FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/rtwphy.c
1 /* $NetBSD: rtwphy.c,v 1.5 2005/02/27 00:27:02 perry Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Control the Philips SA2400 RF front-end and the baseband processor
34 * built into the Realtek RTL8180.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.5 2005/02/27 00:27:02 perry Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43
44 #include <machine/bus.h>
45
46 #include <net/if.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_compat.h>
52 #include <net80211/ieee80211_radiotap.h>
53
54 #include <dev/ic/rtwreg.h>
55 #include <dev/ic/max2820reg.h>
56 #include <dev/ic/sa2400reg.h>
57 #include <dev/ic/rtwvar.h>
58 #include <dev/ic/rtwphyio.h>
59 #include <dev/ic/rtwphy.h>
60
61 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
62 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
63
64 static int
65 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
66 u_int freq)
67 {
68 u_int antatten = antatten0;
69 if (dflantb)
70 antatten |= RTW_BBP_ANTATTEN_DFLANTB;
71 if (freq == 2484) /* channel 14 */
72 antatten |= RTW_BBP_ANTATTEN_CHAN14;
73 return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
74 }
75
76 static int
77 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
78 int dflantb, uint8_t cs_threshold, u_int freq)
79 {
80 int rc;
81 uint32_t sys2, sys3;
82
83 sys2 = bb->bb_sys2;
84 if (antdiv)
85 sys2 |= RTW_BBP_SYS2_ANTDIV;
86 sys3 = bb->bb_sys3 |
87 LSHIFT(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
88
89 #define RTW_BBP_WRITE_OR_RETURN(reg, val) \
90 if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
91 return rc;
92
93 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1, bb->bb_sys1);
94 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC, bb->bb_txagc);
95 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET, bb->bb_lnadet);
96 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI, bb->bb_ifagcini);
97 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT, bb->bb_ifagclimit);
98 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET, bb->bb_ifagcdet);
99
100 if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
101 return rc;
102
103 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL, bb->bb_trl);
104 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2, sys2);
105 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3, sys3);
106 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM, bb->bb_chestlim);
107 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM, bb->bb_chsqlim);
108 return 0;
109 }
110
111 static int
112 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
113 {
114 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
115 struct rtw_rfbus *bus = &sa->sa_bus;
116
117 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
118 opaque_txpower);
119 }
120
121 /* make sure we're using the same settings as the reference driver */
122 static void
123 verify_syna(u_int freq, uint32_t val)
124 {
125 uint32_t expected_val = ~val;
126
127 switch (freq) {
128 case 2412:
129 expected_val = 0x0000096c; /* ch 1 */
130 break;
131 case 2417:
132 expected_val = 0x00080970; /* ch 2 */
133 break;
134 case 2422:
135 expected_val = 0x00100974; /* ch 3 */
136 break;
137 case 2427:
138 expected_val = 0x00180978; /* ch 4 */
139 break;
140 case 2432:
141 expected_val = 0x00000980; /* ch 5 */
142 break;
143 case 2437:
144 expected_val = 0x00080984; /* ch 6 */
145 break;
146 case 2442:
147 expected_val = 0x00100988; /* ch 7 */
148 break;
149 case 2447:
150 expected_val = 0x0018098c; /* ch 8 */
151 break;
152 case 2452:
153 expected_val = 0x00000994; /* ch 9 */
154 break;
155 case 2457:
156 expected_val = 0x00080998; /* ch 10 */
157 break;
158 case 2462:
159 expected_val = 0x0010099c; /* ch 11 */
160 break;
161 case 2467:
162 expected_val = 0x001809a0; /* ch 12 */
163 break;
164 case 2472:
165 expected_val = 0x000009a8; /* ch 13 */
166 break;
167 case 2484:
168 expected_val = 0x000009b4; /* ch 14 */
169 break;
170 }
171 KASSERT(val == expected_val);
172 }
173
174 /* freq is in MHz */
175 static int
176 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
177 {
178 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
179 struct rtw_rfbus *bus = &sa->sa_bus;
180 int rc;
181 uint32_t syna, synb, sync;
182
183 /* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
184 *
185 * The channel spacing (5MHz) is not divisible by 4MHz, so
186 * we set the fractional part of N to compensate.
187 */
188 int n = freq / 4, nf = (freq % 4) * 2;
189
190 syna = LSHIFT(nf, SA2400_SYNA_NF_MASK) | LSHIFT(n, SA2400_SYNA_N_MASK);
191 verify_syna(freq, syna);
192
193 /* Divide the 44MHz crystal down to 4MHz. Set the fractional
194 * compensation charge pump value to agree with the fractional
195 * modulus.
196 */
197 synb = LSHIFT(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
198 SA2400_SYNB_ON | SA2400_SYNB_ONE |
199 LSHIFT(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
200
201 sync = SA2400_SYNC_CP_NORMAL;
202
203 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
204 syna)) != 0)
205 return rc;
206 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
207 synb)) != 0)
208 return rc;
209 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
210 sync)) != 0)
211 return rc;
212 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
213 }
214
215 static int
216 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
217 {
218 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
219 struct rtw_rfbus *bus = &sa->sa_bus;
220 uint32_t opmode;
221 opmode = SA2400_OPMODE_DEFAULTS;
222 switch (power) {
223 case RTW_ON:
224 opmode |= SA2400_OPMODE_MODE_TXRX;
225 break;
226 case RTW_SLEEP:
227 opmode |= SA2400_OPMODE_MODE_WAIT;
228 break;
229 case RTW_OFF:
230 opmode |= SA2400_OPMODE_MODE_SLEEP;
231 break;
232 }
233
234 if (sa->sa_digphy)
235 opmode |= SA2400_OPMODE_DIGIN;
236
237 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
238 opmode);
239 }
240
241 static int
242 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
243 {
244 uint32_t manrx;
245
246 /* XXX we are not supposed to be in RXMGC mode when we do
247 * this?
248 */
249 manrx = SA2400_MANRX_AHSN;
250 manrx |= SA2400_MANRX_TEN;
251 manrx |= LSHIFT(1023, SA2400_MANRX_RXGAIN_MASK);
252
253 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
254 manrx);
255 }
256
257 static int
258 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
259 {
260 uint32_t opmode;
261
262 opmode = SA2400_OPMODE_DEFAULTS;
263 if (start)
264 opmode |= SA2400_OPMODE_MODE_VCOCALIB;
265 else
266 opmode |= SA2400_OPMODE_MODE_SLEEP;
267
268 if (sa->sa_digphy)
269 opmode |= SA2400_OPMODE_DIGIN;
270
271 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
272 opmode);
273 }
274
275 static int
276 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
277 {
278 int rc;
279 /* calibrate VCO */
280 if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
281 return rc;
282 DELAY(2200); /* 2.2 milliseconds */
283 /* XXX superfluous: SA2400 automatically entered SLEEP mode. */
284 return rtw_sa2400_vcocal_start(sa, 0);
285 }
286
287 static int
288 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
289 {
290 uint32_t opmode;
291
292 opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
293 if (sa->sa_digphy)
294 opmode |= SA2400_OPMODE_DIGIN;
295
296 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
297 opmode);
298 }
299
300 static int
301 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
302 {
303 struct rtw_rf *rf = &sa->sa_rf;
304 int rc;
305 uint32_t dccal;
306
307 (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
308
309 dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;
310
311 rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
312 dccal);
313 if (rc != 0)
314 return rc;
315
316 DELAY(5); /* DCALIB after being in Tx mode for 5
317 * microseconds
318 */
319
320 dccal &= ~SA2400_OPMODE_MODE_MASK;
321 dccal |= SA2400_OPMODE_MODE_DCALIB;
322
323 rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
324 dccal);
325 if (rc != 0)
326 return rc;
327
328 DELAY(20); /* calibration takes at most 20 microseconds */
329
330 (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
331
332 return 0;
333 }
334
335 static int
336 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
337 {
338 uint32_t agc;
339
340 agc = LSHIFT(25, SA2400_AGC_MAXGAIN_MASK);
341 agc |= LSHIFT(7, SA2400_AGC_BBPDELAY_MASK);
342 agc |= LSHIFT(15, SA2400_AGC_LNADELAY_MASK);
343 agc |= LSHIFT(27, SA2400_AGC_RXONDELAY_MASK);
344
345 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
346 agc);
347 }
348
349 static void
350 rtw_sa2400_destroy(struct rtw_rf *rf)
351 {
352 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
353 memset(sa, 0, sizeof(*sa));
354 free(sa, M_DEVBUF);
355 }
356
357 static int
358 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
359 {
360 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
361 int i, rc;
362
363 /* XXX reference driver calibrates VCO twice. Is it a bug? */
364 for (i = 0; i < 2; i++) {
365 if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
366 return rc;
367 }
368 /* VCO calibration erases synthesizer registers, so re-tune */
369 if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
370 return rc;
371 if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
372 return rc;
373 /* analog PHY needs DC calibration */
374 if (!sa->sa_digphy)
375 return rtw_sa2400_dc_calibration(sa);
376 return 0;
377 }
378
379 static int
380 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
381 enum rtw_pwrstate power)
382 {
383 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
384 int rc;
385
386 if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
387 return rc;
388
389 /* skip configuration if it's time to sleep or to power-down. */
390 if (power == RTW_SLEEP || power == RTW_OFF)
391 return rtw_sa2400_pwrstate(rf, power);
392
393 /* go to sleep for configuration */
394 if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
395 return rc;
396
397 if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
398 return rc;
399 if ((rc = rtw_sa2400_agc_init(sa)) != 0)
400 return rc;
401 if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
402 return rc;
403 if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
404 return rc;
405
406 /* enter Tx/Rx mode */
407 return rtw_sa2400_pwrstate(rf, power);
408 }
409
410 struct rtw_rf *
411 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
412 {
413 struct rtw_sa2400 *sa;
414 struct rtw_rfbus *bus;
415 struct rtw_rf *rf;
416 struct rtw_bbpset *bb;
417
418 sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
419 if (sa == NULL)
420 return NULL;
421
422 sa->sa_digphy = digphy;
423
424 rf = &sa->sa_rf;
425 bus = &sa->sa_bus;
426
427 rf->rf_init = rtw_sa2400_init;
428 rf->rf_destroy = rtw_sa2400_destroy;
429 rf->rf_txpower = rtw_sa2400_txpower;
430 rf->rf_tune = rtw_sa2400_tune;
431 rf->rf_pwrstate = rtw_sa2400_pwrstate;
432 bb = &rf->rf_bbpset;
433
434 /* XXX magic */
435 bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
436 bb->bb_chestlim = 0x00;
437 bb->bb_chsqlim = 0xa0;
438 bb->bb_ifagcdet = 0x64;
439 bb->bb_ifagcini = 0x90;
440 bb->bb_ifagclimit = 0x1a;
441 bb->bb_lnadet = 0xe0;
442 bb->bb_sys1 = 0x98;
443 bb->bb_sys2 = 0x47;
444 bb->bb_sys3 = 0x90;
445 bb->bb_trl = 0x88;
446 bb->bb_txagc = 0x38;
447
448 bus->b_regs = regs;
449 bus->b_write = rf_write;
450
451 return &sa->sa_rf;
452 }
453
454 /* freq is in MHz */
455 static int
456 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
457 {
458 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
459 struct rtw_rfbus *bus = &mx->mx_bus;
460
461 if (freq < 2400 || freq > 2499)
462 return -1;
463
464 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
465 LSHIFT(freq - 2400, MAX2820_CHANNEL_CF_MASK));
466 }
467
468 static void
469 rtw_max2820_destroy(struct rtw_rf *rf)
470 {
471 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
472 memset(mx, 0, sizeof(*mx));
473 free(mx, M_DEVBUF);
474 }
475
476 static int
477 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
478 enum rtw_pwrstate power)
479 {
480 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
481 struct rtw_rfbus *bus = &mx->mx_bus;
482 int rc;
483
484 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
485 MAX2820_TEST_DEFAULT)) != 0)
486 return rc;
487
488 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
489 MAX2820_ENABLE_DEFAULT)) != 0)
490 return rc;
491
492 /* skip configuration if it's time to sleep or to power-down. */
493 if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
494 return rc;
495 else if (power == RTW_OFF || power == RTW_SLEEP)
496 return 0;
497
498 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
499 MAX2820_SYNTH_R_44MHZ)) != 0)
500 return rc;
501
502 if ((rc = rtw_max2820_tune(rf, freq)) != 0)
503 return rc;
504
505 /* XXX The MAX2820 datasheet indicates that 1C and 2C should not
506 * be changed from 7, however, the reference driver sets them
507 * to 4 and 1, respectively.
508 */
509 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
510 MAX2820_RECEIVE_DL_DEFAULT |
511 LSHIFT(4, MAX2820A_RECEIVE_1C_MASK) |
512 LSHIFT(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
513 return rc;
514
515 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
516 MAX2820_TRANSMIT_PA_DEFAULT);
517 }
518
519 static int
520 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
521 {
522 /* TBD */
523 return 0;
524 }
525
526 static int
527 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
528 {
529 uint32_t enable;
530 struct rtw_max2820 *mx;
531 struct rtw_rfbus *bus;
532
533 mx = (struct rtw_max2820 *)rf;
534 bus = &mx->mx_bus;
535
536 switch (power) {
537 case RTW_OFF:
538 case RTW_SLEEP:
539 default:
540 enable = 0x0;
541 break;
542 case RTW_ON:
543 enable = MAX2820_ENABLE_DEFAULT;
544 break;
545 }
546 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
547 }
548
549 struct rtw_rf *
550 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
551 {
552 struct rtw_max2820 *mx;
553 struct rtw_rfbus *bus;
554 struct rtw_rf *rf;
555 struct rtw_bbpset *bb;
556
557 mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
558 if (mx == NULL)
559 return NULL;
560
561 mx->mx_is_a = is_a;
562
563 rf = &mx->mx_rf;
564 bus = &mx->mx_bus;
565
566 rf->rf_init = rtw_max2820_init;
567 rf->rf_destroy = rtw_max2820_destroy;
568 rf->rf_txpower = rtw_max2820_txpower;
569 rf->rf_tune = rtw_max2820_tune;
570 rf->rf_pwrstate = rtw_max2820_pwrstate;
571 bb = &rf->rf_bbpset;
572
573 /* XXX magic */
574 bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
575 bb->bb_chestlim = 0;
576 bb->bb_chsqlim = 159;
577 bb->bb_ifagcdet = 100;
578 bb->bb_ifagcini = 144;
579 bb->bb_ifagclimit = 26;
580 bb->bb_lnadet = 248;
581 bb->bb_sys1 = 136;
582 bb->bb_sys2 = 71;
583 bb->bb_sys3 = 155;
584 bb->bb_trl = 136;
585 bb->bb_txagc = 8;
586
587 bus->b_regs = regs;
588 bus->b_write = rf_write;
589
590 return &mx->mx_rf;
591 }
592
593 /* freq is in MHz */
594 int
595 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
596 uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
597 enum rtw_pwrstate power)
598 {
599 int rc;
600 RTW_DPRINTF(RTW_DEBUG_PHY,
601 ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
602 "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
603 antdiv, dflantb, rtw_pwrstate_string(power)));
604
605 /* XXX is this really necessary? */
606 if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
607 return rc;
608 if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
609 freq)) != 0)
610 return rc;
611 if ((rc = rtw_rf_tune(rf, freq)) != 0)
612 return rc;
613 /* initialize RF */
614 if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
615 return rc;
616 #if 0 /* what is this redundant tx power setting here for? */
617 if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
618 return rc;
619 #endif
620 return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
621 cs_threshold, freq);
622 }
Cache object: 45df5c13bc4222b4515fe575c6ce7f9b
|