1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright (c) 2021, Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the Intel Corporation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*$FreeBSD$*/
32
33 #include "ice_common.h"
34 #include "ice_flex_pipe.h"
35 #include "ice_protocol_type.h"
36 #include "ice_flow.h"
37
38 /* To support tunneling entries by PF, the package will append the PF number to
39 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
40 */
41 #define ICE_TNL_PRE "TNL_"
42 static const struct ice_tunnel_type_scan tnls[] = {
43 { TNL_VXLAN, "TNL_VXLAN_PF" },
44 { TNL_GENEVE, "TNL_GENEVE_PF" },
45 { TNL_LAST, "" }
46 };
47
48 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
49 /* SWITCH */
50 {
51 ICE_SID_XLT0_SW,
52 ICE_SID_XLT_KEY_BUILDER_SW,
53 ICE_SID_XLT1_SW,
54 ICE_SID_XLT2_SW,
55 ICE_SID_PROFID_TCAM_SW,
56 ICE_SID_PROFID_REDIR_SW,
57 ICE_SID_FLD_VEC_SW,
58 ICE_SID_CDID_KEY_BUILDER_SW,
59 ICE_SID_CDID_REDIR_SW
60 },
61
62 /* ACL */
63 {
64 ICE_SID_XLT0_ACL,
65 ICE_SID_XLT_KEY_BUILDER_ACL,
66 ICE_SID_XLT1_ACL,
67 ICE_SID_XLT2_ACL,
68 ICE_SID_PROFID_TCAM_ACL,
69 ICE_SID_PROFID_REDIR_ACL,
70 ICE_SID_FLD_VEC_ACL,
71 ICE_SID_CDID_KEY_BUILDER_ACL,
72 ICE_SID_CDID_REDIR_ACL
73 },
74
75 /* FD */
76 {
77 ICE_SID_XLT0_FD,
78 ICE_SID_XLT_KEY_BUILDER_FD,
79 ICE_SID_XLT1_FD,
80 ICE_SID_XLT2_FD,
81 ICE_SID_PROFID_TCAM_FD,
82 ICE_SID_PROFID_REDIR_FD,
83 ICE_SID_FLD_VEC_FD,
84 ICE_SID_CDID_KEY_BUILDER_FD,
85 ICE_SID_CDID_REDIR_FD
86 },
87
88 /* RSS */
89 {
90 ICE_SID_XLT0_RSS,
91 ICE_SID_XLT_KEY_BUILDER_RSS,
92 ICE_SID_XLT1_RSS,
93 ICE_SID_XLT2_RSS,
94 ICE_SID_PROFID_TCAM_RSS,
95 ICE_SID_PROFID_REDIR_RSS,
96 ICE_SID_FLD_VEC_RSS,
97 ICE_SID_CDID_KEY_BUILDER_RSS,
98 ICE_SID_CDID_REDIR_RSS
99 },
100
101 /* PE */
102 {
103 ICE_SID_XLT0_PE,
104 ICE_SID_XLT_KEY_BUILDER_PE,
105 ICE_SID_XLT1_PE,
106 ICE_SID_XLT2_PE,
107 ICE_SID_PROFID_TCAM_PE,
108 ICE_SID_PROFID_REDIR_PE,
109 ICE_SID_FLD_VEC_PE,
110 ICE_SID_CDID_KEY_BUILDER_PE,
111 ICE_SID_CDID_REDIR_PE
112 }
113 };
114
115 /**
116 * ice_sect_id - returns section ID
117 * @blk: block type
118 * @sect: section type
119 *
120 * This helper function returns the proper section ID given a block type and a
121 * section type.
122 */
123 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
124 {
125 return ice_sect_lkup[blk][sect];
126 }
127
128 /**
129 * ice_pkg_val_buf
130 * @buf: pointer to the ice buffer
131 *
132 * This helper function validates a buffer's header.
133 */
134 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
135 {
136 struct ice_buf_hdr *hdr;
137 u16 section_count;
138 u16 data_end;
139
140 hdr = (struct ice_buf_hdr *)buf->buf;
141 /* verify data */
142 section_count = LE16_TO_CPU(hdr->section_count);
143 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
144 return NULL;
145
146 data_end = LE16_TO_CPU(hdr->data_end);
147 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
148 return NULL;
149
150 return hdr;
151 }
152
153 /**
154 * ice_find_buf_table
155 * @ice_seg: pointer to the ice segment
156 *
157 * Returns the address of the buffer table within the ice segment.
158 */
159 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
160 {
161 struct ice_nvm_table *nvms;
162
163 nvms = (struct ice_nvm_table *)
164 (ice_seg->device_table +
165 LE32_TO_CPU(ice_seg->device_table_count));
166
167 return (_FORCE_ struct ice_buf_table *)
168 (nvms->vers + LE32_TO_CPU(nvms->table_count));
169 }
170
171 /**
172 * ice_pkg_enum_buf
173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
174 * @state: pointer to the enum state
175 *
176 * This function will enumerate all the buffers in the ice segment. The first
177 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
178 * ice_seg is set to NULL which continues the enumeration. When the function
179 * returns a NULL pointer, then the end of the buffers has been reached, or an
180 * unexpected value has been detected (for example an invalid section count or
181 * an invalid buffer end value).
182 */
183 static struct ice_buf_hdr *
184 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
185 {
186 if (ice_seg) {
187 state->buf_table = ice_find_buf_table(ice_seg);
188 if (!state->buf_table)
189 return NULL;
190
191 state->buf_idx = 0;
192 return ice_pkg_val_buf(state->buf_table->buf_array);
193 }
194
195 if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count))
196 return ice_pkg_val_buf(state->buf_table->buf_array +
197 state->buf_idx);
198 else
199 return NULL;
200 }
201
202 /**
203 * ice_pkg_advance_sect
204 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
205 * @state: pointer to the enum state
206 *
207 * This helper function will advance the section within the ice segment,
208 * also advancing the buffer if needed.
209 */
210 static bool
211 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
212 {
213 if (!ice_seg && !state->buf)
214 return false;
215
216 if (!ice_seg && state->buf)
217 if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count))
218 return true;
219
220 state->buf = ice_pkg_enum_buf(ice_seg, state);
221 if (!state->buf)
222 return false;
223
224 /* start of new buffer, reset section index */
225 state->sect_idx = 0;
226 return true;
227 }
228
229 /**
230 * ice_pkg_enum_section
231 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
232 * @state: pointer to the enum state
233 * @sect_type: section type to enumerate
234 *
235 * This function will enumerate all the sections of a particular type in the
236 * ice segment. The first call is made with the ice_seg parameter non-NULL;
237 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
238 * When the function returns a NULL pointer, then the end of the matching
239 * sections has been reached.
240 */
241 static void *
242 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
243 u32 sect_type)
244 {
245 u16 offset, size;
246
247 if (ice_seg)
248 state->type = sect_type;
249
250 if (!ice_pkg_advance_sect(ice_seg, state))
251 return NULL;
252
253 /* scan for next matching section */
254 while (state->buf->section_entry[state->sect_idx].type !=
255 CPU_TO_LE32(state->type))
256 if (!ice_pkg_advance_sect(NULL, state))
257 return NULL;
258
259 /* validate section */
260 offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
261 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
262 return NULL;
263
264 size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size);
265 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
266 return NULL;
267
268 /* make sure the section fits in the buffer */
269 if (offset + size > ICE_PKG_BUF_SIZE)
270 return NULL;
271
272 state->sect_type =
273 LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type);
274
275 /* calc pointer to this section */
276 state->sect = ((u8 *)state->buf) +
277 LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
278
279 return state->sect;
280 }
281
282 /**
283 * ice_pkg_enum_entry
284 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
285 * @state: pointer to the enum state
286 * @sect_type: section type to enumerate
287 * @offset: pointer to variable that receives the offset in the table (optional)
288 * @handler: function that handles access to the entries into the section type
289 *
290 * This function will enumerate all the entries in particular section type in
291 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
292 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
293 * When the function returns a NULL pointer, then the end of the entries has
294 * been reached.
295 *
296 * Since each section may have a different header and entry size, the handler
297 * function is needed to determine the number and location entries in each
298 * section.
299 *
300 * The offset parameter is optional, but should be used for sections that
301 * contain an offset for each section table. For such cases, the section handler
302 * function must return the appropriate offset + index to give the absolution
303 * offset for each entry. For example, if the base for a section's header
304 * indicates a base offset of 10, and the index for the entry is 2, then
305 * section handler function should set the offset to 10 + 2 = 12.
306 */
307 static void *
308 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
309 u32 sect_type, u32 *offset,
310 void *(*handler)(u32 sect_type, void *section,
311 u32 index, u32 *offset))
312 {
313 void *entry;
314
315 if (ice_seg) {
316 if (!handler)
317 return NULL;
318
319 if (!ice_pkg_enum_section(ice_seg, state, sect_type))
320 return NULL;
321
322 state->entry_idx = 0;
323 state->handler = handler;
324 } else {
325 state->entry_idx++;
326 }
327
328 if (!state->handler)
329 return NULL;
330
331 /* get entry */
332 entry = state->handler(state->sect_type, state->sect, state->entry_idx,
333 offset);
334 if (!entry) {
335 /* end of a section, look for another section of this type */
336 if (!ice_pkg_enum_section(NULL, state, 0))
337 return NULL;
338
339 state->entry_idx = 0;
340 entry = state->handler(state->sect_type, state->sect,
341 state->entry_idx, offset);
342 }
343
344 return entry;
345 }
346
347 /**
348 * ice_boost_tcam_handler
349 * @sect_type: section type
350 * @section: pointer to section
351 * @index: index of the boost TCAM entry to be returned
352 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
353 *
354 * This is a callback function that can be passed to ice_pkg_enum_entry.
355 * Handles enumeration of individual boost TCAM entries.
356 */
357 static void *
358 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
359 {
360 struct ice_boost_tcam_section *boost;
361
362 if (!section)
363 return NULL;
364
365 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
366 return NULL;
367
368 if (index > ICE_MAX_BST_TCAMS_IN_BUF)
369 return NULL;
370
371 if (offset)
372 *offset = 0;
373
374 boost = (struct ice_boost_tcam_section *)section;
375 if (index >= LE16_TO_CPU(boost->count))
376 return NULL;
377
378 return boost->tcam + index;
379 }
380
381 /**
382 * ice_find_boost_entry
383 * @ice_seg: pointer to the ice segment (non-NULL)
384 * @addr: Boost TCAM address of entry to search for
385 * @entry: returns pointer to the entry
386 *
387 * Finds a particular Boost TCAM entry and returns a pointer to that entry
388 * if it is found. The ice_seg parameter must not be NULL since the first call
389 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
390 */
391 static enum ice_status
392 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
393 struct ice_boost_tcam_entry **entry)
394 {
395 struct ice_boost_tcam_entry *tcam;
396 struct ice_pkg_enum state;
397
398 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
399
400 if (!ice_seg)
401 return ICE_ERR_PARAM;
402
403 do {
404 tcam = (struct ice_boost_tcam_entry *)
405 ice_pkg_enum_entry(ice_seg, &state,
406 ICE_SID_RXPARSER_BOOST_TCAM, NULL,
407 ice_boost_tcam_handler);
408 if (tcam && LE16_TO_CPU(tcam->addr) == addr) {
409 *entry = tcam;
410 return ICE_SUCCESS;
411 }
412
413 ice_seg = NULL;
414 } while (tcam);
415
416 *entry = NULL;
417 return ICE_ERR_CFG;
418 }
419
420 /**
421 * ice_label_enum_handler
422 * @sect_type: section type
423 * @section: pointer to section
424 * @index: index of the label entry to be returned
425 * @offset: pointer to receive absolute offset, always zero for label sections
426 *
427 * This is a callback function that can be passed to ice_pkg_enum_entry.
428 * Handles enumeration of individual label entries.
429 */
430 static void *
431 ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index,
432 u32 *offset)
433 {
434 struct ice_label_section *labels;
435
436 if (!section)
437 return NULL;
438
439 if (index > ICE_MAX_LABELS_IN_BUF)
440 return NULL;
441
442 if (offset)
443 *offset = 0;
444
445 labels = (struct ice_label_section *)section;
446 if (index >= LE16_TO_CPU(labels->count))
447 return NULL;
448
449 return labels->label + index;
450 }
451
452 /**
453 * ice_enum_labels
454 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
455 * @type: the section type that will contain the label (0 on subsequent calls)
456 * @state: ice_pkg_enum structure that will hold the state of the enumeration
457 * @value: pointer to a value that will return the label's value if found
458 *
459 * Enumerates a list of labels in the package. The caller will call
460 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
461 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
462 * the end of the list has been reached.
463 */
464 static char *
465 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
466 u16 *value)
467 {
468 struct ice_label *label;
469
470 /* Check for valid label section on first call */
471 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
472 return NULL;
473
474 label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type,
475 NULL,
476 ice_label_enum_handler);
477 if (!label)
478 return NULL;
479
480 *value = LE16_TO_CPU(label->value);
481 return label->name;
482 }
483
484 /**
485 * ice_add_tunnel_hint
486 * @hw: pointer to the HW structure
487 * @label_name: label text
488 * @val: value of the tunnel port boost entry
489 */
490 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
491 {
492 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
493 u16 i;
494
495 for (i = 0; tnls[i].type != TNL_LAST; i++) {
496 size_t len = strlen(tnls[i].label_prefix);
497
498 /* Look for matching label start, before continuing */
499 if (strncmp(label_name, tnls[i].label_prefix, len))
500 continue;
501
502 /* Make sure this label matches our PF. Note that the PF
503 * character ('' - '7') will be located where our
504 * prefix string's null terminator is located.
505 */
506 if ((label_name[len] - '') == hw->pf_id) {
507 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
508 hw->tnl.tbl[hw->tnl.count].valid = false;
509 hw->tnl.tbl[hw->tnl.count].in_use = false;
510 hw->tnl.tbl[hw->tnl.count].marked = false;
511 hw->tnl.tbl[hw->tnl.count].boost_addr = val;
512 hw->tnl.tbl[hw->tnl.count].port = 0;
513 hw->tnl.count++;
514 break;
515 }
516 }
517 }
518 }
519
520 /**
521 * ice_init_pkg_hints
522 * @hw: pointer to the HW structure
523 * @ice_seg: pointer to the segment of the package scan (non-NULL)
524 *
525 * This function will scan the package and save off relevant information
526 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
527 * since the first call to ice_enum_labels requires a pointer to an actual
528 * ice_seg structure.
529 */
530 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
531 {
532 struct ice_pkg_enum state;
533 char *label_name;
534 u16 val;
535 int i;
536
537 ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM);
538 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
539
540 if (!ice_seg)
541 return;
542
543 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
544 &val);
545
546 while (label_name) {
547 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
548 /* check for a tunnel entry */
549 ice_add_tunnel_hint(hw, label_name, val);
550
551 label_name = ice_enum_labels(NULL, 0, &state, &val);
552 }
553
554 /* Cache the appropriate boost TCAM entry pointers for tunnels */
555 for (i = 0; i < hw->tnl.count; i++) {
556 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
557 &hw->tnl.tbl[i].boost_entry);
558 if (hw->tnl.tbl[i].boost_entry)
559 hw->tnl.tbl[i].valid = true;
560 }
561 }
562
563 /* Key creation */
564
565 #define ICE_DC_KEY 0x1 /* don't care */
566 #define ICE_DC_KEYINV 0x1
567 #define ICE_NM_KEY 0x0 /* never match */
568 #define ICE_NM_KEYINV 0x0
569 #define ICE_0_KEY 0x1 /* match 0 */
570 #define ICE_0_KEYINV 0x0
571 #define ICE_1_KEY 0x0 /* match 1 */
572 #define ICE_1_KEYINV 0x1
573
574 /**
575 * ice_gen_key_word - generate 16-bits of a key/mask word
576 * @val: the value
577 * @valid: valid bits mask (change only the valid bits)
578 * @dont_care: don't care mask
579 * @nvr_mtch: never match mask
580 * @key: pointer to an array of where the resulting key portion
581 * @key_inv: pointer to an array of where the resulting key invert portion
582 *
583 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
584 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
585 * of key and 8 bits of key invert.
586 *
587 * '' = b01, always match a 0 bit
588 * '1' = b10, always match a 1 bit
589 * '?' = b11, don't care bit (always matches)
590 * '~' = b00, never match bit
591 *
592 * Input:
593 * val: b0 1 0 1 0 1
594 * dont_care: b0 0 1 1 0 0
595 * never_mtch: b0 0 0 0 1 1
596 * ------------------------------
597 * Result: key: b01 10 11 11 00 00
598 */
599 static enum ice_status
600 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
601 u8 *key_inv)
602 {
603 u8 in_key = *key, in_key_inv = *key_inv;
604 u8 i;
605
606 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
607 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
608 return ICE_ERR_CFG;
609
610 *key = 0;
611 *key_inv = 0;
612
613 /* encode the 8 bits into 8-bit key and 8-bit key invert */
614 for (i = 0; i < 8; i++) {
615 *key >>= 1;
616 *key_inv >>= 1;
617
618 if (!(valid & 0x1)) { /* change only valid bits */
619 *key |= (in_key & 0x1) << 7;
620 *key_inv |= (in_key_inv & 0x1) << 7;
621 } else if (dont_care & 0x1) { /* don't care bit */
622 *key |= ICE_DC_KEY << 7;
623 *key_inv |= ICE_DC_KEYINV << 7;
624 } else if (nvr_mtch & 0x1) { /* never match bit */
625 *key |= ICE_NM_KEY << 7;
626 *key_inv |= ICE_NM_KEYINV << 7;
627 } else if (val & 0x01) { /* exact 1 match */
628 *key |= ICE_1_KEY << 7;
629 *key_inv |= ICE_1_KEYINV << 7;
630 } else { /* exact 0 match */
631 *key |= ICE_0_KEY << 7;
632 *key_inv |= ICE_0_KEYINV << 7;
633 }
634
635 dont_care >>= 1;
636 nvr_mtch >>= 1;
637 valid >>= 1;
638 val >>= 1;
639 in_key >>= 1;
640 in_key_inv >>= 1;
641 }
642
643 return ICE_SUCCESS;
644 }
645
646 /**
647 * ice_bits_max_set - determine if the number of bits set is within a maximum
648 * @mask: pointer to the byte array which is the mask
649 * @size: the number of bytes in the mask
650 * @max: the max number of set bits
651 *
652 * This function determines if there are at most 'max' number of bits set in an
653 * array. Returns true if the number for bits set is <= max or will return false
654 * otherwise.
655 */
656 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
657 {
658 u16 count = 0;
659 u16 i;
660
661 /* check each byte */
662 for (i = 0; i < size; i++) {
663 /* if 0, go to next byte */
664 if (!mask[i])
665 continue;
666
667 /* We know there is at least one set bit in this byte because of
668 * the above check; if we already have found 'max' number of
669 * bits set, then we can return failure now.
670 */
671 if (count == max)
672 return false;
673
674 /* count the bits in this byte, checking threshold */
675 count += ice_hweight8(mask[i]);
676 if (count > max)
677 return false;
678 }
679
680 return true;
681 }
682
683 /**
684 * ice_set_key - generate a variable sized key with multiples of 16-bits
685 * @key: pointer to where the key will be stored
686 * @size: the size of the complete key in bytes (must be even)
687 * @val: array of 8-bit values that makes up the value portion of the key
688 * @upd: array of 8-bit masks that determine what key portion to update
689 * @dc: array of 8-bit masks that make up the don't care mask
690 * @nm: array of 8-bit masks that make up the never match mask
691 * @off: the offset of the first byte in the key to update
692 * @len: the number of bytes in the key update
693 *
694 * This function generates a key from a value, a don't care mask and a never
695 * match mask.
696 * upd, dc, and nm are optional parameters, and can be NULL:
697 * upd == NULL --> upd mask is all 1's (update all bits)
698 * dc == NULL --> dc mask is all 0's (no don't care bits)
699 * nm == NULL --> nm mask is all 0's (no never match bits)
700 */
701 static enum ice_status
702 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
703 u16 len)
704 {
705 u16 half_size;
706 u16 i;
707
708 /* size must be a multiple of 2 bytes. */
709 if (size % 2)
710 return ICE_ERR_CFG;
711 half_size = size / 2;
712
713 if (off + len > half_size)
714 return ICE_ERR_CFG;
715
716 /* Make sure at most one bit is set in the never match mask. Having more
717 * than one never match mask bit set will cause HW to consume excessive
718 * power otherwise; this is a power management efficiency check.
719 */
720 #define ICE_NVR_MTCH_BITS_MAX 1
721 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
722 return ICE_ERR_CFG;
723
724 for (i = 0; i < len; i++)
725 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
726 dc ? dc[i] : 0, nm ? nm[i] : 0,
727 key + off + i, key + half_size + off + i))
728 return ICE_ERR_CFG;
729
730 return ICE_SUCCESS;
731 }
732
733 /**
734 * ice_acquire_global_cfg_lock
735 * @hw: pointer to the HW structure
736 * @access: access type (read or write)
737 *
738 * This function will request ownership of the global config lock for reading
739 * or writing of the package. When attempting to obtain write access, the
740 * caller must check for the following two return values:
741 *
742 * ICE_SUCCESS - Means the caller has acquired the global config lock
743 * and can perform writing of the package.
744 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
745 * package or has found that no update was necessary; in
746 * this case, the caller can just skip performing any
747 * update of the package.
748 */
749 static enum ice_status
750 ice_acquire_global_cfg_lock(struct ice_hw *hw,
751 enum ice_aq_res_access_type access)
752 {
753 enum ice_status status;
754
755 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
756
757 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
758 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
759
760 if (status == ICE_ERR_AQ_NO_WORK)
761 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
762
763 return status;
764 }
765
766 /**
767 * ice_release_global_cfg_lock
768 * @hw: pointer to the HW structure
769 *
770 * This function will release the global config lock.
771 */
772 static void ice_release_global_cfg_lock(struct ice_hw *hw)
773 {
774 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
775 }
776
777 /**
778 * ice_acquire_change_lock
779 * @hw: pointer to the HW structure
780 * @access: access type (read or write)
781 *
782 * This function will request ownership of the change lock.
783 */
784 static enum ice_status
785 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
786 {
787 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
788
789 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
790 ICE_CHANGE_LOCK_TIMEOUT);
791 }
792
793 /**
794 * ice_release_change_lock
795 * @hw: pointer to the HW structure
796 *
797 * This function will release the change lock using the proper Admin Command.
798 */
799 static void ice_release_change_lock(struct ice_hw *hw)
800 {
801 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
802
803 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
804 }
805
806 /**
807 * ice_aq_download_pkg
808 * @hw: pointer to the hardware structure
809 * @pkg_buf: the package buffer to transfer
810 * @buf_size: the size of the package buffer
811 * @last_buf: last buffer indicator
812 * @error_offset: returns error offset
813 * @error_info: returns error information
814 * @cd: pointer to command details structure or NULL
815 *
816 * Download Package (0x0C40)
817 */
818 static enum ice_status
819 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
820 u16 buf_size, bool last_buf, u32 *error_offset,
821 u32 *error_info, struct ice_sq_cd *cd)
822 {
823 struct ice_aqc_download_pkg *cmd;
824 struct ice_aq_desc desc;
825 enum ice_status status;
826
827 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
828
829 if (error_offset)
830 *error_offset = 0;
831 if (error_info)
832 *error_info = 0;
833
834 cmd = &desc.params.download_pkg;
835 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
836 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
837
838 if (last_buf)
839 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
840
841 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
842 if (status == ICE_ERR_AQ_ERROR) {
843 /* Read error from buffer only when the FW returned an error */
844 struct ice_aqc_download_pkg_resp *resp;
845
846 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
847 if (error_offset)
848 *error_offset = LE32_TO_CPU(resp->error_offset);
849 if (error_info)
850 *error_info = LE32_TO_CPU(resp->error_info);
851 }
852
853 return status;
854 }
855
856 /**
857 * ice_aq_upload_section
858 * @hw: pointer to the hardware structure
859 * @pkg_buf: the package buffer which will receive the section
860 * @buf_size: the size of the package buffer
861 * @cd: pointer to command details structure or NULL
862 *
863 * Upload Section (0x0C41)
864 */
865 enum ice_status
866 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
867 u16 buf_size, struct ice_sq_cd *cd)
868 {
869 struct ice_aq_desc desc;
870
871 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
872 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
873 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
874
875 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
876 }
877
878 /**
879 * ice_aq_update_pkg
880 * @hw: pointer to the hardware structure
881 * @pkg_buf: the package cmd buffer
882 * @buf_size: the size of the package cmd buffer
883 * @last_buf: last buffer indicator
884 * @error_offset: returns error offset
885 * @error_info: returns error information
886 * @cd: pointer to command details structure or NULL
887 *
888 * Update Package (0x0C42)
889 */
890 static enum ice_status
891 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
892 bool last_buf, u32 *error_offset, u32 *error_info,
893 struct ice_sq_cd *cd)
894 {
895 struct ice_aqc_download_pkg *cmd;
896 struct ice_aq_desc desc;
897 enum ice_status status;
898
899 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
900
901 if (error_offset)
902 *error_offset = 0;
903 if (error_info)
904 *error_info = 0;
905
906 cmd = &desc.params.download_pkg;
907 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
908 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
909
910 if (last_buf)
911 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
912
913 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
914 if (status == ICE_ERR_AQ_ERROR) {
915 /* Read error from buffer only when the FW returned an error */
916 struct ice_aqc_download_pkg_resp *resp;
917
918 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
919 if (error_offset)
920 *error_offset = LE32_TO_CPU(resp->error_offset);
921 if (error_info)
922 *error_info = LE32_TO_CPU(resp->error_info);
923 }
924
925 return status;
926 }
927
928 /**
929 * ice_find_seg_in_pkg
930 * @hw: pointer to the hardware structure
931 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
932 * @pkg_hdr: pointer to the package header to be searched
933 *
934 * This function searches a package file for a particular segment type. On
935 * success it returns a pointer to the segment header, otherwise it will
936 * return NULL.
937 */
938 static struct ice_generic_seg_hdr *
939 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
940 struct ice_pkg_hdr *pkg_hdr)
941 {
942 u32 i;
943
944 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
945 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
946 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
947 pkg_hdr->pkg_format_ver.update,
948 pkg_hdr->pkg_format_ver.draft);
949
950 /* Search all package segments for the requested segment type */
951 for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
952 struct ice_generic_seg_hdr *seg;
953
954 seg = (struct ice_generic_seg_hdr *)
955 ((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i]));
956
957 if (LE32_TO_CPU(seg->seg_type) == seg_type)
958 return seg;
959 }
960
961 return NULL;
962 }
963
964 /**
965 * ice_update_pkg_no_lock
966 * @hw: pointer to the hardware structure
967 * @bufs: pointer to an array of buffers
968 * @count: the number of buffers in the array
969 */
970 static enum ice_status
971 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
972 {
973 enum ice_status status = ICE_SUCCESS;
974 u32 i;
975
976 for (i = 0; i < count; i++) {
977 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
978 bool last = ((i + 1) == count);
979 u32 offset, info;
980
981 status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
982 last, &offset, &info, NULL);
983
984 if (status) {
985 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
986 status, offset, info);
987 break;
988 }
989 }
990
991 return status;
992 }
993
994 /**
995 * ice_update_pkg
996 * @hw: pointer to the hardware structure
997 * @bufs: pointer to an array of buffers
998 * @count: the number of buffers in the array
999 *
1000 * Obtains change lock and updates package.
1001 */
1002 enum ice_status
1003 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1004 {
1005 enum ice_status status;
1006
1007 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1008 if (status)
1009 return status;
1010
1011 status = ice_update_pkg_no_lock(hw, bufs, count);
1012
1013 ice_release_change_lock(hw);
1014
1015 return status;
1016 }
1017
1018 /**
1019 * ice_dwnld_cfg_bufs
1020 * @hw: pointer to the hardware structure
1021 * @bufs: pointer to an array of buffers
1022 * @count: the number of buffers in the array
1023 *
1024 * Obtains global config lock and downloads the package configuration buffers
1025 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
1026 * found indicates that the rest of the buffers are all metadata buffers.
1027 */
1028 static enum ice_status
1029 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1030 {
1031 enum ice_status status;
1032 struct ice_buf_hdr *bh;
1033 u32 offset, info, i;
1034
1035 if (!bufs || !count)
1036 return ICE_ERR_PARAM;
1037
1038 /* If the first buffer's first section has its metadata bit set
1039 * then there are no buffers to be downloaded, and the operation is
1040 * considered a success.
1041 */
1042 bh = (struct ice_buf_hdr *)bufs;
1043 if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
1044 return ICE_SUCCESS;
1045
1046 /* reset pkg_dwnld_status in case this function is called in the
1047 * reset/rebuild flow
1048 */
1049 hw->pkg_dwnld_status = ICE_AQ_RC_OK;
1050
1051 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1052 if (status) {
1053 if (status == ICE_ERR_AQ_NO_WORK)
1054 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
1055 else
1056 hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1057 return status;
1058 }
1059
1060 for (i = 0; i < count; i++) {
1061 bool last = ((i + 1) == count);
1062
1063 if (!last) {
1064 /* check next buffer for metadata flag */
1065 bh = (struct ice_buf_hdr *)(bufs + i + 1);
1066
1067 /* A set metadata flag in the next buffer will signal
1068 * that the current buffer will be the last buffer
1069 * downloaded
1070 */
1071 if (LE16_TO_CPU(bh->section_count))
1072 if (LE32_TO_CPU(bh->section_entry[0].type) &
1073 ICE_METADATA_BUF)
1074 last = true;
1075 }
1076
1077 bh = (struct ice_buf_hdr *)(bufs + i);
1078
1079 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1080 &offset, &info, NULL);
1081
1082 /* Save AQ status from download package */
1083 hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1084 if (status) {
1085 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1086 status, offset, info);
1087
1088 break;
1089 }
1090
1091 if (last)
1092 break;
1093 }
1094
1095 if (!status) {
1096 status = ice_set_vlan_mode(hw);
1097 if (status)
1098 ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1099 status);
1100 }
1101
1102 ice_release_global_cfg_lock(hw);
1103
1104 return status;
1105 }
1106
1107 /**
1108 * ice_aq_get_pkg_info_list
1109 * @hw: pointer to the hardware structure
1110 * @pkg_info: the buffer which will receive the information list
1111 * @buf_size: the size of the pkg_info information buffer
1112 * @cd: pointer to command details structure or NULL
1113 *
1114 * Get Package Info List (0x0C43)
1115 */
1116 static enum ice_status
1117 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1118 struct ice_aqc_get_pkg_info_resp *pkg_info,
1119 u16 buf_size, struct ice_sq_cd *cd)
1120 {
1121 struct ice_aq_desc desc;
1122
1123 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1124 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1125
1126 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1127 }
1128
1129 /**
1130 * ice_download_pkg
1131 * @hw: pointer to the hardware structure
1132 * @ice_seg: pointer to the segment of the package to be downloaded
1133 *
1134 * Handles the download of a complete package.
1135 */
1136 static enum ice_status
1137 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1138 {
1139 struct ice_buf_table *ice_buf_tbl;
1140 enum ice_status status;
1141
1142 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1143 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1144 ice_seg->hdr.seg_format_ver.major,
1145 ice_seg->hdr.seg_format_ver.minor,
1146 ice_seg->hdr.seg_format_ver.update,
1147 ice_seg->hdr.seg_format_ver.draft);
1148
1149 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1150 LE32_TO_CPU(ice_seg->hdr.seg_type),
1151 LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1152
1153 ice_buf_tbl = ice_find_buf_table(ice_seg);
1154
1155 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1156 LE32_TO_CPU(ice_buf_tbl->buf_count));
1157
1158 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1159 LE32_TO_CPU(ice_buf_tbl->buf_count));
1160
1161 ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1162
1163 return status;
1164 }
1165
1166 /**
1167 * ice_init_pkg_info
1168 * @hw: pointer to the hardware structure
1169 * @pkg_hdr: pointer to the driver's package hdr
1170 *
1171 * Saves off the package details into the HW structure.
1172 */
1173 static enum ice_status
1174 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1175 {
1176 struct ice_generic_seg_hdr *seg_hdr;
1177
1178 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1179 if (!pkg_hdr)
1180 return ICE_ERR_PARAM;
1181
1182 hw->pkg_seg_id = SEGMENT_TYPE_ICE_E810;
1183
1184 ice_debug(hw, ICE_DBG_INIT, "Pkg using segment id: 0x%08X\n",
1185 hw->pkg_seg_id);
1186
1187 seg_hdr = (struct ice_generic_seg_hdr *)
1188 ice_find_seg_in_pkg(hw, hw->pkg_seg_id, pkg_hdr);
1189 if (seg_hdr) {
1190 struct ice_meta_sect *meta;
1191 struct ice_pkg_enum state;
1192
1193 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1194
1195 /* Get package information from the Metadata Section */
1196 meta = (struct ice_meta_sect *)
1197 ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1198 ICE_SID_METADATA);
1199 if (!meta) {
1200 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1201 return ICE_ERR_CFG;
1202 }
1203
1204 hw->pkg_ver = meta->ver;
1205 ice_memcpy(hw->pkg_name, meta->name, sizeof(meta->name),
1206 ICE_NONDMA_TO_NONDMA);
1207
1208 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1209 meta->ver.major, meta->ver.minor, meta->ver.update,
1210 meta->ver.draft, meta->name);
1211
1212 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1213 ice_memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1214 sizeof(hw->ice_seg_id), ICE_NONDMA_TO_NONDMA);
1215
1216 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1217 seg_hdr->seg_format_ver.major,
1218 seg_hdr->seg_format_ver.minor,
1219 seg_hdr->seg_format_ver.update,
1220 seg_hdr->seg_format_ver.draft,
1221 seg_hdr->seg_id);
1222 } else {
1223 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1224 return ICE_ERR_CFG;
1225 }
1226
1227 return ICE_SUCCESS;
1228 }
1229
1230 /**
1231 * ice_get_pkg_info
1232 * @hw: pointer to the hardware structure
1233 *
1234 * Store details of the package currently loaded in HW into the HW structure.
1235 */
1236 static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1237 {
1238 struct ice_aqc_get_pkg_info_resp *pkg_info;
1239 enum ice_status status;
1240 u16 size;
1241 u32 i;
1242
1243 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1244
1245 size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1246 pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1247 if (!pkg_info)
1248 return ICE_ERR_NO_MEMORY;
1249
1250 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1251 if (status)
1252 goto init_pkg_free_alloc;
1253
1254 for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) {
1255 #define ICE_PKG_FLAG_COUNT 4
1256 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1257 u8 place = 0;
1258
1259 if (pkg_info->pkg_info[i].is_active) {
1260 flags[place++] = 'A';
1261 hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1262 hw->active_track_id =
1263 LE32_TO_CPU(pkg_info->pkg_info[i].track_id);
1264 ice_memcpy(hw->active_pkg_name,
1265 pkg_info->pkg_info[i].name,
1266 sizeof(pkg_info->pkg_info[i].name),
1267 ICE_NONDMA_TO_NONDMA);
1268 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1269 }
1270 if (pkg_info->pkg_info[i].is_active_at_boot)
1271 flags[place++] = 'B';
1272 if (pkg_info->pkg_info[i].is_modified)
1273 flags[place++] = 'M';
1274 if (pkg_info->pkg_info[i].is_in_nvm)
1275 flags[place++] = 'N';
1276
1277 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1278 i, pkg_info->pkg_info[i].ver.major,
1279 pkg_info->pkg_info[i].ver.minor,
1280 pkg_info->pkg_info[i].ver.update,
1281 pkg_info->pkg_info[i].ver.draft,
1282 pkg_info->pkg_info[i].name, flags);
1283 }
1284
1285 init_pkg_free_alloc:
1286 ice_free(hw, pkg_info);
1287
1288 return status;
1289 }
1290
1291 /**
1292 * ice_find_label_value
1293 * @ice_seg: pointer to the ice segment (non-NULL)
1294 * @name: name of the label to search for
1295 * @type: the section type that will contain the label
1296 * @value: pointer to a value that will return the label's value if found
1297 *
1298 * Finds a label's value given the label name and the section type to search.
1299 * The ice_seg parameter must not be NULL since the first call to
1300 * ice_enum_labels requires a pointer to an actual ice_seg structure.
1301 */
1302 enum ice_status
1303 ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type,
1304 u16 *value)
1305 {
1306 struct ice_pkg_enum state;
1307 char *label_name;
1308 u16 val;
1309
1310 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1311
1312 if (!ice_seg)
1313 return ICE_ERR_PARAM;
1314
1315 do {
1316 label_name = ice_enum_labels(ice_seg, type, &state, &val);
1317 if (label_name && !strcmp(label_name, name)) {
1318 *value = val;
1319 return ICE_SUCCESS;
1320 }
1321
1322 ice_seg = NULL;
1323 } while (label_name);
1324
1325 return ICE_ERR_CFG;
1326 }
1327
1328 /**
1329 * ice_verify_pkg - verify package
1330 * @pkg: pointer to the package buffer
1331 * @len: size of the package buffer
1332 *
1333 * Verifies various attributes of the package file, including length, format
1334 * version, and the requirement of at least one segment.
1335 */
1336 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1337 {
1338 u32 seg_count;
1339 u32 i;
1340
1341 if (len < ice_struct_size(pkg, seg_offset, 1))
1342 return ICE_ERR_BUF_TOO_SHORT;
1343
1344 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1345 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1346 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1347 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1348 return ICE_ERR_CFG;
1349
1350 /* pkg must have at least one segment */
1351 seg_count = LE32_TO_CPU(pkg->seg_count);
1352 if (seg_count < 1)
1353 return ICE_ERR_CFG;
1354
1355 /* make sure segment array fits in package length */
1356 if (len < ice_struct_size(pkg, seg_offset, seg_count))
1357 return ICE_ERR_BUF_TOO_SHORT;
1358
1359 /* all segments must fit within length */
1360 for (i = 0; i < seg_count; i++) {
1361 u32 off = LE32_TO_CPU(pkg->seg_offset[i]);
1362 struct ice_generic_seg_hdr *seg;
1363
1364 /* segment header must fit */
1365 if (len < off + sizeof(*seg))
1366 return ICE_ERR_BUF_TOO_SHORT;
1367
1368 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1369
1370 /* segment body must fit */
1371 if (len < off + LE32_TO_CPU(seg->seg_size))
1372 return ICE_ERR_BUF_TOO_SHORT;
1373 }
1374
1375 return ICE_SUCCESS;
1376 }
1377
1378 /**
1379 * ice_free_seg - free package segment pointer
1380 * @hw: pointer to the hardware structure
1381 *
1382 * Frees the package segment pointer in the proper manner, depending on if the
1383 * segment was allocated or just the passed in pointer was stored.
1384 */
1385 void ice_free_seg(struct ice_hw *hw)
1386 {
1387 if (hw->pkg_copy) {
1388 ice_free(hw, hw->pkg_copy);
1389 hw->pkg_copy = NULL;
1390 hw->pkg_size = 0;
1391 }
1392 hw->seg = NULL;
1393 }
1394
1395 /**
1396 * ice_init_pkg_regs - initialize additional package registers
1397 * @hw: pointer to the hardware structure
1398 */
1399 static void ice_init_pkg_regs(struct ice_hw *hw)
1400 {
1401 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1402 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1403 #define ICE_SW_BLK_IDX 0
1404
1405 /* setup Switch block input mask, which is 48-bits in two parts */
1406 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1407 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1408 }
1409
1410 /**
1411 * ice_chk_pkg_version - check package version for compatibility with driver
1412 * @pkg_ver: pointer to a version structure to check
1413 *
1414 * Check to make sure that the package about to be downloaded is compatible with
1415 * the driver. To be compatible, the major and minor components of the package
1416 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1417 * definitions.
1418 */
1419 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1420 {
1421 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1422 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1423 return ICE_ERR_NOT_SUPPORTED;
1424
1425 return ICE_SUCCESS;
1426 }
1427
1428 /**
1429 * ice_chk_pkg_compat
1430 * @hw: pointer to the hardware structure
1431 * @ospkg: pointer to the package hdr
1432 * @seg: pointer to the package segment hdr
1433 *
1434 * This function checks the package version compatibility with driver and NVM
1435 */
1436 static enum ice_status
1437 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1438 struct ice_seg **seg)
1439 {
1440 struct ice_aqc_get_pkg_info_resp *pkg;
1441 enum ice_status status;
1442 u16 size;
1443 u32 i;
1444
1445 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1446
1447 /* Check package version compatibility */
1448 status = ice_chk_pkg_version(&hw->pkg_ver);
1449 if (status) {
1450 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1451 return status;
1452 }
1453
1454 /* find ICE segment in given package */
1455 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, hw->pkg_seg_id,
1456 ospkg);
1457 if (!*seg) {
1458 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1459 return ICE_ERR_CFG;
1460 }
1461
1462 /* Check if FW is compatible with the OS package */
1463 size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT);
1464 pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1465 if (!pkg)
1466 return ICE_ERR_NO_MEMORY;
1467
1468 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1469 if (status)
1470 goto fw_ddp_compat_free_alloc;
1471
1472 for (i = 0; i < LE32_TO_CPU(pkg->count); i++) {
1473 /* loop till we find the NVM package */
1474 if (!pkg->pkg_info[i].is_in_nvm)
1475 continue;
1476 if ((*seg)->hdr.seg_format_ver.major !=
1477 pkg->pkg_info[i].ver.major ||
1478 (*seg)->hdr.seg_format_ver.minor >
1479 pkg->pkg_info[i].ver.minor) {
1480 status = ICE_ERR_FW_DDP_MISMATCH;
1481 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1482 }
1483 /* done processing NVM package so break */
1484 break;
1485 }
1486 fw_ddp_compat_free_alloc:
1487 ice_free(hw, pkg);
1488 return status;
1489 }
1490
1491 /**
1492 * ice_sw_fv_handler
1493 * @sect_type: section type
1494 * @section: pointer to section
1495 * @index: index of the field vector entry to be returned
1496 * @offset: ptr to variable that receives the offset in the field vector table
1497 *
1498 * This is a callback function that can be passed to ice_pkg_enum_entry.
1499 * This function treats the given section as of type ice_sw_fv_section and
1500 * enumerates offset field. "offset" is an index into the field vector table.
1501 */
1502 static void *
1503 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1504 {
1505 struct ice_sw_fv_section *fv_section =
1506 (struct ice_sw_fv_section *)section;
1507
1508 if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1509 return NULL;
1510 if (index >= LE16_TO_CPU(fv_section->count))
1511 return NULL;
1512 if (offset)
1513 /* "index" passed in to this function is relative to a given
1514 * 4k block. To get to the true index into the field vector
1515 * table need to add the relative index to the base_offset
1516 * field of this section
1517 */
1518 *offset = LE16_TO_CPU(fv_section->base_offset) + index;
1519 return fv_section->fv + index;
1520 }
1521
1522 /**
1523 * ice_get_prof_index_max - get the max profile index for used profile
1524 * @hw: pointer to the HW struct
1525 *
1526 * Calling this function will get the max profile index for used profile
1527 * and store the index number in struct ice_switch_info *switch_info
1528 * in hw for following use.
1529 */
1530 static int ice_get_prof_index_max(struct ice_hw *hw)
1531 {
1532 u16 prof_index = 0, j, max_prof_index = 0;
1533 struct ice_pkg_enum state;
1534 struct ice_seg *ice_seg;
1535 bool flag = false;
1536 struct ice_fv *fv;
1537 u32 offset;
1538
1539 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1540
1541 if (!hw->seg)
1542 return ICE_ERR_PARAM;
1543
1544 ice_seg = hw->seg;
1545
1546 do {
1547 fv = (struct ice_fv *)
1548 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1549 &offset, ice_sw_fv_handler);
1550 if (!fv)
1551 break;
1552 ice_seg = NULL;
1553
1554 /* in the profile that not be used, the prot_id is set to 0xff
1555 * and the off is set to 0x1ff for all the field vectors.
1556 */
1557 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1558 if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1559 fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1560 flag = true;
1561 if (flag && prof_index > max_prof_index)
1562 max_prof_index = prof_index;
1563
1564 prof_index++;
1565 flag = false;
1566 } while (fv);
1567
1568 hw->switch_info->max_used_prof_index = max_prof_index;
1569
1570 return ICE_SUCCESS;
1571 }
1572
1573 /**
1574 * ice_init_pkg - initialize/download package
1575 * @hw: pointer to the hardware structure
1576 * @buf: pointer to the package buffer
1577 * @len: size of the package buffer
1578 *
1579 * This function initializes a package. The package contains HW tables
1580 * required to do packet processing. First, the function extracts package
1581 * information such as version. Then it finds the ice configuration segment
1582 * within the package; this function then saves a copy of the segment pointer
1583 * within the supplied package buffer. Next, the function will cache any hints
1584 * from the package, followed by downloading the package itself. Note, that if
1585 * a previous PF driver has already downloaded the package successfully, then
1586 * the current driver will not have to download the package again.
1587 *
1588 * The local package contents will be used to query default behavior and to
1589 * update specific sections of the HW's version of the package (e.g. to update
1590 * the parse graph to understand new protocols).
1591 *
1592 * This function stores a pointer to the package buffer memory, and it is
1593 * expected that the supplied buffer will not be freed immediately. If the
1594 * package buffer needs to be freed, such as when read from a file, use
1595 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1596 * case.
1597 */
1598 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1599 {
1600 struct ice_pkg_hdr *pkg;
1601 enum ice_status status;
1602 struct ice_seg *seg;
1603
1604 if (!buf || !len)
1605 return ICE_ERR_PARAM;
1606
1607 pkg = (struct ice_pkg_hdr *)buf;
1608 status = ice_verify_pkg(pkg, len);
1609 if (status) {
1610 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1611 status);
1612 return status;
1613 }
1614
1615 /* initialize package info */
1616 status = ice_init_pkg_info(hw, pkg);
1617 if (status)
1618 return status;
1619
1620 /* before downloading the package, check package version for
1621 * compatibility with driver
1622 */
1623 status = ice_chk_pkg_compat(hw, pkg, &seg);
1624 if (status)
1625 return status;
1626
1627 /* initialize package hints and then download package */
1628 ice_init_pkg_hints(hw, seg);
1629 status = ice_download_pkg(hw, seg);
1630 if (status == ICE_ERR_AQ_NO_WORK) {
1631 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1632 status = ICE_SUCCESS;
1633 }
1634
1635 /* Get information on the package currently loaded in HW, then make sure
1636 * the driver is compatible with this version.
1637 */
1638 if (!status) {
1639 status = ice_get_pkg_info(hw);
1640 if (!status)
1641 status = ice_chk_pkg_version(&hw->active_pkg_ver);
1642 }
1643
1644 if (!status) {
1645 hw->seg = seg;
1646 /* on successful package download update other required
1647 * registers to support the package and fill HW tables
1648 * with package content.
1649 */
1650 ice_init_pkg_regs(hw);
1651 ice_fill_blk_tbls(hw);
1652 ice_get_prof_index_max(hw);
1653 } else {
1654 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1655 status);
1656 }
1657
1658 return status;
1659 }
1660
1661 /**
1662 * ice_copy_and_init_pkg - initialize/download a copy of the package
1663 * @hw: pointer to the hardware structure
1664 * @buf: pointer to the package buffer
1665 * @len: size of the package buffer
1666 *
1667 * This function copies the package buffer, and then calls ice_init_pkg() to
1668 * initialize the copied package contents.
1669 *
1670 * The copying is necessary if the package buffer supplied is constant, or if
1671 * the memory may disappear shortly after calling this function.
1672 *
1673 * If the package buffer resides in the data segment and can be modified, the
1674 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1675 *
1676 * However, if the package buffer needs to be copied first, such as when being
1677 * read from a file, the caller should use ice_copy_and_init_pkg().
1678 *
1679 * This function will first copy the package buffer, before calling
1680 * ice_init_pkg(). The caller is free to immediately destroy the original
1681 * package buffer, as the new copy will be managed by this function and
1682 * related routines.
1683 */
1684 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1685 {
1686 enum ice_status status;
1687 u8 *buf_copy;
1688
1689 if (!buf || !len)
1690 return ICE_ERR_PARAM;
1691
1692 buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
1693
1694 status = ice_init_pkg(hw, buf_copy, len);
1695 if (status) {
1696 /* Free the copy, since we failed to initialize the package */
1697 ice_free(hw, buf_copy);
1698 } else {
1699 /* Track the copied pkg so we can free it later */
1700 hw->pkg_copy = buf_copy;
1701 hw->pkg_size = len;
1702 }
1703
1704 return status;
1705 }
1706
1707 /**
1708 * ice_pkg_buf_alloc
1709 * @hw: pointer to the HW structure
1710 *
1711 * Allocates a package buffer and returns a pointer to the buffer header.
1712 * Note: all package contents must be in Little Endian form.
1713 */
1714 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1715 {
1716 struct ice_buf_build *bld;
1717 struct ice_buf_hdr *buf;
1718
1719 bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld));
1720 if (!bld)
1721 return NULL;
1722
1723 buf = (struct ice_buf_hdr *)bld;
1724 buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr,
1725 section_entry));
1726 return bld;
1727 }
1728
1729 /**
1730 * ice_get_sw_prof_type - determine switch profile type
1731 * @hw: pointer to the HW structure
1732 * @fv: pointer to the switch field vector
1733 */
1734 static enum ice_prof_type
1735 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv)
1736 {
1737 u16 i;
1738
1739 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1740 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1741 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1742 fv->ew[i].off == ICE_VNI_OFFSET)
1743 return ICE_PROF_TUN_UDP;
1744
1745 /* GRE tunnel will have GRE protocol */
1746 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1747 return ICE_PROF_TUN_GRE;
1748 }
1749
1750 return ICE_PROF_NON_TUN;
1751 }
1752
1753 /**
1754 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1755 * @hw: pointer to hardware structure
1756 * @req_profs: type of profiles requested
1757 * @bm: pointer to memory for returning the bitmap of field vectors
1758 */
1759 void
1760 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1761 ice_bitmap_t *bm)
1762 {
1763 struct ice_pkg_enum state;
1764 struct ice_seg *ice_seg;
1765 struct ice_fv *fv;
1766
1767 if (req_profs == ICE_PROF_ALL) {
1768 ice_bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1769 return;
1770 }
1771
1772 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1773 ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES);
1774 ice_seg = hw->seg;
1775 do {
1776 enum ice_prof_type prof_type;
1777 u32 offset;
1778
1779 fv = (struct ice_fv *)
1780 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1781 &offset, ice_sw_fv_handler);
1782 ice_seg = NULL;
1783
1784 if (fv) {
1785 /* Determine field vector type */
1786 prof_type = ice_get_sw_prof_type(hw, fv);
1787
1788 if (req_profs & prof_type)
1789 ice_set_bit((u16)offset, bm);
1790 }
1791 } while (fv);
1792 }
1793
1794 /**
1795 * ice_get_sw_fv_list
1796 * @hw: pointer to the HW structure
1797 * @prot_ids: field vector to search for with a given protocol ID
1798 * @ids_cnt: lookup/protocol count
1799 * @bm: bitmap of field vectors to consider
1800 * @fv_list: Head of a list
1801 *
1802 * Finds all the field vector entries from switch block that contain
1803 * a given protocol ID and returns a list of structures of type
1804 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1805 * definition and profile ID information
1806 * NOTE: The caller of the function is responsible for freeing the memory
1807 * allocated for every list entry.
1808 */
1809 enum ice_status
1810 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt,
1811 ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
1812 {
1813 struct ice_sw_fv_list_entry *fvl;
1814 struct ice_sw_fv_list_entry *tmp;
1815 struct ice_pkg_enum state;
1816 struct ice_seg *ice_seg;
1817 struct ice_fv *fv;
1818 u32 offset;
1819
1820 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1821
1822 if (!ids_cnt || !hw->seg)
1823 return ICE_ERR_PARAM;
1824
1825 ice_seg = hw->seg;
1826 do {
1827 u16 i;
1828
1829 fv = (struct ice_fv *)
1830 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1831 &offset, ice_sw_fv_handler);
1832 if (!fv)
1833 break;
1834 ice_seg = NULL;
1835
1836 /* If field vector is not in the bitmap list, then skip this
1837 * profile.
1838 */
1839 if (!ice_is_bit_set(bm, (u16)offset))
1840 continue;
1841
1842 for (i = 0; i < ids_cnt; i++) {
1843 int j;
1844
1845 /* This code assumes that if a switch field vector line
1846 * has a matching protocol, then this line will contain
1847 * the entries necessary to represent every field in
1848 * that protocol header.
1849 */
1850 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1851 if (fv->ew[j].prot_id == prot_ids[i])
1852 break;
1853 if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1854 break;
1855 if (i + 1 == ids_cnt) {
1856 fvl = (struct ice_sw_fv_list_entry *)
1857 ice_malloc(hw, sizeof(*fvl));
1858 if (!fvl)
1859 goto err;
1860 fvl->fv_ptr = fv;
1861 fvl->profile_id = offset;
1862 LIST_ADD(&fvl->list_entry, fv_list);
1863 break;
1864 }
1865 }
1866 } while (fv);
1867 if (LIST_EMPTY(fv_list))
1868 return ICE_ERR_CFG;
1869 return ICE_SUCCESS;
1870
1871 err:
1872 LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry,
1873 list_entry) {
1874 LIST_DEL(&fvl->list_entry);
1875 ice_free(hw, fvl);
1876 }
1877
1878 return ICE_ERR_NO_MEMORY;
1879 }
1880
1881 /**
1882 * ice_init_prof_result_bm - Initialize the profile result index bitmap
1883 * @hw: pointer to hardware structure
1884 */
1885 void ice_init_prof_result_bm(struct ice_hw *hw)
1886 {
1887 struct ice_pkg_enum state;
1888 struct ice_seg *ice_seg;
1889 struct ice_fv *fv;
1890
1891 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1892
1893 if (!hw->seg)
1894 return;
1895
1896 ice_seg = hw->seg;
1897 do {
1898 u32 off;
1899 u16 i;
1900
1901 fv = (struct ice_fv *)
1902 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1903 &off, ice_sw_fv_handler);
1904 ice_seg = NULL;
1905 if (!fv)
1906 break;
1907
1908 ice_zero_bitmap(hw->switch_info->prof_res_bm[off],
1909 ICE_MAX_FV_WORDS);
1910
1911 /* Determine empty field vector indices, these can be
1912 * used for recipe results. Skip index 0, since it is
1913 * always used for Switch ID.
1914 */
1915 for (i = 1; i < ICE_MAX_FV_WORDS; i++)
1916 if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
1917 fv->ew[i].off == ICE_FV_OFFSET_INVAL)
1918 ice_set_bit(i,
1919 hw->switch_info->prof_res_bm[off]);
1920 } while (fv);
1921 }
1922
1923 /**
1924 * ice_pkg_buf_free
1925 * @hw: pointer to the HW structure
1926 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1927 *
1928 * Frees a package buffer
1929 */
1930 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1931 {
1932 ice_free(hw, bld);
1933 }
1934
1935 /**
1936 * ice_pkg_buf_reserve_section
1937 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1938 * @count: the number of sections to reserve
1939 *
1940 * Reserves one or more section table entries in a package buffer. This routine
1941 * can be called multiple times as long as they are made before calling
1942 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1943 * is called once, the number of sections that can be allocated will not be able
1944 * to be increased; not using all reserved sections is fine, but this will
1945 * result in some wasted space in the buffer.
1946 * Note: all package contents must be in Little Endian form.
1947 */
1948 static enum ice_status
1949 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1950 {
1951 struct ice_buf_hdr *buf;
1952 u16 section_count;
1953 u16 data_end;
1954
1955 if (!bld)
1956 return ICE_ERR_PARAM;
1957
1958 buf = (struct ice_buf_hdr *)&bld->buf;
1959
1960 /* already an active section, can't increase table size */
1961 section_count = LE16_TO_CPU(buf->section_count);
1962 if (section_count > 0)
1963 return ICE_ERR_CFG;
1964
1965 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1966 return ICE_ERR_CFG;
1967 bld->reserved_section_table_entries += count;
1968
1969 data_end = LE16_TO_CPU(buf->data_end) +
1970 FLEX_ARRAY_SIZE(buf, section_entry, count);
1971 buf->data_end = CPU_TO_LE16(data_end);
1972
1973 return ICE_SUCCESS;
1974 }
1975
1976 /**
1977 * ice_pkg_buf_alloc_section
1978 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1979 * @type: the section type value
1980 * @size: the size of the section to reserve (in bytes)
1981 *
1982 * Reserves memory in the buffer for a section's content and updates the
1983 * buffers' status accordingly. This routine returns a pointer to the first
1984 * byte of the section start within the buffer, which is used to fill in the
1985 * section contents.
1986 * Note: all package contents must be in Little Endian form.
1987 */
1988 static void *
1989 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1990 {
1991 struct ice_buf_hdr *buf;
1992 u16 sect_count;
1993 u16 data_end;
1994
1995 if (!bld || !type || !size)
1996 return NULL;
1997
1998 buf = (struct ice_buf_hdr *)&bld->buf;
1999
2000 /* check for enough space left in buffer */
2001 data_end = LE16_TO_CPU(buf->data_end);
2002
2003 /* section start must align on 4 byte boundary */
2004 data_end = ICE_ALIGN(data_end, 4);
2005
2006 if ((data_end + size) > ICE_MAX_S_DATA_END)
2007 return NULL;
2008
2009 /* check for more available section table entries */
2010 sect_count = LE16_TO_CPU(buf->section_count);
2011 if (sect_count < bld->reserved_section_table_entries) {
2012 void *section_ptr = ((u8 *)buf) + data_end;
2013
2014 buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end);
2015 buf->section_entry[sect_count].size = CPU_TO_LE16(size);
2016 buf->section_entry[sect_count].type = CPU_TO_LE32(type);
2017
2018 data_end += size;
2019 buf->data_end = CPU_TO_LE16(data_end);
2020
2021 buf->section_count = CPU_TO_LE16(sect_count + 1);
2022 return section_ptr;
2023 }
2024
2025 /* no free section table entries */
2026 return NULL;
2027 }
2028
2029 /**
2030 * ice_pkg_buf_alloc_single_section
2031 * @hw: pointer to the HW structure
2032 * @type: the section type value
2033 * @size: the size of the section to reserve (in bytes)
2034 * @section: returns pointer to the section
2035 *
2036 * Allocates a package buffer with a single section.
2037 * Note: all package contents must be in Little Endian form.
2038 */
2039 struct ice_buf_build *
2040 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
2041 void **section)
2042 {
2043 struct ice_buf_build *buf;
2044
2045 if (!section)
2046 return NULL;
2047
2048 buf = ice_pkg_buf_alloc(hw);
2049 if (!buf)
2050 return NULL;
2051
2052 if (ice_pkg_buf_reserve_section(buf, 1))
2053 goto ice_pkg_buf_alloc_single_section_err;
2054
2055 *section = ice_pkg_buf_alloc_section(buf, type, size);
2056 if (!*section)
2057 goto ice_pkg_buf_alloc_single_section_err;
2058
2059 return buf;
2060
2061 ice_pkg_buf_alloc_single_section_err:
2062 ice_pkg_buf_free(hw, buf);
2063 return NULL;
2064 }
2065
2066 /**
2067 * ice_pkg_buf_unreserve_section
2068 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2069 * @count: the number of sections to unreserve
2070 *
2071 * Unreserves one or more section table entries in a package buffer, releasing
2072 * space that can be used for section data. This routine can be called
2073 * multiple times as long as they are made before calling
2074 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2075 * is called once, the number of sections that can be allocated will not be able
2076 * to be increased; not using all reserved sections is fine, but this will
2077 * result in some wasted space in the buffer.
2078 * Note: all package contents must be in Little Endian form.
2079 */
2080 enum ice_status
2081 ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count)
2082 {
2083 struct ice_buf_hdr *buf;
2084 u16 section_count;
2085 u16 data_end;
2086
2087 if (!bld)
2088 return ICE_ERR_PARAM;
2089
2090 buf = (struct ice_buf_hdr *)&bld->buf;
2091
2092 /* already an active section, can't decrease table size */
2093 section_count = LE16_TO_CPU(buf->section_count);
2094 if (section_count > 0)
2095 return ICE_ERR_CFG;
2096
2097 if (count > bld->reserved_section_table_entries)
2098 return ICE_ERR_CFG;
2099 bld->reserved_section_table_entries -= count;
2100
2101 data_end = LE16_TO_CPU(buf->data_end) -
2102 FLEX_ARRAY_SIZE(buf, section_entry, count);
2103 buf->data_end = CPU_TO_LE16(data_end);
2104
2105 return ICE_SUCCESS;
2106 }
2107
2108 /**
2109 * ice_pkg_buf_get_free_space
2110 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2111 *
2112 * Returns the number of free bytes remaining in the buffer.
2113 * Note: all package contents must be in Little Endian form.
2114 */
2115 u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld)
2116 {
2117 struct ice_buf_hdr *buf;
2118
2119 if (!bld)
2120 return 0;
2121
2122 buf = (struct ice_buf_hdr *)&bld->buf;
2123 return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end);
2124 }
2125
2126 /**
2127 * ice_pkg_buf_get_active_sections
2128 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2129 *
2130 * Returns the number of active sections. Before using the package buffer
2131 * in an update package command, the caller should make sure that there is at
2132 * least one active section - otherwise, the buffer is not legal and should
2133 * not be used.
2134 * Note: all package contents must be in Little Endian form.
2135 */
2136 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2137 {
2138 struct ice_buf_hdr *buf;
2139
2140 if (!bld)
2141 return 0;
2142
2143 buf = (struct ice_buf_hdr *)&bld->buf;
2144 return LE16_TO_CPU(buf->section_count);
2145 }
2146
2147 /**
2148 * ice_pkg_buf
2149 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2150 *
2151 * Return a pointer to the buffer's header
2152 */
2153 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2154 {
2155 if (!bld)
2156 return NULL;
2157
2158 return &bld->buf;
2159 }
2160
2161 /**
2162 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
2163 * @hw: pointer to the HW structure
2164 * @port: port to search for
2165 * @index: optionally returns index
2166 *
2167 * Returns whether a port is already in use as a tunnel, and optionally its
2168 * index
2169 */
2170 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
2171 {
2172 u16 i;
2173
2174 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2175 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2176 if (index)
2177 *index = i;
2178 return true;
2179 }
2180
2181 return false;
2182 }
2183
2184 /**
2185 * ice_tunnel_port_in_use
2186 * @hw: pointer to the HW structure
2187 * @port: port to search for
2188 * @index: optionally returns index
2189 *
2190 * Returns whether a port is already in use as a tunnel, and optionally its
2191 * index
2192 */
2193 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
2194 {
2195 bool res;
2196
2197 ice_acquire_lock(&hw->tnl_lock);
2198 res = ice_tunnel_port_in_use_hlpr(hw, port, index);
2199 ice_release_lock(&hw->tnl_lock);
2200
2201 return res;
2202 }
2203
2204 /**
2205 * ice_tunnel_get_type
2206 * @hw: pointer to the HW structure
2207 * @port: port to search for
2208 * @type: returns tunnel index
2209 *
2210 * For a given port number, will return the type of tunnel.
2211 */
2212 bool
2213 ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type)
2214 {
2215 bool res = false;
2216 u16 i;
2217
2218 ice_acquire_lock(&hw->tnl_lock);
2219
2220 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2221 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2222 *type = hw->tnl.tbl[i].type;
2223 res = true;
2224 break;
2225 }
2226
2227 ice_release_lock(&hw->tnl_lock);
2228
2229 return res;
2230 }
2231
2232 /**
2233 * ice_find_free_tunnel_entry
2234 * @hw: pointer to the HW structure
2235 * @type: tunnel type
2236 * @index: optionally returns index
2237 *
2238 * Returns whether there is a free tunnel entry, and optionally its index
2239 */
2240 static bool
2241 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2242 u16 *index)
2243 {
2244 u16 i;
2245
2246 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2247 if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
2248 hw->tnl.tbl[i].type == type) {
2249 if (index)
2250 *index = i;
2251 return true;
2252 }
2253
2254 return false;
2255 }
2256
2257 /**
2258 * ice_get_open_tunnel_port - retrieve an open tunnel port
2259 * @hw: pointer to the HW structure
2260 * @type: tunnel type (TNL_ALL will return any open port)
2261 * @port: returns open port
2262 */
2263 bool
2264 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
2265 u16 *port)
2266 {
2267 bool res = false;
2268 u16 i;
2269
2270 ice_acquire_lock(&hw->tnl_lock);
2271
2272 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2273 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2274 (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
2275 *port = hw->tnl.tbl[i].port;
2276 res = true;
2277 break;
2278 }
2279
2280 ice_release_lock(&hw->tnl_lock);
2281
2282 return res;
2283 }
2284
2285 /**
2286 * ice_create_tunnel
2287 * @hw: pointer to the HW structure
2288 * @type: type of tunnel
2289 * @port: port of tunnel to create
2290 *
2291 * Create a tunnel by updating the parse graph in the parser. We do that by
2292 * creating a package buffer with the tunnel info and issuing an update package
2293 * command.
2294 */
2295 enum ice_status
2296 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
2297 {
2298 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2299 enum ice_status status = ICE_ERR_MAX_LIMIT;
2300 struct ice_buf_build *bld;
2301 u16 index;
2302
2303 ice_acquire_lock(&hw->tnl_lock);
2304
2305 if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
2306 hw->tnl.tbl[index].ref++;
2307 status = ICE_SUCCESS;
2308 goto ice_create_tunnel_end;
2309 }
2310
2311 if (!ice_find_free_tunnel_entry(hw, type, &index)) {
2312 status = ICE_ERR_OUT_OF_RANGE;
2313 goto ice_create_tunnel_end;
2314 }
2315
2316 bld = ice_pkg_buf_alloc(hw);
2317 if (!bld) {
2318 status = ICE_ERR_NO_MEMORY;
2319 goto ice_create_tunnel_end;
2320 }
2321
2322 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2323 if (ice_pkg_buf_reserve_section(bld, 2))
2324 goto ice_create_tunnel_err;
2325
2326 sect_rx = (struct ice_boost_tcam_section *)
2327 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2328 ice_struct_size(sect_rx, tcam, 1));
2329 if (!sect_rx)
2330 goto ice_create_tunnel_err;
2331 sect_rx->count = CPU_TO_LE16(1);
2332
2333 sect_tx = (struct ice_boost_tcam_section *)
2334 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2335 ice_struct_size(sect_tx, tcam, 1));
2336 if (!sect_tx)
2337 goto ice_create_tunnel_err;
2338 sect_tx->count = CPU_TO_LE16(1);
2339
2340 /* copy original boost entry to update package buffer */
2341 ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2342 sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA);
2343
2344 /* over-write the never-match dest port key bits with the encoded port
2345 * bits
2346 */
2347 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2348 (u8 *)&port, NULL, NULL, NULL,
2349 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2350 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2351
2352 /* exact copy of entry to Tx section entry */
2353 ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam),
2354 ICE_NONDMA_TO_NONDMA);
2355
2356 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2357 if (!status) {
2358 hw->tnl.tbl[index].port = port;
2359 hw->tnl.tbl[index].in_use = true;
2360 hw->tnl.tbl[index].ref = 1;
2361 }
2362
2363 ice_create_tunnel_err:
2364 ice_pkg_buf_free(hw, bld);
2365
2366 ice_create_tunnel_end:
2367 ice_release_lock(&hw->tnl_lock);
2368
2369 return status;
2370 }
2371
2372 /**
2373 * ice_destroy_tunnel
2374 * @hw: pointer to the HW structure
2375 * @port: port of tunnel to destroy (ignored if the all parameter is true)
2376 * @all: flag that states to destroy all tunnels
2377 *
2378 * Destroys a tunnel or all tunnels by creating an update package buffer
2379 * targeting the specific updates requested and then performing an update
2380 * package.
2381 */
2382 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
2383 {
2384 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2385 enum ice_status status = ICE_ERR_MAX_LIMIT;
2386 struct ice_buf_build *bld;
2387 u16 count = 0;
2388 u16 index;
2389 u16 size;
2390 u16 i, j;
2391
2392 ice_acquire_lock(&hw->tnl_lock);
2393
2394 if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
2395 if (hw->tnl.tbl[index].ref > 1) {
2396 hw->tnl.tbl[index].ref--;
2397 status = ICE_SUCCESS;
2398 goto ice_destroy_tunnel_end;
2399 }
2400
2401 /* determine count */
2402 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2403 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2404 (all || hw->tnl.tbl[i].port == port))
2405 count++;
2406
2407 if (!count) {
2408 status = ICE_ERR_PARAM;
2409 goto ice_destroy_tunnel_end;
2410 }
2411
2412 /* size of section - there is at least one entry */
2413 size = ice_struct_size(sect_rx, tcam, count);
2414
2415 bld = ice_pkg_buf_alloc(hw);
2416 if (!bld) {
2417 status = ICE_ERR_NO_MEMORY;
2418 goto ice_destroy_tunnel_end;
2419 }
2420
2421 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2422 if (ice_pkg_buf_reserve_section(bld, 2))
2423 goto ice_destroy_tunnel_err;
2424
2425 sect_rx = (struct ice_boost_tcam_section *)
2426 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2427 size);
2428 if (!sect_rx)
2429 goto ice_destroy_tunnel_err;
2430 sect_rx->count = CPU_TO_LE16(count);
2431
2432 sect_tx = (struct ice_boost_tcam_section *)
2433 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2434 size);
2435 if (!sect_tx)
2436 goto ice_destroy_tunnel_err;
2437 sect_tx->count = CPU_TO_LE16(count);
2438
2439 /* copy original boost entry to update package buffer, one copy to Rx
2440 * section, another copy to the Tx section
2441 */
2442 for (i = 0, j = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2443 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2444 (all || hw->tnl.tbl[i].port == port)) {
2445 ice_memcpy(sect_rx->tcam + j,
2446 hw->tnl.tbl[i].boost_entry,
2447 sizeof(*sect_rx->tcam),
2448 ICE_NONDMA_TO_NONDMA);
2449 ice_memcpy(sect_tx->tcam + j,
2450 hw->tnl.tbl[i].boost_entry,
2451 sizeof(*sect_tx->tcam),
2452 ICE_NONDMA_TO_NONDMA);
2453 hw->tnl.tbl[i].marked = true;
2454 j++;
2455 }
2456
2457 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2458 if (!status)
2459 for (i = 0; i < hw->tnl.count &&
2460 i < ICE_TUNNEL_MAX_ENTRIES; i++)
2461 if (hw->tnl.tbl[i].marked) {
2462 hw->tnl.tbl[i].ref = 0;
2463 hw->tnl.tbl[i].port = 0;
2464 hw->tnl.tbl[i].in_use = false;
2465 hw->tnl.tbl[i].marked = false;
2466 }
2467
2468 ice_destroy_tunnel_err:
2469 ice_pkg_buf_free(hw, bld);
2470
2471 ice_destroy_tunnel_end:
2472 ice_release_lock(&hw->tnl_lock);
2473
2474 return status;
2475 }
2476
2477 /**
2478 * ice_replay_tunnels
2479 * @hw: pointer to the HW structure
2480 *
2481 * Replays all tunnels
2482 */
2483 enum ice_status ice_replay_tunnels(struct ice_hw *hw)
2484 {
2485 enum ice_status status = ICE_SUCCESS;
2486 u16 i;
2487
2488 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2489
2490 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) {
2491 enum ice_tunnel_type type = hw->tnl.tbl[i].type;
2492 u16 refs = hw->tnl.tbl[i].ref;
2493 u16 port = hw->tnl.tbl[i].port;
2494
2495 if (!hw->tnl.tbl[i].in_use)
2496 continue;
2497
2498 /* Replay tunnels one at a time by destroying them, then
2499 * recreating them
2500 */
2501 hw->tnl.tbl[i].ref = 1; /* make sure to destroy in one call */
2502 status = ice_destroy_tunnel(hw, port, false);
2503 if (status) {
2504 ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - destroy tunnel port 0x%x\n",
2505 status, port);
2506 break;
2507 }
2508
2509 status = ice_create_tunnel(hw, type, port);
2510 if (status) {
2511 ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - create tunnel port 0x%x\n",
2512 status, port);
2513 break;
2514 }
2515
2516 /* reset to original ref count */
2517 hw->tnl.tbl[i].ref = refs;
2518 }
2519
2520 return status;
2521 }
2522
2523 /**
2524 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2525 * @hw: pointer to the hardware structure
2526 * @blk: hardware block
2527 * @prof: profile ID
2528 * @fv_idx: field vector word index
2529 * @prot: variable to receive the protocol ID
2530 * @off: variable to receive the protocol offset
2531 */
2532 enum ice_status
2533 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2534 u8 *prot, u16 *off)
2535 {
2536 struct ice_fv_word *fv_ext;
2537
2538 if (prof >= hw->blk[blk].es.count)
2539 return ICE_ERR_PARAM;
2540
2541 if (fv_idx >= hw->blk[blk].es.fvw)
2542 return ICE_ERR_PARAM;
2543
2544 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2545
2546 *prot = fv_ext[fv_idx].prot_id;
2547 *off = fv_ext[fv_idx].off;
2548
2549 return ICE_SUCCESS;
2550 }
2551
2552 /* PTG Management */
2553
2554 /**
2555 * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table
2556 * @hw: pointer to the hardware structure
2557 * @blk: HW block
2558 *
2559 * This function will update the XLT1 hardware table to reflect the new
2560 * packet type group configuration.
2561 */
2562 enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk)
2563 {
2564 struct ice_xlt1_section *sect;
2565 struct ice_buf_build *bld;
2566 enum ice_status status;
2567 u16 index;
2568
2569 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1),
2570 ice_struct_size(sect, value,
2571 ICE_XLT1_CNT),
2572 (void **)§);
2573 if (!bld)
2574 return ICE_ERR_NO_MEMORY;
2575
2576 sect->count = CPU_TO_LE16(ICE_XLT1_CNT);
2577 sect->offset = CPU_TO_LE16(0);
2578 for (index = 0; index < ICE_XLT1_CNT; index++)
2579 sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg;
2580
2581 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2582
2583 ice_pkg_buf_free(hw, bld);
2584
2585 return status;
2586 }
2587
2588 /**
2589 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2590 * @hw: pointer to the hardware structure
2591 * @blk: HW block
2592 * @ptype: the ptype to search for
2593 * @ptg: pointer to variable that receives the PTG
2594 *
2595 * This function will search the PTGs for a particular ptype, returning the
2596 * PTG ID that contains it through the PTG parameter, with the value of
2597 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2598 */
2599 static enum ice_status
2600 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2601 {
2602 if (ptype >= ICE_XLT1_CNT || !ptg)
2603 return ICE_ERR_PARAM;
2604
2605 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2606 return ICE_SUCCESS;
2607 }
2608
2609 /**
2610 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2611 * @hw: pointer to the hardware structure
2612 * @blk: HW block
2613 * @ptg: the PTG to allocate
2614 *
2615 * This function allocates a given packet type group ID specified by the PTG
2616 * parameter.
2617 */
2618 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2619 {
2620 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2621 }
2622
2623 /**
2624 * ice_ptg_free - Frees a packet type group
2625 * @hw: pointer to the hardware structure
2626 * @blk: HW block
2627 * @ptg: the PTG ID to free
2628 *
2629 * This function frees a packet type group, and returns all the current ptypes
2630 * within it to the default PTG.
2631 */
2632 void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2633 {
2634 struct ice_ptg_ptype *p, *temp;
2635
2636 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false;
2637 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2638 while (p) {
2639 p->ptg = ICE_DEFAULT_PTG;
2640 temp = p->next_ptype;
2641 p->next_ptype = NULL;
2642 p = temp;
2643 }
2644
2645 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL;
2646 }
2647
2648 /**
2649 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2650 * @hw: pointer to the hardware structure
2651 * @blk: HW block
2652 * @ptype: the ptype to remove
2653 * @ptg: the PTG to remove the ptype from
2654 *
2655 * This function will remove the ptype from the specific PTG, and move it to
2656 * the default PTG (ICE_DEFAULT_PTG).
2657 */
2658 static enum ice_status
2659 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2660 {
2661 struct ice_ptg_ptype **ch;
2662 struct ice_ptg_ptype *p;
2663
2664 if (ptype > ICE_XLT1_CNT - 1)
2665 return ICE_ERR_PARAM;
2666
2667 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2668 return ICE_ERR_DOES_NOT_EXIST;
2669
2670 /* Should not happen if .in_use is set, bad config */
2671 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2672 return ICE_ERR_CFG;
2673
2674 /* find the ptype within this PTG, and bypass the link over it */
2675 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2676 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2677 while (p) {
2678 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2679 *ch = p->next_ptype;
2680 break;
2681 }
2682
2683 ch = &p->next_ptype;
2684 p = p->next_ptype;
2685 }
2686
2687 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2688 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2689
2690 return ICE_SUCCESS;
2691 }
2692
2693 /**
2694 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2695 * @hw: pointer to the hardware structure
2696 * @blk: HW block
2697 * @ptype: the ptype to add or move
2698 * @ptg: the PTG to add or move the ptype to
2699 *
2700 * This function will either add or move a ptype to a particular PTG depending
2701 * on if the ptype is already part of another group. Note that using a
2702 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2703 * default PTG.
2704 */
2705 static enum ice_status
2706 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2707 {
2708 enum ice_status status;
2709 u8 original_ptg;
2710
2711 if (ptype > ICE_XLT1_CNT - 1)
2712 return ICE_ERR_PARAM;
2713
2714 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2715 return ICE_ERR_DOES_NOT_EXIST;
2716
2717 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2718 if (status)
2719 return status;
2720
2721 /* Is ptype already in the correct PTG? */
2722 if (original_ptg == ptg)
2723 return ICE_SUCCESS;
2724
2725 /* Remove from original PTG and move back to the default PTG */
2726 if (original_ptg != ICE_DEFAULT_PTG)
2727 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2728
2729 /* Moving to default PTG? Then we're done with this request */
2730 if (ptg == ICE_DEFAULT_PTG)
2731 return ICE_SUCCESS;
2732
2733 /* Add ptype to PTG at beginning of list */
2734 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2735 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2736 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2737 &hw->blk[blk].xlt1.ptypes[ptype];
2738
2739 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2740 hw->blk[blk].xlt1.t[ptype] = ptg;
2741
2742 return ICE_SUCCESS;
2743 }
2744
2745 /* Block / table size info */
2746 struct ice_blk_size_details {
2747 u16 xlt1; /* # XLT1 entries */
2748 u16 xlt2; /* # XLT2 entries */
2749 u16 prof_tcam; /* # profile ID TCAM entries */
2750 u16 prof_id; /* # profile IDs */
2751 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
2752 u16 prof_redir; /* # profile redirection entries */
2753 u16 es; /* # extraction sequence entries */
2754 u16 fvw; /* # field vector words */
2755 u8 overwrite; /* overwrite existing entries allowed */
2756 u8 reverse; /* reverse FV order */
2757 };
2758
2759 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2760 /**
2761 * Table Definitions
2762 * XLT1 - Number of entries in XLT1 table
2763 * XLT2 - Number of entries in XLT2 table
2764 * TCAM - Number of entries Profile ID TCAM table
2765 * CDID - Control Domain ID of the hardware block
2766 * PRED - Number of entries in the Profile Redirection Table
2767 * FV - Number of entries in the Field Vector
2768 * FVW - Width (in WORDs) of the Field Vector
2769 * OVR - Overwrite existing table entries
2770 * REV - Reverse FV
2771 */
2772 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
2773 /* Overwrite , Reverse FV */
2774 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
2775 false, false },
2776 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
2777 false, false },
2778 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2779 false, true },
2780 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2781 true, true },
2782 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
2783 false, false },
2784 };
2785
2786 enum ice_sid_all {
2787 ICE_SID_XLT1_OFF = 0,
2788 ICE_SID_XLT2_OFF,
2789 ICE_SID_PR_OFF,
2790 ICE_SID_PR_REDIR_OFF,
2791 ICE_SID_ES_OFF,
2792 ICE_SID_OFF_COUNT,
2793 };
2794
2795 /* Characteristic handling */
2796
2797 /**
2798 * ice_match_prop_lst - determine if properties of two lists match
2799 * @list1: first properties list
2800 * @list2: second properties list
2801 *
2802 * Count, cookies and the order must match in order to be considered equivalent.
2803 */
2804 static bool
2805 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2)
2806 {
2807 struct ice_vsig_prof *tmp1;
2808 struct ice_vsig_prof *tmp2;
2809 u16 chk_count = 0;
2810 u16 count = 0;
2811
2812 /* compare counts */
2813 LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list)
2814 count++;
2815 LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list)
2816 chk_count++;
2817 if (!count || count != chk_count)
2818 return false;
2819
2820 tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list);
2821 tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list);
2822
2823 /* profile cookies must compare, and in the exact same order to take
2824 * into account priority
2825 */
2826 while (count--) {
2827 if (tmp2->profile_cookie != tmp1->profile_cookie)
2828 return false;
2829
2830 tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list);
2831 tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list);
2832 }
2833
2834 return true;
2835 }
2836
2837 /* VSIG Management */
2838
2839 /**
2840 * ice_vsig_update_xlt2_sect - update one section of XLT2 table
2841 * @hw: pointer to the hardware structure
2842 * @blk: HW block
2843 * @vsi: HW VSI number to program
2844 * @vsig: VSIG for the VSI
2845 *
2846 * This function will update the XLT2 hardware table with the input VSI
2847 * group configuration.
2848 */
2849 static enum ice_status
2850 ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi,
2851 u16 vsig)
2852 {
2853 struct ice_xlt2_section *sect;
2854 struct ice_buf_build *bld;
2855 enum ice_status status;
2856
2857 bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2),
2858 ice_struct_size(sect, value, 1),
2859 (void **)§);
2860 if (!bld)
2861 return ICE_ERR_NO_MEMORY;
2862
2863 sect->count = CPU_TO_LE16(1);
2864 sect->offset = CPU_TO_LE16(vsi);
2865 sect->value[0] = CPU_TO_LE16(vsig);
2866
2867 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2868
2869 ice_pkg_buf_free(hw, bld);
2870
2871 return status;
2872 }
2873
2874 /**
2875 * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration
2876 * @hw: pointer to the hardware structure
2877 * @blk: HW block
2878 *
2879 * This function will update the XLT2 hardware table with the input VSI
2880 * group configuration of used vsis.
2881 */
2882 enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk)
2883 {
2884 u16 vsi;
2885
2886 for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) {
2887 /* update only vsis that have been changed */
2888 if (hw->blk[blk].xlt2.vsis[vsi].changed) {
2889 enum ice_status status;
2890 u16 vsig;
2891
2892 vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2893 status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig);
2894 if (status)
2895 return status;
2896
2897 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2898 }
2899 }
2900
2901 return ICE_SUCCESS;
2902 }
2903
2904 /**
2905 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2906 * @hw: pointer to the hardware structure
2907 * @blk: HW block
2908 * @vsi: VSI of interest
2909 * @vsig: pointer to receive the VSI group
2910 *
2911 * This function will lookup the VSI entry in the XLT2 list and return
2912 * the VSI group its associated with.
2913 */
2914 enum ice_status
2915 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2916 {
2917 if (!vsig || vsi >= ICE_MAX_VSI)
2918 return ICE_ERR_PARAM;
2919
2920 /* As long as there's a default or valid VSIG associated with the input
2921 * VSI, the functions returns a success. Any handling of VSIG will be
2922 * done by the following add, update or remove functions.
2923 */
2924 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2925
2926 return ICE_SUCCESS;
2927 }
2928
2929 /**
2930 * ice_vsig_alloc_val - allocate a new VSIG by value
2931 * @hw: pointer to the hardware structure
2932 * @blk: HW block
2933 * @vsig: the VSIG to allocate
2934 *
2935 * This function will allocate a given VSIG specified by the VSIG parameter.
2936 */
2937 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2938 {
2939 u16 idx = vsig & ICE_VSIG_IDX_M;
2940
2941 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2942 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2943 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2944 }
2945
2946 return ICE_VSIG_VALUE(idx, hw->pf_id);
2947 }
2948
2949 /**
2950 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2951 * @hw: pointer to the hardware structure
2952 * @blk: HW block
2953 *
2954 * This function will iterate through the VSIG list and mark the first
2955 * unused entry for the new VSIG entry as used and return that value.
2956 */
2957 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2958 {
2959 u16 i;
2960
2961 for (i = 1; i < ICE_MAX_VSIGS; i++)
2962 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2963 return ice_vsig_alloc_val(hw, blk, i);
2964
2965 return ICE_DEFAULT_VSIG;
2966 }
2967
2968 /**
2969 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2970 * @hw: pointer to the hardware structure
2971 * @blk: HW block
2972 * @chs: characteristic list
2973 * @vsig: returns the VSIG with the matching profiles, if found
2974 *
2975 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2976 * a group have the same characteristic set. To check if there exists a VSIG
2977 * which has the same characteristics as the input characteristics; this
2978 * function will iterate through the XLT2 list and return the VSIG that has a
2979 * matching configuration. In order to make sure that priorities are accounted
2980 * for, the list must match exactly, including the order in which the
2981 * characteristics are listed.
2982 */
2983 static enum ice_status
2984 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2985 struct LIST_HEAD_TYPE *chs, u16 *vsig)
2986 {
2987 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2988 u16 i;
2989
2990 for (i = 0; i < xlt2->count; i++)
2991 if (xlt2->vsig_tbl[i].in_use &&
2992 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2993 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2994 return ICE_SUCCESS;
2995 }
2996
2997 return ICE_ERR_DOES_NOT_EXIST;
2998 }
2999
3000 /**
3001 * ice_vsig_free - free VSI group
3002 * @hw: pointer to the hardware structure
3003 * @blk: HW block
3004 * @vsig: VSIG to remove
3005 *
3006 * The function will remove all VSIs associated with the input VSIG and move
3007 * them to the DEFAULT_VSIG and mark the VSIG available.
3008 */
3009 static enum ice_status
3010 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3011 {
3012 struct ice_vsig_prof *dtmp, *del;
3013 struct ice_vsig_vsi *vsi_cur;
3014 u16 idx;
3015
3016 idx = vsig & ICE_VSIG_IDX_M;
3017 if (idx >= ICE_MAX_VSIGS)
3018 return ICE_ERR_PARAM;
3019
3020 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3021 return ICE_ERR_DOES_NOT_EXIST;
3022
3023 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
3024
3025 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3026 /* If the VSIG has at least 1 VSI then iterate through the
3027 * list and remove the VSIs before deleting the group.
3028 */
3029 if (vsi_cur) {
3030 /* remove all vsis associated with this VSIG XLT2 entry */
3031 do {
3032 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3033
3034 vsi_cur->vsig = ICE_DEFAULT_VSIG;
3035 vsi_cur->changed = 1;
3036 vsi_cur->next_vsi = NULL;
3037 vsi_cur = tmp;
3038 } while (vsi_cur);
3039
3040 /* NULL terminate head of VSI list */
3041 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
3042 }
3043
3044 /* free characteristic list */
3045 LIST_FOR_EACH_ENTRY_SAFE(del, dtmp,
3046 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3047 ice_vsig_prof, list) {
3048 LIST_DEL(&del->list);
3049 ice_free(hw, del);
3050 }
3051
3052 /* if VSIG characteristic list was cleared for reset
3053 * re-initialize the list head
3054 */
3055 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
3056
3057 return ICE_SUCCESS;
3058 }
3059
3060 /**
3061 * ice_vsig_remove_vsi - remove VSI from VSIG
3062 * @hw: pointer to the hardware structure
3063 * @blk: HW block
3064 * @vsi: VSI to remove
3065 * @vsig: VSI group to remove from
3066 *
3067 * The function will remove the input VSI from its VSI group and move it
3068 * to the DEFAULT_VSIG.
3069 */
3070 static enum ice_status
3071 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3072 {
3073 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
3074 u16 idx;
3075
3076 idx = vsig & ICE_VSIG_IDX_M;
3077
3078 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3079 return ICE_ERR_PARAM;
3080
3081 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3082 return ICE_ERR_DOES_NOT_EXIST;
3083
3084 /* entry already in default VSIG, don't have to remove */
3085 if (idx == ICE_DEFAULT_VSIG)
3086 return ICE_SUCCESS;
3087
3088 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3089 if (!(*vsi_head))
3090 return ICE_ERR_CFG;
3091
3092 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
3093 vsi_cur = (*vsi_head);
3094
3095 /* iterate the VSI list, skip over the entry to be removed */
3096 while (vsi_cur) {
3097 if (vsi_tgt == vsi_cur) {
3098 (*vsi_head) = vsi_cur->next_vsi;
3099 break;
3100 }
3101 vsi_head = &vsi_cur->next_vsi;
3102 vsi_cur = vsi_cur->next_vsi;
3103 }
3104
3105 /* verify if VSI was removed from group list */
3106 if (!vsi_cur)
3107 return ICE_ERR_DOES_NOT_EXIST;
3108
3109 vsi_cur->vsig = ICE_DEFAULT_VSIG;
3110 vsi_cur->changed = 1;
3111 vsi_cur->next_vsi = NULL;
3112
3113 return ICE_SUCCESS;
3114 }
3115
3116 /**
3117 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
3118 * @hw: pointer to the hardware structure
3119 * @blk: HW block
3120 * @vsi: VSI to move
3121 * @vsig: destination VSI group
3122 *
3123 * This function will move or add the input VSI to the target VSIG.
3124 * The function will find the original VSIG the VSI belongs to and
3125 * move the entry to the DEFAULT_VSIG, update the original VSIG and
3126 * then move entry to the new VSIG.
3127 */
3128 static enum ice_status
3129 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3130 {
3131 struct ice_vsig_vsi *tmp;
3132 enum ice_status status;
3133 u16 orig_vsig, idx;
3134
3135 idx = vsig & ICE_VSIG_IDX_M;
3136
3137 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3138 return ICE_ERR_PARAM;
3139
3140 /* if VSIG not in use and VSIG is not default type this VSIG
3141 * doesn't exist.
3142 */
3143 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3144 vsig != ICE_DEFAULT_VSIG)
3145 return ICE_ERR_DOES_NOT_EXIST;
3146
3147 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3148 if (status)
3149 return status;
3150
3151 /* no update required if vsigs match */
3152 if (orig_vsig == vsig)
3153 return ICE_SUCCESS;
3154
3155 if (orig_vsig != ICE_DEFAULT_VSIG) {
3156 /* remove entry from orig_vsig and add to default VSIG */
3157 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3158 if (status)
3159 return status;
3160 }
3161
3162 if (idx == ICE_DEFAULT_VSIG)
3163 return ICE_SUCCESS;
3164
3165 /* Create VSI entry and add VSIG and prop_mask values */
3166 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3167 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3168
3169 /* Add new entry to the head of the VSIG list */
3170 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3171 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3172 &hw->blk[blk].xlt2.vsis[vsi];
3173 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3174 hw->blk[blk].xlt2.t[vsi] = vsig;
3175
3176 return ICE_SUCCESS;
3177 }
3178
3179 /**
3180 * ice_find_prof_id - find profile ID for a given field vector
3181 * @hw: pointer to the hardware structure
3182 * @blk: HW block
3183 * @fv: field vector to search for
3184 * @prof_id: receives the profile ID
3185 */
3186 static enum ice_status
3187 ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
3188 struct ice_fv_word *fv, u8 *prof_id)
3189 {
3190 struct ice_es *es = &hw->blk[blk].es;
3191 u16 off;
3192 u8 i;
3193
3194 for (i = 0; i < (u8)es->count; i++) {
3195 off = i * es->fvw;
3196
3197 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3198 continue;
3199
3200 *prof_id = i;
3201 return ICE_SUCCESS;
3202 }
3203
3204 return ICE_ERR_DOES_NOT_EXIST;
3205 }
3206
3207 /**
3208 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3209 * @blk: the block type
3210 * @rsrc_type: pointer to variable to receive the resource type
3211 */
3212 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3213 {
3214 switch (blk) {
3215 case ICE_BLK_RSS:
3216 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3217 break;
3218 case ICE_BLK_PE:
3219 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID;
3220 break;
3221 default:
3222 return false;
3223 }
3224 return true;
3225 }
3226
3227 /**
3228 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3229 * @blk: the block type
3230 * @rsrc_type: pointer to variable to receive the resource type
3231 */
3232 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3233 {
3234 switch (blk) {
3235 case ICE_BLK_RSS:
3236 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3237 break;
3238 case ICE_BLK_PE:
3239 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
3240 break;
3241 default:
3242 return false;
3243 }
3244 return true;
3245 }
3246
3247 /**
3248 * ice_alloc_tcam_ent - allocate hardware TCAM entry
3249 * @hw: pointer to the HW struct
3250 * @blk: the block to allocate the TCAM for
3251 * @btm: true to allocate from bottom of table, false to allocate from top
3252 * @tcam_idx: pointer to variable to receive the TCAM entry
3253 *
3254 * This function allocates a new entry in a Profile ID TCAM for a specific
3255 * block.
3256 */
3257 static enum ice_status
3258 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3259 u16 *tcam_idx)
3260 {
3261 u16 res_type;
3262
3263 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3264 return ICE_ERR_PARAM;
3265
3266 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3267 }
3268
3269 /**
3270 * ice_free_tcam_ent - free hardware TCAM entry
3271 * @hw: pointer to the HW struct
3272 * @blk: the block from which to free the TCAM entry
3273 * @tcam_idx: the TCAM entry to free
3274 *
3275 * This function frees an entry in a Profile ID TCAM for a specific block.
3276 */
3277 static enum ice_status
3278 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3279 {
3280 u16 res_type;
3281
3282 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3283 return ICE_ERR_PARAM;
3284
3285 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3286 }
3287
3288 /**
3289 * ice_alloc_prof_id - allocate profile ID
3290 * @hw: pointer to the HW struct
3291 * @blk: the block to allocate the profile ID for
3292 * @prof_id: pointer to variable to receive the profile ID
3293 *
3294 * This function allocates a new profile ID, which also corresponds to a Field
3295 * Vector (Extraction Sequence) entry.
3296 */
3297 static enum ice_status
3298 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3299 {
3300 enum ice_status status;
3301 u16 res_type;
3302 u16 get_prof;
3303
3304 if (!ice_prof_id_rsrc_type(blk, &res_type))
3305 return ICE_ERR_PARAM;
3306
3307 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3308 if (!status)
3309 *prof_id = (u8)get_prof;
3310
3311 return status;
3312 }
3313
3314 /**
3315 * ice_free_prof_id - free profile ID
3316 * @hw: pointer to the HW struct
3317 * @blk: the block from which to free the profile ID
3318 * @prof_id: the profile ID to free
3319 *
3320 * This function frees a profile ID, which also corresponds to a Field Vector.
3321 */
3322 static enum ice_status
3323 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3324 {
3325 u16 tmp_prof_id = (u16)prof_id;
3326 u16 res_type;
3327
3328 if (!ice_prof_id_rsrc_type(blk, &res_type))
3329 return ICE_ERR_PARAM;
3330
3331 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3332 }
3333
3334 /**
3335 * ice_prof_inc_ref - increment reference count for profile
3336 * @hw: pointer to the HW struct
3337 * @blk: the block from which to free the profile ID
3338 * @prof_id: the profile ID for which to increment the reference count
3339 */
3340 static enum ice_status
3341 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3342 {
3343 if (prof_id > hw->blk[blk].es.count)
3344 return ICE_ERR_PARAM;
3345
3346 hw->blk[blk].es.ref_count[prof_id]++;
3347
3348 return ICE_SUCCESS;
3349 }
3350
3351 /**
3352 * ice_write_es - write an extraction sequence to hardware
3353 * @hw: pointer to the HW struct
3354 * @blk: the block in which to write the extraction sequence
3355 * @prof_id: the profile ID to write
3356 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3357 */
3358 static void
3359 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3360 struct ice_fv_word *fv)
3361 {
3362 u16 off;
3363
3364 off = prof_id * hw->blk[blk].es.fvw;
3365 if (!fv) {
3366 ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw *
3367 sizeof(*fv), ICE_NONDMA_MEM);
3368 hw->blk[blk].es.written[prof_id] = false;
3369 } else {
3370 ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw *
3371 sizeof(*fv), ICE_NONDMA_TO_NONDMA);
3372 }
3373 }
3374
3375 /**
3376 * ice_prof_dec_ref - decrement reference count for profile
3377 * @hw: pointer to the HW struct
3378 * @blk: the block from which to free the profile ID
3379 * @prof_id: the profile ID for which to decrement the reference count
3380 */
3381 static enum ice_status
3382 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3383 {
3384 if (prof_id > hw->blk[blk].es.count)
3385 return ICE_ERR_PARAM;
3386
3387 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3388 if (!--hw->blk[blk].es.ref_count[prof_id]) {
3389 ice_write_es(hw, blk, prof_id, NULL);
3390 return ice_free_prof_id(hw, blk, prof_id);
3391 }
3392 }
3393
3394 return ICE_SUCCESS;
3395 }
3396
3397 /* Block / table section IDs */
3398 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3399 /* SWITCH */
3400 { ICE_SID_XLT1_SW,
3401 ICE_SID_XLT2_SW,
3402 ICE_SID_PROFID_TCAM_SW,
3403 ICE_SID_PROFID_REDIR_SW,
3404 ICE_SID_FLD_VEC_SW
3405 },
3406
3407 /* ACL */
3408 { ICE_SID_XLT1_ACL,
3409 ICE_SID_XLT2_ACL,
3410 ICE_SID_PROFID_TCAM_ACL,
3411 ICE_SID_PROFID_REDIR_ACL,
3412 ICE_SID_FLD_VEC_ACL
3413 },
3414
3415 /* FD */
3416 { ICE_SID_XLT1_FD,
3417 ICE_SID_XLT2_FD,
3418 ICE_SID_PROFID_TCAM_FD,
3419 ICE_SID_PROFID_REDIR_FD,
3420 ICE_SID_FLD_VEC_FD
3421 },
3422
3423 /* RSS */
3424 { ICE_SID_XLT1_RSS,
3425 ICE_SID_XLT2_RSS,
3426 ICE_SID_PROFID_TCAM_RSS,
3427 ICE_SID_PROFID_REDIR_RSS,
3428 ICE_SID_FLD_VEC_RSS
3429 },
3430
3431 /* PE */
3432 { ICE_SID_XLT1_PE,
3433 ICE_SID_XLT2_PE,
3434 ICE_SID_PROFID_TCAM_PE,
3435 ICE_SID_PROFID_REDIR_PE,
3436 ICE_SID_FLD_VEC_PE
3437 }
3438 };
3439
3440 /**
3441 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3442 * @hw: pointer to the hardware structure
3443 * @blk: the HW block to initialize
3444 */
3445 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3446 {
3447 u16 pt;
3448
3449 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3450 u8 ptg;
3451
3452 ptg = hw->blk[blk].xlt1.t[pt];
3453 if (ptg != ICE_DEFAULT_PTG) {
3454 ice_ptg_alloc_val(hw, blk, ptg);
3455 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3456 }
3457 }
3458 }
3459
3460 /**
3461 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3462 * @hw: pointer to the hardware structure
3463 * @blk: the HW block to initialize
3464 */
3465 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3466 {
3467 u16 vsi;
3468
3469 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3470 u16 vsig;
3471
3472 vsig = hw->blk[blk].xlt2.t[vsi];
3473 if (vsig) {
3474 ice_vsig_alloc_val(hw, blk, vsig);
3475 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3476 /* no changes at this time, since this has been
3477 * initialized from the original package
3478 */
3479 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3480 }
3481 }
3482 }
3483
3484 /**
3485 * ice_init_sw_db - init software database from HW tables
3486 * @hw: pointer to the hardware structure
3487 */
3488 static void ice_init_sw_db(struct ice_hw *hw)
3489 {
3490 u16 i;
3491
3492 for (i = 0; i < ICE_BLK_COUNT; i++) {
3493 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3494 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3495 }
3496 }
3497
3498 /**
3499 * ice_fill_tbl - Reads content of a single table type into database
3500 * @hw: pointer to the hardware structure
3501 * @block_id: Block ID of the table to copy
3502 * @sid: Section ID of the table to copy
3503 *
3504 * Will attempt to read the entire content of a given table of a single block
3505 * into the driver database. We assume that the buffer will always
3506 * be as large or larger than the data contained in the package. If
3507 * this condition is not met, there is most likely an error in the package
3508 * contents.
3509 */
3510 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3511 {
3512 u32 dst_len, sect_len, offset = 0;
3513 struct ice_prof_redir_section *pr;
3514 struct ice_prof_id_section *pid;
3515 struct ice_xlt1_section *xlt1;
3516 struct ice_xlt2_section *xlt2;
3517 struct ice_sw_fv_section *es;
3518 struct ice_pkg_enum state;
3519 u8 *src, *dst;
3520 void *sect;
3521
3522 /* if the HW segment pointer is null then the first iteration of
3523 * ice_pkg_enum_section() will fail. In this case the HW tables will
3524 * not be filled and return success.
3525 */
3526 if (!hw->seg) {
3527 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3528 return;
3529 }
3530
3531 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
3532
3533 sect = ice_pkg_enum_section(hw->seg, &state, sid);
3534
3535 while (sect) {
3536 switch (sid) {
3537 case ICE_SID_XLT1_SW:
3538 case ICE_SID_XLT1_FD:
3539 case ICE_SID_XLT1_RSS:
3540 case ICE_SID_XLT1_ACL:
3541 case ICE_SID_XLT1_PE:
3542 xlt1 = (struct ice_xlt1_section *)sect;
3543 src = xlt1->value;
3544 sect_len = LE16_TO_CPU(xlt1->count) *
3545 sizeof(*hw->blk[block_id].xlt1.t);
3546 dst = hw->blk[block_id].xlt1.t;
3547 dst_len = hw->blk[block_id].xlt1.count *
3548 sizeof(*hw->blk[block_id].xlt1.t);
3549 break;
3550 case ICE_SID_XLT2_SW:
3551 case ICE_SID_XLT2_FD:
3552 case ICE_SID_XLT2_RSS:
3553 case ICE_SID_XLT2_ACL:
3554 case ICE_SID_XLT2_PE:
3555 xlt2 = (struct ice_xlt2_section *)sect;
3556 src = (_FORCE_ u8 *)xlt2->value;
3557 sect_len = LE16_TO_CPU(xlt2->count) *
3558 sizeof(*hw->blk[block_id].xlt2.t);
3559 dst = (u8 *)hw->blk[block_id].xlt2.t;
3560 dst_len = hw->blk[block_id].xlt2.count *
3561 sizeof(*hw->blk[block_id].xlt2.t);
3562 break;
3563 case ICE_SID_PROFID_TCAM_SW:
3564 case ICE_SID_PROFID_TCAM_FD:
3565 case ICE_SID_PROFID_TCAM_RSS:
3566 case ICE_SID_PROFID_TCAM_ACL:
3567 case ICE_SID_PROFID_TCAM_PE:
3568 pid = (struct ice_prof_id_section *)sect;
3569 src = (u8 *)pid->entry;
3570 sect_len = LE16_TO_CPU(pid->count) *
3571 sizeof(*hw->blk[block_id].prof.t);
3572 dst = (u8 *)hw->blk[block_id].prof.t;
3573 dst_len = hw->blk[block_id].prof.count *
3574 sizeof(*hw->blk[block_id].prof.t);
3575 break;
3576 case ICE_SID_PROFID_REDIR_SW:
3577 case ICE_SID_PROFID_REDIR_FD:
3578 case ICE_SID_PROFID_REDIR_RSS:
3579 case ICE_SID_PROFID_REDIR_ACL:
3580 case ICE_SID_PROFID_REDIR_PE:
3581 pr = (struct ice_prof_redir_section *)sect;
3582 src = pr->redir_value;
3583 sect_len = LE16_TO_CPU(pr->count) *
3584 sizeof(*hw->blk[block_id].prof_redir.t);
3585 dst = hw->blk[block_id].prof_redir.t;
3586 dst_len = hw->blk[block_id].prof_redir.count *
3587 sizeof(*hw->blk[block_id].prof_redir.t);
3588 break;
3589 case ICE_SID_FLD_VEC_SW:
3590 case ICE_SID_FLD_VEC_FD:
3591 case ICE_SID_FLD_VEC_RSS:
3592 case ICE_SID_FLD_VEC_ACL:
3593 case ICE_SID_FLD_VEC_PE:
3594 es = (struct ice_sw_fv_section *)sect;
3595 src = (u8 *)es->fv;
3596 sect_len = (u32)(LE16_TO_CPU(es->count) *
3597 hw->blk[block_id].es.fvw) *
3598 sizeof(*hw->blk[block_id].es.t);
3599 dst = (u8 *)hw->blk[block_id].es.t;
3600 dst_len = (u32)(hw->blk[block_id].es.count *
3601 hw->blk[block_id].es.fvw) *
3602 sizeof(*hw->blk[block_id].es.t);
3603 break;
3604 default:
3605 return;
3606 }
3607
3608 /* if the section offset exceeds destination length, terminate
3609 * table fill.
3610 */
3611 if (offset > dst_len)
3612 return;
3613
3614 /* if the sum of section size and offset exceed destination size
3615 * then we are out of bounds of the HW table size for that PF.
3616 * Changing section length to fill the remaining table space
3617 * of that PF.
3618 */
3619 if ((offset + sect_len) > dst_len)
3620 sect_len = dst_len - offset;
3621
3622 ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA);
3623 offset += sect_len;
3624 sect = ice_pkg_enum_section(NULL, &state, sid);
3625 }
3626 }
3627
3628 /**
3629 * ice_fill_blk_tbls - Read package context for tables
3630 * @hw: pointer to the hardware structure
3631 *
3632 * Reads the current package contents and populates the driver
3633 * database with the data iteratively for all advanced feature
3634 * blocks. Assume that the HW tables have been allocated.
3635 */
3636 void ice_fill_blk_tbls(struct ice_hw *hw)
3637 {
3638 u8 i;
3639
3640 for (i = 0; i < ICE_BLK_COUNT; i++) {
3641 enum ice_block blk_id = (enum ice_block)i;
3642
3643 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3644 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3645 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3646 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3647 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3648 }
3649
3650 ice_init_sw_db(hw);
3651 }
3652
3653 /**
3654 * ice_free_prof_map - free profile map
3655 * @hw: pointer to the hardware structure
3656 * @blk_idx: HW block index
3657 */
3658 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3659 {
3660 struct ice_es *es = &hw->blk[blk_idx].es;
3661 struct ice_prof_map *del, *tmp;
3662
3663 ice_acquire_lock(&es->prof_map_lock);
3664 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map,
3665 ice_prof_map, list) {
3666 LIST_DEL(&del->list);
3667 ice_free(hw, del);
3668 }
3669 INIT_LIST_HEAD(&es->prof_map);
3670 ice_release_lock(&es->prof_map_lock);
3671 }
3672
3673 /**
3674 * ice_free_flow_profs - free flow profile entries
3675 * @hw: pointer to the hardware structure
3676 * @blk_idx: HW block index
3677 */
3678 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3679 {
3680 struct ice_flow_prof *p, *tmp;
3681
3682 ice_acquire_lock(&hw->fl_profs_locks[blk_idx]);
3683 LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx],
3684 ice_flow_prof, l_entry) {
3685 LIST_DEL(&p->l_entry);
3686
3687 ice_free(hw, p);
3688 }
3689 ice_release_lock(&hw->fl_profs_locks[blk_idx]);
3690
3691 /* if driver is in reset and tables are being cleared
3692 * re-initialize the flow profile list heads
3693 */
3694 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3695 }
3696
3697 /**
3698 * ice_free_vsig_tbl - free complete VSIG table entries
3699 * @hw: pointer to the hardware structure
3700 * @blk: the HW block on which to free the VSIG table entries
3701 */
3702 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3703 {
3704 u16 i;
3705
3706 if (!hw->blk[blk].xlt2.vsig_tbl)
3707 return;
3708
3709 for (i = 1; i < ICE_MAX_VSIGS; i++)
3710 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3711 ice_vsig_free(hw, blk, i);
3712 }
3713
3714 /**
3715 * ice_free_hw_tbls - free hardware table memory
3716 * @hw: pointer to the hardware structure
3717 */
3718 void ice_free_hw_tbls(struct ice_hw *hw)
3719 {
3720 struct ice_rss_cfg *r, *rt;
3721 u8 i;
3722
3723 for (i = 0; i < ICE_BLK_COUNT; i++) {
3724 if (hw->blk[i].is_list_init) {
3725 struct ice_es *es = &hw->blk[i].es;
3726
3727 ice_free_prof_map(hw, i);
3728 ice_destroy_lock(&es->prof_map_lock);
3729
3730 ice_free_flow_profs(hw, i);
3731 ice_destroy_lock(&hw->fl_profs_locks[i]);
3732
3733 hw->blk[i].is_list_init = false;
3734 }
3735 ice_free_vsig_tbl(hw, (enum ice_block)i);
3736 ice_free(hw, hw->blk[i].xlt1.ptypes);
3737 ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
3738 ice_free(hw, hw->blk[i].xlt1.t);
3739 ice_free(hw, hw->blk[i].xlt2.t);
3740 ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
3741 ice_free(hw, hw->blk[i].xlt2.vsis);
3742 ice_free(hw, hw->blk[i].prof.t);
3743 ice_free(hw, hw->blk[i].prof_redir.t);
3744 ice_free(hw, hw->blk[i].es.t);
3745 ice_free(hw, hw->blk[i].es.ref_count);
3746 ice_free(hw, hw->blk[i].es.written);
3747 }
3748
3749 LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head,
3750 ice_rss_cfg, l_entry) {
3751 LIST_DEL(&r->l_entry);
3752 ice_free(hw, r);
3753 }
3754 ice_destroy_lock(&hw->rss_locks);
3755 ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM);
3756 }
3757
3758 /**
3759 * ice_init_flow_profs - init flow profile locks and list heads
3760 * @hw: pointer to the hardware structure
3761 * @blk_idx: HW block index
3762 */
3763 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3764 {
3765 ice_init_lock(&hw->fl_profs_locks[blk_idx]);
3766 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3767 }
3768
3769 /**
3770 * ice_clear_hw_tbls - clear HW tables and flow profiles
3771 * @hw: pointer to the hardware structure
3772 */
3773 void ice_clear_hw_tbls(struct ice_hw *hw)
3774 {
3775 u8 i;
3776
3777 for (i = 0; i < ICE_BLK_COUNT; i++) {
3778 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3779 struct ice_prof_tcam *prof = &hw->blk[i].prof;
3780 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3781 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3782 struct ice_es *es = &hw->blk[i].es;
3783
3784 if (hw->blk[i].is_list_init) {
3785 ice_free_prof_map(hw, i);
3786 ice_free_flow_profs(hw, i);
3787 }
3788
3789 ice_free_vsig_tbl(hw, (enum ice_block)i);
3790
3791 ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes),
3792 ICE_NONDMA_MEM);
3793 ice_memset(xlt1->ptg_tbl, 0,
3794 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl),
3795 ICE_NONDMA_MEM);
3796 ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t),
3797 ICE_NONDMA_MEM);
3798
3799 ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis),
3800 ICE_NONDMA_MEM);
3801 ice_memset(xlt2->vsig_tbl, 0,
3802 xlt2->count * sizeof(*xlt2->vsig_tbl),
3803 ICE_NONDMA_MEM);
3804 ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t),
3805 ICE_NONDMA_MEM);
3806
3807 ice_memset(prof->t, 0, prof->count * sizeof(*prof->t),
3808 ICE_NONDMA_MEM);
3809 ice_memset(prof_redir->t, 0,
3810 prof_redir->count * sizeof(*prof_redir->t),
3811 ICE_NONDMA_MEM);
3812
3813 ice_memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw,
3814 ICE_NONDMA_MEM);
3815 ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count),
3816 ICE_NONDMA_MEM);
3817 ice_memset(es->written, 0, es->count * sizeof(*es->written),
3818 ICE_NONDMA_MEM);
3819 }
3820 }
3821
3822 /**
3823 * ice_init_hw_tbls - init hardware table memory
3824 * @hw: pointer to the hardware structure
3825 */
3826 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3827 {
3828 u8 i;
3829
3830 ice_init_lock(&hw->rss_locks);
3831 INIT_LIST_HEAD(&hw->rss_list_head);
3832 for (i = 0; i < ICE_BLK_COUNT; i++) {
3833 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3834 struct ice_prof_tcam *prof = &hw->blk[i].prof;
3835 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3836 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3837 struct ice_es *es = &hw->blk[i].es;
3838 u16 j;
3839
3840 if (hw->blk[i].is_list_init)
3841 continue;
3842
3843 ice_init_flow_profs(hw, i);
3844 ice_init_lock(&es->prof_map_lock);
3845 INIT_LIST_HEAD(&es->prof_map);
3846 hw->blk[i].is_list_init = true;
3847
3848 hw->blk[i].overwrite = blk_sizes[i].overwrite;
3849 es->reverse = blk_sizes[i].reverse;
3850
3851 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3852 xlt1->count = blk_sizes[i].xlt1;
3853
3854 xlt1->ptypes = (struct ice_ptg_ptype *)
3855 ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
3856
3857 if (!xlt1->ptypes)
3858 goto err;
3859
3860 xlt1->ptg_tbl = (struct ice_ptg_entry *)
3861 ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
3862
3863 if (!xlt1->ptg_tbl)
3864 goto err;
3865
3866 xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t));
3867 if (!xlt1->t)
3868 goto err;
3869
3870 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3871 xlt2->count = blk_sizes[i].xlt2;
3872
3873 xlt2->vsis = (struct ice_vsig_vsi *)
3874 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
3875
3876 if (!xlt2->vsis)
3877 goto err;
3878
3879 xlt2->vsig_tbl = (struct ice_vsig_entry *)
3880 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
3881 if (!xlt2->vsig_tbl)
3882 goto err;
3883
3884 for (j = 0; j < xlt2->count; j++)
3885 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3886
3887 xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t));
3888 if (!xlt2->t)
3889 goto err;
3890
3891 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3892 prof->count = blk_sizes[i].prof_tcam;
3893 prof->max_prof_id = blk_sizes[i].prof_id;
3894 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3895 prof->t = (struct ice_prof_tcam_entry *)
3896 ice_calloc(hw, prof->count, sizeof(*prof->t));
3897
3898 if (!prof->t)
3899 goto err;
3900
3901 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3902 prof_redir->count = blk_sizes[i].prof_redir;
3903 prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count,
3904 sizeof(*prof_redir->t));
3905
3906 if (!prof_redir->t)
3907 goto err;
3908
3909 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3910 es->count = blk_sizes[i].es;
3911 es->fvw = blk_sizes[i].fvw;
3912 es->t = (struct ice_fv_word *)
3913 ice_calloc(hw, (u32)(es->count * es->fvw),
3914 sizeof(*es->t));
3915 if (!es->t)
3916 goto err;
3917
3918 es->ref_count = (u16 *)
3919 ice_calloc(hw, es->count, sizeof(*es->ref_count));
3920
3921 if (!es->ref_count)
3922 goto err;
3923
3924 es->written = (u8 *)
3925 ice_calloc(hw, es->count, sizeof(*es->written));
3926
3927 if (!es->written)
3928 goto err;
3929
3930 }
3931 return ICE_SUCCESS;
3932
3933 err:
3934 ice_free_hw_tbls(hw);
3935 return ICE_ERR_NO_MEMORY;
3936 }
3937
3938 /**
3939 * ice_prof_gen_key - generate profile ID key
3940 * @hw: pointer to the HW struct
3941 * @blk: the block in which to write profile ID to
3942 * @ptg: packet type group (PTG) portion of key
3943 * @vsig: VSIG portion of key
3944 * @cdid: CDID portion of key
3945 * @flags: flag portion of key
3946 * @vl_msk: valid mask
3947 * @dc_msk: don't care mask
3948 * @nm_msk: never match mask
3949 * @key: output of profile ID key
3950 */
3951 static enum ice_status
3952 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3953 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3954 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3955 u8 key[ICE_TCAM_KEY_SZ])
3956 {
3957 struct ice_prof_id_key inkey;
3958
3959 inkey.xlt1 = ptg;
3960 inkey.xlt2_cdid = CPU_TO_LE16(vsig);
3961 inkey.flags = CPU_TO_LE16(flags);
3962
3963 switch (hw->blk[blk].prof.cdid_bits) {
3964 case 0:
3965 break;
3966 case 2:
3967 #define ICE_CD_2_M 0xC000U
3968 #define ICE_CD_2_S 14
3969 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M);
3970 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S);
3971 break;
3972 case 4:
3973 #define ICE_CD_4_M 0xF000U
3974 #define ICE_CD_4_S 12
3975 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M);
3976 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S);
3977 break;
3978 case 8:
3979 #define ICE_CD_8_M 0xFF00U
3980 #define ICE_CD_8_S 16
3981 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M);
3982 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S);
3983 break;
3984 default:
3985 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3986 break;
3987 }
3988
3989 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3990 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3991 }
3992
3993 /**
3994 * ice_tcam_write_entry - write TCAM entry
3995 * @hw: pointer to the HW struct
3996 * @blk: the block in which to write profile ID to
3997 * @idx: the entry index to write to
3998 * @prof_id: profile ID
3999 * @ptg: packet type group (PTG) portion of key
4000 * @vsig: VSIG portion of key
4001 * @cdid: CDID portion of key
4002 * @flags: flag portion of key
4003 * @vl_msk: valid mask
4004 * @dc_msk: don't care mask
4005 * @nm_msk: never match mask
4006 */
4007 static enum ice_status
4008 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
4009 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
4010 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4011 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
4012 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
4013 {
4014 struct ice_prof_tcam_entry;
4015 enum ice_status status;
4016
4017 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
4018 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
4019 if (!status) {
4020 hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx);
4021 hw->blk[blk].prof.t[idx].prof_id = prof_id;
4022 }
4023
4024 return status;
4025 }
4026
4027 /**
4028 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
4029 * @hw: pointer to the hardware structure
4030 * @blk: HW block
4031 * @vsig: VSIG to query
4032 * @refs: pointer to variable to receive the reference count
4033 */
4034 static enum ice_status
4035 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
4036 {
4037 u16 idx = vsig & ICE_VSIG_IDX_M;
4038 struct ice_vsig_vsi *ptr;
4039
4040 *refs = 0;
4041
4042 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
4043 return ICE_ERR_DOES_NOT_EXIST;
4044
4045 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4046 while (ptr) {
4047 (*refs)++;
4048 ptr = ptr->next_vsi;
4049 }
4050
4051 return ICE_SUCCESS;
4052 }
4053
4054 /**
4055 * ice_has_prof_vsig - check to see if VSIG has a specific profile
4056 * @hw: pointer to the hardware structure
4057 * @blk: HW block
4058 * @vsig: VSIG to check against
4059 * @hdl: profile handle
4060 */
4061 static bool
4062 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4063 {
4064 u16 idx = vsig & ICE_VSIG_IDX_M;
4065 struct ice_vsig_prof *ent;
4066
4067 LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4068 ice_vsig_prof, list)
4069 if (ent->profile_cookie == hdl)
4070 return true;
4071
4072 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4073 vsig);
4074 return false;
4075 }
4076
4077 /**
4078 * ice_prof_bld_es - build profile ID extraction sequence changes
4079 * @hw: pointer to the HW struct
4080 * @blk: hardware block
4081 * @bld: the update package buffer build to add to
4082 * @chgs: the list of changes to make in hardware
4083 */
4084 static enum ice_status
4085 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4086 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4087 {
4088 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4089 struct ice_chs_chg *tmp;
4090
4091 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4092 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4093 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4094 struct ice_pkg_es *p;
4095 u32 id;
4096
4097 id = ice_sect_id(blk, ICE_VEC_TBL);
4098 p = (struct ice_pkg_es *)
4099 ice_pkg_buf_alloc_section(bld, id,
4100 ice_struct_size(p, es,
4101 1) +
4102 vec_size -
4103 sizeof(p->es[0]));
4104
4105 if (!p)
4106 return ICE_ERR_MAX_LIMIT;
4107
4108 p->count = CPU_TO_LE16(1);
4109 p->offset = CPU_TO_LE16(tmp->prof_id);
4110
4111 ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size,
4112 ICE_NONDMA_TO_NONDMA);
4113 }
4114
4115 return ICE_SUCCESS;
4116 }
4117
4118 /**
4119 * ice_prof_bld_tcam - build profile ID TCAM changes
4120 * @hw: pointer to the HW struct
4121 * @blk: hardware block
4122 * @bld: the update package buffer build to add to
4123 * @chgs: the list of changes to make in hardware
4124 */
4125 static enum ice_status
4126 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4127 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4128 {
4129 struct ice_chs_chg *tmp;
4130
4131 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4132 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4133 struct ice_prof_id_section *p;
4134 u32 id;
4135
4136 id = ice_sect_id(blk, ICE_PROF_TCAM);
4137 p = (struct ice_prof_id_section *)
4138 ice_pkg_buf_alloc_section(bld, id,
4139 ice_struct_size(p,
4140 entry,
4141 1));
4142
4143 if (!p)
4144 return ICE_ERR_MAX_LIMIT;
4145
4146 p->count = CPU_TO_LE16(1);
4147 p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx);
4148 p->entry[0].prof_id = tmp->prof_id;
4149
4150 ice_memcpy(p->entry[0].key,
4151 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4152 sizeof(hw->blk[blk].prof.t->key),
4153 ICE_NONDMA_TO_NONDMA);
4154 }
4155
4156 return ICE_SUCCESS;
4157 }
4158
4159 /**
4160 * ice_prof_bld_xlt1 - build XLT1 changes
4161 * @blk: hardware block
4162 * @bld: the update package buffer build to add to
4163 * @chgs: the list of changes to make in hardware
4164 */
4165 static enum ice_status
4166 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4167 struct LIST_HEAD_TYPE *chgs)
4168 {
4169 struct ice_chs_chg *tmp;
4170
4171 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4172 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4173 struct ice_xlt1_section *p;
4174 u32 id;
4175
4176 id = ice_sect_id(blk, ICE_XLT1);
4177 p = (struct ice_xlt1_section *)
4178 ice_pkg_buf_alloc_section(bld, id,
4179 ice_struct_size(p,
4180 value,
4181 1));
4182
4183 if (!p)
4184 return ICE_ERR_MAX_LIMIT;
4185
4186 p->count = CPU_TO_LE16(1);
4187 p->offset = CPU_TO_LE16(tmp->ptype);
4188 p->value[0] = tmp->ptg;
4189 }
4190
4191 return ICE_SUCCESS;
4192 }
4193
4194 /**
4195 * ice_prof_bld_xlt2 - build XLT2 changes
4196 * @blk: hardware block
4197 * @bld: the update package buffer build to add to
4198 * @chgs: the list of changes to make in hardware
4199 */
4200 static enum ice_status
4201 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4202 struct LIST_HEAD_TYPE *chgs)
4203 {
4204 struct ice_chs_chg *tmp;
4205
4206 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4207 struct ice_xlt2_section *p;
4208 u32 id;
4209
4210 switch (tmp->type) {
4211 case ICE_VSIG_ADD:
4212 case ICE_VSI_MOVE:
4213 case ICE_VSIG_REM:
4214 id = ice_sect_id(blk, ICE_XLT2);
4215 p = (struct ice_xlt2_section *)
4216 ice_pkg_buf_alloc_section(bld, id,
4217 ice_struct_size(p,
4218 value,
4219 1));
4220
4221 if (!p)
4222 return ICE_ERR_MAX_LIMIT;
4223
4224 p->count = CPU_TO_LE16(1);
4225 p->offset = CPU_TO_LE16(tmp->vsi);
4226 p->value[0] = CPU_TO_LE16(tmp->vsig);
4227 break;
4228 default:
4229 break;
4230 }
4231 }
4232
4233 return ICE_SUCCESS;
4234 }
4235
4236 /**
4237 * ice_upd_prof_hw - update hardware using the change list
4238 * @hw: pointer to the HW struct
4239 * @blk: hardware block
4240 * @chgs: the list of changes to make in hardware
4241 */
4242 static enum ice_status
4243 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4244 struct LIST_HEAD_TYPE *chgs)
4245 {
4246 struct ice_buf_build *b;
4247 struct ice_chs_chg *tmp;
4248 enum ice_status status;
4249 u16 pkg_sects;
4250 u16 xlt1 = 0;
4251 u16 xlt2 = 0;
4252 u16 tcam = 0;
4253 u16 es = 0;
4254 u16 sects;
4255
4256 /* count number of sections we need */
4257 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4258 switch (tmp->type) {
4259 case ICE_PTG_ES_ADD:
4260 if (tmp->add_ptg)
4261 xlt1++;
4262 if (tmp->add_prof)
4263 es++;
4264 break;
4265 case ICE_TCAM_ADD:
4266 tcam++;
4267 break;
4268 case ICE_VSIG_ADD:
4269 case ICE_VSI_MOVE:
4270 case ICE_VSIG_REM:
4271 xlt2++;
4272 break;
4273 default:
4274 break;
4275 }
4276 }
4277 sects = xlt1 + xlt2 + tcam + es;
4278
4279 if (!sects)
4280 return ICE_SUCCESS;
4281
4282 /* Build update package buffer */
4283 b = ice_pkg_buf_alloc(hw);
4284 if (!b)
4285 return ICE_ERR_NO_MEMORY;
4286
4287 status = ice_pkg_buf_reserve_section(b, sects);
4288 if (status)
4289 goto error_tmp;
4290
4291 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
4292 if (es) {
4293 status = ice_prof_bld_es(hw, blk, b, chgs);
4294 if (status)
4295 goto error_tmp;
4296 }
4297
4298 if (tcam) {
4299 status = ice_prof_bld_tcam(hw, blk, b, chgs);
4300 if (status)
4301 goto error_tmp;
4302 }
4303
4304 if (xlt1) {
4305 status = ice_prof_bld_xlt1(blk, b, chgs);
4306 if (status)
4307 goto error_tmp;
4308 }
4309
4310 if (xlt2) {
4311 status = ice_prof_bld_xlt2(blk, b, chgs);
4312 if (status)
4313 goto error_tmp;
4314 }
4315
4316 /* After package buffer build check if the section count in buffer is
4317 * non-zero and matches the number of sections detected for package
4318 * update.
4319 */
4320 pkg_sects = ice_pkg_buf_get_active_sections(b);
4321 if (!pkg_sects || pkg_sects != sects) {
4322 status = ICE_ERR_INVAL_SIZE;
4323 goto error_tmp;
4324 }
4325
4326 /* update package */
4327 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4328 if (status == ICE_ERR_AQ_ERROR)
4329 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4330
4331 error_tmp:
4332 ice_pkg_buf_free(hw, b);
4333 return status;
4334 }
4335
4336 /**
4337 * ice_add_prof - add profile
4338 * @hw: pointer to the HW struct
4339 * @blk: hardware block
4340 * @id: profile tracking ID
4341 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4342 * @es: extraction sequence (length of array is determined by the block)
4343 *
4344 * This function registers a profile, which matches a set of PTGs with a
4345 * particular extraction sequence. While the hardware profile is allocated
4346 * it will not be written until the first call to ice_add_flow that specifies
4347 * the ID value used here.
4348 */
4349 enum ice_status
4350 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4351 struct ice_fv_word *es)
4352 {
4353 u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4354 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4355 struct ice_prof_map *prof;
4356 enum ice_status status;
4357 u8 byte = 0;
4358 u8 prof_id;
4359
4360 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
4361
4362 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4363
4364 /* search for existing profile */
4365 status = ice_find_prof_id(hw, blk, es, &prof_id);
4366 if (status) {
4367 /* allocate profile ID */
4368 status = ice_alloc_prof_id(hw, blk, &prof_id);
4369 if (status)
4370 goto err_ice_add_prof;
4371
4372 /* and write new es */
4373 ice_write_es(hw, blk, prof_id, es);
4374 }
4375
4376 ice_prof_inc_ref(hw, blk, prof_id);
4377
4378 /* add profile info */
4379
4380 prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof));
4381 if (!prof)
4382 goto err_ice_add_prof;
4383
4384 prof->profile_cookie = id;
4385 prof->prof_id = prof_id;
4386 prof->ptg_cnt = 0;
4387 prof->context = 0;
4388
4389 /* build list of ptgs */
4390 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4391 u8 bit;
4392
4393 if (!ptypes[byte]) {
4394 bytes--;
4395 byte++;
4396 continue;
4397 }
4398
4399 /* Examine 8 bits per byte */
4400 ice_for_each_set_bit(bit, (ice_bitmap_t *)&ptypes[byte],
4401 BITS_PER_BYTE) {
4402 u16 ptype;
4403 u8 ptg;
4404
4405 ptype = byte * BITS_PER_BYTE + bit;
4406
4407 /* The package should place all ptypes in a non-zero
4408 * PTG, so the following call should never fail.
4409 */
4410 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4411 continue;
4412
4413 /* If PTG is already added, skip and continue */
4414 if (ice_is_bit_set(ptgs_used, ptg))
4415 continue;
4416
4417 ice_set_bit(ptg, ptgs_used);
4418 prof->ptg[prof->ptg_cnt] = ptg;
4419
4420 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4421 break;
4422 }
4423
4424 bytes--;
4425 byte++;
4426 }
4427
4428 LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map);
4429 status = ICE_SUCCESS;
4430
4431 err_ice_add_prof:
4432 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4433 return status;
4434 }
4435
4436 /**
4437 * ice_search_prof_id - Search for a profile tracking ID
4438 * @hw: pointer to the HW struct
4439 * @blk: hardware block
4440 * @id: profile tracking ID
4441 *
4442 * This will search for a profile tracking ID which was previously added.
4443 * The profile map lock should be held before calling this function.
4444 */
4445 struct ice_prof_map *
4446 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
4447 {
4448 struct ice_prof_map *entry = NULL;
4449 struct ice_prof_map *map;
4450
4451 LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list)
4452 if (map->profile_cookie == id) {
4453 entry = map;
4454 break;
4455 }
4456
4457 return entry;
4458 }
4459
4460 /**
4461 * ice_set_prof_context - Set context for a given profile
4462 * @hw: pointer to the HW struct
4463 * @blk: hardware block
4464 * @id: profile tracking ID
4465 * @cntxt: context
4466 */
4467 enum ice_status
4468 ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt)
4469 {
4470 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4471 struct ice_prof_map *entry;
4472
4473 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4474 entry = ice_search_prof_id(hw, blk, id);
4475 if (entry) {
4476 entry->context = cntxt;
4477 status = ICE_SUCCESS;
4478 }
4479 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4480 return status;
4481 }
4482
4483 /**
4484 * ice_get_prof_context - Get context for a given profile
4485 * @hw: pointer to the HW struct
4486 * @blk: hardware block
4487 * @id: profile tracking ID
4488 * @cntxt: pointer to variable to receive the context
4489 */
4490 enum ice_status
4491 ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt)
4492 {
4493 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4494 struct ice_prof_map *entry;
4495
4496 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4497 entry = ice_search_prof_id(hw, blk, id);
4498 if (entry) {
4499 *cntxt = entry->context;
4500 status = ICE_SUCCESS;
4501 }
4502 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4503 return status;
4504 }
4505
4506 /**
4507 * ice_vsig_prof_id_count - count profiles in a VSIG
4508 * @hw: pointer to the HW struct
4509 * @blk: hardware block
4510 * @vsig: VSIG to remove the profile from
4511 */
4512 static u16
4513 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
4514 {
4515 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
4516 struct ice_vsig_prof *p;
4517
4518 LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4519 ice_vsig_prof, list)
4520 count++;
4521
4522 return count;
4523 }
4524
4525 /**
4526 * ice_rel_tcam_idx - release a TCAM index
4527 * @hw: pointer to the HW struct
4528 * @blk: hardware block
4529 * @idx: the index to release
4530 */
4531 static enum ice_status
4532 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
4533 {
4534 /* Masks to invoke a never match entry */
4535 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4536 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
4537 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
4538 enum ice_status status;
4539
4540 /* write the TCAM entry */
4541 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
4542 dc_msk, nm_msk);
4543 if (status)
4544 return status;
4545
4546 /* release the TCAM entry */
4547 status = ice_free_tcam_ent(hw, blk, idx);
4548
4549 return status;
4550 }
4551
4552 /**
4553 * ice_rem_prof_id - remove one profile from a VSIG
4554 * @hw: pointer to the HW struct
4555 * @blk: hardware block
4556 * @prof: pointer to profile structure to remove
4557 */
4558 static enum ice_status
4559 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
4560 struct ice_vsig_prof *prof)
4561 {
4562 enum ice_status status;
4563 u16 i;
4564
4565 for (i = 0; i < prof->tcam_count; i++)
4566 if (prof->tcam[i].in_use) {
4567 prof->tcam[i].in_use = false;
4568 status = ice_rel_tcam_idx(hw, blk,
4569 prof->tcam[i].tcam_idx);
4570 if (status)
4571 return ICE_ERR_HW_TABLE;
4572 }
4573
4574 return ICE_SUCCESS;
4575 }
4576
4577 /**
4578 * ice_rem_vsig - remove VSIG
4579 * @hw: pointer to the HW struct
4580 * @blk: hardware block
4581 * @vsig: the VSIG to remove
4582 * @chg: the change list
4583 */
4584 static enum ice_status
4585 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4586 struct LIST_HEAD_TYPE *chg)
4587 {
4588 u16 idx = vsig & ICE_VSIG_IDX_M;
4589 struct ice_vsig_vsi *vsi_cur;
4590 struct ice_vsig_prof *d, *t;
4591 enum ice_status status;
4592
4593 /* remove TCAM entries */
4594 LIST_FOR_EACH_ENTRY_SAFE(d, t,
4595 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4596 ice_vsig_prof, list) {
4597 status = ice_rem_prof_id(hw, blk, d);
4598 if (status)
4599 return status;
4600
4601 LIST_DEL(&d->list);
4602 ice_free(hw, d);
4603 }
4604
4605 /* Move all VSIS associated with this VSIG to the default VSIG */
4606 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4607 /* If the VSIG has at least 1 VSI then iterate through the list
4608 * and remove the VSIs before deleting the group.
4609 */
4610 if (vsi_cur)
4611 do {
4612 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4613 struct ice_chs_chg *p;
4614
4615 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4616 if (!p)
4617 return ICE_ERR_NO_MEMORY;
4618
4619 p->type = ICE_VSIG_REM;
4620 p->orig_vsig = vsig;
4621 p->vsig = ICE_DEFAULT_VSIG;
4622 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4623
4624 LIST_ADD(&p->list_entry, chg);
4625
4626 vsi_cur = tmp;
4627 } while (vsi_cur);
4628
4629 return ice_vsig_free(hw, blk, vsig);
4630 }
4631
4632 /**
4633 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4634 * @hw: pointer to the HW struct
4635 * @blk: hardware block
4636 * @vsig: VSIG to remove the profile from
4637 * @hdl: profile handle indicating which profile to remove
4638 * @chg: list to receive a record of changes
4639 */
4640 static enum ice_status
4641 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4642 struct LIST_HEAD_TYPE *chg)
4643 {
4644 u16 idx = vsig & ICE_VSIG_IDX_M;
4645 struct ice_vsig_prof *p, *t;
4646 enum ice_status status;
4647
4648 LIST_FOR_EACH_ENTRY_SAFE(p, t,
4649 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4650 ice_vsig_prof, list)
4651 if (p->profile_cookie == hdl) {
4652 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4653 /* this is the last profile, remove the VSIG */
4654 return ice_rem_vsig(hw, blk, vsig, chg);
4655
4656 status = ice_rem_prof_id(hw, blk, p);
4657 if (!status) {
4658 LIST_DEL(&p->list);
4659 ice_free(hw, p);
4660 }
4661 return status;
4662 }
4663
4664 return ICE_ERR_DOES_NOT_EXIST;
4665 }
4666
4667 /**
4668 * ice_rem_flow_all - remove all flows with a particular profile
4669 * @hw: pointer to the HW struct
4670 * @blk: hardware block
4671 * @id: profile tracking ID
4672 */
4673 static enum ice_status
4674 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4675 {
4676 struct ice_chs_chg *del, *tmp;
4677 enum ice_status status;
4678 struct LIST_HEAD_TYPE chg;
4679 u16 i;
4680
4681 INIT_LIST_HEAD(&chg);
4682
4683 for (i = 1; i < ICE_MAX_VSIGS; i++)
4684 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4685 if (ice_has_prof_vsig(hw, blk, i, id)) {
4686 status = ice_rem_prof_id_vsig(hw, blk, i, id,
4687 &chg);
4688 if (status)
4689 goto err_ice_rem_flow_all;
4690 }
4691 }
4692
4693 status = ice_upd_prof_hw(hw, blk, &chg);
4694
4695 err_ice_rem_flow_all:
4696 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
4697 LIST_DEL(&del->list_entry);
4698 ice_free(hw, del);
4699 }
4700
4701 return status;
4702 }
4703
4704 /**
4705 * ice_rem_prof - remove profile
4706 * @hw: pointer to the HW struct
4707 * @blk: hardware block
4708 * @id: profile tracking ID
4709 *
4710 * This will remove the profile specified by the ID parameter, which was
4711 * previously created through ice_add_prof. If any existing entries
4712 * are associated with this profile, they will be removed as well.
4713 */
4714 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4715 {
4716 struct ice_prof_map *pmap;
4717 enum ice_status status;
4718
4719 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4720
4721 pmap = ice_search_prof_id(hw, blk, id);
4722 if (!pmap) {
4723 status = ICE_ERR_DOES_NOT_EXIST;
4724 goto err_ice_rem_prof;
4725 }
4726
4727 /* remove all flows with this profile */
4728 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4729 if (status)
4730 goto err_ice_rem_prof;
4731
4732 /* dereference profile, and possibly remove */
4733 ice_prof_dec_ref(hw, blk, pmap->prof_id);
4734
4735 LIST_DEL(&pmap->list);
4736 ice_free(hw, pmap);
4737
4738 err_ice_rem_prof:
4739 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4740 return status;
4741 }
4742
4743 /**
4744 * ice_get_prof - get profile
4745 * @hw: pointer to the HW struct
4746 * @blk: hardware block
4747 * @hdl: profile handle
4748 * @chg: change list
4749 */
4750 static enum ice_status
4751 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4752 struct LIST_HEAD_TYPE *chg)
4753 {
4754 enum ice_status status = ICE_SUCCESS;
4755 struct ice_prof_map *map;
4756 struct ice_chs_chg *p;
4757 u16 i;
4758
4759 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4760 /* Get the details on the profile specified by the handle ID */
4761 map = ice_search_prof_id(hw, blk, hdl);
4762 if (!map) {
4763 status = ICE_ERR_DOES_NOT_EXIST;
4764 goto err_ice_get_prof;
4765 }
4766
4767 for (i = 0; i < map->ptg_cnt; i++)
4768 if (!hw->blk[blk].es.written[map->prof_id]) {
4769 /* add ES to change list */
4770 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4771 if (!p) {
4772 status = ICE_ERR_NO_MEMORY;
4773 goto err_ice_get_prof;
4774 }
4775
4776 p->type = ICE_PTG_ES_ADD;
4777 p->ptype = 0;
4778 p->ptg = map->ptg[i];
4779 p->add_ptg = 0;
4780
4781 p->add_prof = 1;
4782 p->prof_id = map->prof_id;
4783
4784 hw->blk[blk].es.written[map->prof_id] = true;
4785
4786 LIST_ADD(&p->list_entry, chg);
4787 }
4788
4789 err_ice_get_prof:
4790 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4791 /* let caller clean up the change list */
4792 return status;
4793 }
4794
4795 /**
4796 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4797 * @hw: pointer to the HW struct
4798 * @blk: hardware block
4799 * @vsig: VSIG from which to copy the list
4800 * @lst: output list
4801 *
4802 * This routine makes a copy of the list of profiles in the specified VSIG.
4803 */
4804 static enum ice_status
4805 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4806 struct LIST_HEAD_TYPE *lst)
4807 {
4808 struct ice_vsig_prof *ent1, *ent2;
4809 u16 idx = vsig & ICE_VSIG_IDX_M;
4810
4811 LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4812 ice_vsig_prof, list) {
4813 struct ice_vsig_prof *p;
4814
4815 /* copy to the input list */
4816 p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p),
4817 ICE_NONDMA_TO_NONDMA);
4818 if (!p)
4819 goto err_ice_get_profs_vsig;
4820
4821 LIST_ADD_TAIL(&p->list, lst);
4822 }
4823
4824 return ICE_SUCCESS;
4825
4826 err_ice_get_profs_vsig:
4827 LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) {
4828 LIST_DEL(&ent1->list);
4829 ice_free(hw, ent1);
4830 }
4831
4832 return ICE_ERR_NO_MEMORY;
4833 }
4834
4835 /**
4836 * ice_add_prof_to_lst - add profile entry to a list
4837 * @hw: pointer to the HW struct
4838 * @blk: hardware block
4839 * @lst: the list to be added to
4840 * @hdl: profile handle of entry to add
4841 */
4842 static enum ice_status
4843 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4844 struct LIST_HEAD_TYPE *lst, u64 hdl)
4845 {
4846 enum ice_status status = ICE_SUCCESS;
4847 struct ice_prof_map *map;
4848 struct ice_vsig_prof *p;
4849 u16 i;
4850
4851 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4852 map = ice_search_prof_id(hw, blk, hdl);
4853 if (!map) {
4854 status = ICE_ERR_DOES_NOT_EXIST;
4855 goto err_ice_add_prof_to_lst;
4856 }
4857
4858 p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
4859 if (!p) {
4860 status = ICE_ERR_NO_MEMORY;
4861 goto err_ice_add_prof_to_lst;
4862 }
4863
4864 p->profile_cookie = map->profile_cookie;
4865 p->prof_id = map->prof_id;
4866 p->tcam_count = map->ptg_cnt;
4867
4868 for (i = 0; i < map->ptg_cnt; i++) {
4869 p->tcam[i].prof_id = map->prof_id;
4870 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4871 p->tcam[i].ptg = map->ptg[i];
4872 }
4873
4874 LIST_ADD(&p->list, lst);
4875
4876 err_ice_add_prof_to_lst:
4877 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4878 return status;
4879 }
4880
4881 /**
4882 * ice_move_vsi - move VSI to another VSIG
4883 * @hw: pointer to the HW struct
4884 * @blk: hardware block
4885 * @vsi: the VSI to move
4886 * @vsig: the VSIG to move the VSI to
4887 * @chg: the change list
4888 */
4889 static enum ice_status
4890 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4891 struct LIST_HEAD_TYPE *chg)
4892 {
4893 enum ice_status status;
4894 struct ice_chs_chg *p;
4895 u16 orig_vsig;
4896
4897 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4898 if (!p)
4899 return ICE_ERR_NO_MEMORY;
4900
4901 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4902 if (!status)
4903 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4904
4905 if (status) {
4906 ice_free(hw, p);
4907 return status;
4908 }
4909
4910 p->type = ICE_VSI_MOVE;
4911 p->vsi = vsi;
4912 p->orig_vsig = orig_vsig;
4913 p->vsig = vsig;
4914
4915 LIST_ADD(&p->list_entry, chg);
4916
4917 return ICE_SUCCESS;
4918 }
4919
4920 /**
4921 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
4922 * @hw: pointer to the HW struct
4923 * @idx: the index of the TCAM entry to remove
4924 * @chg: the list of change structures to search
4925 */
4926 static void
4927 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg)
4928 {
4929 struct ice_chs_chg *pos, *tmp;
4930
4931 LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry)
4932 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
4933 LIST_DEL(&tmp->list_entry);
4934 ice_free(hw, tmp);
4935 }
4936 }
4937
4938 /**
4939 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4940 * @hw: pointer to the HW struct
4941 * @blk: hardware block
4942 * @enable: true to enable, false to disable
4943 * @vsig: the VSIG of the TCAM entry
4944 * @tcam: pointer the TCAM info structure of the TCAM to disable
4945 * @chg: the change list
4946 *
4947 * This function appends an enable or disable TCAM entry in the change log
4948 */
4949 static enum ice_status
4950 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4951 u16 vsig, struct ice_tcam_inf *tcam,
4952 struct LIST_HEAD_TYPE *chg)
4953 {
4954 enum ice_status status;
4955 struct ice_chs_chg *p;
4956
4957 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4958 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4959 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4960
4961 /* if disabling, free the TCAM */
4962 if (!enable) {
4963 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
4964
4965 /* if we have already created a change for this TCAM entry, then
4966 * we need to remove that entry, in order to prevent writing to
4967 * a TCAM entry we no longer will have ownership of.
4968 */
4969 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
4970 tcam->tcam_idx = 0;
4971 tcam->in_use = 0;
4972 return status;
4973 }
4974
4975 /* for re-enabling, reallocate a TCAM */
4976 status = ice_alloc_tcam_ent(hw, blk, true, &tcam->tcam_idx);
4977 if (status)
4978 return status;
4979
4980 /* add TCAM to change list */
4981 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4982 if (!p)
4983 return ICE_ERR_NO_MEMORY;
4984
4985 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4986 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
4987 nm_msk);
4988 if (status)
4989 goto err_ice_prof_tcam_ena_dis;
4990
4991 tcam->in_use = 1;
4992
4993 p->type = ICE_TCAM_ADD;
4994 p->add_tcam_idx = true;
4995 p->prof_id = tcam->prof_id;
4996 p->ptg = tcam->ptg;
4997 p->vsig = 0;
4998 p->tcam_idx = tcam->tcam_idx;
4999
5000 /* log change */
5001 LIST_ADD(&p->list_entry, chg);
5002
5003 return ICE_SUCCESS;
5004
5005 err_ice_prof_tcam_ena_dis:
5006 ice_free(hw, p);
5007 return status;
5008 }
5009
5010 /**
5011 * ice_adj_prof_priorities - adjust profile based on priorities
5012 * @hw: pointer to the HW struct
5013 * @blk: hardware block
5014 * @vsig: the VSIG for which to adjust profile priorities
5015 * @chg: the change list
5016 */
5017 static enum ice_status
5018 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5019 struct LIST_HEAD_TYPE *chg)
5020 {
5021 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
5022 enum ice_status status = ICE_SUCCESS;
5023 struct ice_vsig_prof *t;
5024 u16 idx;
5025
5026 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
5027 idx = vsig & ICE_VSIG_IDX_M;
5028
5029 /* Priority is based on the order in which the profiles are added. The
5030 * newest added profile has highest priority and the oldest added
5031 * profile has the lowest priority. Since the profile property list for
5032 * a VSIG is sorted from newest to oldest, this code traverses the list
5033 * in order and enables the first of each PTG that it finds (that is not
5034 * already enabled); it also disables any duplicate PTGs that it finds
5035 * in the older profiles (that are currently enabled).
5036 */
5037
5038 LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5039 ice_vsig_prof, list) {
5040 u16 i;
5041
5042 for (i = 0; i < t->tcam_count; i++) {
5043 bool used;
5044
5045 /* Scan the priorities from newest to oldest.
5046 * Make sure that the newest profiles take priority.
5047 */
5048 used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg);
5049
5050 if (used && t->tcam[i].in_use) {
5051 /* need to mark this PTG as never match, as it
5052 * was already in use and therefore duplicate
5053 * (and lower priority)
5054 */
5055 status = ice_prof_tcam_ena_dis(hw, blk, false,
5056 vsig,
5057 &t->tcam[i],
5058 chg);
5059 if (status)
5060 return status;
5061 } else if (!used && !t->tcam[i].in_use) {
5062 /* need to enable this PTG, as it in not in use
5063 * and not enabled (highest priority)
5064 */
5065 status = ice_prof_tcam_ena_dis(hw, blk, true,
5066 vsig,
5067 &t->tcam[i],
5068 chg);
5069 if (status)
5070 return status;
5071 }
5072
5073 /* keep track of used ptgs */
5074 ice_set_bit(t->tcam[i].ptg, ptgs_used);
5075 }
5076 }
5077
5078 return status;
5079 }
5080
5081 /**
5082 * ice_add_prof_id_vsig - add profile to VSIG
5083 * @hw: pointer to the HW struct
5084 * @blk: hardware block
5085 * @vsig: the VSIG to which this profile is to be added
5086 * @hdl: the profile handle indicating the profile to add
5087 * @rev: true to add entries to the end of the list
5088 * @chg: the change list
5089 */
5090 static enum ice_status
5091 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5092 bool rev, struct LIST_HEAD_TYPE *chg)
5093 {
5094 /* Masks that ignore flags */
5095 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5096 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5097 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5098 enum ice_status status = ICE_SUCCESS;
5099 struct ice_prof_map *map;
5100 struct ice_vsig_prof *t;
5101 struct ice_chs_chg *p;
5102 u16 vsig_idx, i;
5103
5104 /* Error, if this VSIG already has this profile */
5105 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5106 return ICE_ERR_ALREADY_EXISTS;
5107
5108 /* new VSIG profile structure */
5109 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5110 if (!t)
5111 return ICE_ERR_NO_MEMORY;
5112
5113 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5114 /* Get the details on the profile specified by the handle ID */
5115 map = ice_search_prof_id(hw, blk, hdl);
5116 if (!map) {
5117 status = ICE_ERR_DOES_NOT_EXIST;
5118 goto err_ice_add_prof_id_vsig;
5119 }
5120
5121 t->profile_cookie = map->profile_cookie;
5122 t->prof_id = map->prof_id;
5123 t->tcam_count = map->ptg_cnt;
5124
5125 /* create TCAM entries */
5126 for (i = 0; i < map->ptg_cnt; i++) {
5127 u16 tcam_idx;
5128
5129 /* add TCAM to change list */
5130 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5131 if (!p) {
5132 status = ICE_ERR_NO_MEMORY;
5133 goto err_ice_add_prof_id_vsig;
5134 }
5135
5136 /* allocate the TCAM entry index */
5137 status = ice_alloc_tcam_ent(hw, blk, true, &tcam_idx);
5138 if (status) {
5139 ice_free(hw, p);
5140 goto err_ice_add_prof_id_vsig;
5141 }
5142
5143 t->tcam[i].ptg = map->ptg[i];
5144 t->tcam[i].prof_id = map->prof_id;
5145 t->tcam[i].tcam_idx = tcam_idx;
5146 t->tcam[i].in_use = true;
5147
5148 p->type = ICE_TCAM_ADD;
5149 p->add_tcam_idx = true;
5150 p->prof_id = t->tcam[i].prof_id;
5151 p->ptg = t->tcam[i].ptg;
5152 p->vsig = vsig;
5153 p->tcam_idx = t->tcam[i].tcam_idx;
5154
5155 /* write the TCAM entry */
5156 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5157 t->tcam[i].prof_id,
5158 t->tcam[i].ptg, vsig, 0, 0,
5159 vl_msk, dc_msk, nm_msk);
5160 if (status) {
5161 ice_free(hw, p);
5162 goto err_ice_add_prof_id_vsig;
5163 }
5164
5165 /* log change */
5166 LIST_ADD(&p->list_entry, chg);
5167 }
5168
5169 /* add profile to VSIG */
5170 vsig_idx = vsig & ICE_VSIG_IDX_M;
5171 if (rev)
5172 LIST_ADD_TAIL(&t->list,
5173 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5174 else
5175 LIST_ADD(&t->list,
5176 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5177
5178 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5179 return status;
5180
5181 err_ice_add_prof_id_vsig:
5182 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5183 /* let caller clean up the change list */
5184 ice_free(hw, t);
5185 return status;
5186 }
5187
5188 /**
5189 * ice_create_prof_id_vsig - add a new VSIG with a single profile
5190 * @hw: pointer to the HW struct
5191 * @blk: hardware block
5192 * @vsi: the initial VSI that will be in VSIG
5193 * @hdl: the profile handle of the profile that will be added to the VSIG
5194 * @chg: the change list
5195 */
5196 static enum ice_status
5197 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5198 struct LIST_HEAD_TYPE *chg)
5199 {
5200 enum ice_status status;
5201 struct ice_chs_chg *p;
5202 u16 new_vsig;
5203
5204 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5205 if (!p)
5206 return ICE_ERR_NO_MEMORY;
5207
5208 new_vsig = ice_vsig_alloc(hw, blk);
5209 if (!new_vsig) {
5210 status = ICE_ERR_HW_TABLE;
5211 goto err_ice_create_prof_id_vsig;
5212 }
5213
5214 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5215 if (status)
5216 goto err_ice_create_prof_id_vsig;
5217
5218 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5219 if (status)
5220 goto err_ice_create_prof_id_vsig;
5221
5222 p->type = ICE_VSIG_ADD;
5223 p->vsi = vsi;
5224 p->orig_vsig = ICE_DEFAULT_VSIG;
5225 p->vsig = new_vsig;
5226
5227 LIST_ADD(&p->list_entry, chg);
5228
5229 return ICE_SUCCESS;
5230
5231 err_ice_create_prof_id_vsig:
5232 /* let caller clean up the change list */
5233 ice_free(hw, p);
5234 return status;
5235 }
5236
5237 /**
5238 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5239 * @hw: pointer to the HW struct
5240 * @blk: hardware block
5241 * @vsi: the initial VSI that will be in VSIG
5242 * @lst: the list of profile that will be added to the VSIG
5243 * @new_vsig: return of new VSIG
5244 * @chg: the change list
5245 */
5246 static enum ice_status
5247 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5248 struct LIST_HEAD_TYPE *lst, u16 *new_vsig,
5249 struct LIST_HEAD_TYPE *chg)
5250 {
5251 struct ice_vsig_prof *t;
5252 enum ice_status status;
5253 u16 vsig;
5254
5255 vsig = ice_vsig_alloc(hw, blk);
5256 if (!vsig)
5257 return ICE_ERR_HW_TABLE;
5258
5259 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5260 if (status)
5261 return status;
5262
5263 LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) {
5264 /* Reverse the order here since we are copying the list */
5265 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5266 true, chg);
5267 if (status)
5268 return status;
5269 }
5270
5271 *new_vsig = vsig;
5272
5273 return ICE_SUCCESS;
5274 }
5275
5276 /**
5277 * ice_find_prof_vsig - find a VSIG with a specific profile handle
5278 * @hw: pointer to the HW struct
5279 * @blk: hardware block
5280 * @hdl: the profile handle of the profile to search for
5281 * @vsig: returns the VSIG with the matching profile
5282 */
5283 static bool
5284 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5285 {
5286 struct ice_vsig_prof *t;
5287 enum ice_status status;
5288 struct LIST_HEAD_TYPE lst;
5289
5290 INIT_LIST_HEAD(&lst);
5291
5292 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5293 if (!t)
5294 return false;
5295
5296 t->profile_cookie = hdl;
5297 LIST_ADD(&t->list, &lst);
5298
5299 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5300
5301 LIST_DEL(&t->list);
5302 ice_free(hw, t);
5303
5304 return status == ICE_SUCCESS;
5305 }
5306
5307 /**
5308 * ice_add_vsi_flow - add VSI flow
5309 * @hw: pointer to the HW struct
5310 * @blk: hardware block
5311 * @vsi: input VSI
5312 * @vsig: target VSIG to include the input VSI
5313 *
5314 * Calling this function will add the VSI to a given VSIG and
5315 * update the HW tables accordingly. This call can be used to
5316 * add multiple VSIs to a VSIG if we know beforehand that those
5317 * VSIs have the same characteristics of the VSIG. This will
5318 * save time in generating a new VSIG and TCAMs till a match is
5319 * found and subsequent rollback when a matching VSIG is found.
5320 */
5321 enum ice_status
5322 ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
5323 {
5324 struct ice_chs_chg *tmp, *del;
5325 struct LIST_HEAD_TYPE chg;
5326 enum ice_status status;
5327
5328 /* if target VSIG is default the move is invalid */
5329 if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG)
5330 return ICE_ERR_PARAM;
5331
5332 INIT_LIST_HEAD(&chg);
5333
5334 /* move VSI to the VSIG that matches */
5335 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5336 /* update hardware if success */
5337 if (!status)
5338 status = ice_upd_prof_hw(hw, blk, &chg);
5339
5340 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5341 LIST_DEL(&del->list_entry);
5342 ice_free(hw, del);
5343 }
5344
5345 return status;
5346 }
5347
5348 /**
5349 * ice_add_prof_id_flow - add profile flow
5350 * @hw: pointer to the HW struct
5351 * @blk: hardware block
5352 * @vsi: the VSI to enable with the profile specified by ID
5353 * @hdl: profile handle
5354 *
5355 * Calling this function will update the hardware tables to enable the
5356 * profile indicated by the ID parameter for the VSIs specified in the VSI
5357 * array. Once successfully called, the flow will be enabled.
5358 */
5359 enum ice_status
5360 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5361 {
5362 struct ice_vsig_prof *tmp1, *del1;
5363 struct ice_chs_chg *tmp, *del;
5364 struct LIST_HEAD_TYPE union_lst;
5365 enum ice_status status;
5366 struct LIST_HEAD_TYPE chg;
5367 u16 vsig;
5368
5369 INIT_LIST_HEAD(&union_lst);
5370 INIT_LIST_HEAD(&chg);
5371
5372 /* Get profile */
5373 status = ice_get_prof(hw, blk, hdl, &chg);
5374 if (status)
5375 return status;
5376
5377 /* determine if VSI is already part of a VSIG */
5378 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5379 if (!status && vsig) {
5380 bool only_vsi;
5381 u16 or_vsig;
5382 u16 ref;
5383
5384 /* found in VSIG */
5385 or_vsig = vsig;
5386
5387 /* make sure that there is no overlap/conflict between the new
5388 * characteristics and the existing ones; we don't support that
5389 * scenario
5390 */
5391 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5392 status = ICE_ERR_ALREADY_EXISTS;
5393 goto err_ice_add_prof_id_flow;
5394 }
5395
5396 /* last VSI in the VSIG? */
5397 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5398 if (status)
5399 goto err_ice_add_prof_id_flow;
5400 only_vsi = (ref == 1);
5401
5402 /* create a union of the current profiles and the one being
5403 * added
5404 */
5405 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5406 if (status)
5407 goto err_ice_add_prof_id_flow;
5408
5409 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5410 if (status)
5411 goto err_ice_add_prof_id_flow;
5412
5413 /* search for an existing VSIG with an exact charc match */
5414 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5415 if (!status) {
5416 /* move VSI to the VSIG that matches */
5417 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5418 if (status)
5419 goto err_ice_add_prof_id_flow;
5420
5421 /* VSI has been moved out of or_vsig. If the or_vsig had
5422 * only that VSI it is now empty and can be removed.
5423 */
5424 if (only_vsi) {
5425 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5426 if (status)
5427 goto err_ice_add_prof_id_flow;
5428 }
5429 } else if (only_vsi) {
5430 /* If the original VSIG only contains one VSI, then it
5431 * will be the requesting VSI. In this case the VSI is
5432 * not sharing entries and we can simply add the new
5433 * profile to the VSIG.
5434 */
5435 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5436 &chg);
5437 if (status)
5438 goto err_ice_add_prof_id_flow;
5439
5440 /* Adjust priorities */
5441 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5442 if (status)
5443 goto err_ice_add_prof_id_flow;
5444 } else {
5445 /* No match, so we need a new VSIG */
5446 status = ice_create_vsig_from_lst(hw, blk, vsi,
5447 &union_lst, &vsig,
5448 &chg);
5449 if (status)
5450 goto err_ice_add_prof_id_flow;
5451
5452 /* Adjust priorities */
5453 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5454 if (status)
5455 goto err_ice_add_prof_id_flow;
5456 }
5457 } else {
5458 /* need to find or add a VSIG */
5459 /* search for an existing VSIG with an exact charc match */
5460 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5461 /* found an exact match */
5462 /* add or move VSI to the VSIG that matches */
5463 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5464 if (status)
5465 goto err_ice_add_prof_id_flow;
5466 } else {
5467 /* we did not find an exact match */
5468 /* we need to add a VSIG */
5469 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5470 &chg);
5471 if (status)
5472 goto err_ice_add_prof_id_flow;
5473 }
5474 }
5475
5476 /* update hardware */
5477 if (!status)
5478 status = ice_upd_prof_hw(hw, blk, &chg);
5479
5480 err_ice_add_prof_id_flow:
5481 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5482 LIST_DEL(&del->list_entry);
5483 ice_free(hw, del);
5484 }
5485
5486 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) {
5487 LIST_DEL(&del1->list);
5488 ice_free(hw, del1);
5489 }
5490
5491 return status;
5492 }
5493
5494 /**
5495 * ice_add_flow - add flow
5496 * @hw: pointer to the HW struct
5497 * @blk: hardware block
5498 * @vsi: array of VSIs to enable with the profile specified by ID
5499 * @count: number of elements in the VSI array
5500 * @id: profile tracking ID
5501 *
5502 * Calling this function will update the hardware tables to enable the
5503 * profile indicated by the ID parameter for the VSIs specified in the VSI
5504 * array. Once successfully called, the flow will be enabled.
5505 */
5506 enum ice_status
5507 ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5508 u64 id)
5509 {
5510 enum ice_status status;
5511 u16 i;
5512
5513 for (i = 0; i < count; i++) {
5514 status = ice_add_prof_id_flow(hw, blk, vsi[i], id);
5515 if (status)
5516 return status;
5517 }
5518
5519 return ICE_SUCCESS;
5520 }
5521
5522 /**
5523 * ice_rem_prof_from_list - remove a profile from list
5524 * @hw: pointer to the HW struct
5525 * @lst: list to remove the profile from
5526 * @hdl: the profile handle indicating the profile to remove
5527 */
5528 static enum ice_status
5529 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl)
5530 {
5531 struct ice_vsig_prof *ent, *tmp;
5532
5533 LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list)
5534 if (ent->profile_cookie == hdl) {
5535 LIST_DEL(&ent->list);
5536 ice_free(hw, ent);
5537 return ICE_SUCCESS;
5538 }
5539
5540 return ICE_ERR_DOES_NOT_EXIST;
5541 }
5542
5543 /**
5544 * ice_rem_prof_id_flow - remove flow
5545 * @hw: pointer to the HW struct
5546 * @blk: hardware block
5547 * @vsi: the VSI from which to remove the profile specified by ID
5548 * @hdl: profile tracking handle
5549 *
5550 * Calling this function will update the hardware tables to remove the
5551 * profile indicated by the ID parameter for the VSIs specified in the VSI
5552 * array. Once successfully called, the flow will be disabled.
5553 */
5554 enum ice_status
5555 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5556 {
5557 struct ice_vsig_prof *tmp1, *del1;
5558 struct ice_chs_chg *tmp, *del;
5559 struct LIST_HEAD_TYPE chg, copy;
5560 enum ice_status status;
5561 u16 vsig;
5562
5563 INIT_LIST_HEAD(©);
5564 INIT_LIST_HEAD(&chg);
5565
5566 /* determine if VSI is already part of a VSIG */
5567 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5568 if (!status && vsig) {
5569 bool last_profile;
5570 bool only_vsi;
5571 u16 ref;
5572
5573 /* found in VSIG */
5574 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
5575 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5576 if (status)
5577 goto err_ice_rem_prof_id_flow;
5578 only_vsi = (ref == 1);
5579
5580 if (only_vsi) {
5581 /* If the original VSIG only contains one reference,
5582 * which will be the requesting VSI, then the VSI is not
5583 * sharing entries and we can simply remove the specific
5584 * characteristics from the VSIG.
5585 */
5586
5587 if (last_profile) {
5588 /* If there are no profiles left for this VSIG,
5589 * then simply remove the VSIG.
5590 */
5591 status = ice_rem_vsig(hw, blk, vsig, &chg);
5592 if (status)
5593 goto err_ice_rem_prof_id_flow;
5594 } else {
5595 status = ice_rem_prof_id_vsig(hw, blk, vsig,
5596 hdl, &chg);
5597 if (status)
5598 goto err_ice_rem_prof_id_flow;
5599
5600 /* Adjust priorities */
5601 status = ice_adj_prof_priorities(hw, blk, vsig,
5602 &chg);
5603 if (status)
5604 goto err_ice_rem_prof_id_flow;
5605 }
5606
5607 } else {
5608 /* Make a copy of the VSIG's list of Profiles */
5609 status = ice_get_profs_vsig(hw, blk, vsig, ©);
5610 if (status)
5611 goto err_ice_rem_prof_id_flow;
5612
5613 /* Remove specified profile entry from the list */
5614 status = ice_rem_prof_from_list(hw, ©, hdl);
5615 if (status)
5616 goto err_ice_rem_prof_id_flow;
5617
5618 if (LIST_EMPTY(©)) {
5619 status = ice_move_vsi(hw, blk, vsi,
5620 ICE_DEFAULT_VSIG, &chg);
5621 if (status)
5622 goto err_ice_rem_prof_id_flow;
5623
5624 } else if (!ice_find_dup_props_vsig(hw, blk, ©,
5625 &vsig)) {
5626 /* found an exact match */
5627 /* add or move VSI to the VSIG that matches */
5628 /* Search for a VSIG with a matching profile
5629 * list
5630 */
5631
5632 /* Found match, move VSI to the matching VSIG */
5633 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5634 if (status)
5635 goto err_ice_rem_prof_id_flow;
5636 } else {
5637 /* since no existing VSIG supports this
5638 * characteristic pattern, we need to create a
5639 * new VSIG and TCAM entries
5640 */
5641 status = ice_create_vsig_from_lst(hw, blk, vsi,
5642 ©, &vsig,
5643 &chg);
5644 if (status)
5645 goto err_ice_rem_prof_id_flow;
5646
5647 /* Adjust priorities */
5648 status = ice_adj_prof_priorities(hw, blk, vsig,
5649 &chg);
5650 if (status)
5651 goto err_ice_rem_prof_id_flow;
5652 }
5653 }
5654 } else {
5655 status = ICE_ERR_DOES_NOT_EXIST;
5656 }
5657
5658 /* update hardware tables */
5659 if (!status)
5660 status = ice_upd_prof_hw(hw, blk, &chg);
5661
5662 err_ice_rem_prof_id_flow:
5663 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5664 LIST_DEL(&del->list_entry);
5665 ice_free(hw, del);
5666 }
5667
5668 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, ©, ice_vsig_prof, list) {
5669 LIST_DEL(&del1->list);
5670 ice_free(hw, del1);
5671 }
5672
5673 return status;
5674 }
5675
5676 /**
5677 * ice_rem_flow - remove flow
5678 * @hw: pointer to the HW struct
5679 * @blk: hardware block
5680 * @vsi: array of VSIs from which to remove the profile specified by ID
5681 * @count: number of elements in the VSI array
5682 * @id: profile tracking ID
5683 *
5684 * The function will remove flows from the specified VSIs that were enabled
5685 * using ice_add_flow. The ID value will indicated which profile will be
5686 * removed. Once successfully called, the flow will be disabled.
5687 */
5688 enum ice_status
5689 ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5690 u64 id)
5691 {
5692 enum ice_status status;
5693 u16 i;
5694
5695 for (i = 0; i < count; i++) {
5696 status = ice_rem_prof_id_flow(hw, blk, vsi[i], id);
5697 if (status)
5698 return status;
5699 }
5700
5701 return ICE_SUCCESS;
5702 }
Cache object: 49b2ee6d8c6147c68be06e4a48a609f8
|