The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/rtwphy.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* $NetBSD: rtwphy.c,v 1.12 2006/11/16 01:32:52 christos Exp $ */
    2 /*-
    3  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
    4  *
    5  * Programmed for NetBSD by David Young.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. The name of David Young may not be used to endorse or promote
   16  *    products derived from this software without specific prior
   17  *    written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
   20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
   21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   22  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
   23  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
   25  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
   30  * OF SUCH DAMAGE.
   31  */
   32 /*
   33  * Control the Philips SA2400 RF front-end and the baseband processor
   34  * built into the Realtek RTL8180.
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.12 2006/11/16 01:32:52 christos Exp $");
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/types.h>
   43 
   44 #include <machine/bus.h>
   45 
   46 #include <net/if.h>
   47 #include <net/if_media.h>
   48 #include <net/if_ether.h>
   49 
   50 #include <net80211/ieee80211_netbsd.h>
   51 #include <net80211/ieee80211_radiotap.h>
   52 #include <net80211/ieee80211_var.h>
   53 
   54 #include <dev/ic/rtwreg.h>
   55 #include <dev/ic/max2820reg.h>
   56 #include <dev/ic/sa2400reg.h>
   57 #include <dev/ic/rtwvar.h>
   58 #include <dev/ic/rtwphyio.h>
   59 #include <dev/ic/rtwphy.h>
   60 
   61 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
   62 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
   63 
   64 #define GCT_WRITE(__gr, __addr, __val, __label)                         \
   65         do {                                                            \
   66                 if (rtw_rfbus_write(&(__gr)->gr_bus, RTW_RFCHIPID_GCT,  \
   67                     (__addr), (__val)) == -1)                           \
   68                         goto __label;                                   \
   69         } while(0)
   70 
   71 static int
   72 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
   73     u_int freq)
   74 {
   75         u_int antatten = antatten0;
   76         if (dflantb)
   77                 antatten |= RTW_BBP_ANTATTEN_DFLANTB;
   78         if (freq == 2484) /* channel 14 */
   79                 antatten |= RTW_BBP_ANTATTEN_CHAN14;
   80         return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
   81 }
   82 
   83 static int
   84 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
   85     int dflantb, uint8_t cs_threshold, u_int freq)
   86 {
   87         int rc;
   88         uint32_t sys2, sys3;
   89 
   90         sys2 = bb->bb_sys2;
   91         if (antdiv)
   92                 sys2 |= RTW_BBP_SYS2_ANTDIV;
   93         sys3 = bb->bb_sys3 |
   94             __SHIFTIN(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
   95 
   96 #define RTW_BBP_WRITE_OR_RETURN(reg, val) \
   97         if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
   98                 return rc;
   99 
  100         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,           bb->bb_sys1);
  101         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,          bb->bb_txagc);
  102         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,         bb->bb_lnadet);
  103         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,       bb->bb_ifagcini);
  104         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,     bb->bb_ifagclimit);
  105         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,       bb->bb_ifagcdet);
  106 
  107         if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
  108                 return rc;
  109 
  110         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,            bb->bb_trl);
  111         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,           sys2);
  112         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,           sys3);
  113         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,       bb->bb_chestlim);
  114         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,        bb->bb_chsqlim);
  115         return 0;
  116 }
  117 
  118 static int
  119 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
  120 {
  121         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  122         struct rtw_rfbus *bus = &sa->sa_bus;
  123 
  124         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
  125             opaque_txpower);
  126 }
  127 
  128 /* make sure we're using the same settings as the reference driver */
  129 static void
  130 verify_syna(u_int freq, uint32_t val)
  131 {
  132         uint32_t expected_val = ~val;
  133 
  134         switch (freq) {
  135         case 2412:
  136                 expected_val = 0x0000096c; /* ch 1 */
  137                 break;
  138         case 2417:
  139                 expected_val = 0x00080970; /* ch 2 */
  140                 break;
  141         case 2422:
  142                 expected_val = 0x00100974; /* ch 3 */
  143                 break;
  144         case 2427:
  145                 expected_val = 0x00180978; /* ch 4 */
  146                 break;
  147         case 2432:
  148                 expected_val = 0x00000980; /* ch 5 */
  149                 break;
  150         case 2437:
  151                 expected_val = 0x00080984; /* ch 6 */
  152                 break;
  153         case 2442:
  154                 expected_val = 0x00100988; /* ch 7 */
  155                 break;
  156         case 2447:
  157                 expected_val = 0x0018098c; /* ch 8 */
  158                 break;
  159         case 2452:
  160                 expected_val = 0x00000994; /* ch 9 */
  161                 break;
  162         case 2457:
  163                 expected_val = 0x00080998; /* ch 10 */
  164                 break;
  165         case 2462:
  166                 expected_val = 0x0010099c; /* ch 11 */
  167                 break;
  168         case 2467:
  169                 expected_val = 0x001809a0; /* ch 12 */
  170                 break;
  171         case 2472:
  172                 expected_val = 0x000009a8; /* ch 13 */
  173                 break;
  174         case 2484:
  175                 expected_val = 0x000009b4; /* ch 14 */
  176                 break;
  177         }
  178         KASSERT(val == expected_val);
  179 }
  180 
  181 /* freq is in MHz */
  182 static int
  183 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
  184 {
  185         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  186         struct rtw_rfbus *bus = &sa->sa_bus;
  187         int rc;
  188         uint32_t syna, synb, sync;
  189 
  190         /* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
  191          *
  192          * The channel spacing (5MHz) is not divisible by 4MHz, so
  193          * we set the fractional part of N to compensate.
  194          */
  195         int n = freq / 4, nf = (freq % 4) * 2;
  196 
  197         syna = __SHIFTIN(nf, SA2400_SYNA_NF_MASK) | __SHIFTIN(n, SA2400_SYNA_N_MASK);
  198         verify_syna(freq, syna);
  199 
  200         /* Divide the 44MHz crystal down to 4MHz. Set the fractional
  201          * compensation charge pump value to agree with the fractional
  202          * modulus.
  203          */
  204         synb = __SHIFTIN(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
  205             SA2400_SYNB_ON | SA2400_SYNB_ONE |
  206             __SHIFTIN(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
  207 
  208         sync = SA2400_SYNC_CP_NORMAL;
  209 
  210         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
  211             syna)) != 0)
  212                 return rc;
  213         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
  214             synb)) != 0)
  215                 return rc;
  216         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
  217             sync)) != 0)
  218                 return rc;
  219         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
  220 }
  221 
  222 static int
  223 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
  224 {
  225         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  226         struct rtw_rfbus *bus = &sa->sa_bus;
  227         uint32_t opmode;
  228         opmode = SA2400_OPMODE_DEFAULTS;
  229         switch (power) {
  230         case RTW_ON:
  231                 opmode |= SA2400_OPMODE_MODE_TXRX;
  232                 break;
  233         case RTW_SLEEP:
  234                 opmode |= SA2400_OPMODE_MODE_WAIT;
  235                 break;
  236         case RTW_OFF:
  237                 opmode |= SA2400_OPMODE_MODE_SLEEP;
  238                 break;
  239         }
  240 
  241         if (sa->sa_digphy)
  242                 opmode |= SA2400_OPMODE_DIGIN;
  243 
  244         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  245             opmode);
  246 }
  247 
  248 static int
  249 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
  250 {
  251         uint32_t manrx;
  252 
  253         /* XXX we are not supposed to be in RXMGC mode when we do
  254          * this?
  255          */
  256         manrx = SA2400_MANRX_AHSN;
  257         manrx |= SA2400_MANRX_TEN;
  258         manrx |= __SHIFTIN(1023, SA2400_MANRX_RXGAIN_MASK);
  259 
  260         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
  261             manrx);
  262 }
  263 
  264 static int
  265 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
  266 {
  267         uint32_t opmode;
  268 
  269         opmode = SA2400_OPMODE_DEFAULTS;
  270         if (start)
  271                 opmode |= SA2400_OPMODE_MODE_VCOCALIB;
  272         else
  273                 opmode |= SA2400_OPMODE_MODE_SLEEP;
  274 
  275         if (sa->sa_digphy)
  276                 opmode |= SA2400_OPMODE_DIGIN;
  277 
  278         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  279             opmode);
  280 }
  281 
  282 static int
  283 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
  284 {
  285         int rc;
  286         /* calibrate VCO */
  287         if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
  288                 return rc;
  289         DELAY(2200);    /* 2.2 milliseconds */
  290         /* XXX superfluous: SA2400 automatically entered SLEEP mode. */
  291         return rtw_sa2400_vcocal_start(sa, 0);
  292 }
  293 
  294 static int
  295 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
  296 {
  297         uint32_t opmode;
  298 
  299         opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
  300         if (sa->sa_digphy)
  301                 opmode |= SA2400_OPMODE_DIGIN;
  302 
  303         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  304             opmode);
  305 }
  306 
  307 static int
  308 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
  309 {
  310         struct rtw_rf *rf = &sa->sa_rf;
  311         int rc;
  312         uint32_t dccal;
  313 
  314         (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
  315 
  316         dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;
  317 
  318         rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  319             dccal);
  320         if (rc != 0)
  321                 return rc;
  322 
  323         DELAY(5);       /* DCALIB after being in Tx mode for 5
  324                          * microseconds
  325                          */
  326 
  327         dccal &= ~SA2400_OPMODE_MODE_MASK;
  328         dccal |= SA2400_OPMODE_MODE_DCALIB;
  329 
  330         rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  331            dccal);
  332         if (rc != 0)
  333                 return rc;
  334 
  335         DELAY(20);      /* calibration takes at most 20 microseconds */
  336 
  337         (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
  338 
  339         return 0;
  340 }
  341 
  342 static int
  343 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
  344 {
  345         uint32_t agc;
  346 
  347         agc = __SHIFTIN(25, SA2400_AGC_MAXGAIN_MASK);
  348         agc |= __SHIFTIN(7, SA2400_AGC_BBPDELAY_MASK);
  349         agc |= __SHIFTIN(15, SA2400_AGC_LNADELAY_MASK);
  350         agc |= __SHIFTIN(27, SA2400_AGC_RXONDELAY_MASK);
  351 
  352         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
  353             agc);
  354 }
  355 
  356 static void
  357 rtw_sa2400_destroy(struct rtw_rf *rf)
  358 {
  359         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  360         memset(sa, 0, sizeof(*sa));
  361         free(sa, M_DEVBUF);
  362 }
  363 
  364 static int
  365 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
  366 {
  367         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  368         int i, rc;
  369 
  370         /* XXX reference driver calibrates VCO twice. Is it a bug? */
  371         for (i = 0; i < 2; i++) {
  372                 if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
  373                         return rc;
  374         }
  375         /* VCO calibration erases synthesizer registers, so re-tune */
  376         if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
  377                 return rc;
  378         if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
  379                 return rc;
  380         /* analog PHY needs DC calibration */
  381         if (!sa->sa_digphy)
  382                 return rtw_sa2400_dc_calibration(sa);
  383         return 0;
  384 }
  385 
  386 static int
  387 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
  388     enum rtw_pwrstate power)
  389 {
  390         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  391         int rc;
  392 
  393         if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
  394                 return rc;
  395 
  396         /* skip configuration if it's time to sleep or to power-down. */
  397         if (power == RTW_SLEEP || power == RTW_OFF)
  398                 return rtw_sa2400_pwrstate(rf, power);
  399 
  400         /* go to sleep for configuration */
  401         if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
  402                 return rc;
  403 
  404         if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
  405                 return rc;
  406         if ((rc = rtw_sa2400_agc_init(sa)) != 0)
  407                 return rc;
  408         if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
  409                 return rc;
  410         if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
  411                 return rc;
  412 
  413         /* enter Tx/Rx mode */
  414         return rtw_sa2400_pwrstate(rf, power);
  415 }
  416 
  417 struct rtw_rf *
  418 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
  419 {
  420         struct rtw_sa2400 *sa;
  421         struct rtw_rfbus *bus;
  422         struct rtw_rf *rf;
  423         struct rtw_bbpset *bb;
  424 
  425         sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
  426         if (sa == NULL)
  427                 return NULL;
  428 
  429         sa->sa_digphy = digphy;
  430 
  431         rf = &sa->sa_rf;
  432         bus = &sa->sa_bus;
  433 
  434         rf->rf_init = rtw_sa2400_init;
  435         rf->rf_destroy = rtw_sa2400_destroy;
  436         rf->rf_txpower = rtw_sa2400_txpower;
  437         rf->rf_tune = rtw_sa2400_tune;
  438         rf->rf_pwrstate = rtw_sa2400_pwrstate;
  439         bb = &rf->rf_bbpset;
  440 
  441         /* XXX magic */
  442         bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
  443         bb->bb_chestlim =       0x00;
  444         bb->bb_chsqlim =        0xa0;
  445         bb->bb_ifagcdet =       0x64;
  446         bb->bb_ifagcini =       0x90;
  447         bb->bb_ifagclimit =     0x1a;
  448         bb->bb_lnadet =         0xe0;
  449         bb->bb_sys1 =           0x98;
  450         bb->bb_sys2 =           0x47;
  451         bb->bb_sys3 =           0x90;
  452         bb->bb_trl =            0x88;
  453         bb->bb_txagc =          0x38;
  454 
  455         bus->b_regs = regs;
  456         bus->b_write = rf_write;
  457 
  458         return &sa->sa_rf;
  459 }
  460 
  461 static int
  462 rtw_grf5101_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
  463 {
  464         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  465 
  466         GCT_WRITE(gr, 0x15, 0, err);
  467         GCT_WRITE(gr, 0x06, opaque_txpower, err);
  468         GCT_WRITE(gr, 0x15, 0x10, err);
  469         GCT_WRITE(gr, 0x15, 0x00, err);
  470         return 0;
  471 err:
  472         return -1;
  473 }
  474 
  475 static int
  476 rtw_grf5101_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
  477 {
  478         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  479         switch (power) {
  480         case RTW_OFF:
  481         case RTW_SLEEP:
  482                 GCT_WRITE(gr, 0x07, 0x0000, err);
  483                 GCT_WRITE(gr, 0x1f, 0x0045, err);
  484                 GCT_WRITE(gr, 0x1f, 0x0005, err);
  485                 GCT_WRITE(gr, 0x00, 0x08e4, err);
  486         default:
  487                 break;
  488         case RTW_ON:
  489                 GCT_WRITE(gr, 0x1f, 0x0001, err);
  490                 DELAY(10);
  491                 GCT_WRITE(gr, 0x1f, 0x0001, err);
  492                 DELAY(10);
  493                 GCT_WRITE(gr, 0x1f, 0x0041, err);
  494                 DELAY(10);
  495                 GCT_WRITE(gr, 0x1f, 0x0061, err);
  496                 DELAY(10);
  497                 GCT_WRITE(gr, 0x00, 0x0ae4, err);
  498                 DELAY(10);
  499                 GCT_WRITE(gr, 0x07, 0x1000, err);
  500                 DELAY(100);
  501                 break;
  502         }
  503 
  504         return 0;
  505 err:
  506         return -1;
  507 }
  508 
  509 static int
  510 rtw_grf5101_tune(struct rtw_rf *rf, u_int freq)
  511 {
  512         int channel;
  513         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  514 
  515         if (freq == 2484)
  516                 channel = 14;
  517         else if ((channel = (freq - 2412) / 5 + 1) < 1 || channel > 13) {
  518                 RTW_DPRINTF(RTW_DEBUG_PHY,
  519                     ("%s: invalid channel %d (freq %d)\n", __func__, channel,
  520                      freq));
  521                 return -1;
  522         }
  523 
  524         GCT_WRITE(gr, 0x07, 0, err);
  525         GCT_WRITE(gr, 0x0b, channel - 1, err);
  526         GCT_WRITE(gr, 0x07, 0x1000, err);
  527         return 0;
  528 err:
  529         return -1;
  530 }
  531 
  532 static int
  533 rtw_grf5101_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
  534     enum rtw_pwrstate power)
  535 {
  536         int rc;
  537         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  538 
  539         /*
  540          * These values have been derived from the rtl8180-sa2400
  541          * Linux driver.  It is unknown what they all do, GCT refuse
  542          * to release any documentation so these are more than
  543          * likely sub optimal settings
  544          */
  545 
  546         GCT_WRITE(gr, 0x01, 0x1a23, err);
  547         GCT_WRITE(gr, 0x02, 0x4971, err);
  548         GCT_WRITE(gr, 0x03, 0x41de, err);
  549         GCT_WRITE(gr, 0x04, 0x2d80, err);
  550 
  551         GCT_WRITE(gr, 0x05, 0x61ff, err);
  552 
  553         GCT_WRITE(gr, 0x06, 0x0, err);
  554 
  555         GCT_WRITE(gr, 0x08, 0x7533, err);
  556         GCT_WRITE(gr, 0x09, 0xc401, err);
  557         GCT_WRITE(gr, 0x0a, 0x0, err);
  558         GCT_WRITE(gr, 0x0c, 0x1c7, err);
  559         GCT_WRITE(gr, 0x0d, 0x29d3, err);
  560         GCT_WRITE(gr, 0x0e, 0x2e8, err);
  561         GCT_WRITE(gr, 0x10, 0x192, err);
  562         GCT_WRITE(gr, 0x11, 0x248, err);
  563         GCT_WRITE(gr, 0x12, 0x0, err);
  564         GCT_WRITE(gr, 0x13, 0x20c4, err);
  565         GCT_WRITE(gr, 0x14, 0xf4fc, err);
  566         GCT_WRITE(gr, 0x15, 0x0, err);
  567         GCT_WRITE(gr, 0x16, 0x1500, err);
  568 
  569         if ((rc = rtw_grf5101_txpower(rf, opaque_txpower)) != 0)
  570                 return rc;
  571 
  572         if ((rc = rtw_grf5101_tune(rf, freq)) != 0)
  573                 return rc;
  574 
  575         return 0;
  576 err:
  577         return -1;
  578 }
  579 
  580 static void
  581 rtw_grf5101_destroy(struct rtw_rf *rf)
  582 {
  583         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  584         memset(gr, 0, sizeof(*gr));
  585         free(gr, M_DEVBUF);
  586 }
  587 
  588 struct rtw_rf *
  589 rtw_grf5101_create(struct rtw_regs *regs, rtw_rf_write_t rf_write,
  590     int digphy)
  591 {
  592         struct rtw_grf5101 *gr;
  593         struct rtw_rfbus *bus;
  594         struct rtw_rf *rf;
  595         struct rtw_bbpset *bb;
  596 
  597         gr = malloc(sizeof(*gr), M_DEVBUF, M_NOWAIT | M_ZERO);
  598         if (gr == NULL)
  599                 return NULL;
  600 
  601         rf = &gr->gr_rf;
  602         bus = &gr->gr_bus;
  603 
  604         rf->rf_init = rtw_grf5101_init;
  605         rf->rf_destroy = rtw_grf5101_destroy;
  606         rf->rf_txpower = rtw_grf5101_txpower;
  607         rf->rf_tune = rtw_grf5101_tune;
  608         rf->rf_pwrstate = rtw_grf5101_pwrstate;
  609         bb = &rf->rf_bbpset;
  610 
  611         /* XXX magic */
  612         bb->bb_antatten = RTW_BBP_ANTATTEN_GCT_MAGIC;
  613         bb->bb_chestlim =       0x00;
  614         bb->bb_chsqlim =        0xa0;
  615         bb->bb_ifagcdet =       0x64;
  616         bb->bb_ifagcini =       0x90;
  617         bb->bb_ifagclimit =     0x1e;
  618         bb->bb_lnadet =         0xc0;
  619         bb->bb_sys1 =           0xa8;
  620         bb->bb_sys2 =           0x47;
  621         bb->bb_sys3 =           0x9b;
  622         bb->bb_trl =            0x88;
  623         bb->bb_txagc =          0x08;
  624 
  625         bus->b_regs = regs;
  626         bus->b_write = rf_write;
  627 
  628         return &gr->gr_rf;
  629 }
  630 
  631 /* freq is in MHz */
  632 static int
  633 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
  634 {
  635         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  636         struct rtw_rfbus *bus = &mx->mx_bus;
  637 
  638         if (freq < 2400 || freq > 2499)
  639                 return -1;
  640 
  641         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
  642             __SHIFTIN(freq - 2400, MAX2820_CHANNEL_CF_MASK));
  643 }
  644 
  645 static void
  646 rtw_max2820_destroy(struct rtw_rf *rf)
  647 {
  648         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  649         memset(mx, 0, sizeof(*mx));
  650         free(mx, M_DEVBUF);
  651 }
  652 
  653 static int
  654 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
  655     enum rtw_pwrstate power)
  656 {
  657         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  658         struct rtw_rfbus *bus = &mx->mx_bus;
  659         int rc;
  660 
  661         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
  662             MAX2820_TEST_DEFAULT)) != 0)
  663                 return rc;
  664 
  665         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
  666             MAX2820_ENABLE_DEFAULT)) != 0)
  667                 return rc;
  668 
  669         /* skip configuration if it's time to sleep or to power-down. */
  670         if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
  671                 return rc;
  672         else if (power == RTW_OFF || power == RTW_SLEEP)
  673                 return 0;
  674 
  675         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
  676             MAX2820_SYNTH_R_44MHZ)) != 0)
  677                 return rc;
  678 
  679         if ((rc = rtw_max2820_tune(rf, freq)) != 0)
  680                 return rc;
  681 
  682         /* XXX The MAX2820 datasheet indicates that 1C and 2C should not
  683          * be changed from 7, however, the reference driver sets them
  684          * to 4 and 1, respectively.
  685          */
  686         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
  687             MAX2820_RECEIVE_DL_DEFAULT |
  688             __SHIFTIN(4, MAX2820A_RECEIVE_1C_MASK) |
  689             __SHIFTIN(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
  690                 return rc;
  691 
  692         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
  693             MAX2820_TRANSMIT_PA_DEFAULT);
  694 }
  695 
  696 static int
  697 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
  698 {
  699         /* TBD */
  700         return 0;
  701 }
  702 
  703 static int
  704 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
  705 {
  706         uint32_t enable;
  707         struct rtw_max2820 *mx;
  708         struct rtw_rfbus *bus;
  709 
  710         mx = (struct rtw_max2820 *)rf;
  711         bus = &mx->mx_bus;
  712 
  713         switch (power) {
  714         case RTW_OFF:
  715         case RTW_SLEEP:
  716         default:
  717                 enable = 0x0;
  718                 break;
  719         case RTW_ON:
  720                 enable = MAX2820_ENABLE_DEFAULT;
  721                 break;
  722         }
  723         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
  724 }
  725 
  726 struct rtw_rf *
  727 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
  728 {
  729         struct rtw_max2820 *mx;
  730         struct rtw_rfbus *bus;
  731         struct rtw_rf *rf;
  732         struct rtw_bbpset *bb;
  733 
  734         mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
  735         if (mx == NULL)
  736                 return NULL;
  737 
  738         mx->mx_is_a = is_a;
  739 
  740         rf = &mx->mx_rf;
  741         bus = &mx->mx_bus;
  742 
  743         rf->rf_init = rtw_max2820_init;
  744         rf->rf_destroy = rtw_max2820_destroy;
  745         rf->rf_txpower = rtw_max2820_txpower;
  746         rf->rf_tune = rtw_max2820_tune;
  747         rf->rf_pwrstate = rtw_max2820_pwrstate;
  748         bb = &rf->rf_bbpset;
  749 
  750         /* XXX magic */
  751         bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
  752         bb->bb_chestlim =       0;
  753         bb->bb_chsqlim =        159;
  754         bb->bb_ifagcdet =       100;
  755         bb->bb_ifagcini =       144;
  756         bb->bb_ifagclimit =     26;
  757         bb->bb_lnadet =         248;
  758         bb->bb_sys1 =           136;
  759         bb->bb_sys2 =           71;
  760         bb->bb_sys3 =           155;
  761         bb->bb_trl =            136;
  762         bb->bb_txagc =          8;
  763 
  764         bus->b_regs = regs;
  765         bus->b_write = rf_write;
  766 
  767         return &mx->mx_rf;
  768 }
  769 
  770 /* freq is in MHz */
  771 int
  772 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
  773     uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
  774     enum rtw_pwrstate power)
  775 {
  776         int rc;
  777         RTW_DPRINTF(RTW_DEBUG_PHY,
  778             ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
  779              "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
  780              antdiv, dflantb, rtw_pwrstate_string(power)));
  781 
  782         /* XXX is this really necessary? */
  783         if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
  784                 return rc;
  785         if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
  786             freq)) != 0)
  787                 return rc;
  788         if ((rc = rtw_rf_tune(rf, freq)) != 0)
  789                 return rc;
  790         /* initialize RF  */
  791         if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
  792                 return rc;
  793 #if 0   /* what is this redundant tx power setting here for? */
  794         if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
  795                 return rc;
  796 #endif
  797         return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
  798             cs_threshold, freq);
  799 }

Cache object: d1c1614e6c34bdce22d9e626c700843f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.