The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/rtl81x9.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: rtl81x9.c,v 1.51.2.2 2007/10/04 18:50:23 bouyer Exp $  */
    2 
    3 /*
    4  * Copyright (c) 1997, 1998
    5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Bill Paul.
   18  * 4. Neither the name of the author nor the names of any co-contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   32  * THE POSSIBILITY OF SUCH DAMAGE.
   33  *
   34  *      FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
   35  */
   36 
   37 /*
   38  * RealTek 8129/8139 PCI NIC driver
   39  *
   40  * Supports several extremely cheap PCI 10/100 adapters based on
   41  * the RealTek chipset. Datasheets can be obtained from
   42  * www.realtek.com.tw.
   43  *
   44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
   45  * Electrical Engineering Department
   46  * Columbia University, New York City
   47  */
   48 
   49 /*
   50  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
   51  * probably the worst PCI ethernet controller ever made, with the possible
   52  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
   53  * DMA, but it has a terrible interface that nullifies any performance
   54  * gains that bus-master DMA usually offers.
   55  *
   56  * For transmission, the chip offers a series of four TX descriptor
   57  * registers. Each transmit frame must be in a contiguous buffer, aligned
   58  * on a longword (32-bit) boundary. This means we almost always have to
   59  * do mbuf copies in order to transmit a frame, except in the unlikely
   60  * case where a) the packet fits into a single mbuf, and b) the packet
   61  * is 32-bit aligned within the mbuf's data area. The presence of only
   62  * four descriptor registers means that we can never have more than four
   63  * packets queued for transmission at any one time.
   64  *
   65  * Reception is not much better. The driver has to allocate a single large
   66  * buffer area (up to 64K in size) into which the chip will DMA received
   67  * frames. Because we don't know where within this region received packets
   68  * will begin or end, we have no choice but to copy data from the buffer
   69  * area into mbufs in order to pass the packets up to the higher protocol
   70  * levels.
   71  *
   72  * It's impossible given this rotten design to really achieve decent
   73  * performance at 100Mbps, unless you happen to have a 400MHz PII or
   74  * some equally overmuscled CPU to drive it.
   75  *
   76  * On the bright side, the 8139 does have a built-in PHY, although
   77  * rather than using an MDIO serial interface like most other NICs, the
   78  * PHY registers are directly accessible through the 8139's register
   79  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
   80  * filter.
   81  *
   82  * The 8129 chip is an older version of the 8139 that uses an external PHY
   83  * chip. The 8129 has a serial MDIO interface for accessing the MII where
   84  * the 8139 lets you directly access the on-board PHY registers. We need
   85  * to select which interface to use depending on the chip type.
   86  */
   87 
   88 #include <sys/cdefs.h>
   89 __KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.51.2.2 2007/10/04 18:50:23 bouyer Exp $");
   90 
   91 #include "bpfilter.h"
   92 #include "rnd.h"
   93 
   94 #include <sys/param.h>
   95 #include <sys/systm.h>
   96 #include <sys/callout.h>
   97 #include <sys/device.h>
   98 #include <sys/sockio.h>
   99 #include <sys/mbuf.h>
  100 #include <sys/malloc.h>
  101 #include <sys/kernel.h>
  102 #include <sys/socket.h>
  103 
  104 #include <uvm/uvm_extern.h>
  105 
  106 #include <net/if.h>
  107 #include <net/if_arp.h>
  108 #include <net/if_ether.h>
  109 #include <net/if_dl.h>
  110 #include <net/if_media.h>
  111 
  112 #if NBPFILTER > 0
  113 #include <net/bpf.h>
  114 #endif
  115 #if NRND > 0
  116 #include <sys/rnd.h>
  117 #endif
  118 
  119 #include <machine/bus.h>
  120 #include <machine/endian.h>
  121 
  122 #include <dev/mii/mii.h>
  123 #include <dev/mii/miivar.h>
  124 
  125 #include <dev/ic/rtl81x9reg.h>
  126 #include <dev/ic/rtl81x9var.h>
  127 
  128 #if defined(DEBUG)
  129 #define STATIC
  130 #else
  131 #define STATIC static
  132 #endif
  133 
  134 STATIC void rtk_reset(struct rtk_softc *);
  135 STATIC void rtk_rxeof(struct rtk_softc *);
  136 STATIC void rtk_txeof(struct rtk_softc *);
  137 STATIC void rtk_start(struct ifnet *);
  138 STATIC int rtk_ioctl(struct ifnet *, u_long, caddr_t);
  139 STATIC int rtk_init(struct ifnet *);
  140 STATIC void rtk_stop(struct ifnet *, int);
  141 
  142 STATIC void rtk_watchdog(struct ifnet *);
  143 STATIC void rtk_shutdown(void *);
  144 STATIC int rtk_ifmedia_upd(struct ifnet *);
  145 STATIC void rtk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  146 
  147 STATIC void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
  148 STATIC void rtk_mii_sync(struct rtk_softc *);
  149 STATIC void rtk_mii_send(struct rtk_softc *, uint32_t, int);
  150 STATIC int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
  151 STATIC int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
  152 
  153 STATIC int rtk_phy_readreg(struct device *, int, int);
  154 STATIC void rtk_phy_writereg(struct device *, int, int, int);
  155 STATIC void rtk_phy_statchg(struct device *);
  156 STATIC void rtk_tick(void *);
  157 
  158 STATIC int rtk_enable(struct rtk_softc *);
  159 STATIC void rtk_disable(struct rtk_softc *);
  160 STATIC void rtk_power(int, void *);
  161 
  162 STATIC int rtk_list_tx_init(struct rtk_softc *);
  163 
  164 #define EE_SET(x)                                       \
  165         CSR_WRITE_1(sc, RTK_EECMD,                      \
  166                 CSR_READ_1(sc, RTK_EECMD) | (x))
  167 
  168 #define EE_CLR(x)                                       \
  169         CSR_WRITE_1(sc, RTK_EECMD,                      \
  170                 CSR_READ_1(sc, RTK_EECMD) & ~(x))
  171 
  172 #define EE_DELAY()      DELAY(100)
  173 
  174 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
  175 
  176 /*
  177  * Send a read command and address to the EEPROM, check for ACK.
  178  */
  179 STATIC void
  180 rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
  181 {
  182         int d, i;
  183 
  184         d = (RTK_EECMD_READ << addr_len) | addr;
  185 
  186         /*
  187          * Feed in each bit and stobe the clock.
  188          */
  189         for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
  190                 if (d & (1 << (i - 1))) {
  191                         EE_SET(RTK_EE_DATAIN);
  192                 } else {
  193                         EE_CLR(RTK_EE_DATAIN);
  194                 }
  195                 EE_DELAY();
  196                 EE_SET(RTK_EE_CLK);
  197                 EE_DELAY();
  198                 EE_CLR(RTK_EE_CLK);
  199                 EE_DELAY();
  200         }
  201 }
  202 
  203 /*
  204  * Read a word of data stored in the EEPROM at address 'addr.'
  205  */
  206 uint16_t
  207 rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
  208 {
  209         uint16_t word;
  210         int i;
  211 
  212         /* Enter EEPROM access mode. */
  213         CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
  214         EE_DELAY();
  215         EE_SET(RTK_EE_SEL);
  216 
  217         /*
  218          * Send address of word we want to read.
  219          */
  220         rtk_eeprom_putbyte(sc, addr, addr_len);
  221 
  222         /*
  223          * Start reading bits from EEPROM.
  224          */
  225         word = 0;
  226         for (i = 16; i > 0; i--) {
  227                 EE_SET(RTK_EE_CLK);
  228                 EE_DELAY();
  229                 if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
  230                         word |= 1 << (i - 1);
  231                 EE_CLR(RTK_EE_CLK);
  232                 EE_DELAY();
  233         }
  234 
  235         /* Turn off EEPROM access mode. */
  236         CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
  237 
  238         return word;
  239 }
  240 
  241 /*
  242  * MII access routines are provided for the 8129, which
  243  * doesn't have a built-in PHY. For the 8139, we fake things
  244  * up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
  245  * direct access PHY registers.
  246  */
  247 #define MII_SET(x)                                      \
  248         CSR_WRITE_1(sc, RTK_MII,                        \
  249                 CSR_READ_1(sc, RTK_MII) | (x))
  250 
  251 #define MII_CLR(x)                                      \
  252         CSR_WRITE_1(sc, RTK_MII,                        \
  253                 CSR_READ_1(sc, RTK_MII) & ~(x))
  254 
  255 /*
  256  * Sync the PHYs by setting data bit and strobing the clock 32 times.
  257  */
  258 STATIC void
  259 rtk_mii_sync(struct rtk_softc *sc)
  260 {
  261         int i;
  262 
  263         MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
  264 
  265         for (i = 0; i < 32; i++) {
  266                 MII_SET(RTK_MII_CLK);
  267                 DELAY(1);
  268                 MII_CLR(RTK_MII_CLK);
  269                 DELAY(1);
  270         }
  271 }
  272 
  273 /*
  274  * Clock a series of bits through the MII.
  275  */
  276 STATIC void
  277 rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
  278 {
  279         int i;
  280 
  281         MII_CLR(RTK_MII_CLK);
  282 
  283         for (i = cnt; i > 0; i--) {
  284                 if (bits & (1 << (i - 1))) {
  285                         MII_SET(RTK_MII_DATAOUT);
  286                 } else {
  287                         MII_CLR(RTK_MII_DATAOUT);
  288                 }
  289                 DELAY(1);
  290                 MII_CLR(RTK_MII_CLK);
  291                 DELAY(1);
  292                 MII_SET(RTK_MII_CLK);
  293         }
  294 }
  295 
  296 /*
  297  * Read an PHY register through the MII.
  298  */
  299 STATIC int
  300 rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
  301 {
  302         int i, ack, s;
  303 
  304         s = splnet();
  305 
  306         /*
  307          * Set up frame for RX.
  308          */
  309         frame->mii_stdelim = RTK_MII_STARTDELIM;
  310         frame->mii_opcode = RTK_MII_READOP;
  311         frame->mii_turnaround = 0;
  312         frame->mii_data = 0;
  313 
  314         CSR_WRITE_2(sc, RTK_MII, 0);
  315 
  316         /*
  317          * Turn on data xmit.
  318          */
  319         MII_SET(RTK_MII_DIR);
  320 
  321         rtk_mii_sync(sc);
  322 
  323         /*
  324          * Send command/address info.
  325          */
  326         rtk_mii_send(sc, frame->mii_stdelim, 2);
  327         rtk_mii_send(sc, frame->mii_opcode, 2);
  328         rtk_mii_send(sc, frame->mii_phyaddr, 5);
  329         rtk_mii_send(sc, frame->mii_regaddr, 5);
  330 
  331         /* Idle bit */
  332         MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
  333         DELAY(1);
  334         MII_SET(RTK_MII_CLK);
  335         DELAY(1);
  336 
  337         /* Turn off xmit. */
  338         MII_CLR(RTK_MII_DIR);
  339 
  340         /* Check for ack */
  341         MII_CLR(RTK_MII_CLK);
  342         DELAY(1);
  343         ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
  344         MII_SET(RTK_MII_CLK);
  345         DELAY(1);
  346 
  347         /*
  348          * Now try reading data bits. If the ack failed, we still
  349          * need to clock through 16 cycles to keep the PHY(s) in sync.
  350          */
  351         if (ack) {
  352                 for (i = 0; i < 16; i++) {
  353                         MII_CLR(RTK_MII_CLK);
  354                         DELAY(1);
  355                         MII_SET(RTK_MII_CLK);
  356                         DELAY(1);
  357                 }
  358                 goto fail;
  359         }
  360 
  361         for (i = 16; i > 0; i--) {
  362                 MII_CLR(RTK_MII_CLK);
  363                 DELAY(1);
  364                 if (!ack) {
  365                         if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
  366                                 frame->mii_data |= 1 << (i - 1);
  367                         DELAY(1);
  368                 }
  369                 MII_SET(RTK_MII_CLK);
  370                 DELAY(1);
  371         }
  372 
  373  fail:
  374         MII_CLR(RTK_MII_CLK);
  375         DELAY(1);
  376         MII_SET(RTK_MII_CLK);
  377         DELAY(1);
  378 
  379         splx(s);
  380 
  381         if (ack)
  382                 return 1;
  383         return 0;
  384 }
  385 
  386 /*
  387  * Write to a PHY register through the MII.
  388  */
  389 STATIC int
  390 rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
  391 {
  392         int s;
  393 
  394         s = splnet();
  395         /*
  396          * Set up frame for TX.
  397          */
  398         frame->mii_stdelim = RTK_MII_STARTDELIM;
  399         frame->mii_opcode = RTK_MII_WRITEOP;
  400         frame->mii_turnaround = RTK_MII_TURNAROUND;
  401 
  402         /*
  403          * Turn on data output.
  404          */
  405         MII_SET(RTK_MII_DIR);
  406 
  407         rtk_mii_sync(sc);
  408 
  409         rtk_mii_send(sc, frame->mii_stdelim, 2);
  410         rtk_mii_send(sc, frame->mii_opcode, 2);
  411         rtk_mii_send(sc, frame->mii_phyaddr, 5);
  412         rtk_mii_send(sc, frame->mii_regaddr, 5);
  413         rtk_mii_send(sc, frame->mii_turnaround, 2);
  414         rtk_mii_send(sc, frame->mii_data, 16);
  415 
  416         /* Idle bit. */
  417         MII_SET(RTK_MII_CLK);
  418         DELAY(1);
  419         MII_CLR(RTK_MII_CLK);
  420         DELAY(1);
  421 
  422         /*
  423          * Turn off xmit.
  424          */
  425         MII_CLR(RTK_MII_DIR);
  426 
  427         splx(s);
  428 
  429         return 0;
  430 }
  431 
  432 STATIC int
  433 rtk_phy_readreg(struct device *self, int phy, int reg)
  434 {
  435         struct rtk_softc *sc = (void *)self;
  436         struct rtk_mii_frame frame;
  437         int rval;
  438         int rtk8139_reg;
  439 
  440         if ((sc->sc_quirk & RTKQ_8129) == 0) {
  441                 if (phy != 7)
  442                         return 0;
  443 
  444                 switch (reg) {
  445                 case MII_BMCR:
  446                         rtk8139_reg = RTK_BMCR;
  447                         break;
  448                 case MII_BMSR:
  449                         rtk8139_reg = RTK_BMSR;
  450                         break;
  451                 case MII_ANAR:
  452                         rtk8139_reg = RTK_ANAR;
  453                         break;
  454                 case MII_ANER:
  455                         rtk8139_reg = RTK_ANER;
  456                         break;
  457                 case MII_ANLPAR:
  458                         rtk8139_reg = RTK_LPAR;
  459                         break;
  460                 default:
  461 #if 0
  462                         printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
  463 #endif
  464                         return 0;
  465                 }
  466                 rval = CSR_READ_2(sc, rtk8139_reg);
  467                 return rval;
  468         }
  469 
  470         memset((char *)&frame, 0, sizeof(frame));
  471 
  472         frame.mii_phyaddr = phy;
  473         frame.mii_regaddr = reg;
  474         rtk_mii_readreg(sc, &frame);
  475 
  476         return frame.mii_data;
  477 }
  478 
  479 STATIC void rtk_phy_writereg(struct device *self, int phy, int reg, int data)
  480 {
  481         struct rtk_softc *sc = (void *)self;
  482         struct rtk_mii_frame frame;
  483         int rtk8139_reg;
  484 
  485         if ((sc->sc_quirk & RTKQ_8129) == 0) {
  486                 if (phy != 7)
  487                         return;
  488 
  489                 switch (reg) {
  490                 case MII_BMCR:
  491                         rtk8139_reg = RTK_BMCR;
  492                         break;
  493                 case MII_BMSR:
  494                         rtk8139_reg = RTK_BMSR;
  495                         break;
  496                 case MII_ANAR:
  497                         rtk8139_reg = RTK_ANAR;
  498                         break;
  499                 case MII_ANER:
  500                         rtk8139_reg = RTK_ANER;
  501                         break;
  502                 case MII_ANLPAR:
  503                         rtk8139_reg = RTK_LPAR;
  504                         break;
  505                 default:
  506 #if 0
  507                         printf("%s: bad phy register\n", sc->sc_dev.dv_xname);
  508 #endif
  509                         return;
  510                 }
  511                 CSR_WRITE_2(sc, rtk8139_reg, data);
  512                 return;
  513         }
  514 
  515         memset((char *)&frame, 0, sizeof(frame));
  516 
  517         frame.mii_phyaddr = phy;
  518         frame.mii_regaddr = reg;
  519         frame.mii_data = data;
  520 
  521         rtk_mii_writereg(sc, &frame);
  522 }
  523 
  524 STATIC void
  525 rtk_phy_statchg(struct device *v)
  526 {
  527 
  528         /* Nothing to do. */
  529 }
  530 
  531 #define rtk_calchash(addr) \
  532         (ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
  533 
  534 /*
  535  * Program the 64-bit multicast hash filter.
  536  */
  537 void
  538 rtk_setmulti(struct rtk_softc *sc)
  539 {
  540         struct ifnet *ifp;
  541         uint32_t hashes[2] = { 0, 0 };
  542         uint32_t rxfilt;
  543         struct ether_multi *enm;
  544         struct ether_multistep step;
  545         int h, mcnt;
  546 
  547         ifp = &sc->ethercom.ec_if;
  548 
  549         rxfilt = CSR_READ_4(sc, RTK_RXCFG);
  550 
  551         if (ifp->if_flags & IFF_PROMISC) {
  552  allmulti:
  553                 ifp->if_flags |= IFF_ALLMULTI;
  554                 rxfilt |= RTK_RXCFG_RX_MULTI;
  555                 CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
  556                 CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
  557                 CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
  558                 return;
  559         }
  560 
  561         /* first, zot all the existing hash bits */
  562         CSR_WRITE_4(sc, RTK_MAR0, 0);
  563         CSR_WRITE_4(sc, RTK_MAR4, 0);
  564 
  565         /* now program new ones */
  566         ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
  567         mcnt = 0;
  568         while (enm != NULL) {
  569                 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
  570                     ETHER_ADDR_LEN) != 0)
  571                         goto allmulti;
  572 
  573                 h = rtk_calchash(enm->enm_addrlo);
  574                 if (h < 32)
  575                         hashes[0] |= (1 << h);
  576                 else
  577                         hashes[1] |= (1 << (h - 32));
  578                 mcnt++;
  579                 ETHER_NEXT_MULTI(step, enm);
  580         }
  581 
  582         ifp->if_flags &= ~IFF_ALLMULTI;
  583 
  584         if (mcnt)
  585                 rxfilt |= RTK_RXCFG_RX_MULTI;
  586         else
  587                 rxfilt &= ~RTK_RXCFG_RX_MULTI;
  588 
  589         CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
  590 
  591         /*
  592          * For some unfathomable reason, RealTek decided to reverse
  593          * the order of the multicast hash registers in the PCI Express
  594          * parts. This means we have to write the hash pattern in reverse
  595          * order for those devices.
  596          */
  597         if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
  598                 CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
  599                 CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
  600         } else {
  601                 CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
  602                 CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
  603         }
  604 }
  605 
  606 void
  607 rtk_reset(struct rtk_softc *sc)
  608 {
  609         int i;
  610 
  611         CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
  612 
  613         for (i = 0; i < RTK_TIMEOUT; i++) {
  614                 DELAY(10);
  615                 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
  616                         break;
  617         }
  618         if (i == RTK_TIMEOUT)
  619                 printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
  620 }
  621 
  622 /*
  623  * Attach the interface. Allocate softc structures, do ifmedia
  624  * setup and ethernet/BPF attach.
  625  */
  626 void
  627 rtk_attach(struct rtk_softc *sc)
  628 {
  629         struct ifnet *ifp;
  630         struct rtk_tx_desc *txd;
  631         uint16_t val;
  632         uint8_t eaddr[ETHER_ADDR_LEN];
  633         int error;
  634         int i, addr_len;
  635 
  636         callout_init(&sc->rtk_tick_ch);
  637 
  638         /*
  639          * Check EEPROM type 9346 or 9356.
  640          */
  641         if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
  642                 addr_len = RTK_EEADDR_LEN1;
  643         else
  644                 addr_len = RTK_EEADDR_LEN0;
  645 
  646         /*
  647          * Get station address.
  648          */
  649         val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
  650         eaddr[0] = val & 0xff;
  651         eaddr[1] = val >> 8;
  652         val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
  653         eaddr[2] = val & 0xff;
  654         eaddr[3] = val >> 8;
  655         val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
  656         eaddr[4] = val & 0xff;
  657         eaddr[5] = val >> 8;
  658 
  659         if ((error = bus_dmamem_alloc(sc->sc_dmat,
  660             RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
  661             BUS_DMA_NOWAIT)) != 0) {
  662                 printf("%s: can't allocate recv buffer, error = %d\n",
  663                     sc->sc_dev.dv_xname, error);
  664                 goto fail_0;
  665         }
  666 
  667         if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
  668             RTK_RXBUFLEN + 16, (caddr_t *)&sc->rtk_rx_buf,
  669             BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
  670                 printf("%s: can't map recv buffer, error = %d\n",
  671                     sc->sc_dev.dv_xname, error);
  672                 goto fail_1;
  673         }
  674 
  675         if ((error = bus_dmamap_create(sc->sc_dmat,
  676             RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
  677             &sc->recv_dmamap)) != 0) {
  678                 printf("%s: can't create recv buffer DMA map, error = %d\n",
  679                     sc->sc_dev.dv_xname, error);
  680                 goto fail_2;
  681         }
  682 
  683         if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
  684             sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
  685             NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
  686                 printf("%s: can't load recv buffer DMA map, error = %d\n",
  687                     sc->sc_dev.dv_xname, error);
  688                 goto fail_3;
  689         }
  690 
  691         for (i = 0; i < RTK_TX_LIST_CNT; i++) {
  692                 txd = &sc->rtk_tx_descs[i];
  693                 if ((error = bus_dmamap_create(sc->sc_dmat,
  694                     MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
  695                     &txd->txd_dmamap)) != 0) {
  696                         printf("%s: can't create snd buffer DMA map,"
  697                             " error = %d\n", sc->sc_dev.dv_xname, error);
  698                         goto fail_4;
  699                 }
  700                 txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
  701                 txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
  702         }
  703         SIMPLEQ_INIT(&sc->rtk_tx_free);
  704         SIMPLEQ_INIT(&sc->rtk_tx_dirty);
  705 
  706         /*
  707          * From this point forward, the attachment cannot fail. A failure
  708          * before this releases all resources thar may have been
  709          * allocated.
  710          */
  711         sc->sc_flags |= RTK_ATTACHED;
  712 
  713         /* Reset the adapter. */
  714         rtk_reset(sc);
  715 
  716         printf("%s: Ethernet address %s\n",
  717             sc->sc_dev.dv_xname, ether_sprintf(eaddr));
  718 
  719         ifp = &sc->ethercom.ec_if;
  720         ifp->if_softc = sc;
  721         strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
  722         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  723         ifp->if_ioctl = rtk_ioctl;
  724         ifp->if_start = rtk_start;
  725         ifp->if_watchdog = rtk_watchdog;
  726         ifp->if_init = rtk_init;
  727         ifp->if_stop = rtk_stop;
  728         IFQ_SET_READY(&ifp->if_snd);
  729 
  730         /*
  731          * Do ifmedia setup.
  732          */
  733         sc->mii.mii_ifp = ifp;
  734         sc->mii.mii_readreg = rtk_phy_readreg;
  735         sc->mii.mii_writereg = rtk_phy_writereg;
  736         sc->mii.mii_statchg = rtk_phy_statchg;
  737         ifmedia_init(&sc->mii.mii_media, IFM_IMASK, rtk_ifmedia_upd,
  738             rtk_ifmedia_sts);
  739         mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff,
  740             MII_PHY_ANY, MII_OFFSET_ANY, 0);
  741 
  742         /* Choose a default media. */
  743         if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
  744                 ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
  745                 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
  746         } else {
  747                 ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
  748         }
  749 
  750         /*
  751          * Call MI attach routines.
  752          */
  753         if_attach(ifp);
  754         ether_ifattach(ifp, eaddr);
  755 
  756         /*
  757          * Make sure the interface is shutdown during reboot.
  758          */
  759         sc->sc_sdhook = shutdownhook_establish(rtk_shutdown, sc);
  760         if (sc->sc_sdhook == NULL)
  761                 printf("%s: WARNING: unable to establish shutdown hook\n",
  762                     sc->sc_dev.dv_xname);
  763         /*
  764          * Add a suspend hook to make sure we come back up after a
  765          * resume.
  766          */
  767         sc->sc_powerhook = powerhook_establish(rtk_power, sc);
  768         if (sc->sc_powerhook == NULL)
  769                 printf("%s: WARNING: unable to establish power hook\n",
  770                     sc->sc_dev.dv_xname);
  771 
  772 
  773 #if NRND > 0
  774         rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
  775             RND_TYPE_NET, 0);
  776 #endif
  777 
  778         return;
  779  fail_4:
  780         for (i = 0; i < RTK_TX_LIST_CNT; i++) {
  781                 txd = &sc->rtk_tx_descs[i];
  782                 if (txd->txd_dmamap != NULL)
  783                         bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
  784         }
  785  fail_3:
  786         bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
  787  fail_2:
  788         bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
  789             RTK_RXBUFLEN + 16);
  790  fail_1:
  791         bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
  792  fail_0:
  793         return;
  794 }
  795 
  796 /*
  797  * Initialize the transmit descriptors.
  798  */
  799 STATIC int
  800 rtk_list_tx_init(struct rtk_softc *sc)
  801 {
  802         struct rtk_tx_desc *txd;
  803         int i;
  804 
  805         while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
  806                 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
  807         while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
  808                 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
  809 
  810         for (i = 0; i < RTK_TX_LIST_CNT; i++) {
  811                 txd = &sc->rtk_tx_descs[i];
  812                 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
  813                 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
  814         }
  815 
  816         return 0;
  817 }
  818 
  819 /*
  820  * rtk_activate:
  821  *     Handle device activation/deactivation requests.
  822  */
  823 int
  824 rtk_activate(struct device *self, enum devact act)
  825 {
  826         struct rtk_softc *sc = (void *)self;
  827         int s, error;
  828 
  829         error = 0;
  830         s = splnet();
  831         switch (act) {
  832         case DVACT_ACTIVATE:
  833                 error = EOPNOTSUPP;
  834                 break;
  835         case DVACT_DEACTIVATE:
  836                 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
  837                 if_deactivate(&sc->ethercom.ec_if);
  838                 break;
  839         }
  840         splx(s);
  841 
  842         return error;
  843 }
  844 
  845 /*
  846  * rtk_detach:
  847  *     Detach a rtk interface.
  848  */
  849 int
  850 rtk_detach(struct rtk_softc *sc)
  851 {
  852         struct ifnet *ifp = &sc->ethercom.ec_if;
  853         struct rtk_tx_desc *txd;
  854         int i;
  855 
  856         /*
  857          * Succeed now if there isn't any work to do.
  858          */
  859         if ((sc->sc_flags & RTK_ATTACHED) == 0)
  860                 return 0;
  861 
  862         /* Unhook our tick handler. */
  863         callout_stop(&sc->rtk_tick_ch);
  864 
  865         /* Detach all PHYs. */
  866         mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
  867 
  868         /* Delete all remaining media. */
  869         ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
  870 
  871 #if NRND > 0
  872         rnd_detach_source(&sc->rnd_source);
  873 #endif
  874 
  875         ether_ifdetach(ifp);
  876         if_detach(ifp);
  877 
  878         for (i = 0; i < RTK_TX_LIST_CNT; i++) {
  879                 txd = &sc->rtk_tx_descs[i];
  880                 if (txd->txd_dmamap != NULL)
  881                         bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
  882         }
  883         bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
  884         bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
  885             RTK_RXBUFLEN + 16);
  886         bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
  887 
  888         shutdownhook_disestablish(sc->sc_sdhook);
  889         powerhook_disestablish(sc->sc_powerhook);
  890 
  891         return 0;
  892 }
  893 
  894 /*
  895  * rtk_enable:
  896  *     Enable the RTL81X9 chip.
  897  */
  898 int
  899 rtk_enable(struct rtk_softc *sc)
  900 {
  901 
  902         if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
  903                 if ((*sc->sc_enable)(sc) != 0) {
  904                         printf("%s: device enable failed\n",
  905                             sc->sc_dev.dv_xname);
  906                         return EIO;
  907                 }
  908                 sc->sc_flags |= RTK_ENABLED;
  909         }
  910         return 0;
  911 }
  912 
  913 /*
  914  * rtk_disable:
  915  *     Disable the RTL81X9 chip.
  916  */
  917 void
  918 rtk_disable(struct rtk_softc *sc)
  919 {
  920 
  921         if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
  922                 (*sc->sc_disable)(sc);
  923                 sc->sc_flags &= ~RTK_ENABLED;
  924         }
  925 }
  926 
  927 /*
  928  * rtk_power:
  929  *     Power management (suspend/resume) hook.
  930  */
  931 void
  932 rtk_power(int why, void *arg)
  933 {
  934         struct rtk_softc *sc = (void *)arg;
  935         struct ifnet *ifp = &sc->ethercom.ec_if;
  936         int s;
  937 
  938         s = splnet();
  939         switch (why) {
  940         case PWR_SUSPEND:
  941         case PWR_STANDBY:
  942                 rtk_stop(ifp, 0);
  943                 if (sc->sc_power != NULL)
  944                         (*sc->sc_power)(sc, why);
  945                 break;
  946         case PWR_RESUME:
  947                 if (ifp->if_flags & IFF_UP) {
  948                         if (sc->sc_power != NULL)
  949                                 (*sc->sc_power)(sc, why);
  950                         rtk_init(ifp);
  951                 }
  952                 break;
  953         case PWR_SOFTSUSPEND:
  954         case PWR_SOFTSTANDBY:
  955         case PWR_SOFTRESUME:
  956                 break;
  957         }
  958         splx(s);
  959 }
  960 
  961 /*
  962  * A frame has been uploaded: pass the resulting mbuf chain up to
  963  * the higher level protocols.
  964  *
  965  * You know there's something wrong with a PCI bus-master chip design.
  966  *
  967  * The receive operation is badly documented in the datasheet, so I'll
  968  * attempt to document it here. The driver provides a buffer area and
  969  * places its base address in the RX buffer start address register.
  970  * The chip then begins copying frames into the RX buffer. Each frame
  971  * is preceded by a 32-bit RX status word which specifies the length
  972  * of the frame and certain other status bits. Each frame (starting with
  973  * the status word) is also 32-bit aligned. The frame length is in the
  974  * first 16 bits of the status word; the lower 15 bits correspond with
  975  * the 'rx status register' mentioned in the datasheet.
  976  *
  977  * Note: to make the Alpha happy, the frame payload needs to be aligned
  978  * on a 32-bit boundary. To achieve this, we copy the data to mbuf
  979  * shifted forward 2 bytes.
  980  */
  981 STATIC void
  982 rtk_rxeof(struct rtk_softc *sc)
  983 {
  984         struct mbuf *m;
  985         struct ifnet *ifp;
  986         caddr_t rxbufpos, dst;
  987         u_int total_len, wrap;
  988         uint32_t rxstat;
  989         uint16_t cur_rx, new_rx;
  990         uint16_t limit;
  991         uint16_t rx_bytes, max_bytes;
  992 
  993         ifp = &sc->ethercom.ec_if;
  994 
  995         cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
  996 
  997         /* Do not try to read past this point. */
  998         limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
  999 
 1000         if (limit < cur_rx)
 1001                 max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
 1002         else
 1003                 max_bytes = limit - cur_rx;
 1004         rx_bytes = 0;
 1005 
 1006         while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
 1007                 rxbufpos = sc->rtk_rx_buf + cur_rx;
 1008                 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
 1009                     RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
 1010                 rxstat = le32toh(*(uint32_t *)rxbufpos);
 1011                 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
 1012                     RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
 1013 
 1014                 /*
 1015                  * Here's a totally undocumented fact for you. When the
 1016                  * RealTek chip is in the process of copying a packet into
 1017                  * RAM for you, the length will be 0xfff0. If you spot a
 1018                  * packet header with this value, you need to stop. The
 1019                  * datasheet makes absolutely no mention of this and
 1020                  * RealTek should be shot for this.
 1021                  */
 1022                 total_len = rxstat >> 16;
 1023                 if (total_len == RTK_RXSTAT_UNFINISHED)
 1024                         break;
 1025 
 1026                 if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
 1027                     total_len < ETHER_MIN_LEN ||
 1028                     total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
 1029                         ifp->if_ierrors++;
 1030 
 1031                         /*
 1032                          * submitted by:[netbsd-pcmcia:00484]
 1033                          *      Takahiro Kambe <taca@sky.yamashina.kyoto.jp>
 1034                          * obtain from:
 1035                          *     FreeBSD if_rl.c rev 1.24->1.25
 1036                          *
 1037                          */
 1038 #if 0
 1039                         if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
 1040                             RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
 1041                             RTK_RXSTAT_ALIGNERR)) {
 1042                                 CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
 1043                                 CSR_WRITE_2(sc, RTK_COMMAND,
 1044                                     RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
 1045                                 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
 1046                                 CSR_WRITE_4(sc, RTK_RXADDR,
 1047                                     sc->recv_dmamap->dm_segs[0].ds_addr);
 1048                                 cur_rx = 0;
 1049                         }
 1050                         break;
 1051 #else
 1052                         rtk_init(ifp);
 1053                         return;
 1054 #endif
 1055                 }
 1056 
 1057                 /* No errors; receive the packet. */
 1058                 rx_bytes += total_len + RTK_RXSTAT_LEN;
 1059 
 1060                 /*
 1061                  * Avoid trying to read more bytes than we know
 1062                  * the chip has prepared for us.
 1063                  */
 1064                 if (rx_bytes > max_bytes)
 1065                         break;
 1066 
 1067                 /*
 1068                  * Skip the status word, wrapping around to the beginning
 1069                  * of the Rx area, if necessary.
 1070                  */
 1071                 cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
 1072                 rxbufpos = sc->rtk_rx_buf + cur_rx;
 1073 
 1074                 /*
 1075                  * Compute the number of bytes at which the packet
 1076                  * will wrap to the beginning of the ring buffer.
 1077                  */
 1078                 wrap = RTK_RXBUFLEN - cur_rx;
 1079 
 1080                 /*
 1081                  * Compute where the next pending packet is.
 1082                  */
 1083                 if (total_len > wrap)
 1084                         new_rx = total_len - wrap;
 1085                 else
 1086                         new_rx = cur_rx + total_len;
 1087                 /* Round up to 32-bit boundary. */
 1088                 new_rx = ((new_rx + 3) & ~3) % RTK_RXBUFLEN;
 1089 
 1090                 /*
 1091                  * The RealTek chip includes the CRC with every
 1092                  * incoming packet; trim it off here.
 1093                  */
 1094                 total_len -= ETHER_CRC_LEN;
 1095 
 1096                 /*
 1097                  * Now allocate an mbuf (and possibly a cluster) to hold
 1098                  * the packet. Note we offset the packet 2 bytes so that
 1099                  * data after the Ethernet header will be 4-byte aligned.
 1100                  */
 1101                 MGETHDR(m, M_DONTWAIT, MT_DATA);
 1102                 if (m == NULL) {
 1103                         printf("%s: unable to allocate Rx mbuf\n",
 1104                             sc->sc_dev.dv_xname);
 1105                         ifp->if_ierrors++;
 1106                         goto next_packet;
 1107                 }
 1108                 if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
 1109                         MCLGET(m, M_DONTWAIT);
 1110                         if ((m->m_flags & M_EXT) == 0) {
 1111                                 printf("%s: unable to allocate Rx cluster\n",
 1112                                     sc->sc_dev.dv_xname);
 1113                                 ifp->if_ierrors++;
 1114                                 m_freem(m);
 1115                                 m = NULL;
 1116                                 goto next_packet;
 1117                         }
 1118                 }
 1119                 m->m_data += RTK_ETHER_ALIGN;   /* for alignment */
 1120                 m->m_pkthdr.rcvif = ifp;
 1121                 m->m_pkthdr.len = m->m_len = total_len;
 1122                 dst = mtod(m, caddr_t);
 1123 
 1124                 /*
 1125                  * If the packet wraps, copy up to the wrapping point.
 1126                  */
 1127                 if (total_len > wrap) {
 1128                         bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
 1129                             cur_rx, wrap, BUS_DMASYNC_POSTREAD);
 1130                         memcpy(dst, rxbufpos, wrap);
 1131                         bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
 1132                             cur_rx, wrap, BUS_DMASYNC_PREREAD);
 1133                         cur_rx = 0;
 1134                         rxbufpos = sc->rtk_rx_buf;
 1135                         total_len -= wrap;
 1136                         dst += wrap;
 1137                 }
 1138 
 1139                 /*
 1140                  * ...and now the rest.
 1141                  */
 1142                 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
 1143                     cur_rx, total_len, BUS_DMASYNC_POSTREAD);
 1144                 memcpy(dst, rxbufpos, total_len);
 1145                 bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
 1146                     cur_rx, total_len, BUS_DMASYNC_PREREAD);
 1147 
 1148  next_packet:
 1149                 CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
 1150                 cur_rx = new_rx;
 1151 
 1152                 if (m == NULL)
 1153                         continue;
 1154 
 1155                 ifp->if_ipackets++;
 1156 
 1157 #if NBPFILTER > 0
 1158                 if (ifp->if_bpf)
 1159                         bpf_mtap(ifp->if_bpf, m);
 1160 #endif
 1161                 /* pass it on. */
 1162                 (*ifp->if_input)(ifp, m);
 1163         }
 1164 }
 1165 
 1166 /*
 1167  * A frame was downloaded to the chip. It's safe for us to clean up
 1168  * the list buffers.
 1169  */
 1170 STATIC void
 1171 rtk_txeof(struct rtk_softc *sc)
 1172 {
 1173         struct ifnet *ifp;
 1174         struct rtk_tx_desc *txd;
 1175         uint32_t txstat;
 1176 
 1177         ifp = &sc->ethercom.ec_if;
 1178 
 1179         /*
 1180          * Go through our tx list and free mbufs for those
 1181          * frames that have been uploaded.
 1182          */
 1183         while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
 1184                 txstat = CSR_READ_4(sc, txd->txd_txstat);
 1185                 if ((txstat & (RTK_TXSTAT_TX_OK|
 1186                     RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
 1187                         break;
 1188 
 1189                 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
 1190 
 1191                 bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
 1192                     txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
 1193                 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
 1194                 m_freem(txd->txd_mbuf);
 1195                 txd->txd_mbuf = NULL;
 1196 
 1197                 ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
 1198 
 1199                 if (txstat & RTK_TXSTAT_TX_OK)
 1200                         ifp->if_opackets++;
 1201                 else {
 1202                         ifp->if_oerrors++;
 1203 
 1204                         /*
 1205                          * Increase Early TX threshold if underrun occurred.
 1206                          * Increase step 64 bytes.
 1207                          */
 1208                         if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
 1209 #ifdef DEBUG
 1210                                 printf("%s: transmit underrun;",
 1211                                     sc->sc_dev.dv_xname);
 1212 #endif
 1213                                 if (sc->sc_txthresh < RTK_TXTH_MAX) {
 1214                                         sc->sc_txthresh += 2;
 1215 #ifdef DEBUG
 1216                                         printf(" new threshold: %d bytes",
 1217                                             sc->sc_txthresh * 32);
 1218 #endif
 1219                                 }
 1220                                 printf("\n");
 1221                         }
 1222                         if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
 1223                                 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
 1224                 }
 1225                 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
 1226                 ifp->if_flags &= ~IFF_OACTIVE;
 1227         }
 1228 
 1229         /* Clear the timeout timer if there is no pending packet. */
 1230         if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
 1231                 ifp->if_timer = 0;
 1232 
 1233 }
 1234 
 1235 int
 1236 rtk_intr(void *arg)
 1237 {
 1238         struct rtk_softc *sc;
 1239         struct ifnet *ifp;
 1240         uint16_t status;
 1241         int handled;
 1242 
 1243         sc = arg;
 1244         ifp = &sc->ethercom.ec_if;
 1245 
 1246         /* Disable interrupts. */
 1247         CSR_WRITE_2(sc, RTK_IMR, 0x0000);
 1248 
 1249         handled = 0;
 1250         for (;;) {
 1251 
 1252                 status = CSR_READ_2(sc, RTK_ISR);
 1253                 if (status)
 1254                         CSR_WRITE_2(sc, RTK_ISR, status);
 1255 
 1256                 if ((status & RTK_INTRS) == 0)
 1257                         break;
 1258 
 1259                 handled = 1;
 1260 
 1261                 if (status & RTK_ISR_RX_OK)
 1262                         rtk_rxeof(sc);
 1263 
 1264                 if (status & RTK_ISR_RX_ERR)
 1265                         rtk_rxeof(sc);
 1266 
 1267                 if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
 1268                         rtk_txeof(sc);
 1269 
 1270                 if (status & RTK_ISR_SYSTEM_ERR) {
 1271                         rtk_reset(sc);
 1272                         rtk_init(ifp);
 1273                 }
 1274         }
 1275 
 1276         /* Re-enable interrupts. */
 1277         CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
 1278 
 1279         if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
 1280                 rtk_start(ifp);
 1281 
 1282 #if NRND > 0
 1283         if (RND_ENABLED(&sc->rnd_source))
 1284                 rnd_add_uint32(&sc->rnd_source, status);
 1285 #endif
 1286 
 1287         return handled;
 1288 }
 1289 
 1290 /*
 1291  * Main transmit routine.
 1292  */
 1293 
 1294 STATIC void
 1295 rtk_start(struct ifnet *ifp)
 1296 {
 1297         struct rtk_softc *sc;
 1298         struct rtk_tx_desc *txd;
 1299         struct mbuf *m_head, *m_new;
 1300         int error, len;
 1301 
 1302         sc = ifp->if_softc;
 1303 
 1304         while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
 1305                 IFQ_POLL(&ifp->if_snd, m_head);
 1306                 if (m_head == NULL)
 1307                         break;
 1308                 m_new = NULL;
 1309 
 1310                 /*
 1311                  * Load the DMA map.  If this fails, the packet didn't
 1312                  * fit in one DMA segment, and we need to copy.  Note,
 1313                  * the packet must also be aligned.
 1314                  * if the packet is too small, copy it too, so we're sure
 1315                  * so have enouth room for the pad buffer.
 1316                  */
 1317                 if ((mtod(m_head, uintptr_t) & 3) != 0 ||
 1318                     m_head->m_pkthdr.len < ETHER_PAD_LEN ||
 1319                     bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
 1320                         m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
 1321                         MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 1322                         if (m_new == NULL) {
 1323                                 printf("%s: unable to allocate Tx mbuf\n",
 1324                                     sc->sc_dev.dv_xname);
 1325                                 break;
 1326                         }
 1327                         if (m_head->m_pkthdr.len > MHLEN) {
 1328                                 MCLGET(m_new, M_DONTWAIT);
 1329                                 if ((m_new->m_flags & M_EXT) == 0) {
 1330                                         printf("%s: unable to allocate Tx "
 1331                                             "cluster\n", sc->sc_dev.dv_xname);
 1332                                         m_freem(m_new);
 1333                                         break;
 1334                                 }
 1335                         }
 1336                         m_copydata(m_head, 0, m_head->m_pkthdr.len,
 1337                             mtod(m_new, caddr_t));
 1338                         m_new->m_pkthdr.len = m_new->m_len =
 1339                             m_head->m_pkthdr.len;
 1340                         if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
 1341                                 memset(
 1342                                     mtod(m_new, caddr_t) + m_head->m_pkthdr.len,
 1343                                     0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
 1344                                 m_new->m_pkthdr.len = m_new->m_len =
 1345                                     ETHER_PAD_LEN;
 1346                         }
 1347                         error = bus_dmamap_load_mbuf(sc->sc_dmat,
 1348                             txd->txd_dmamap, m_new,
 1349                             BUS_DMA_WRITE|BUS_DMA_NOWAIT);
 1350                         if (error) {
 1351                                 printf("%s: unable to load Tx buffer, "
 1352                                     "error = %d\n", sc->sc_dev.dv_xname, error);
 1353                                 break;
 1354                         }
 1355                 }
 1356                 IFQ_DEQUEUE(&ifp->if_snd, m_head);
 1357 #if NBPFILTER > 0
 1358                 /*
 1359                  * If there's a BPF listener, bounce a copy of this frame
 1360                  * to him.
 1361                  */
 1362                 if (ifp->if_bpf)
 1363                         bpf_mtap(ifp->if_bpf, m_head);
 1364 #endif
 1365                 if (m_new != NULL) {
 1366                         m_freem(m_head);
 1367                         m_head = m_new;
 1368                 }
 1369                 txd->txd_mbuf = m_head;
 1370 
 1371                 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
 1372                 SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
 1373 
 1374                 /*
 1375                  * Transmit the frame.
 1376                  */
 1377                 bus_dmamap_sync(sc->sc_dmat,
 1378                     txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
 1379                     BUS_DMASYNC_PREWRITE);
 1380 
 1381                 len = txd->txd_dmamap->dm_segs[0].ds_len;
 1382 
 1383                 CSR_WRITE_4(sc, txd->txd_txaddr,
 1384                     txd->txd_dmamap->dm_segs[0].ds_addr);
 1385                 CSR_WRITE_4(sc, txd->txd_txstat,
 1386                     RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
 1387 
 1388                 /*
 1389                  * Set a timeout in case the chip goes out to lunch.
 1390                  */
 1391                 ifp->if_timer = 5;
 1392         }
 1393 
 1394         /*
 1395          * We broke out of the loop because all our TX slots are
 1396          * full. Mark the NIC as busy until it drains some of the
 1397          * packets from the queue.
 1398          */
 1399         if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
 1400                 ifp->if_flags |= IFF_OACTIVE;
 1401 }
 1402 
 1403 STATIC int
 1404 rtk_init(struct ifnet *ifp)
 1405 {
 1406         struct rtk_softc *sc = ifp->if_softc;
 1407         int error, i;
 1408         uint32_t rxcfg;
 1409 
 1410         if ((error = rtk_enable(sc)) != 0)
 1411                 goto out;
 1412 
 1413         /*
 1414          * Cancel pending I/O.
 1415          */
 1416         rtk_stop(ifp, 0);
 1417 
 1418         /* Init our MAC address */
 1419         for (i = 0; i < ETHER_ADDR_LEN; i++) {
 1420                 CSR_WRITE_1(sc, RTK_IDR0 + i, LLADDR(ifp->if_sadl)[i]);
 1421         }
 1422 
 1423         /* Init the RX buffer pointer register. */
 1424         bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
 1425             sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
 1426         CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
 1427 
 1428         /* Init TX descriptors. */
 1429         rtk_list_tx_init(sc);
 1430 
 1431         /* Init Early TX threshold. */
 1432         sc->sc_txthresh = RTK_TXTH_256;
 1433         /*
 1434          * Enable transmit and receive.
 1435          */
 1436         CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
 1437 
 1438         /*
 1439          * Set the initial TX and RX configuration.
 1440          */
 1441         CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
 1442         CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
 1443 
 1444         /* Set the individual bit to receive frames for this host only. */
 1445         rxcfg = CSR_READ_4(sc, RTK_RXCFG);
 1446         rxcfg |= RTK_RXCFG_RX_INDIV;
 1447 
 1448         /* If we want promiscuous mode, set the allframes bit. */
 1449         if (ifp->if_flags & IFF_PROMISC) {
 1450                 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
 1451                 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
 1452         } else {
 1453                 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
 1454                 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
 1455         }
 1456 
 1457         /*
 1458          * Set capture broadcast bit to capture broadcast frames.
 1459          */
 1460         if (ifp->if_flags & IFF_BROADCAST) {
 1461                 rxcfg |= RTK_RXCFG_RX_BROAD;
 1462                 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
 1463         } else {
 1464                 rxcfg &= ~RTK_RXCFG_RX_BROAD;
 1465                 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
 1466         }
 1467 
 1468         /*
 1469          * Program the multicast filter, if necessary.
 1470          */
 1471         rtk_setmulti(sc);
 1472 
 1473         /*
 1474          * Enable interrupts.
 1475          */
 1476         CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
 1477 
 1478         /* Start RX/TX process. */
 1479         CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
 1480 
 1481         /* Enable receiver and transmitter. */
 1482         CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
 1483 
 1484         CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
 1485 
 1486         /*
 1487          * Set current media.
 1488          */
 1489         mii_mediachg(&sc->mii);
 1490 
 1491         ifp->if_flags |= IFF_RUNNING;
 1492         ifp->if_flags &= ~IFF_OACTIVE;
 1493 
 1494         callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
 1495 
 1496  out:
 1497         if (error) {
 1498                 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 1499                 ifp->if_timer = 0;
 1500                 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
 1501         }
 1502         return error;
 1503 }
 1504 
 1505 /*
 1506  * Set media options.
 1507  */
 1508 STATIC int
 1509 rtk_ifmedia_upd(struct ifnet *ifp)
 1510 {
 1511         struct rtk_softc *sc;
 1512 
 1513         sc = ifp->if_softc;
 1514 
 1515         return mii_mediachg(&sc->mii);
 1516 }
 1517 
 1518 /*
 1519  * Report current media status.
 1520  */
 1521 STATIC void
 1522 rtk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 1523 {
 1524         struct rtk_softc *sc;
 1525 
 1526         sc = ifp->if_softc;
 1527 
 1528         mii_pollstat(&sc->mii);
 1529         ifmr->ifm_status = sc->mii.mii_media_status;
 1530         ifmr->ifm_active = sc->mii.mii_media_active;
 1531 }
 1532 
 1533 STATIC int
 1534 rtk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 1535 {
 1536         struct rtk_softc *sc = ifp->if_softc;
 1537         struct ifreq *ifr = (struct ifreq *)data;
 1538         int s, error;
 1539 
 1540         s = splnet();
 1541 
 1542         switch (command) {
 1543         case SIOCGIFMEDIA:
 1544         case SIOCSIFMEDIA:
 1545                 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
 1546                 break;
 1547 
 1548         default:
 1549                 error = ether_ioctl(ifp, command, data);
 1550                 if (error == ENETRESET) {
 1551                         if (ifp->if_flags & IFF_RUNNING) {
 1552                                 /*
 1553                                  * Multicast list has changed.  Set the
 1554                                  * hardware filter accordingly.
 1555                                  */
 1556                                 rtk_setmulti(sc);
 1557                         }
 1558                         error = 0;
 1559                 }
 1560                 break;
 1561         }
 1562 
 1563         splx(s);
 1564 
 1565         return error;
 1566 }
 1567 
 1568 STATIC void
 1569 rtk_watchdog(struct ifnet *ifp)
 1570 {
 1571         struct rtk_softc *sc;
 1572 
 1573         sc = ifp->if_softc;
 1574 
 1575         printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
 1576         ifp->if_oerrors++;
 1577         rtk_txeof(sc);
 1578         rtk_rxeof(sc);
 1579         rtk_init(ifp);
 1580 }
 1581 
 1582 /*
 1583  * Stop the adapter and free any mbufs allocated to the
 1584  * RX and TX lists.
 1585  */
 1586 STATIC void
 1587 rtk_stop(struct ifnet *ifp, int disable)
 1588 {
 1589         struct rtk_softc *sc = ifp->if_softc;
 1590         struct rtk_tx_desc *txd;
 1591 
 1592         callout_stop(&sc->rtk_tick_ch);
 1593 
 1594         mii_down(&sc->mii);
 1595 
 1596         CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
 1597         CSR_WRITE_2(sc, RTK_IMR, 0x0000);
 1598 
 1599         /*
 1600          * Free the TX list buffers.
 1601          */
 1602         while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
 1603                 SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
 1604                 bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
 1605                 m_freem(txd->txd_mbuf);
 1606                 txd->txd_mbuf = NULL;
 1607                 CSR_WRITE_4(sc, txd->txd_txaddr, 0);
 1608         }
 1609 
 1610         if (disable)
 1611                 rtk_disable(sc);
 1612 
 1613         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
 1614         ifp->if_timer = 0;
 1615 }
 1616 
 1617 /*
 1618  * Stop all chip I/O so that the kernel's probe routines don't
 1619  * get confused by errant DMAs when rebooting.
 1620  */
 1621 STATIC void
 1622 rtk_shutdown(void *arg)
 1623 {
 1624         struct rtk_softc *sc = (struct rtk_softc *)arg;
 1625 
 1626         rtk_stop(&sc->ethercom.ec_if, 0);
 1627 }
 1628 
 1629 STATIC void
 1630 rtk_tick(void *arg)
 1631 {
 1632         struct rtk_softc *sc = arg;
 1633         int s;
 1634 
 1635         s = splnet();
 1636         mii_tick(&sc->mii);
 1637         splx(s);
 1638 
 1639         callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
 1640 }

Cache object: 4cf4264ccab47fb22289ad9b0c6635b1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.