The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ic/rtwphy.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* $NetBSD: rtwphy.c,v 1.17 2019/11/10 21:16:35 chs Exp $ */
    2 /*-
    3  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
    4  *
    5  * Programmed for NetBSD by David Young.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
   17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
   18  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   19  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
   20  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   21  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
   22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
   27  * OF SUCH DAMAGE.
   28  */
   29 /*
   30  * Control the Philips SA2400 RF front-end and the baseband processor
   31  * built into the Realtek RTL8180.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.17 2019/11/10 21:16:35 chs Exp $");
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/types.h>
   40 #include <sys/device.h>
   41 
   42 #include <sys/bus.h>
   43 
   44 #include <net/if.h>
   45 #include <net/if_media.h>
   46 #include <net/if_ether.h>
   47 
   48 #include <net80211/ieee80211_netbsd.h>
   49 #include <net80211/ieee80211_radiotap.h>
   50 #include <net80211/ieee80211_var.h>
   51 
   52 #include <dev/ic/rtwreg.h>
   53 #include <dev/ic/max2820reg.h>
   54 #include <dev/ic/sa2400reg.h>
   55 #include <dev/ic/rtwvar.h>
   56 #include <dev/ic/rtwphyio.h>
   57 #include <dev/ic/rtwphy.h>
   58 
   59 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
   60 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
   61 
   62 #define GCT_WRITE(__gr, __addr, __val, __label)                         \
   63         do {                                                            \
   64                 if (rtw_rfbus_write(&(__gr)->gr_bus, RTW_RFCHIPID_GCT,  \
   65                     (__addr), (__val)) == -1)                           \
   66                         goto __label;                                   \
   67         } while(0)
   68 
   69 static int
   70 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
   71     u_int freq)
   72 {
   73         u_int antatten = antatten0;
   74         if (dflantb)
   75                 antatten |= RTW_BBP_ANTATTEN_DFLANTB;
   76         if (freq == 2484) /* channel 14 */
   77                 antatten |= RTW_BBP_ANTATTEN_CHAN14;
   78         return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
   79 }
   80 
   81 static int
   82 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
   83     int dflantb, uint8_t cs_threshold, u_int freq)
   84 {
   85         int rc;
   86         uint32_t sys2, sys3;
   87 
   88         sys2 = bb->bb_sys2;
   89         if (antdiv)
   90                 sys2 |= RTW_BBP_SYS2_ANTDIV;
   91         sys3 = bb->bb_sys3 |
   92             __SHIFTIN(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
   93 
   94 #define RTW_BBP_WRITE_OR_RETURN(reg, val) \
   95         if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
   96                 return rc;
   97 
   98         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,           bb->bb_sys1);
   99         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,          bb->bb_txagc);
  100         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,         bb->bb_lnadet);
  101         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,       bb->bb_ifagcini);
  102         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,     bb->bb_ifagclimit);
  103         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,       bb->bb_ifagcdet);
  104 
  105         if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
  106                 return rc;
  107 
  108         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,            bb->bb_trl);
  109         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,           sys2);
  110         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,           sys3);
  111         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,       bb->bb_chestlim);
  112         RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,        bb->bb_chsqlim);
  113         return 0;
  114 }
  115 
  116 static int
  117 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
  118 {
  119         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  120         struct rtw_rfbus *bus = &sa->sa_bus;
  121 
  122         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
  123             opaque_txpower);
  124 }
  125 
  126 /* make sure we're using the same settings as the reference driver */
  127 static void
  128 verify_syna(u_int freq, uint32_t val)
  129 {
  130 #ifdef DIAGNOSTIC
  131         uint32_t expected_val = ~val;
  132 
  133         switch (freq) {
  134         case 2412:
  135                 expected_val = 0x0000096c; /* ch 1 */
  136                 break;
  137         case 2417:
  138                 expected_val = 0x00080970; /* ch 2 */
  139                 break;
  140         case 2422:
  141                 expected_val = 0x00100974; /* ch 3 */
  142                 break;
  143         case 2427:
  144                 expected_val = 0x00180978; /* ch 4 */
  145                 break;
  146         case 2432:
  147                 expected_val = 0x00000980; /* ch 5 */
  148                 break;
  149         case 2437:
  150                 expected_val = 0x00080984; /* ch 6 */
  151                 break;
  152         case 2442:
  153                 expected_val = 0x00100988; /* ch 7 */
  154                 break;
  155         case 2447:
  156                 expected_val = 0x0018098c; /* ch 8 */
  157                 break;
  158         case 2452:
  159                 expected_val = 0x00000994; /* ch 9 */
  160                 break;
  161         case 2457:
  162                 expected_val = 0x00080998; /* ch 10 */
  163                 break;
  164         case 2462:
  165                 expected_val = 0x0010099c; /* ch 11 */
  166                 break;
  167         case 2467:
  168                 expected_val = 0x001809a0; /* ch 12 */
  169                 break;
  170         case 2472:
  171                 expected_val = 0x000009a8; /* ch 13 */
  172                 break;
  173         case 2484:
  174                 expected_val = 0x000009b4; /* ch 14 */
  175                 break;
  176         }
  177         KASSERT(val == expected_val);
  178 #endif
  179 }
  180 
  181 /* freq is in MHz */
  182 static int
  183 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
  184 {
  185         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  186         struct rtw_rfbus *bus = &sa->sa_bus;
  187         int rc;
  188         uint32_t syna, synb, sync;
  189 
  190         /* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
  191          *
  192          * The channel spacing (5MHz) is not divisible by 4MHz, so
  193          * we set the fractional part of N to compensate.
  194          */
  195         int n = freq / 4, nf = (freq % 4) * 2;
  196 
  197         syna = __SHIFTIN(nf, SA2400_SYNA_NF_MASK) | __SHIFTIN(n, SA2400_SYNA_N_MASK);
  198         verify_syna(freq, syna);
  199 
  200         /* Divide the 44MHz crystal down to 4MHz. Set the fractional
  201          * compensation charge pump value to agree with the fractional
  202          * modulus.
  203          */
  204         synb = __SHIFTIN(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
  205             SA2400_SYNB_ON | SA2400_SYNB_ONE |
  206             __SHIFTIN(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
  207 
  208         sync = SA2400_SYNC_CP_NORMAL;
  209 
  210         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
  211             syna)) != 0)
  212                 return rc;
  213         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
  214             synb)) != 0)
  215                 return rc;
  216         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
  217             sync)) != 0)
  218                 return rc;
  219         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
  220 }
  221 
  222 static int
  223 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
  224 {
  225         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  226         struct rtw_rfbus *bus = &sa->sa_bus;
  227         uint32_t opmode;
  228         opmode = SA2400_OPMODE_DEFAULTS;
  229         switch (power) {
  230         case RTW_ON:
  231                 opmode |= SA2400_OPMODE_MODE_TXRX;
  232                 break;
  233         case RTW_SLEEP:
  234                 opmode |= SA2400_OPMODE_MODE_WAIT;
  235                 break;
  236         case RTW_OFF:
  237                 opmode |= SA2400_OPMODE_MODE_SLEEP;
  238                 break;
  239         }
  240 
  241         if (sa->sa_digphy)
  242                 opmode |= SA2400_OPMODE_DIGIN;
  243 
  244         return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  245             opmode);
  246 }
  247 
  248 static int
  249 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
  250 {
  251         uint32_t manrx;
  252 
  253         /* XXX we are not supposed to be in RXMGC mode when we do
  254          * this?
  255          */
  256         manrx = SA2400_MANRX_AHSN;
  257         manrx |= SA2400_MANRX_TEN;
  258         manrx |= __SHIFTIN(1023, SA2400_MANRX_RXGAIN_MASK);
  259 
  260         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
  261             manrx);
  262 }
  263 
  264 static int
  265 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
  266 {
  267         uint32_t opmode;
  268 
  269         opmode = SA2400_OPMODE_DEFAULTS;
  270         if (start)
  271                 opmode |= SA2400_OPMODE_MODE_VCOCALIB;
  272         else
  273                 opmode |= SA2400_OPMODE_MODE_SLEEP;
  274 
  275         if (sa->sa_digphy)
  276                 opmode |= SA2400_OPMODE_DIGIN;
  277 
  278         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  279             opmode);
  280 }
  281 
  282 static int
  283 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
  284 {
  285         int rc;
  286         /* calibrate VCO */
  287         if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
  288                 return rc;
  289         DELAY(2200);    /* 2.2 milliseconds */
  290         /* XXX superfluous: SA2400 automatically entered SLEEP mode. */
  291         return rtw_sa2400_vcocal_start(sa, 0);
  292 }
  293 
  294 static int
  295 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
  296 {
  297         uint32_t opmode;
  298 
  299         opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
  300         if (sa->sa_digphy)
  301                 opmode |= SA2400_OPMODE_DIGIN;
  302 
  303         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  304             opmode);
  305 }
  306 
  307 static int
  308 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
  309 {
  310         struct rtw_rf *rf = &sa->sa_rf;
  311         int rc;
  312         uint32_t dccal;
  313 
  314         (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
  315 
  316         dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;
  317 
  318         rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  319             dccal);
  320         if (rc != 0)
  321                 return rc;
  322 
  323         DELAY(5);       /* DCALIB after being in Tx mode for 5
  324                          * microseconds
  325                          */
  326 
  327         dccal &= ~SA2400_OPMODE_MODE_MASK;
  328         dccal |= SA2400_OPMODE_MODE_DCALIB;
  329 
  330         rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
  331            dccal);
  332         if (rc != 0)
  333                 return rc;
  334 
  335         DELAY(20);      /* calibration takes at most 20 microseconds */
  336 
  337         (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
  338 
  339         return 0;
  340 }
  341 
  342 static int
  343 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
  344 {
  345         uint32_t agc;
  346 
  347         agc = __SHIFTIN(25, SA2400_AGC_MAXGAIN_MASK);
  348         agc |= __SHIFTIN(7, SA2400_AGC_BBPDELAY_MASK);
  349         agc |= __SHIFTIN(15, SA2400_AGC_LNADELAY_MASK);
  350         agc |= __SHIFTIN(27, SA2400_AGC_RXONDELAY_MASK);
  351 
  352         return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
  353             agc);
  354 }
  355 
  356 static void
  357 rtw_sa2400_destroy(struct rtw_rf *rf)
  358 {
  359         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  360         memset(sa, 0, sizeof(*sa));
  361         free(sa, M_DEVBUF);
  362 }
  363 
  364 static int
  365 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
  366 {
  367         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  368         int i, rc;
  369 
  370         /* XXX reference driver calibrates VCO twice. Is it a bug? */
  371         for (i = 0; i < 2; i++) {
  372                 if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
  373                         return rc;
  374         }
  375         /* VCO calibration erases synthesizer registers, so re-tune */
  376         if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
  377                 return rc;
  378         if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
  379                 return rc;
  380         /* analog PHY needs DC calibration */
  381         if (!sa->sa_digphy)
  382                 return rtw_sa2400_dc_calibration(sa);
  383         return 0;
  384 }
  385 
  386 static int
  387 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
  388     enum rtw_pwrstate power)
  389 {
  390         struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
  391         int rc;
  392 
  393         if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
  394                 return rc;
  395 
  396         /* skip configuration if it's time to sleep or to power-down. */
  397         if (power == RTW_SLEEP || power == RTW_OFF)
  398                 return rtw_sa2400_pwrstate(rf, power);
  399 
  400         /* go to sleep for configuration */
  401         if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
  402                 return rc;
  403 
  404         if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
  405                 return rc;
  406         if ((rc = rtw_sa2400_agc_init(sa)) != 0)
  407                 return rc;
  408         if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
  409                 return rc;
  410         if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
  411                 return rc;
  412 
  413         /* enter Tx/Rx mode */
  414         return rtw_sa2400_pwrstate(rf, power);
  415 }
  416 
  417 struct rtw_rf *
  418 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
  419 {
  420         struct rtw_sa2400 *sa;
  421         struct rtw_rfbus *bus;
  422         struct rtw_rf *rf;
  423         struct rtw_bbpset *bb;
  424 
  425         sa = malloc(sizeof(*sa), M_DEVBUF, M_WAITOK | M_ZERO);
  426         sa->sa_digphy = digphy;
  427 
  428         rf = &sa->sa_rf;
  429         bus = &sa->sa_bus;
  430 
  431         rf->rf_init = rtw_sa2400_init;
  432         rf->rf_destroy = rtw_sa2400_destroy;
  433         rf->rf_txpower = rtw_sa2400_txpower;
  434         rf->rf_tune = rtw_sa2400_tune;
  435         rf->rf_pwrstate = rtw_sa2400_pwrstate;
  436         bb = &rf->rf_bbpset;
  437 
  438         /* XXX magic */
  439         bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
  440         bb->bb_chestlim =       0x00;
  441         bb->bb_chsqlim =        0xa0;
  442         bb->bb_ifagcdet =       0x64;
  443         bb->bb_ifagcini =       0x90;
  444         bb->bb_ifagclimit =     0x1a;
  445         bb->bb_lnadet =         0xe0;
  446         bb->bb_sys1 =           0x98;
  447         bb->bb_sys2 =           0x47;
  448         bb->bb_sys3 =           0x90;
  449         bb->bb_trl =            0x88;
  450         bb->bb_txagc =          0x38;
  451 
  452         bus->b_regs = regs;
  453         bus->b_write = rf_write;
  454 
  455         return &sa->sa_rf;
  456 }
  457 
  458 static int
  459 rtw_grf5101_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
  460 {
  461         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  462 
  463         GCT_WRITE(gr, 0x15, 0, err);
  464         GCT_WRITE(gr, 0x06, opaque_txpower, err);
  465         GCT_WRITE(gr, 0x15, 0x10, err);
  466         GCT_WRITE(gr, 0x15, 0x00, err);
  467         return 0;
  468 err:
  469         return -1;
  470 }
  471 
  472 static int
  473 rtw_grf5101_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
  474 {
  475         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  476         switch (power) {
  477         case RTW_OFF:
  478         case RTW_SLEEP:
  479                 GCT_WRITE(gr, 0x07, 0x0000, err);
  480                 GCT_WRITE(gr, 0x1f, 0x0045, err);
  481                 GCT_WRITE(gr, 0x1f, 0x0005, err);
  482                 GCT_WRITE(gr, 0x00, 0x08e4, err);
  483         default:
  484                 break;
  485         case RTW_ON:
  486                 GCT_WRITE(gr, 0x1f, 0x0001, err);
  487                 DELAY(10);
  488                 GCT_WRITE(gr, 0x1f, 0x0001, err);
  489                 DELAY(10);
  490                 GCT_WRITE(gr, 0x1f, 0x0041, err);
  491                 DELAY(10);
  492                 GCT_WRITE(gr, 0x1f, 0x0061, err);
  493                 DELAY(10);
  494                 GCT_WRITE(gr, 0x00, 0x0ae4, err);
  495                 DELAY(10);
  496                 GCT_WRITE(gr, 0x07, 0x1000, err);
  497                 DELAY(100);
  498                 break;
  499         }
  500 
  501         return 0;
  502 err:
  503         return -1;
  504 }
  505 
  506 static int
  507 rtw_grf5101_tune(struct rtw_rf *rf, u_int freq)
  508 {
  509         int channel;
  510         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  511 
  512         if (freq == 2484)
  513                 channel = 14;
  514         else if ((channel = (freq - 2412) / 5 + 1) < 1 || channel > 13) {
  515                 RTW_DPRINTF(RTW_DEBUG_PHY,
  516                     ("%s: invalid channel %d (freq %d)\n", __func__, channel,
  517                      freq));
  518                 return -1;
  519         }
  520 
  521         GCT_WRITE(gr, 0x07, 0, err);
  522         GCT_WRITE(gr, 0x0b, channel - 1, err);
  523         GCT_WRITE(gr, 0x07, 0x1000, err);
  524         return 0;
  525 err:
  526         return -1;
  527 }
  528 
  529 static int
  530 rtw_grf5101_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
  531     enum rtw_pwrstate power)
  532 {
  533         int rc;
  534         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  535 
  536         /*
  537          * These values have been derived from the rtl8180-sa2400
  538          * Linux driver.  It is unknown what they all do, GCT refuse
  539          * to release any documentation so these are more than
  540          * likely sub optimal settings
  541          */
  542 
  543         GCT_WRITE(gr, 0x01, 0x1a23, err);
  544         GCT_WRITE(gr, 0x02, 0x4971, err);
  545         GCT_WRITE(gr, 0x03, 0x41de, err);
  546         GCT_WRITE(gr, 0x04, 0x2d80, err);
  547 
  548         GCT_WRITE(gr, 0x05, 0x61ff, err);
  549 
  550         GCT_WRITE(gr, 0x06, 0x0, err);
  551 
  552         GCT_WRITE(gr, 0x08, 0x7533, err);
  553         GCT_WRITE(gr, 0x09, 0xc401, err);
  554         GCT_WRITE(gr, 0x0a, 0x0, err);
  555         GCT_WRITE(gr, 0x0c, 0x1c7, err);
  556         GCT_WRITE(gr, 0x0d, 0x29d3, err);
  557         GCT_WRITE(gr, 0x0e, 0x2e8, err);
  558         GCT_WRITE(gr, 0x10, 0x192, err);
  559         GCT_WRITE(gr, 0x11, 0x248, err);
  560         GCT_WRITE(gr, 0x12, 0x0, err);
  561         GCT_WRITE(gr, 0x13, 0x20c4, err);
  562         GCT_WRITE(gr, 0x14, 0xf4fc, err);
  563         GCT_WRITE(gr, 0x15, 0x0, err);
  564         GCT_WRITE(gr, 0x16, 0x1500, err);
  565 
  566         if ((rc = rtw_grf5101_txpower(rf, opaque_txpower)) != 0)
  567                 return rc;
  568 
  569         if ((rc = rtw_grf5101_tune(rf, freq)) != 0)
  570                 return rc;
  571 
  572         return 0;
  573 err:
  574         return -1;
  575 }
  576 
  577 static void
  578 rtw_grf5101_destroy(struct rtw_rf *rf)
  579 {
  580         struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
  581         memset(gr, 0, sizeof(*gr));
  582         free(gr, M_DEVBUF);
  583 }
  584 
  585 struct rtw_rf *
  586 rtw_grf5101_create(struct rtw_regs *regs, rtw_rf_write_t rf_write,
  587     int digphy)
  588 {
  589         struct rtw_grf5101 *gr;
  590         struct rtw_rfbus *bus;
  591         struct rtw_rf *rf;
  592         struct rtw_bbpset *bb;
  593 
  594         gr = malloc(sizeof(*gr), M_DEVBUF, M_WAITOK | M_ZERO);
  595 
  596         rf = &gr->gr_rf;
  597         bus = &gr->gr_bus;
  598 
  599         rf->rf_init = rtw_grf5101_init;
  600         rf->rf_destroy = rtw_grf5101_destroy;
  601         rf->rf_txpower = rtw_grf5101_txpower;
  602         rf->rf_tune = rtw_grf5101_tune;
  603         rf->rf_pwrstate = rtw_grf5101_pwrstate;
  604         bb = &rf->rf_bbpset;
  605 
  606         /* XXX magic */
  607         bb->bb_antatten = RTW_BBP_ANTATTEN_GCT_MAGIC;
  608         bb->bb_chestlim =       0x00;
  609         bb->bb_chsqlim =        0xa0;
  610         bb->bb_ifagcdet =       0x64;
  611         bb->bb_ifagcini =       0x90;
  612         bb->bb_ifagclimit =     0x1e;
  613         bb->bb_lnadet =         0xc0;
  614         bb->bb_sys1 =           0xa8;
  615         bb->bb_sys2 =           0x47;
  616         bb->bb_sys3 =           0x9b;
  617         bb->bb_trl =            0x88;
  618         bb->bb_txagc =          0x08;
  619 
  620         bus->b_regs = regs;
  621         bus->b_write = rf_write;
  622 
  623         return &gr->gr_rf;
  624 }
  625 
  626 /* freq is in MHz */
  627 static int
  628 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
  629 {
  630         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  631         struct rtw_rfbus *bus = &mx->mx_bus;
  632 
  633         if (freq < 2400 || freq > 2499)
  634                 return -1;
  635 
  636         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
  637             __SHIFTIN(freq - 2400, MAX2820_CHANNEL_CF_MASK));
  638 }
  639 
  640 static void
  641 rtw_max2820_destroy(struct rtw_rf *rf)
  642 {
  643         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  644         memset(mx, 0, sizeof(*mx));
  645         free(mx, M_DEVBUF);
  646 }
  647 
  648 static int
  649 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
  650     enum rtw_pwrstate power)
  651 {
  652         struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
  653         struct rtw_rfbus *bus = &mx->mx_bus;
  654         int rc;
  655 
  656         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
  657             MAX2820_TEST_DEFAULT)) != 0)
  658                 return rc;
  659 
  660         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
  661             MAX2820_ENABLE_DEFAULT)) != 0)
  662                 return rc;
  663 
  664         /* skip configuration if it's time to sleep or to power-down. */
  665         if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
  666                 return rc;
  667         else if (power == RTW_OFF || power == RTW_SLEEP)
  668                 return 0;
  669 
  670         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
  671             MAX2820_SYNTH_R_44MHZ)) != 0)
  672                 return rc;
  673 
  674         if ((rc = rtw_max2820_tune(rf, freq)) != 0)
  675                 return rc;
  676 
  677         /* XXX The MAX2820 datasheet indicates that 1C and 2C should not
  678          * be changed from 7, however, the reference driver sets them
  679          * to 4 and 1, respectively.
  680          */
  681         if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
  682             MAX2820_RECEIVE_DL_DEFAULT |
  683             __SHIFTIN(4, MAX2820A_RECEIVE_1C_MASK) |
  684             __SHIFTIN(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
  685                 return rc;
  686 
  687         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
  688             MAX2820_TRANSMIT_PA_DEFAULT);
  689 }
  690 
  691 static int
  692 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
  693 {
  694         /* TBD */
  695         return 0;
  696 }
  697 
  698 static int
  699 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
  700 {
  701         uint32_t enable;
  702         struct rtw_max2820 *mx;
  703         struct rtw_rfbus *bus;
  704 
  705         mx = (struct rtw_max2820 *)rf;
  706         bus = &mx->mx_bus;
  707 
  708         switch (power) {
  709         case RTW_OFF:
  710         case RTW_SLEEP:
  711         default:
  712                 enable = 0x0;
  713                 break;
  714         case RTW_ON:
  715                 enable = MAX2820_ENABLE_DEFAULT;
  716                 break;
  717         }
  718         return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
  719 }
  720 
  721 struct rtw_rf *
  722 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
  723 {
  724         struct rtw_max2820 *mx;
  725         struct rtw_rfbus *bus;
  726         struct rtw_rf *rf;
  727         struct rtw_bbpset *bb;
  728 
  729         mx = malloc(sizeof(*mx), M_DEVBUF, M_WAITOK | M_ZERO);
  730         mx->mx_is_a = is_a;
  731 
  732         rf = &mx->mx_rf;
  733         bus = &mx->mx_bus;
  734 
  735         rf->rf_init = rtw_max2820_init;
  736         rf->rf_destroy = rtw_max2820_destroy;
  737         rf->rf_txpower = rtw_max2820_txpower;
  738         rf->rf_tune = rtw_max2820_tune;
  739         rf->rf_pwrstate = rtw_max2820_pwrstate;
  740         bb = &rf->rf_bbpset;
  741 
  742         /* XXX magic */
  743         bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
  744         bb->bb_chestlim =       0;
  745         bb->bb_chsqlim =        159;
  746         bb->bb_ifagcdet =       100;
  747         bb->bb_ifagcini =       144;
  748         bb->bb_ifagclimit =     26;
  749         bb->bb_lnadet =         248;
  750         bb->bb_sys1 =           136;
  751         bb->bb_sys2 =           71;
  752         bb->bb_sys3 =           155;
  753         bb->bb_trl =            136;
  754         bb->bb_txagc =          8;
  755 
  756         bus->b_regs = regs;
  757         bus->b_write = rf_write;
  758 
  759         return &mx->mx_rf;
  760 }
  761 
  762 /* freq is in MHz */
  763 int
  764 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
  765     uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
  766     enum rtw_pwrstate power)
  767 {
  768         int rc;
  769         RTW_DPRINTF(RTW_DEBUG_PHY,
  770             ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
  771              "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
  772              antdiv, dflantb, rtw_pwrstate_string(power)));
  773 
  774         /* XXX is this really necessary? */
  775         if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
  776                 return rc;
  777         if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
  778             freq)) != 0)
  779                 return rc;
  780         if ((rc = rtw_rf_tune(rf, freq)) != 0)
  781                 return rc;
  782         /* initialize RF  */
  783         if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
  784                 return rc;
  785 #if 0   /* what is this redundant tx power setting here for? */
  786         if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
  787                 return rc;
  788 #endif
  789         return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
  790             cs_threshold, freq);
  791 }

Cache object: 1ebea7c9d556e85cffb44c54e62a2a47


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.