The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/rtwphy.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* $NetBSD: rtwphy.c,v 1.5 2005/02/27 00:27:02 perry Exp $ */
    2 /*-
    3  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
    4  *
    5  * Programmed for NetBSD by David Young.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. The name of David Young may not be used to endorse or promote
   16  *    products derived from this software without specific prior
   17  *    written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
   20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
   21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   22  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
   23  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
   25  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
   30  * OF SUCH DAMAGE.
   31  */
   32 /*
   33  * Control the Philips SA2400 RF front-end and the baseband processor
   34  * built into the Realtek RTL8180.
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.5 2005/02/27 00:27:02 perry Exp $");
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/types.h>
   43 
   44 #include <machine/bus.h>
   45 
   46 #include <net/if.h>
   47 #include <net/if_media.h>
   48 #include <net/if_ether.h>
   49 
   50 #include <net80211/ieee80211_var.h>
   51 #include <net80211/ieee80211_compat.h>
   52 #include <net80211/ieee80211_radiotap.h>
   53 
   54 #include <dev/ic/rtwreg.h>
   55 #include <dev/ic/max2820reg.h>
   56 #include <dev/ic/sa2400reg.h>
   57 #include <dev/ic/rtwvar.h>
   58 #include <dev/ic/rtwphyio.h>
   59 #include <dev/ic/rtwphy.h>
   60 
   61 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
   62 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
   63 
   64 static int
   65 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
   66     u_int freq)
   67 {
   68         u_int antatten = antatten0;
   69         if (dflantb)
   70                 antatten |= RTW_BBP_ANTATTEN_DFLANTB;
   71         if (freq == 2484) /* channel 14 */
   72                 antatten |= RTW_BBP_ANTATTEN_CHAN14;
   73         return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
   74 }
   75 
   76 static int
   77 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
   78     int dflantb, uint8_t cs_threshold, u_int freq)
   79 {
   80         int rc;
   81         uint32_t sys2, sys3;
   82 
   83         sys2 = bb->bb_sys2;
   84         if (antdiv)
   85                 sys2 |= RTW_BBP_SYS2_ANTDIV;
   86         sys3 = bb->bb_sys3 |
   87             LSHIFT(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
   88 
   89 #define RTW_BBP_WRITE_OR_RETURN(reg, val) \
   90         if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
   91                 return rc;
   92 
   93         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,           bb->bb_sys1);
   94         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,          bb->bb_txagc);
   95         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,         bb->bb_lnadet);
   96         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,       bb->bb_ifagcini);
   97         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,     bb->bb_ifagclimit);
   98         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,       bb->bb_ifagcdet);
   99 
  100         if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
  101                 return rc;
  102 
  103         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,            bb->bb_trl);
  104         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,           sys2);
  105         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,           sys3);
  106         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,       bb->bb_chestlim);
  107         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,        bb->bb_chsqlim);
  108         return 0;
  109 }
  110 
  111 static int
  112 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
  113 {
  114         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  115         struct rtw_rfbus *bus = &sa->sa_bus;
  116 
  117         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
  118             opaque_txpower);
  119 }
  120 
  121 /* make sure we're using the same settings as the reference driver */
  122 static void
  123 verify_syna(u_int freq, uint32_t val)
  124 {
  125         uint32_t expected_val = ~val;
  126 
  127         switch (freq) {
  128         case 2412:
  129                 expected_val = 0x0000096c; /* ch 1 */
  130                 break;
  131         case 2417:
  132                 expected_val = 0x00080970; /* ch 2 */
  133                 break;
  134         case 2422:
  135                 expected_val = 0x00100974; /* ch 3 */
  136                 break;
  137         case 2427:
  138                 expected_val = 0x00180978; /* ch 4 */
  139                 break;
  140         case 2432:
  141                 expected_val = 0x00000980; /* ch 5 */
  142                 break;
  143         case 2437:
  144                 expected_val = 0x00080984; /* ch 6 */
  145                 break;
  146         case 2442:
  147                 expected_val = 0x00100988; /* ch 7 */
  148                 break;
  149         case 2447:
  150                 expected_val = 0x0018098c; /* ch 8 */
  151                 break;
  152         case 2452:
  153                 expected_val = 0x00000994; /* ch 9 */
  154                 break;
  155         case 2457:
  156                 expected_val = 0x00080998; /* ch 10 */
  157                 break;
  158         case 2462:
  159                 expected_val = 0x0010099c; /* ch 11 */
  160                 break;
  161         case 2467:
  162                 expected_val = 0x001809a0; /* ch 12 */
  163                 break;
  164         case 2472:
  165                 expected_val = 0x000009a8; /* ch 13 */
  166                 break;
  167         case 2484:
  168                 expected_val = 0x000009b4; /* ch 14 */
  169                 break;
  170         }
  171         KASSERT(val == expected_val);
  172 }
  173 
  174 /* freq is in MHz */
  175 static int
  176 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
  177 {
  178         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  179         struct rtw_rfbus *bus = &sa->sa_bus;
  180         int rc;
  181         uint32_t syna, synb, sync;
  182 
  183         /* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
  184          *
  185          * The channel spacing (5MHz) is not divisible by 4MHz, so
  186          * we set the fractional part of N to compensate.
  187          */
  188         int n = freq / 4, nf = (freq % 4) * 2;
  189 
  190         syna = LSHIFT(nf, SA2400_SYNA_NF_MASK) | LSHIFT(n, SA2400_SYNA_N_MASK);
  191         verify_syna(freq, syna);
  192 
  193         /* Divide the 44MHz crystal down to 4MHz. Set the fractional
  194          * compensation charge pump value to agree with the fractional
  195          * modulus.
  196          */
  197         synb = LSHIFT(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
  198             SA2400_SYNB_ON | SA2400_SYNB_ONE |
  199             LSHIFT(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
  200 
  201         sync = SA2400_SYNC_CP_NORMAL;
  202 
  203         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
  204             syna)) != 0)
  205                 return rc;
  206         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
  207             synb)) != 0)
  208                 return rc;
  209         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
  210             sync)) != 0)
  211                 return rc;
  212         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
  213 }
  214 
  215 static int
  216 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
  217 {
  218         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  219         struct rtw_rfbus *bus = &sa->sa_bus;
  220         uint32_t opmode;
  221         opmode = SA2400_OPMODE_DEFAULTS;
  222         switch (power) {
  223         case RTW_ON:
  224                 opmode |= SA2400_OPMODE_MODE_TXRX;
  225                 break;
  226         case RTW_SLEEP:
  227                 opmode |= SA2400_OPMODE_MODE_WAIT;
  228                 break;
  229         case RTW_OFF:
  230                 opmode |= SA2400_OPMODE_MODE_SLEEP;
  231                 break;
  232         }
  233 
  234         if (sa->sa_digphy)
  235                 opmode |= SA2400_OPMODE_DIGIN;
  236 
  237         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  238             opmode);
  239 }
  240 
  241 static int
  242 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
  243 {
  244         uint32_t manrx;
  245 
  246         /* XXX we are not supposed to be in RXMGC mode when we do
  247          * this?
  248          */
  249         manrx = SA2400_MANRX_AHSN;
  250         manrx |= SA2400_MANRX_TEN;
  251         manrx |= LSHIFT(1023, SA2400_MANRX_RXGAIN_MASK);
  252 
  253         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
  254             manrx);
  255 }
  256 
  257 static int
  258 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
  259 {
  260         uint32_t opmode;
  261 
  262         opmode = SA2400_OPMODE_DEFAULTS;
  263         if (start)
  264                 opmode |= SA2400_OPMODE_MODE_VCOCALIB;
  265         else
  266                 opmode |= SA2400_OPMODE_MODE_SLEEP;
  267 
  268         if (sa->sa_digphy)
  269                 opmode |= SA2400_OPMODE_DIGIN;
  270 
  271         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  272             opmode);
  273 }
  274 
  275 static int
  276 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
  277 {
  278         int rc;
  279         /* calibrate VCO */
  280         if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
  281                 return rc;
  282         DELAY(2200);    /* 2.2 milliseconds */
  283         /* XXX superfluous: SA2400 automatically entered SLEEP mode. */
  284         return rtw_sa2400_vcocal_start(sa, 0);
  285 }
  286 
  287 static int
  288 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
  289 {
  290         uint32_t opmode;
  291 
  292         opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
  293         if (sa->sa_digphy)
  294                 opmode |= SA2400_OPMODE_DIGIN;
  295 
  296         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  297             opmode);
  298 }
  299 
  300 static int
  301 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
  302 {
  303         struct rtw_rf *rf = &sa->sa_rf;
  304         int rc;
  305         uint32_t dccal;
  306 
  307         (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
  308 
  309         dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;
  310 
  311         rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  312             dccal);
  313         if (rc != 0)
  314                 return rc;
  315 
  316         DELAY(5);       /* DCALIB after being in Tx mode for 5
  317                          * microseconds
  318                          */
  319 
  320         dccal &= ~SA2400_OPMODE_MODE_MASK;
  321         dccal |= SA2400_OPMODE_MODE_DCALIB;
  322 
  323         rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  324            dccal);
  325         if (rc != 0)
  326                 return rc;
  327 
  328         DELAY(20);      /* calibration takes at most 20 microseconds */
  329 
  330         (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
  331 
  332         return 0;
  333 }
  334 
  335 static int
  336 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
  337 {
  338         uint32_t agc;
  339 
  340         agc = LSHIFT(25, SA2400_AGC_MAXGAIN_MASK);
  341         agc |= LSHIFT(7, SA2400_AGC_BBPDELAY_MASK);
  342         agc |= LSHIFT(15, SA2400_AGC_LNADELAY_MASK);
  343         agc |= LSHIFT(27, SA2400_AGC_RXONDELAY_MASK);
  344 
  345         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
  346             agc);
  347 }
  348 
  349 static void
  350 rtw_sa2400_destroy(struct rtw_rf *rf)
  351 {
  352         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  353         memset(sa, 0, sizeof(*sa));
  354         free(sa, M_DEVBUF);
  355 }
  356 
  357 static int
  358 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
  359 {
  360         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  361         int i, rc;
  362 
  363         /* XXX reference driver calibrates VCO twice. Is it a bug? */
  364         for (i = 0; i < 2; i++) {
  365                 if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
  366                         return rc;
  367         }
  368         /* VCO calibration erases synthesizer registers, so re-tune */
  369         if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
  370                 return rc;
  371         if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
  372                 return rc;
  373         /* analog PHY needs DC calibration */
  374         if (!sa->sa_digphy)
  375                 return rtw_sa2400_dc_calibration(sa);
  376         return 0;
  377 }
  378 
  379 static int
  380 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
  381     enum rtw_pwrstate power)
  382 {
  383         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  384         int rc;
  385 
  386         if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
  387                 return rc;
  388 
  389         /* skip configuration if it's time to sleep or to power-down. */
  390         if (power == RTW_SLEEP || power == RTW_OFF)
  391                 return rtw_sa2400_pwrstate(rf, power);
  392 
  393         /* go to sleep for configuration */
  394         if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
  395                 return rc;
  396 
  397         if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
  398                 return rc;
  399         if ((rc = rtw_sa2400_agc_init(sa)) != 0)
  400                 return rc;
  401         if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
  402                 return rc;
  403         if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
  404                 return rc;
  405 
  406         /* enter Tx/Rx mode */
  407         return rtw_sa2400_pwrstate(rf, power);
  408 }
  409 
  410 struct rtw_rf *
  411 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
  412 {
  413         struct rtw_sa2400 *sa;
  414         struct rtw_rfbus *bus;
  415         struct rtw_rf *rf;
  416         struct rtw_bbpset *bb;
  417 
  418         sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
  419         if (sa == NULL)
  420                 return NULL;
  421 
  422         sa->sa_digphy = digphy;
  423 
  424         rf = &sa->sa_rf;
  425         bus = &sa->sa_bus;
  426 
  427         rf->rf_init = rtw_sa2400_init;
  428         rf->rf_destroy = rtw_sa2400_destroy;
  429         rf->rf_txpower = rtw_sa2400_txpower;
  430         rf->rf_tune = rtw_sa2400_tune;
  431         rf->rf_pwrstate = rtw_sa2400_pwrstate;
  432         bb = &rf->rf_bbpset;
  433 
  434         /* XXX magic */
  435         bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
  436         bb->bb_chestlim =       0x00;
  437         bb->bb_chsqlim =        0xa0;
  438         bb->bb_ifagcdet =       0x64;
  439         bb->bb_ifagcini =       0x90;
  440         bb->bb_ifagclimit =     0x1a;
  441         bb->bb_lnadet =         0xe0;
  442         bb->bb_sys1 =           0x98;
  443         bb->bb_sys2 =           0x47;
  444         bb->bb_sys3 =           0x90;
  445         bb->bb_trl =            0x88;
  446         bb->bb_txagc =          0x38;
  447 
  448         bus->b_regs = regs;
  449         bus->b_write = rf_write;
  450 
  451         return &sa->sa_rf;
  452 }
  453 
  454 /* freq is in MHz */
  455 static int
  456 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
  457 {
  458         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  459         struct rtw_rfbus *bus = &mx->mx_bus;
  460 
  461         if (freq < 2400 || freq > 2499)
  462                 return -1;
  463 
  464         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
  465             LSHIFT(freq - 2400, MAX2820_CHANNEL_CF_MASK));
  466 }
  467 
  468 static void
  469 rtw_max2820_destroy(struct rtw_rf *rf)
  470 {
  471         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  472         memset(mx, 0, sizeof(*mx));
  473         free(mx, M_DEVBUF);
  474 }
  475 
  476 static int
  477 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
  478     enum rtw_pwrstate power)
  479 {
  480         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  481         struct rtw_rfbus *bus = &mx->mx_bus;
  482         int rc;
  483 
  484         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
  485             MAX2820_TEST_DEFAULT)) != 0)
  486                 return rc;
  487 
  488         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
  489             MAX2820_ENABLE_DEFAULT)) != 0)
  490                 return rc;
  491 
  492         /* skip configuration if it's time to sleep or to power-down. */
  493         if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
  494                 return rc;
  495         else if (power == RTW_OFF || power == RTW_SLEEP)
  496                 return 0;
  497 
  498         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
  499             MAX2820_SYNTH_R_44MHZ)) != 0)
  500                 return rc;
  501 
  502         if ((rc = rtw_max2820_tune(rf, freq)) != 0)
  503                 return rc;
  504 
  505         /* XXX The MAX2820 datasheet indicates that 1C and 2C should not
  506          * be changed from 7, however, the reference driver sets them
  507          * to 4 and 1, respectively.
  508          */
  509         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
  510             MAX2820_RECEIVE_DL_DEFAULT |
  511             LSHIFT(4, MAX2820A_RECEIVE_1C_MASK) |
  512             LSHIFT(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
  513                 return rc;
  514 
  515         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
  516             MAX2820_TRANSMIT_PA_DEFAULT);
  517 }
  518 
  519 static int
  520 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
  521 {
  522         /* TBD */
  523         return 0;
  524 }
  525 
  526 static int
  527 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
  528 {
  529         uint32_t enable;
  530         struct rtw_max2820 *mx;
  531         struct rtw_rfbus *bus;
  532 
  533         mx = (struct rtw_max2820 *)rf;
  534         bus = &mx->mx_bus;
  535 
  536         switch (power) {
  537         case RTW_OFF:
  538         case RTW_SLEEP:
  539         default:
  540                 enable = 0x0;
  541                 break;
  542         case RTW_ON:
  543                 enable = MAX2820_ENABLE_DEFAULT;
  544                 break;
  545         }
  546         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
  547 }
  548 
  549 struct rtw_rf *
  550 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
  551 {
  552         struct rtw_max2820 *mx;
  553         struct rtw_rfbus *bus;
  554         struct rtw_rf *rf;
  555         struct rtw_bbpset *bb;
  556 
  557         mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
  558         if (mx == NULL)
  559                 return NULL;
  560 
  561         mx->mx_is_a = is_a;
  562 
  563         rf = &mx->mx_rf;
  564         bus = &mx->mx_bus;
  565 
  566         rf->rf_init = rtw_max2820_init;
  567         rf->rf_destroy = rtw_max2820_destroy;
  568         rf->rf_txpower = rtw_max2820_txpower;
  569         rf->rf_tune = rtw_max2820_tune;
  570         rf->rf_pwrstate = rtw_max2820_pwrstate;
  571         bb = &rf->rf_bbpset;
  572 
  573         /* XXX magic */
  574         bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
  575         bb->bb_chestlim =       0;
  576         bb->bb_chsqlim =        159;
  577         bb->bb_ifagcdet =       100;
  578         bb->bb_ifagcini =       144;
  579         bb->bb_ifagclimit =     26;
  580         bb->bb_lnadet =         248;
  581         bb->bb_sys1 =           136;
  582         bb->bb_sys2 =           71;
  583         bb->bb_sys3 =           155;
  584         bb->bb_trl =            136;
  585         bb->bb_txagc =          8;
  586 
  587         bus->b_regs = regs;
  588         bus->b_write = rf_write;
  589 
  590         return &mx->mx_rf;
  591 }
  592 
  593 /* freq is in MHz */
  594 int
  595 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
  596     uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
  597     enum rtw_pwrstate power)
  598 {
  599         int rc;
  600         RTW_DPRINTF(RTW_DEBUG_PHY,
  601             ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
  602              "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
  603              antdiv, dflantb, rtw_pwrstate_string(power)));
  604 
  605         /* XXX is this really necessary? */
  606         if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
  607                 return rc;
  608         if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
  609             freq)) != 0)
  610                 return rc;
  611         if ((rc = rtw_rf_tune(rf, freq)) != 0)
  612                 return rc;
  613         /* initialize RF  */
  614         if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
  615                 return rc;
  616 #if 0   /* what is this redundant tx power setting here for? */
  617         if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
  618                 return rc;
  619 #endif
  620         return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
  621             cs_threshold, freq);
  622 }

Cache object: 45df5c13bc4222b4515fe575c6ce7f9b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.