*
  547          * Read MAC address.
  548          */
  549         fxp_read_eeprom(sc, myea, 0, 3);
  550         enaddr[0] = myea[0] & 0xff;
  551         enaddr[1] = myea[0] >> 8;
  552         enaddr[2] = myea[1] & 0xff;
  553         enaddr[3] = myea[1] >> 8;
  554         enaddr[4] = myea[2] & 0xff;
  555         enaddr[5] = myea[2] >> 8;
  556 
  557         /*
  558          * Systems based on the ICH2/ICH2-M chip from Intel, as well
  559          * as some i82559 designs, have a defect where the chip can
  560          * cause a PCI protocol violation if it receives a CU_RESUME
  561          * command when it is entering the IDLE state.
  562          *
  563          * The work-around is to disable Dynamic Standby Mode, so that
  564          * the chip never deasserts #CLKRUN, and always remains in the
  565          * active state.
  566          *
  567          * Unfortunately, the only way to disable Dynamic Standby is
  568          * to frob an EEPROM setting and reboot (the EEPROM setting
  569          * is only consulted when the PCI bus comes out of reset).
  570          *
  571          * See Intel 82801BA/82801BAM Specification Update, Errata #30.
  572          */
  573         if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
  574                 fxp_read_eeprom(sc, &data, 10, 1);
  575                 if (data & 0x02) {              /* STB enable */
  576                         aprint_error_dev(sc->sc_dev, "WARNING: "
  577                             "Disabling dynamic standby mode in EEPROM "
  578                             "to work around a\n");
  579                         aprint_normal_dev(sc->sc_dev,
  580                             "WARNING: hardware bug.  You must reset "
  581                             "the system before using this\n");
  582                         aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
  583                         data &= ~0x02;
  584                         fxp_write_eeprom(sc, &data, 10, 1);
  585                         aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
  586                             data);
  587                         fxp_eeprom_update_cksum(sc);
  588                 }
  589         }
  590 
  591         /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
  592         /* Due to false positives we make it conditional on setting link1 */
  593         fxp_read_eeprom(sc, &data, 3, 1);
  594         if ((data & 0x03) != 0x03) {
  595                 aprint_verbose_dev(sc->sc_dev, "May need receiver lock-up workaround\n");
  596         }
  597 }
  598 
  599 static void
  600 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
  601 {
  602         uint16_t reg;
  603         int x;
  604 
  605         for (x = 1 << (len - 1); x != 0; x >>= 1) {
  606                 DELAY(40);
  607                 if (data & x)
  608                         reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
  609                 else
  610                         reg = FXP_EEPROM_EECS;
  611                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  612                 DELAY(40);
  613                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
  614                     reg | FXP_EEPROM_EESK);
  615                 DELAY(40);
  616                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  617         }
  618         DELAY(40);
  619 }
  620 
  621 /*
  622  * Figure out EEPROM size.
  623  *
  624  * 559's can have either 64-word or 256-word EEPROMs, the 558
  625  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
  626  * talks about the existence of 16 to 256 word EEPROMs.
  627  *
  628  * The only known sizes are 64 and 256, where the 256 version is used
  629  * by CardBus cards to store CIS information.
  630  *
  631  * The address is shifted in msb-to-lsb, and after the last
  632  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
  633  * after which follows the actual data. We try to detect this zero, by
  634  * probing the data-out bit in the EEPROM control register just after
  635  * having shifted in a bit. If the bit is zero, we assume we've
  636  * shifted enough address bits. The data-out should be tri-state,
  637  * before this, which should translate to a logical one.
  638  *
  639  * Other ways to do this would be to try to read a register with known
  640  * contents with a varying number of address bits, but no such
  641  * register seem to be available. The high bits of register 10 are 01
  642  * on the 558 and 559, but apparently not on the 557.
  643  *
  644  * The Linux driver computes a checksum on the EEPROM data, but the
  645  * value of this checksum is not very well documented.
  646  */
  647 
  648 void
  649 fxp_autosize_eeprom(struct fxp_softc *sc)
  650 {
  651         int x;
  652 
  653         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  654         DELAY(40);
  655 
  656         /* Shift in read opcode. */
  657         fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
  658 
  659         /*
  660          * Shift in address, wait for the dummy zero following a correct
  661          * address shift.
  662          */
  663         for (x = 1; x <= 8; x++) {
  664                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  665                 DELAY(40);
  666                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
  667                     FXP_EEPROM_EECS | FXP_EEPROM_EESK);
  668                 DELAY(40);
  669                 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
  670                     FXP_EEPROM_EEDO) == 0)
  671                         break;
  672                 DELAY(40);
  673                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  674                 DELAY(40);
  675         }
  676         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  677         DELAY(40);
  678         if (x != 6 && x != 8) {
  679 #ifdef DEBUG
  680                 printf("%s: strange EEPROM size (%d)\n",
  681                     device_xname(sc->sc_dev), 1 << x);
  682 #endif
  683         } else
  684                 sc->sc_eeprom_size = x;
  685 }
  686 
  687 /*
  688  * Read from the serial EEPROM. Basically, you manually shift in
  689  * the read opcode (one bit at a time) and then shift in the address,
  690  * and then you shift out the data (all of this one bit at a time).
  691  * The word size is 16 bits, so you have to provide the address for
  692  * every 16 bits of data.
  693  */
  694 void
  695 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
  696 {
  697         u_int16_t reg;
  698         int i, x;
  699 
  700         for (i = 0; i < words; i++) {
  701                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  702 
  703                 /* Shift in read opcode. */
  704                 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
  705 
  706                 /* Shift in address. */
  707                 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
  708 
  709                 reg = FXP_EEPROM_EECS;
  710                 data[i] = 0;
  711 
  712                 /* Shift out data. */
  713                 for (x = 16; x > 0; x--) {
  714                         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
  715                             reg | FXP_EEPROM_EESK);
  716                         DELAY(40);
  717                         if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
  718                             FXP_EEPROM_EEDO)
  719                                 data[i] |= (1 << (x - 1));
  720                         CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
  721                         DELAY(40);
  722                 }
  723                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  724                 DELAY(40);
  725         }
  726 }
  727 
  728 /*
  729  * Write data to the serial EEPROM.
  730  */
  731 void
  732 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
  733 {
  734         int i, j;
  735 
  736         for (i = 0; i < words; i++) {
  737                 /* Erase/write enable. */
  738                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  739                 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
  740                 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
  741                     sc->sc_eeprom_size);
  742                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  743                 DELAY(4);
  744 
  745                 /* Shift in write opcode, address, data. */
  746                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  747                 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
  748                 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
  749                 fxp_eeprom_shiftin(sc, data[i], 16);
  750                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  751                 DELAY(4);
  752 
  753                 /* Wait for the EEPROM to finish up. */
  754                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  755                 DELAY(4);
  756                 for (j = 0; j < 1000; j++) {
  757                         if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
  758                             FXP_EEPROM_EEDO)
  759                                 break;
  760                         DELAY(50);
  761                 }
  762                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  763                 DELAY(4);
  764 
  765                 /* Erase/write disable. */
  766                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
  767                 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
  768                 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
  769                 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
  770                 DELAY(4);
  771         }
  772 }
  773 
  774 /*
  775  * Update the checksum of the EEPROM.
  776  */
  777 void
  778 fxp_eeprom_update_cksum(struct fxp_softc *sc)
  779 {
  780         int i;
  781         uint16_t data, cksum;
  782 
  783         cksum = 0;
  784         for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
  785                 fxp_read_eeprom(sc, &data, i, 1);
  786                 cksum += data;
  787         }
  788         i = (1 << sc->sc_eeprom_size) - 1;
  789         cksum = 0xbaba - cksum;
  790         fxp_read_eeprom(sc, &data, i, 1);
  791         fxp_write_eeprom(sc, &cksum, i, 1);
  792         log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
  793             device_xname(sc->sc_dev), i, data, cksum);
  794 }
  795 
  796 /*
  797  * Start packet transmission on the interface.
  798  */
  799 void
  800 fxp_start(struct ifnet *ifp)
  801 {
  802         struct fxp_softc *sc = ifp->if_softc;
  803         struct mbuf *m0, *m;
  804         struct fxp_txdesc *txd;
  805         struct fxp_txsoft *txs;
  806         bus_dmamap_t dmamap;
  807         int error, lasttx, nexttx, opending, seg, nsegs, len;
  808 
  809         /*
  810          * If we want a re-init, bail out now.
  811          */
  812         if (sc->sc_flags & FXPF_WANTINIT) {
  813                 ifp->if_flags |= IFF_OACTIVE;
  814                 return;
  815         }
  816 
  817         if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
  818                 return;
  819 
  820         /*
  821          * Remember the previous txpending and the current lasttx.
  822          */
  823         opending = sc->sc_txpending;
  824         lasttx = sc->sc_txlast;
  825 
  826         /*
  827          * Loop through the send queue, setting up transmit descriptors
  828          * until we drain the queue, or use up all available transmit
  829          * descriptors.
  830          */
  831         for (;;) {
  832                 struct fxp_tbd *tbdp;
  833                 int csum_flags;
  834 
  835                 /*
  836                  * Grab a packet off the queue.
  837                  */
  838                 IFQ_POLL(&ifp->if_snd, m0);
  839                 if (m0 == NULL)
  840                         break;
  841                 m = NULL;
  842 
  843                 if (sc->sc_txpending == FXP_NTXCB - 1) {
  844                         FXP_EVCNT_INCR(&sc->sc_ev_txstall);
  845                         break;
  846                 }
  847 
  848                 /*
  849                  * Get the next available transmit descriptor.
  850                  */
  851                 nexttx = FXP_NEXTTX(sc->sc_txlast);
  852                 txd = FXP_CDTX(sc, nexttx);
  853                 txs = FXP_DSTX(sc, nexttx);
  854                 dmamap = txs->txs_dmamap;
  855 
  856                 /*
  857                  * Load the DMA map.  If this fails, the packet either
  858                  * didn't fit in the allotted number of frags, or we were
  859                  * short on resources.  In this case, we'll copy and try
  860                  * again.
  861                  */
  862                 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
  863                     BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
  864                         MGETHDR(m, M_DONTWAIT, MT_DATA);
  865                         if (m == NULL) {
  866                                 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
  867                                     device_xname(sc->sc_dev));
  868                                 break;
  869                         }
  870                         MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
  871                         if (m0->m_pkthdr.len > MHLEN) {
  872                                 MCLGET(m, M_DONTWAIT);
  873                                 if ((m->m_flags & M_EXT) == 0) {
  874                                         log(LOG_ERR,
  875                                             "%s: unable to allocate Tx "
  876                                             "cluster\n", device_xname(sc->sc_dev));
  877                                         m_freem(m);
  878                                         break;
  879                                 }
  880                         }
  881                         m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
  882                         m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
  883                         error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
  884                             m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
  885                         if (error) {
  886                                 log(LOG_ERR, "%s: unable to load Tx buffer, "
  887                                     "error = %d\n", device_xname(sc->sc_dev), error);
  888                                 break;
  889                         }
  890                 }
  891 
  892                 IFQ_DEQUEUE(&ifp->if_snd, m0);
  893                 csum_flags = m0->m_pkthdr.csum_flags;
  894                 if (m != NULL) {
  895                         m_freem(m0);
  896                         m0 = m;
  897                 }
  898 
  899                 /* Initialize the fraglist. */
  900                 tbdp = txd->txd_tbd;
  901                 len = m0->m_pkthdr.len;
  902                 nsegs = dmamap->dm_nsegs;
  903                 if (sc->sc_flags & FXPF_IPCB)
  904                         tbdp++;
  905                 for (seg = 0; seg < nsegs; seg++) {
  906                         tbdp[seg].tb_addr =
  907                             htole32(dmamap->dm_segs[seg].ds_addr);
  908                         tbdp[seg].tb_size =
  909                             htole32(dmamap->dm_segs[seg].ds_len);
  910                 }
  911                 if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
  912                     (csum_flags & M_CSUM_IPv4) != 0)) {
  913                         /*
  914                          * Pad short packets to avoid ip4csum-tx bug.
  915                          *
  916                          * XXX Should we still consider if such short
  917                          *     (36 bytes or less) packets might already
  918                          *     occupy FXP_IPCB_NTXSEG (15) fragments here?
  919                          */
  920                         KASSERT(nsegs < FXP_IPCB_NTXSEG);
  921                         nsegs++;
  922                         tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
  923                         tbdp[seg].tb_size =
  924                             htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
  925                 }
  926 
  927                 /* Sync the DMA map. */
  928                 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
  929                     BUS_DMASYNC_PREWRITE);
  930 
  931                 /*
  932                  * Store a pointer to the packet so we can free it later.
  933                  */
  934                 txs->txs_mbuf = m0;
  935 
  936                 /*
  937                  * Initialize the transmit descriptor.
  938                  */
  939                 /* BIG_ENDIAN: no need to swap to store 0 */
  940                 txd->txd_txcb.cb_status = 0;
  941                 txd->txd_txcb.cb_command =
  942                     sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
  943                 txd->txd_txcb.tx_threshold = tx_threshold;
  944                 txd->txd_txcb.tbd_number = nsegs;
  945 
  946                 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
  947                 if (sc->sc_flags & FXPF_IPCB) {
  948                         struct m_tag *vtag;
  949                         struct fxp_ipcb *ipcb;
  950                         /*
  951                          * Deal with TCP/IP checksum offload. Note that
  952                          * in order for TCP checksum offload to work,
  953                          * the pseudo header checksum must have already
  954                          * been computed and stored in the checksum field
  955                          * in the TCP header. The stack should have
  956                          * already done this for us.
  957                          */
  958                         ipcb = &txd->txd_u.txdu_ipcb;
  959                         memset(ipcb, 0, sizeof(*ipcb));
  960                         /*
  961                          * always do hardware parsing.
  962                          */
  963                         ipcb->ipcb_ip_activation_high =
  964                             FXP_IPCB_HARDWAREPARSING_ENABLE;
  965                         /*
  966                          * ip checksum offloading.
  967                          */
  968                         if (csum_flags & M_CSUM_IPv4) {
  969                                 ipcb->ipcb_ip_schedule |=
  970                                     FXP_IPCB_IP_CHECKSUM_ENABLE;
  971                         }
  972                         /*
  973                          * TCP/UDP checksum offloading.
  974                          */
  975                         if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
  976                                 ipcb->ipcb_ip_schedule |=
  977                                     FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
  978                         }
  979 
  980                         /*
  981                          * request VLAN tag insertion if needed.
  982                          */
  983                         vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
  984                         if (vtag) {
  985                                 ipcb->ipcb_vlan_id =
  986                                     htobe16(*(u_int *)(vtag + 1));
  987                                 ipcb->ipcb_ip_activation_high |=
  988                                     FXP_IPCB_INSERTVLAN_ENABLE;
  989                         }
  990                 } else {
  991                         KASSERT((csum_flags &
  992                             (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
  993                 }
  994 
  995                 FXP_CDTXSYNC(sc, nexttx,
  996                     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
  997 
  998                 /* Advance the tx pointer. */
  999                 sc->sc_txpending++;
 1000                 sc->sc_txlast = nexttx;
 1001 
 1002 #if NBPFILTER > 0
 1003                 /*
 1004                  * Pass packet to bpf if there is a listener.
 1005                  */
 1006                 if (ifp->if_bpf)
 1007                         bpf_mtap(ifp->if_bpf, m0);
 1008 #endif
 1009         }
 1010 
 1011         if (sc->sc_txpending == FXP_NTXCB - 1) {
 1012                 /* No more slots; notify upper layer. */
 1013                 ifp->if_flags |= IFF_OACTIVE;
 1014         }
 1015 
 1016         if (sc->sc_txpending != opending) {
 1017                 /*
 1018                  * We enqueued packets.  If the transmitter was idle,
 1019                  * reset the txdirty pointer.
 1020                  */
 1021                 if (opending == 0)
 1022                         sc->sc_txdirty = FXP_NEXTTX(lasttx);
 1023 
 1024                 /*
 1025                  * Cause the chip to interrupt and suspend command
 1026                  * processing once the last packet we've enqueued
 1027                  * has been transmitted.
 1028                  *
 1029                  * To avoid a race between updating status bits
 1030                  * by the fxp chip and clearing command bits
 1031                  * by this function on machines which don't have
 1032                  * atomic methods to clear/set bits in memory
 1033                  * smaller than 32bits (both cb_status and cb_command
 1034                  * members are uint16_t and in the same 32bit word),
 1035                  * we have to prepare a dummy TX descriptor which has
 1036                  * NOP command and just causes a TX completion interrupt.
 1037                  */
 1038                 sc->sc_txpending++;
 1039                 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
 1040                 txd = FXP_CDTX(sc, sc->sc_txlast);
 1041                 /* BIG_ENDIAN: no need to swap to store 0 */
 1042                 txd->txd_txcb.cb_status = 0;
 1043                 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
 1044                     FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
 1045                 FXP_CDTXSYNC(sc, sc->sc_txlast,
 1046                     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 1047 
 1048                 /*
 1049                  * The entire packet chain is set up.  Clear the suspend bit
 1050                  * on the command prior to the first packet we set up.
 1051                  */
 1052                 FXP_CDTXSYNC(sc, lasttx,
 1053                     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 1054                 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
 1055                     htole16(~FXP_CB_COMMAND_S);
 1056                 FXP_CDTXSYNC(sc, lasttx,
 1057                     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 1058 
 1059                 /*
 1060                  * Issue a Resume command in case the chip was suspended.
 1061                  */
 1062                 fxp_scb_wait(sc);
 1063                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
 1064 
 1065                 /* Set a watchdog timer in case the chip flakes out. */
 1066                 ifp->if_timer = 5;
 1067         }
 1068 }
 1069 
 1070 /*
 1071  * Process interface interrupts.
 1072  */
 1073 int
 1074 fxp_intr(void *arg)
 1075 {
 1076         struct fxp_softc *sc = arg;
 1077         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
 1078         bus_dmamap_t rxmap;
 1079         int claimed = 0, rnr;
 1080         u_int8_t statack;
 1081 
 1082         if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
 1083                 return (0);
 1084         /*
 1085          * If the interface isn't running, don't try to
 1086          * service the interrupt.. just ack it and bail.
 1087          */
 1088         if ((ifp->if_flags & IFF_RUNNING) == 0) {
 1089                 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
 1090                 if (statack) {
 1091                         claimed = 1;
 1092                         CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
 1093                 }
 1094                 return (claimed);
 1095         }
 1096 
 1097         while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
 1098                 claimed = 1;
 1099 
 1100                 /*
 1101                  * First ACK all the interrupts in this pass.
 1102                  */
 1103                 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
 1104 
 1105                 /*
 1106                  * Process receiver interrupts. If a no-resource (RNR)
 1107                  * condition exists, get whatever packets we can and
 1108                  * re-start the receiver.
 1109                  */
 1110                 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
 1111                     1 : 0;
 1112                 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
 1113                     FXP_SCB_STATACK_SWI)) {
 1114                         FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
 1115                         rnr |= fxp_rxintr(sc);
 1116                 }
 1117 
 1118                 /*
 1119                  * Free any finished transmit mbuf chains.
 1120                  */
 1121                 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
 1122                         FXP_EVCNT_INCR(&sc->sc_ev_txintr);
 1123                         fxp_txintr(sc);
 1124 
 1125                         /*
 1126                          * Try to get more packets going.
 1127                          */
 1128                         fxp_start(ifp);
 1129 
 1130                         if (sc->sc_txpending == 0) {
 1131                                 /*
 1132                                  * Tell them that they can re-init now.
 1133                                  */
 1134                                 if (sc->sc_flags & FXPF_WANTINIT)
 1135                                         wakeup(sc);
 1136                         }
 1137                 }
 1138 
 1139                 if (rnr) {
 1140                         fxp_scb_wait(sc);
 1141                         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
 1142                         rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
 1143                         fxp_scb_wait(sc);
 1144                         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
 1145                             rxmap->dm_segs[0].ds_addr +
 1146                             RFA_ALIGNMENT_FUDGE);
 1147                         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
 1148                 }
 1149         }
 1150 
 1151 #if NRND > 0
 1152         if (claimed)
 1153                 rnd_add_uint32(&sc->rnd_source, statack);
 1154 #endif
 1155         return (claimed);
 1156 }
 1157 
 1158 /*
 1159  * Handle transmit completion interrupts.
 1160  */
 1161 void
 1162 fxp_txintr(struct fxp_softc *sc)
 1163 {
 1164         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
 1165         struct fxp_txdesc *txd;
 1166         struct fxp_txsoft *txs;
 1167         int i;
 1168         u_int16_t txstat;
 1169 
 1170         ifp->if_flags &= ~IFF_OACTIVE;
 1171         for (i = sc->sc_txdirty; sc->sc_txpending != 0;
 1172             i = FXP_NEXTTX(i), sc->sc_txpending--) {
 1173                 txd = FXP_CDTX(sc, i);
 1174                 txs = FXP_DSTX(sc, i);
 1175 
 1176                 FXP_CDTXSYNC(sc, i,
 1177                     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 1178 
 1179                 /* skip dummy NOP TX descriptor */
 1180                 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
 1181                     == FXP_CB_COMMAND_NOP)
 1182                         continue;
 1183 
 1184                 txstat = le16toh(txd->txd_txcb.cb_status);
 1185 
 1186                 if ((txstat & FXP_CB_STATUS_C) == 0)
 1187                         break;
 1188 
 1189                 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
 1190                     0, txs->txs_dmamap->dm_mapsize,
 1191                     BUS_DMASYNC_POSTWRITE);
 1192                 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
 1193                 m_freem(txs->txs_mbuf);
 1194                 txs->txs_mbuf = NULL;
 1195         }
 1196 
 1197         /* Update the dirty transmit buffer pointer. */
 1198         sc->sc_txdirty = i;
 1199 
 1200         /*
 1201          * Cancel the watchdog timer if there are no pending
 1202          * transmissions.
 1203          */
 1204         if (sc->sc_txpending == 0)
 1205                 ifp->if_timer = 0;
 1206 }
 1207 
 1208 /*
 1209  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
 1210  */
 1211 
 1212 int
 1213 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
 1214 {
 1215         u_int8_t rxparsestat;
 1216         u_int8_t csum_stat;
 1217         u_int32_t csum_data;
 1218         int csum_flags;
 1219 
 1220         /*
 1221          * check VLAN tag stripping.
 1222          */
 1223 
 1224         if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
 1225                 struct m_tag *vtag;
 1226 
 1227                 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
 1228                 if (vtag == NULL)
 1229                         return ENOMEM;
 1230                 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
 1231                 m_tag_prepend(m, vtag);
 1232         }
 1233 
 1234         /*
 1235          * check H/W Checksumming.
 1236          */
 1237 
 1238         csum_stat = rfa->cksum_stat;
 1239         rxparsestat = rfa->rx_parse_stat;
 1240         if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
 1241                 return 0;
 1242 
 1243         csum_flags = 0;
 1244         csum_data = 0;
 1245 
 1246         if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
 1247                 csum_flags = M_CSUM_IPv4;
 1248                 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
 1249                         csum_flags |= M_CSUM_IPv4_BAD;
 1250         }
 1251 
 1252         if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
 1253                 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
 1254                 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
 1255                         csum_flags |= M_CSUM_TCP_UDP_BAD;
 1256         }
 1257 
 1258         m->m_pkthdr.csum_flags = csum_flags;
 1259         m->m_pkthdr.csum_data = csum_data;
 1260 
 1261         return 0;
 1262 }
 1263 
 1264 /*
 1265  * Handle receive interrupts.
 1266  */
 1267 int
 1268 fxp_rxintr(struct fxp_softc *sc)
 1269 {
 1270         struct ethercom *ec = &sc->sc_ethercom;
 1271         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
 1272         struct mbuf *m, *m0;
 1273         bus_dmamap_t rxmap;
 1274         struct fxp_rfa *rfa;
 1275         int rnr;
 1276         u_int16_t len, rxstat;
 1277 
 1278         rnr = 0;
 1279 
 1280         for (;;) {
 1281                 m = sc->sc_rxq.ifq_head;
 1282                 rfa = FXP_MTORFA(m);
 1283                 rxmap = M_GETCTX(m, bus_dmamap_t);
 1284 
 1285                 FXP_RFASYNC(sc, m,
 1286                     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 1287 
 1288                 rxstat = le16toh(rfa->rfa_status);
 1289 
 1290                 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
 1291                         rnr = 1;
 1292 
 1293                 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
 1294                         /*
 1295                          * We have processed all of the
 1296                          * receive buffers.
 1297                          */
 1298                         FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
 1299                         return rnr;
 1300                 }
 1301 
 1302                 IF_DEQUEUE(&sc->sc_rxq, m);
 1303 
 1304                 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
 1305 
 1306                 len = le16toh(rfa->actual_size) &
 1307                     (m->m_ext.ext_size - 1);
 1308 
 1309                 if (len < sizeof(struct ether_header)) {
 1310                         /*
 1311                          * Runt packet; drop it now.
 1312                          */
 1313                         FXP_INIT_RFABUF(sc, m);
 1314                         continue;
 1315                 }
 1316 
 1317                 /*
 1318                  * If support for 802.1Q VLAN sized frames is
 1319                  * enabled, we need to do some additional error
 1320                  * checking (as we are saving bad frames, in
 1321                  * order to receive the larger ones).
 1322                  */
 1323                 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
 1324                     (rxstat & (FXP_RFA_STATUS_OVERRUN|
 1325                                FXP_RFA_STATUS_RNR|
 1326                                FXP_RFA_STATUS_ALIGN|
 1327                                FXP_RFA_STATUS_CRC)) != 0) {
 1328                         FXP_INIT_RFABUF(sc, m);
 1329                         continue;
 1330                 }
 1331 
 1332                 /* Do checksum checking. */
 1333                 m->m_pkthdr.csum_flags = 0;
 1334                 if (sc->sc_flags & FXPF_EXT_RFA)
 1335                         if (fxp_rx_hwcksum(m, rfa))
 1336                                 goto dropit;
 1337 
 1338                 /*
 1339                  * If the packet is small enough to fit in a
 1340                  * single header mbuf, allocate one and copy
 1341                  * the data into it.  This greatly reduces
 1342                  * memory consumption when we receive lots
 1343                  * of small packets.
 1344                  *
 1345                  * Otherwise, we add a new buffer to the receive
 1346                  * chain.  If this fails, we drop the packet and
 1347                  * recycle the old buffer.
 1348                  */
 1349                 if (fxp_copy_small != 0 && len <= MHLEN) {
 1350                         MGETHDR(m0, M_DONTWAIT, MT_DATA);
 1351                         if (m0 == NULL)
 1352                                 goto dropit;
 1353                         MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
 1354                         memcpy(mtod(m0, void *),
 1355                             mtod(m, void *), len);
 1356                         m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
 1357                         m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
 1358                         FXP_INIT_RFABUF(sc, m);
 1359                         m = m0;
 1360                 } else {
 1361                         if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
 1362  dropit:
 1363                                 ifp->if_ierrors++;
 1364                                 FXP_INIT_RFABUF(sc, m);
 1365                                 continue;
 1366                         }
 1367                 }
 1368 
 1369                 m->m_pkthdr.rcvif = ifp;
 1370                 m->m_pkthdr.len = m->m_len = len;
 1371 
 1372 #if NBPFILTER > 0
 1373                 /*
 1374                  * Pass this up to any BPF listeners, but only
 1375                  * pass it up the stack if it's for us.
 1376                  */
 1377                 if (ifp->if_bpf)
 1378                         bpf_mtap(ifp->if_bpf, m);
 1379 #endif
 1380 
 1381                 /* Pass it on. */
 1382                 (*ifp->if_input)(ifp, m);
 1383         }
 1384 }
 1385 
 1386 /*
 1387  * Update packet in/out/collision statistics. The i82557 doesn't
 1388  * allow you to access these counters without doing a fairly
 1389  * expensive DMA to get _all_ of the statistics it maintains, so
 1390  * we do this operation here only once per second. The statistics
 1391  * counters in the kernel are updated from the previous dump-stats
 1392  * DMA and then a new dump-stats DMA is started. The on-chip
 1393  * counters are zeroed when the DMA completes. If we can't start
 1394  * the DMA immediately, we don't wait - we just prepare to read
 1395  * them again next time.
 1396  */
 1397 void
 1398 fxp_tick(void *arg)
 1399 {
 1400         struct fxp_softc *sc = arg;
 1401         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
 1402         struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
 1403         int s;
 1404 
 1405         if (!device_is_active(sc->sc_dev))
 1406                 return;
 1407 
 1408         s = splnet();
 1409 
 1410         FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
 1411 
 1412         ifp->if_opackets += le32toh(sp->tx_good);
 1413         ifp->if_collisions += le32toh(sp->tx_total_collisions);
 1414         if (sp->rx_good) {
 1415                 ifp->if_ipackets += le32toh(sp->rx_good);
 1416                 sc->sc_rxidle = 0;
 1417         } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
 1418                 sc->sc_rxidle++;
 1419         }
 1420         ifp->if_ierrors +=
 1421             le32toh(sp->rx_crc_errors) +
 1422             le32toh(sp->rx_alignment_errors) +
 1423             le32toh(sp->rx_rnr_errors) +
 1424             le32toh(sp->rx_overrun_errors);
 1425         /*
 1426          * If any transmit underruns occurred, bump up the transmit
 1427          * threshold by another 512 bytes (64 * 8).
 1428          */
 1429         if (sp->tx_underruns) {
 1430                 ifp->if_oerrors += le32toh(sp->tx_underruns);
 1431                 if (tx_threshold < 192)
 1432                         tx_threshold += 64;
 1433         }
 1434 #ifdef FXP_EVENT_COUNTERS
 1435         if (sc->sc_rev >= FXP_REV_82558_A4) {
 1436                 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
 1437                 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
 1438         }
 1439 #endif
 1440 
 1441         /*
 1442          * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
 1443          * then assume the receiver has locked up and attempt to clear
 1444          * the condition by reprogramming the multicast filter (actually,
 1445          * resetting the interface). This is a work-around for a bug in
 1446          * the 82557 where the receiver locks up if it gets certain types
 1447          * of garbage in the synchronization bits prior to the packet header.
 1448          * This bug is supposed to only occur in 10Mbps mode, but has been
 1449          * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
 1450          * speed transition).
 1451          */
 1452         if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
 1453                 (void) fxp_init(ifp);
 1454                 splx(s);
 1455                 return;
 1456         }
 1457         /*
 1458          * If there is no pending command, start another stats
 1459          * dump. Otherwise punt for now.
 1460          */
 1461         if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
 1462                 /*
 1463                  * Start another stats dump.
 1464                  */
 1465                 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
 1466                 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
 1467         } else {
 1468                 /*
 1469                  * A previous command is still waiting to be accepted.
 1470                  * Just zero our copy of the stats and wait for the
 1471                  * next timer event to update them.
 1472                  */
 1473                 /* BIG_ENDIAN: no swap required to store 0 */
 1474                 sp->tx_good = 0;
 1475                 sp->tx_underruns = 0;
 1476                 sp->tx_total_collisions = 0;
 1477 
 1478                 sp->rx_good = 0;
 1479                 sp->rx_crc_errors = 0;
 1480                 sp->rx_alignment_errors = 0;
 1481                 sp->rx_rnr_errors = 0;
 1482                 sp->rx_overrun_errors = 0;
 1483                 if (sc->sc_rev >= FXP_REV_82558_A4) {
 1484                         sp->tx_pauseframes = 0;
 1485                         sp->rx_pauseframes = 0;
 1486                 }
 1487         }
 1488 
 1489         if (sc->sc_flags & FXPF_MII) {
 1490                 /* Tick the MII clock. */
 1491                 mii_tick(&sc->sc_mii);
 1492         }
 1493 
 1494         splx(s);
 1495 
 1496         /*
 1497          * Schedule another timeout one second from now.
 1498          */
 1499         callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
 1500 }
 1501 
 1502 /*
 1503  * Drain the receive queue.
 1504  */
 1505 void
 1506 fxp_rxdrain(struct fxp_softc *sc)
 1507 {
 1508         bus_dmamap_t rxmap;
 1509         struct mbuf *m;
 1510 
 1511         for (;;) {
 1512                 IF_DEQUEUE(&sc->sc_rxq, m);
 1513                 if (m == NULL)
 1514                         break;
 1515                 rxmap = M_GETCTX(m, bus_dmamap_t);
 1516                 bus_dmamap_unload(sc->sc_dmat, rxmap);
 1517                 FXP_RXMAP_PUT(sc, rxmap);
 1518                 m_freem(m);
 1519         }
 1520 }
 1521 
 1522 /*
 1523  * Stop the interface. Cancels the statistics updater and resets
 1524  * the interface.
 1525  */
 1526 void
 1527 fxp_stop(struct ifnet *ifp, int disable)
 1528 {
 1529         struct fxp_softc *sc = ifp->if_softc;
 1530         struct fxp_txsoft *txs;
 1531         int i;
 1532 
 1533         /*
 1534          * Turn down interface (done early to avoid bad interactions
 1535          * between panics, shutdown hooks, and the watchdog timer)
 1536          */
 1537         ifp->if_timer = 0;
 1538         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 1539 
 1540         /*
 1541          * Cancel stats updater.
 1542          */
 1543         callout_stop(&sc->sc_callout);
 1544         if (sc->sc_flags & FXPF_MII) {
 1545                 /* Down the MII. */
 1546                 mii_down(&sc->sc_mii);
 1547         }
 1548 
 1549         /*
 1550          * Issue software reset.  This unloads any microcode that
 1551          * might already be loaded.
 1552          */
 1553         sc->sc_flags &= ~FXPF_UCODE_LOADED;
 1554         CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
 1555         DELAY(50);
 1556 
 1557         /*
 1558          * Release any xmit buffers.
 1559          */
 1560         for (i = 0; i < FXP_NTXCB; i++) {
 1561                 txs = FXP_DSTX(sc, i);
 1562                 if (txs->txs_mbuf != NULL) {
 1563                         bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
 1564                         m_freem(txs->txs_mbuf);
 1565                         txs->txs_mbuf = NULL;
 1566                 }
 1567         }
 1568         sc->sc_txpending = 0;
 1569 
 1570         if (disable) {
 1571                 fxp_rxdrain(sc);
 1572                 fxp_disable(sc);
 1573         }
 1574 
 1575 }
 1576 
 1577 /*
 1578  * Watchdog/transmission transmit timeout handler. Called when a
 1579  * transmission is started on the interface, but no interrupt is
 1580  * received before the timeout. This usually indicates that the
 1581  * card has wedged for some reason.
 1582  */
 1583 void
 1584 fxp_watchdog(struct ifnet *ifp)
 1585 {
 1586         struct fxp_softc *sc = ifp->if_softc;
 1587 
 1588         log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
 1589         ifp->if_oerrors++;
 1590 
 1591         (void) fxp_init(ifp);
 1592 }
 1593 
 1594 /*
 1595  * Initialize the interface.  Must be called at splnet().
 1596  */
 1597 int
 1598 fxp_init(struct ifnet *ifp)
 1599 {
 1600         struct fxp_softc *sc = ifp->if_softc;
 1601         struct fxp_cb_config *cbp;
 1602         struct fxp_cb_ias *cb_ias;
 1603         struct fxp_txdesc *txd;
 1604         bus_dmamap_t rxmap;
 1605         int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
 1606         uint16_t status;
 1607 
 1608         if ((error = fxp_enable(sc)) != 0)
 1609                 goto out;
 1610 
 1611         /*
 1612          * Cancel any pending I/O
 1613          */
 1614         fxp_stop(ifp, 0);
 1615 
 1616         /*
 1617          * XXX just setting sc_flags to 0 here clears any FXPF_MII
 1618          * flag, and this prevents the MII from detaching resulting in
 1619          * a panic. The flags field should perhaps be split in runtime
 1620          * flags and more static information. For now, just clear the
 1621          * only other flag set.
 1622          */
 1623 
 1624         sc->sc_flags &= ~FXPF_WANTINIT;
 1625 
 1626         /*
 1627          * Initialize base of CBL and RFA memory. Loading with zero
 1628          * sets it up for regular linear addressing.
 1629          */
 1630         fxp_scb_wait(sc);
 1631         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
 1632         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
 1633 
 1634         fxp_scb_wait(sc);
 1635         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
 1636 
 1637         /*
 1638          * Initialize the multicast filter.  Do this now, since we might
 1639          * have to setup the config block differently.
 1640          */
 1641         fxp_mc_setup(sc);
 1642 
 1643         prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
 1644         allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
 1645 
 1646         /*
 1647          * In order to support receiving 802.1Q VLAN frames, we have to
 1648          * enable "save bad frames", since they are 4 bytes larger than
 1649          * the normal Ethernet maximum frame length.  On i82558 and later,
 1650          * we have a better mechanism for this.
 1651          */
 1652         save_bf = 0;
 1653         lrxen = 0;
 1654         vlan_drop = 0;
 1655         if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
 1656                 if (sc->sc_rev < FXP_REV_82558_A4)
 1657                         save_bf = 1;
 1658                 else
 1659                         lrxen = 1;
 1660                 if (sc->sc_rev >= FXP_REV_82550)
 1661                         vlan_drop = 1;
 1662         }
 1663 
 1664         /*
 1665          * Initialize base of dump-stats buffer.
 1666          */
 1667         fxp_scb_wait(sc);
 1668         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
 1669             sc->sc_cddma + FXP_CDSTATSOFF);
 1670         FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
 1671         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
 1672 
 1673         cbp = &sc->sc_control_data->fcd_configcb;
 1674         memset(cbp, 0, sizeof(struct fxp_cb_config));
 1675 
 1676         /*
 1677          * Load microcode for this controller.
 1678          */
 1679         fxp_load_ucode(sc);
 1680 
 1681         if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
 1682                 sc->sc_flags |= FXPF_RECV_WORKAROUND;
 1683         else
 1684                 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
 1685 
 1686         /*
 1687          * This copy is kind of disgusting, but there are a bunch of must be
 1688          * zero and must be one bits in this structure and this is the easiest
 1689          * way to initialize them all to proper values.
 1690          */
 1691         memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
 1692 
 1693         /* BIG_ENDIAN: no need to swap to store 0 */
 1694         cbp->cb_status =        0;
 1695         cbp->cb_command =       htole16(FXP_CB_COMMAND_CONFIG |
 1696                                     FXP_CB_COMMAND_EL);
 1697         /* BIG_ENDIAN: no need to swap to store 0xffffffff */
 1698         cbp->link_addr =        0xffffffff; /* (no) next command */
 1699                                         /* bytes in config block */
 1700         cbp->byte_count =       (sc->sc_flags & FXPF_EXT_RFA) ?
 1701                                 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
 1702         cbp->rx_fifo_limit =    8;      /* rx fifo threshold (32 bytes) */
 1703         cbp->tx_fifo_limit =    0;      /* tx fifo threshold (0 bytes) */
 1704         cbp->adaptive_ifs =     0;      /* (no) adaptive interframe spacing */
 1705         cbp->mwi_enable =       (sc->sc_flags & FXPF_MWI) ? 1 : 0;
 1706         cbp->type_enable =      0;      /* actually reserved */
 1707         cbp->read_align_en =    (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
 1708         cbp->end_wr_on_cl =     (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
 1709         cbp->rx_dma_bytecount = 0;      /* (no) rx DMA max */
 1710         cbp->tx_dma_bytecount = 0;      /* (no) tx DMA max */
 1711         cbp->dma_mbce =         0;      /* (disable) dma max counters */
 1712         cbp->late_scb =         0;      /* (don't) defer SCB update */
 1713         cbp->tno_int_or_tco_en =0;      /* (disable) tx not okay interrupt */
 1714         cbp->ci_int =           1;      /* interrupt on CU idle */
 1715         cbp->ext_txcb_dis =     (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
 1716         cbp->ext_stats_dis =    1;      /* disable extended counters */
 1717         cbp->keep_overrun_rx =  0;      /* don't pass overrun frames to host */
 1718         cbp->save_bf =          save_bf;/* save bad frames */
 1719         cbp->disc_short_rx =    !prm;   /* discard short packets */
 1720         cbp->underrun_retry =   1;      /* retry mode (1) on DMA underrun */
 1721         cbp->ext_rfa =          (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
 1722         cbp->two_frames =       0;      /* do not limit FIFO to 2 frames */
 1723         cbp->dyn_tbd =          0;      /* (no) dynamic TBD mode */
 1724                                         /* interface mode */
 1725         cbp->mediatype =        (sc->sc_flags & FXPF_MII) ? 1 : 0;
 1726         cbp->csma_dis =         0;      /* (don't) disable link */
 1727         cbp->tcp_udp_cksum =    0;      /* (don't) enable checksum */
 1728         cbp->vlan_tco =         0;      /* (don't) enable vlan wakeup */
 1729         cbp->link_wake_en =     0;      /* (don't) assert PME# on link change */
 1730         cbp->arp_wake_en =      0;      /* (don't) assert PME# on arp */
 1731         cbp->mc_wake_en =       0;      /* (don't) assert PME# on mcmatch */
 1732         cbp->nsai =             1;      /* (don't) disable source addr insert */
 1733         cbp->preamble_length =  2;      /* (7 byte) preamble */
 1734         cbp->loopback =         0;      /* (don't) loopback */
 1735         cbp->linear_priority =  0;      /* (normal CSMA/CD operation) */
 1736         cbp->linear_pri_mode =  0;      /* (wait after xmit only) */
 1737         cbp->interfrm_spacing = 6;      /* (96 bits of) interframe spacing */
 1738         cbp->promiscuous =      prm;    /* promiscuous mode */
 1739         cbp->bcast_disable =    0;      /* (don't) disable broadcasts */
 1740         cbp->wait_after_win =   0;      /* (don't) enable modified backoff alg*/
 1741         cbp->ignore_ul =        0;      /* consider U/L bit in IA matching */
 1742         cbp->crc16_en =         0;      /* (don't) enable crc-16 algorithm */
 1743         cbp->crscdt =           (sc->sc_flags & FXPF_MII) ? 0 : 1;
 1744         cbp->stripping =        !prm;   /* truncate rx packet to byte count */
 1745         cbp->padding =          1;      /* (do) pad short tx packets */
 1746         cbp->rcv_crc_xfer =     0;      /* (don't) xfer CRC to host */
 1747         cbp->long_rx_en =       lrxen;  /* long packet receive enable */
 1748         cbp->ia_wake_en =       0;      /* (don't) wake up on address match */
 1749         cbp->magic_pkt_dis =    0;      /* (don't) disable magic packet */
 1750                                         /* must set wake_en in PMCSR also */
 1751         cbp->force_fdx =        0;      /* (don't) force full duplex */
 1752         cbp->fdx_pin_en =       1;      /* (enable) FDX# pin */
 1753         cbp->multi_ia =         0;      /* (don't) accept multiple IAs */
 1754         cbp->mc_all =           allm;   /* accept all multicasts */
 1755         cbp->ext_rx_mode =      (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
 1756         cbp->vlan_drop_en =     vlan_drop;
 1757 
 1758         if (sc->sc_rev < FXP_REV_82558_A4) {
 1759                 /*
 1760                  * The i82557 has no hardware flow control, the values
 1761                  * here are the defaults for the chip.
 1762                  */
 1763                 cbp->fc_delay_lsb =     0;
 1764                 cbp->fc_delay_msb =     0x40;
 1765                 cbp->pri_fc_thresh =    3;
 1766                 cbp->tx_fc_dis =        0;
 1767                 cbp->rx_fc_restop =     0;
 1768                 cbp->rx_fc_restart =    0;
 1769                 cbp->fc_filter =        0;
 1770                 cbp->pri_fc_loc =       1;
 1771         } else {
 1772                 cbp->fc_delay_lsb =     0x1f;
 1773                 cbp->fc_delay_msb =     0x01;
 1774                 cbp->pri_fc_thresh =    3;
 1775                 cbp->tx_fc_dis =        0;      /* enable transmit FC */
 1776                 cbp->rx_fc_restop =     1;      /* enable FC restop frames */
 1777                 cbp->rx_fc_restart =    1;      /* enable FC restart frames */
 1778                 cbp->fc_filter =        !prm;   /* drop FC frames to host */
 1779                 cbp->pri_fc_loc =       1;      /* FC pri location (byte31) */
 1780                 cbp->ext_stats_dis =    0;      /* enable extended stats */
 1781         }
 1782 
 1783         FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 1784 
 1785         /*
 1786          * Start the config command/DMA.
 1787          */
 1788         fxp_scb_wait(sc);
 1789         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
 1790         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1791         /* ...and wait for it to complete. */
 1792         for (i = 1000; i > 0; i--) {
 1793                 FXP_CDCONFIGSYNC(sc,
 1794                     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 1795                 status = le16toh(cbp->cb_status);
 1796                 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
 1797                 if ((status & FXP_CB_STATUS_C) != 0)
 1798                         break;
 1799                 DELAY(1);
 1800         } 
 1801         if (i == 0) {
 1802                 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
 1803                     device_xname(sc->sc_dev), __LINE__);
 1804                 return (ETIMEDOUT);
 1805         }
 1806 
 1807         /*
 1808          * Initialize the station address.
 1809          */
 1810         cb_ias = &sc->sc_control_data->fcd_iascb;
 1811         /* BIG_ENDIAN: no need to swap to store 0 */
 1812         cb_ias->cb_status = 0;
 1813         cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
 1814         /* BIG_ENDIAN: no need to swap to store 0xffffffff */
 1815         cb_ias->link_addr = 0xffffffff;
 1816         memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
 1817 
 1818         FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 1819 
 1820         /*
 1821          * Start the IAS (Individual Address Setup) command/DMA.
 1822          */
 1823         fxp_scb_wait(sc);
 1824         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
 1825         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1826         /* ...and wait for it to complete. */
 1827         for (i = 1000; i > 0; i++) {
 1828                 FXP_CDIASSYNC(sc,
 1829                     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 1830                 status = le16toh(cb_ias->cb_status);
 1831                 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
 1832                 if ((status & FXP_CB_STATUS_C) != 0)
 1833                         break;
 1834                 DELAY(1);
 1835         }
 1836         if (i == 0) {
 1837                 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
 1838                     device_xname(sc->sc_dev), __LINE__);
 1839                 return (ETIMEDOUT);
 1840         }
 1841 
 1842         /*
 1843          * Initialize the transmit descriptor ring.  txlast is initialized
 1844          * to the end of the list so that it will wrap around to the first
 1845          * descriptor when the first packet is transmitted.
 1846          */
 1847         for (i = 0; i < FXP_NTXCB; i++) {
 1848                 txd = FXP_CDTX(sc, i);
 1849                 memset(txd, 0, sizeof(*txd));
 1850                 txd->txd_txcb.cb_command =
 1851                     htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
 1852                 txd->txd_txcb.link_addr =
 1853                     htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
 1854                 if (sc->sc_flags & FXPF_EXT_TXCB)
 1855                         txd->txd_txcb.tbd_array_addr =
 1856                             htole32(FXP_CDTBDADDR(sc, i) +
 1857                                     (2 * sizeof(struct fxp_tbd)));
 1858                 else
 1859                         txd->txd_txcb.tbd_array_addr =
 1860                             htole32(FXP_CDTBDADDR(sc, i));
 1861                 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 1862         }
 1863         sc->sc_txpending = 0;
 1864         sc->sc_txdirty = 0;
 1865         sc->sc_txlast = FXP_NTXCB - 1;
 1866 
 1867         /*
 1868          * Initialize the receive buffer list.
 1869          */
 1870         sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
 1871         while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
 1872                 rxmap = FXP_RXMAP_GET(sc);
 1873                 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
 1874                         log(LOG_ERR, "%s: unable to allocate or map rx "
 1875                             "buffer %d, error = %d\n",
 1876                             device_xname(sc->sc_dev),
 1877                             sc->sc_rxq.ifq_len, error);
 1878                         /*
 1879                          * XXX Should attempt to run with fewer receive
 1880                          * XXX buffers instead of just failing.
 1881                          */
 1882                         FXP_RXMAP_PUT(sc, rxmap);
 1883                         fxp_rxdrain(sc);
 1884                         goto out;
 1885                 }
 1886         }
 1887         sc->sc_rxidle = 0;
 1888 
 1889         /*
 1890          * Give the transmit ring to the chip.  We do this by pointing
 1891          * the chip at the last descriptor (which is a NOP|SUSPEND), and
 1892          * issuing a start command.  It will execute the NOP and then
 1893          * suspend, pointing at the first descriptor.
 1894          */
 1895         fxp_scb_wait(sc);
 1896         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
 1897         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 1898 
 1899         /*
 1900          * Initialize receiver buffer area - RFA.
 1901          */
 1902 #if 0   /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
 1903         rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
 1904         fxp_scb_wait(sc);
 1905         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
 1906             rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
 1907         fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
 1908 #endif
 1909 
 1910         if (sc->sc_flags & FXPF_MII) {
 1911                 /*
 1912                  * Set current media.
 1913                  */
 1914                 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
 1915                         goto out;
 1916         }
 1917 
 1918         /*
 1919          * ...all done!
 1920          */
 1921         ifp->if_flags |= IFF_RUNNING;
 1922         ifp->if_flags &= ~IFF_OACTIVE;
 1923 
 1924         /*
 1925          * Request a software generated interrupt that will be used to 
 1926          * (re)start the RU processing.  If we direct the chip to start
 1927          * receiving from the start of queue now, instead of letting the
 1928          * interrupt handler first process all received packets, we run
 1929          * the risk of having it overwrite mbuf clusters while they are
 1930          * being processed or after they have been returned to the pool.
 1931          */
 1932         CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
 1933  
 1934         /*
 1935          * Start the one second timer.
 1936          */
 1937         callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
 1938 
 1939         /*
 1940          * Attempt to start output on the interface.
 1941          */
 1942         fxp_start(ifp);
 1943 
 1944  out:
 1945         if (error) {
 1946                 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 1947                 ifp->if_timer = 0;
 1948                 log(LOG_ERR, "%s: interface not running\n",
 1949                     device_xname(sc->sc_dev));
 1950         }
 1951         return (error);
 1952 }
 1953 
 1954 /*
 1955  * Notify the world which media we're using.
 1956  */
 1957 void
 1958 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
 1959 {
 1960         struct fxp_softc *sc = ifp->if_softc;
 1961 
 1962         if (sc->sc_enabled == 0) {
 1963                 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
 1964                 ifmr->ifm_status = 0;
 1965                 return;
 1966         }
 1967 
 1968         ether_mediastatus(ifp, ifmr);
 1969 
 1970         /*
 1971          * XXX Flow control is always turned on if the chip supports
 1972          * XXX it; we can't easily control it dynamically, since it
 1973          * XXX requires sending a setup packet.
 1974          */
 1975         if (sc->sc_rev >= FXP_REV_82558_A4)
 1976                 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
 1977 }
 1978 
 1979 int
 1980 fxp_80c24_mediachange(struct ifnet *ifp)
 1981 {
 1982 
 1983         /* Nothing to do here. */
 1984         return (0);
 1985 }
 1986 
 1987 void
 1988 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
 1989 {
 1990         struct fxp_softc *sc = ifp->if_softc;
 1991 
 1992         /*
 1993          * Media is currently-selected media.  We cannot determine
 1994          * the link status.
 1995          */
 1996         ifmr->ifm_status = 0;
 1997         ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
 1998 }
 1999 
 2000 /*
 2001  * Add a buffer to the end of the RFA buffer list.
 2002  * Return 0 if successful, error code on failure.
 2003  *
 2004  * The RFA struct is stuck at the beginning of mbuf cluster and the
 2005  * data pointer is fixed up to point just past it.
 2006  */
 2007 int
 2008 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
 2009 {
 2010         struct mbuf *m;
 2011         int error;
 2012 
 2013         MGETHDR(m, M_DONTWAIT, MT_DATA);
 2014         if (m == NULL)
 2015                 return (ENOBUFS);
 2016 
 2017         MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
 2018         MCLGET(m, M_DONTWAIT);
 2019         if ((m->m_flags & M_EXT) == 0) {
 2020                 m_freem(m);
 2021                 return (ENOBUFS);
 2022         }
 2023 
 2024         if (unload)
 2025                 bus_dmamap_unload(sc->sc_dmat, rxmap);
 2026 
 2027         M_SETCTX(m, rxmap);
 2028 
 2029         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
 2030         error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
 2031             BUS_DMA_READ|BUS_DMA_NOWAIT);
 2032         if (error) {
 2033                 /* XXX XXX XXX */
 2034                 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
 2035                     sc->sc_rxq.ifq_len, error);
 2036                 panic("fxp_add_rfabuf");
 2037         }
 2038 
 2039         FXP_INIT_RFABUF(sc, m);
 2040 
 2041         return (0);
 2042 }
 2043 
 2044 int
 2045 fxp_mdi_read(device_t self, int phy, int reg)
 2046 {
 2047         struct fxp_softc *sc = device_private(self);
 2048         int count = 10000;
 2049         int value;
 2050 
 2051         CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
 2052             (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
 2053 
 2054         while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
 2055             0x10000000) == 0 && count--)
 2056                 DELAY(10);
 2057 
 2058         if (count <= 0)
 2059                 log(LOG_WARNING,
 2060                     "%s: fxp_mdi_read: timed out\n", device_xname(self));
 2061 
 2062         return (value & 0xffff);
 2063 }
 2064 
 2065 void
 2066 fxp_statchg(device_t self)
 2067 {
 2068 
 2069         /* Nothing to do. */
 2070 }
 2071 
 2072 void
 2073 fxp_mdi_write(device_t self, int phy, int reg, int value)
 2074 {
 2075         struct fxp_softc *sc = device_private(self);
 2076         int count = 10000;
 2077 
 2078         CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
 2079             (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
 2080             (value & 0xffff));
 2081 
 2082         while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
 2083             count--)
 2084                 DELAY(10);
 2085 
 2086         if (count <= 0)
 2087                 log(LOG_WARNING,
 2088                     "%s: fxp_mdi_write: timed out\n", device_xname(self));
 2089 }
 2090 
 2091 int
 2092 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
 2093 {
 2094         struct fxp_softc *sc = ifp->if_softc;
 2095         struct ifreq *ifr = (struct ifreq *)data;
 2096         int s, error;
 2097 
 2098         s = splnet();
 2099 
 2100         switch (cmd) {
 2101         case SIOCSIFMEDIA:
 2102         case SIOCGIFMEDIA:
 2103                 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
 2104                 break;
 2105 
 2106         default:
 2107                 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
 2108                         break;
 2109 
 2110                 error = 0;
 2111 
 2112                 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
 2113                         ;
 2114                 else if (ifp->if_flags & IFF_RUNNING) {
 2115                         /*
 2116                          * Multicast list has changed; set the
 2117                          * hardware filter accordingly.
 2118                          */
 2119                         while (sc->sc_txpending) {
 2120                                 sc->sc_flags |= FXPF_WANTINIT;
 2121                                 tsleep(sc, PSOCK, "fxp_init", 0);
 2122                         }
 2123                         error = fxp_init(ifp);
 2124                 }
 2125                 break;
 2126         }
 2127 
 2128         /* Try to get more packets going. */
 2129         if (sc->sc_enabled)
 2130                 fxp_start(ifp);
 2131 
 2132         splx(s);
 2133         return (error);
 2134 }
 2135 
 2136 /*
 2137  * Program the multicast filter.
 2138  *
 2139  * This function must be called at splnet().
 2140  */
 2141 void
 2142 fxp_mc_setup(struct fxp_softc *sc)
 2143 {
 2144         struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
 2145         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
 2146         struct ethercom *ec = &sc->sc_ethercom;
 2147         struct ether_multi *enm;
 2148         struct ether_multistep step;
 2149         int count, nmcasts;
 2150         uint16_t status;
 2151 
 2152 #ifdef DIAGNOSTIC
 2153         if (sc->sc_txpending)
 2154                 panic("fxp_mc_setup: pending transmissions");
 2155 #endif
 2156 
 2157         ifp->if_flags &= ~IFF_ALLMULTI;
 2158 
 2159         /*
 2160          * Initialize multicast setup descriptor.
 2161          */
 2162         nmcasts = 0;
 2163         ETHER_FIRST_MULTI(step, ec, enm);
 2164         while (enm != NULL) {
 2165                 /*
 2166                  * Check for too many multicast addresses or if we're
 2167                  * listening to a range.  Either way, we simply have
 2168                  * to accept all multicasts.
 2169                  */
 2170                 if (nmcasts >= MAXMCADDR ||
 2171                     memcmp(enm->enm_addrlo, enm->enm_addrhi,
 2172                     ETHER_ADDR_LEN) != 0) {
 2173                         /*
 2174                          * Callers of this function must do the
 2175                          * right thing with this.  If we're called
 2176                          * from outside fxp_init(), the caller must
 2177                          * detect if the state if IFF_ALLMULTI changes.
 2178                          * If it does, the caller must then call
 2179                          * fxp_init(), since allmulti is handled by
 2180                          * the config block.
 2181                          */
 2182                         ifp->if_flags |= IFF_ALLMULTI;
 2183                         return;
 2184                 }
 2185                 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
 2186                     ETHER_ADDR_LEN);
 2187                 nmcasts++;
 2188                 ETHER_NEXT_MULTI(step, enm);
 2189         }
 2190 
 2191         /* BIG_ENDIAN: no need to swap to store 0 */
 2192         mcsp->cb_status = 0;
 2193         mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
 2194         mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
 2195         mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
 2196 
 2197         FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 2198 
 2199         /*
 2200          * Wait until the command unit is not active.  This should never
 2201          * happen since nothing is queued, but make sure anyway.
 2202          */
 2203         count = 100;
 2204         while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
 2205             FXP_SCB_CUS_ACTIVE && --count)
 2206                 DELAY(1);
 2207         if (count == 0) {
 2208                 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
 2209                     device_xname(sc->sc_dev), __LINE__);
 2210                 return;
 2211         }
 2212 
 2213         /*
 2214          * Start the multicast setup command/DMA.
 2215          */
 2216         fxp_scb_wait(sc);
 2217         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
 2218         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2219 
 2220         /* ...and wait for it to complete. */
 2221         for (count = 1000; count > 0; count--) {
 2222                 FXP_CDMCSSYNC(sc,
 2223                     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 2224                 status = le16toh(mcsp->cb_status);
 2225                 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
 2226                 if ((status & FXP_CB_STATUS_C) != 0)
 2227                         break;
 2228                 DELAY(1);
 2229         }
 2230         if (count == 0) {
 2231                 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
 2232                     device_xname(sc->sc_dev), __LINE__);
 2233                 return;
 2234         }
 2235 }
 2236 
 2237 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
 2238 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
 2239 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
 2240 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
 2241 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
 2242 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
 2243 
 2244 #define UCODE(x)        x, sizeof(x)/sizeof(uint32_t)
 2245 
 2246 static const struct ucode {
 2247         int32_t         revision;
 2248         const uint32_t  *ucode;
 2249         size_t          length;
 2250         uint16_t        int_delay_offset;
 2251         uint16_t        bundle_max_offset;
 2252 } ucode_table[] = {
 2253         { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
 2254           D101_CPUSAVER_DWORD, 0 },
 2255 
 2256         { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
 2257           D101_CPUSAVER_DWORD, 0 },
 2258 
 2259         { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
 2260           D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
 2261 
 2262         { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
 2263           D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
 2264 
 2265         { FXP_REV_82550, UCODE(fxp_ucode_d102),
 2266           D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
 2267 
 2268         { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
 2269           D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
 2270 
 2271         { 0, NULL, 0, 0, 0 }
 2272 };
 2273 
 2274 void
 2275 fxp_load_ucode(struct fxp_softc *sc)
 2276 {
 2277         const struct ucode *uc;
 2278         struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
 2279         int count, i;
 2280         uint16_t status;
 2281 
 2282         if (sc->sc_flags & FXPF_UCODE_LOADED)
 2283                 return;
 2284 
 2285         /*
 2286          * Only load the uCode if the user has requested that
 2287          * we do so.
 2288          */
 2289         if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
 2290                 sc->sc_int_delay = 0;
 2291                 sc->sc_bundle_max = 0;
 2292                 return;
 2293         }
 2294 
 2295         for (uc = ucode_table; uc->ucode != NULL; uc++) {
 2296                 if (sc->sc_rev == uc->revision)
 2297                         break;
 2298         }
 2299         if (uc->ucode == NULL)
 2300                 return;
 2301 
 2302         /* BIG ENDIAN: no need to swap to store 0 */
 2303         cbp->cb_status = 0;
 2304         cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
 2305         cbp->link_addr = 0xffffffff;            /* (no) next command */
 2306         for (i = 0; i < uc->length; i++)
 2307                 cbp->ucode[i] = htole32(uc->ucode[i]);
 2308 
 2309         if (uc->int_delay_offset)
 2310                 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
 2311                     htole16(fxp_int_delay + (fxp_int_delay / 2));
 2312 
 2313         if (uc->bundle_max_offset)
 2314                 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
 2315                     htole16(fxp_bundle_max);
 2316 
 2317         FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
 2318 
 2319         /*
 2320          * Download the uCode to the chip.
 2321          */
 2322         fxp_scb_wait(sc);
 2323         CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
 2324         fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
 2325 
 2326         /* ...and wait for it to complete. */
 2327         for (count = 10000; count > 0; count--) {
 2328                 FXP_CDUCODESYNC(sc,
 2329                     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
 2330                 status = le16toh(cbp->cb_status);
 2331                 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
 2332                 if ((status & FXP_CB_STATUS_C) != 0)
 2333                         break;
 2334                 DELAY(2);
 2335         }
 2336         if (count == 0) {
 2337                 sc->sc_int_delay = 0;
 2338                 sc->sc_bundle_max = 0;
 2339                 log(LOG_WARNING, "%s: timeout loading microcode\n",
 2340                     device_xname(sc->sc_dev));
 2341                 return;
 2342         }
 2343 
 2344         if (sc->sc_int_delay != fxp_int_delay ||
 2345             sc->sc_bundle_max != fxp_bundle_max) {
 2346                 sc->sc_int_delay = fxp_int_delay;
 2347                 sc->sc_bundle_max = fxp_bundle_max;
 2348                 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
 2349                     "max bundle: %d\n", device_xname(sc->sc_dev),
 2350                     sc->sc_int_delay,
 2351                     uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
 2352         }
 2353 
 2354         sc->sc_flags |= FXPF_UCODE_LOADED;
 2355 }
 2356 
 2357 int
 2358 fxp_enable(struct fxp_softc *sc)
 2359 {
 2360 
 2361         if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
 2362                 if ((*sc->sc_enable)(sc) != 0) {
 2363                         log(LOG_ERR, "%s: device enable failed\n",
 2364                             device_xname(sc->sc_dev));
 2365                         return (EIO);
 2366                 }
 2367         }
 2368 
 2369         sc->sc_enabled = 1;
 2370         return (0);
 2371 }
 2372 
 2373 void
 2374 fxp_disable(struct fxp_softc *sc)
 2375 {
 2376 
 2377         if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
 2378                 (*sc->sc_disable)(sc);
 2379                 sc->sc_enabled = 0;
 2380         }
 2381 }
 2382 
 2383 /*
 2384  * fxp_activate:
 2385  *
 2386  *      Handle device activation/deactivation requests.
 2387  */
 2388 int
 2389 fxp_activate(device_t self, enum devact act)
 2390 {
 2391         struct fxp_softc *sc = device_private(self);
 2392         int s, error = 0;
 2393 
 2394         s = splnet();
 2395         switch (act) {
 2396         case DVACT_ACTIVATE:
 2397                 error = EOPNOTSUPP;
 2398                 break;
 2399 
 2400         case DVACT_DEACTIVATE:
 2401                 if (sc->sc_flags & FXPF_MII)
 2402                         mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
 2403                             MII_OFFSET_ANY);
 2404                 if_deactivate(&sc->sc_ethercom.ec_if);
 2405                 break;
 2406         }
 2407         splx(s);
 2408 
 2409         return (error);
 2410 }
 2411 
 2412 /*
 2413  * fxp_detach:
 2414  *
 2415  *      Detach an i82557 interface.
 2416  */
 2417 int
 2418 fxp_detach(struct fxp_softc *sc)
 2419 {
 2420         struct ifnet *ifp = &sc->sc_ethercom.ec_if;
 2421         int i;
 2422 
 2423         /* Succeed now if there's no work to do. */
 2424         if ((sc->sc_flags & FXPF_ATTACHED) == 0)
 2425                 return (0);
 2426 
 2427         /* Unhook our tick handler. */
 2428         callout_stop(&sc->sc_callout);
 2429 
 2430         if (sc->sc_flags & FXPF_MII) {
 2431                 /* Detach all PHYs */
 2432                 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
 2433         }
 2434 
 2435         /* Delete all remaining media. */
 2436         ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
 2437 
 2438 #if NRND > 0
 2439         rnd_detach_source(&sc->rnd_source);
 2440 #endif
 2441         ether_ifdetach(ifp);
 2442         if_detach(ifp);
 2443 
 2444         for (i = 0; i < FXP_NRFABUFS; i++) {
 2445                 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
 2446                 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
 2447         }
 2448 
 2449         for (i = 0; i < FXP_NTXCB; i++) {
 2450                 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
 2451                 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
 2452         }
 2453 
 2454         bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
 2455         bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
 2456         bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
 2457             sizeof(struct fxp_control_data));
 2458         bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
 2459 
 2460         return (0);
 2461 }

Cache object: 4de5dccfc5d2b45a82900248c2a131bd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.