The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ice/virtchnl.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* SPDX-License-Identifier: BSD-3-Clause */
    2 /*  Copyright (c) 2021, Intel Corporation
    3  *  All rights reserved.
    4  *
    5  *  Redistribution and use in source and binary forms, with or without
    6  *  modification, are permitted provided that the following conditions are met:
    7  *
    8  *   1. Redistributions of source code must retain the above copyright notice,
    9  *      this list of conditions and the following disclaimer.
   10  *
   11  *   2. Redistributions in binary form must reproduce the above copyright
   12  *      notice, this list of conditions and the following disclaimer in the
   13  *      documentation and/or other materials provided with the distribution.
   14  *
   15  *   3. Neither the name of the Intel Corporation nor the names of its
   16  *      contributors may be used to endorse or promote products derived from
   17  *      this software without specific prior written permission.
   18  *
   19  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   20  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
   23  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   24  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   25  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   26  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   27  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   28  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  *  POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 /*$FreeBSD$*/
   32 
   33 #ifndef _VIRTCHNL_H_
   34 #define _VIRTCHNL_H_
   35 
   36 /* Description:
   37  * This header file describes the Virtual Function (VF) - Physical Function
   38  * (PF) communication protocol used by the drivers for all devices starting
   39  * from our 40G product line
   40  *
   41  * Admin queue buffer usage:
   42  * desc->opcode is always aqc_opc_send_msg_to_pf
   43  * flags, retval, datalen, and data addr are all used normally.
   44  * The Firmware copies the cookie fields when sending messages between the
   45  * PF and VF, but uses all other fields internally. Due to this limitation,
   46  * we must send all messages as "indirect", i.e. using an external buffer.
   47  *
   48  * All the VSI indexes are relative to the VF. Each VF can have maximum of
   49  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
   50  * have a maximum of sixteen queues for all of its VSIs.
   51  *
   52  * The PF is required to return a status code in v_retval for all messages
   53  * except RESET_VF, which does not require any response. The returned value
   54  * is of virtchnl_status_code type, defined here.
   55  *
   56  * In general, VF driver initialization should roughly follow the order of
   57  * these opcodes. The VF driver must first validate the API version of the
   58  * PF driver, then request a reset, then get resources, then configure
   59  * queues and interrupts. After these operations are complete, the VF
   60  * driver may start its queues, optionally add MAC and VLAN filters, and
   61  * process traffic.
   62  */
   63 
   64 /* START GENERIC DEFINES
   65  * Need to ensure the following enums and defines hold the same meaning and
   66  * value in current and future projects
   67  */
   68 
   69 #define VIRTCHNL_ETH_LENGTH_OF_ADDRESS  6
   70 
   71 /* These macros are used to generate compilation errors if a structure/union
   72  * is not exactly the correct length. It gives a divide by zero error if the
   73  * structure/union is not of the correct size, otherwise it creates an enum
   74  * that is never used.
   75  */
   76 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
   77         { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
   78 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
   79         { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
   80 
   81 /* Error Codes
   82  * Note that many older versions of various iAVF drivers convert the reported
   83  * status code directly into an iavf_status enumeration. For this reason, it
   84  * is important that the values of these enumerations line up.
   85  */
   86 enum virtchnl_status_code {
   87         VIRTCHNL_STATUS_SUCCESS                         = 0,
   88         VIRTCHNL_STATUS_ERR_PARAM                       = -5,
   89         VIRTCHNL_STATUS_ERR_NO_MEMORY                   = -18,
   90         VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH             = -38,
   91         VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR             = -39,
   92         VIRTCHNL_STATUS_ERR_INVALID_VF_ID               = -40,
   93         VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR           = -53,
   94         VIRTCHNL_STATUS_ERR_NOT_SUPPORTED               = -64,
   95 };
   96 
   97 /* Backward compatibility */
   98 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
   99 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
  100 
  101 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT         0x0
  102 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT         0x1
  103 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT        0x2
  104 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT          0x3
  105 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT          0x4
  106 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT          0x5
  107 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT          0x6
  108 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT           0x7
  109 
  110 enum virtchnl_link_speed {
  111         VIRTCHNL_LINK_SPEED_UNKNOWN     = 0,
  112         VIRTCHNL_LINK_SPEED_100MB       = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
  113         VIRTCHNL_LINK_SPEED_1GB         = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
  114         VIRTCHNL_LINK_SPEED_10GB        = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
  115         VIRTCHNL_LINK_SPEED_40GB        = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
  116         VIRTCHNL_LINK_SPEED_20GB        = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
  117         VIRTCHNL_LINK_SPEED_25GB        = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
  118         VIRTCHNL_LINK_SPEED_2_5GB       = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
  119         VIRTCHNL_LINK_SPEED_5GB         = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
  120 };
  121 
  122 /* for hsplit_0 field of Rx HMC context */
  123 /* deprecated with AVF 1.0 */
  124 enum virtchnl_rx_hsplit {
  125         VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
  126         VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
  127         VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
  128         VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
  129         VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
  130 };
  131 
  132 enum virtchnl_bw_limit_type {
  133         VIRTCHNL_BW_SHAPER = 0,
  134 };
  135 /* END GENERIC DEFINES */
  136 
  137 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
  138  * of the virtchnl_msg structure.
  139  */
  140 enum virtchnl_ops {
  141 /* The PF sends status change events to VFs using
  142  * the VIRTCHNL_OP_EVENT opcode.
  143  * VFs send requests to the PF using the other ops.
  144  * Use of "advanced opcode" features must be negotiated as part of capabilities
  145  * exchange and are not considered part of base mode feature set.
  146  *
  147  */
  148         VIRTCHNL_OP_UNKNOWN = 0,
  149         VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
  150         VIRTCHNL_OP_RESET_VF = 2,
  151         VIRTCHNL_OP_GET_VF_RESOURCES = 3,
  152         VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
  153         VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
  154         VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
  155         VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
  156         VIRTCHNL_OP_ENABLE_QUEUES = 8,
  157         VIRTCHNL_OP_DISABLE_QUEUES = 9,
  158         VIRTCHNL_OP_ADD_ETH_ADDR = 10,
  159         VIRTCHNL_OP_DEL_ETH_ADDR = 11,
  160         VIRTCHNL_OP_ADD_VLAN = 12,
  161         VIRTCHNL_OP_DEL_VLAN = 13,
  162         VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
  163         VIRTCHNL_OP_GET_STATS = 15,
  164         VIRTCHNL_OP_RSVD = 16,
  165         VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
  166         /* opcode 19 is reserved */
  167         /* opcodes 20, 21, and 22 are reserved */
  168         VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
  169         VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
  170         VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
  171         VIRTCHNL_OP_SET_RSS_HENA = 26,
  172         VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
  173         VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
  174         VIRTCHNL_OP_REQUEST_QUEUES = 29,
  175         VIRTCHNL_OP_ENABLE_CHANNELS = 30,
  176         VIRTCHNL_OP_DISABLE_CHANNELS = 31,
  177         VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
  178         VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
  179         /* opcode 34 is reserved */
  180         /* opcodes 38, 39, 40, 41, 42 and 43 are reserved */
  181         /* opcode 44 is reserved */
  182         VIRTCHNL_OP_ADD_RSS_CFG = 45,
  183         VIRTCHNL_OP_DEL_RSS_CFG = 46,
  184         VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
  185         VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
  186         VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
  187         VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
  188         VIRTCHNL_OP_ADD_VLAN_V2 = 52,
  189         VIRTCHNL_OP_DEL_VLAN_V2 = 53,
  190         VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
  191         VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
  192         VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
  193         VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
  194         VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
  195         VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
  196         /* opcodes 60 through 65 are reserved */
  197         VIRTCHNL_OP_GET_QOS_CAPS = 66,
  198         VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP = 67,
  199         /* opcode 68, 69 are reserved */
  200         VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
  201         VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
  202         VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
  203         VIRTCHNL_OP_MAX,
  204 };
  205 
  206 static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
  207 {
  208         switch (v_opcode) {
  209         case VIRTCHNL_OP_UNKNOWN:
  210                 return "VIRTCHNL_OP_UNKNOWN";
  211         case VIRTCHNL_OP_VERSION:
  212                 return "VIRTCHNL_OP_VERSION";
  213         case VIRTCHNL_OP_RESET_VF:
  214                 return "VIRTCHNL_OP_RESET_VF";
  215         case VIRTCHNL_OP_GET_VF_RESOURCES:
  216                 return "VIRTCHNL_OP_GET_VF_RESOURCES";
  217         case VIRTCHNL_OP_CONFIG_TX_QUEUE:
  218                 return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
  219         case VIRTCHNL_OP_CONFIG_RX_QUEUE:
  220                 return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
  221         case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
  222                 return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
  223         case VIRTCHNL_OP_CONFIG_IRQ_MAP:
  224                 return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
  225         case VIRTCHNL_OP_ENABLE_QUEUES:
  226                 return "VIRTCHNL_OP_ENABLE_QUEUES";
  227         case VIRTCHNL_OP_DISABLE_QUEUES:
  228                 return "VIRTCHNL_OP_DISABLE_QUEUES";
  229         case VIRTCHNL_OP_ADD_ETH_ADDR:
  230                 return "VIRTCHNL_OP_ADD_ETH_ADDR";
  231         case VIRTCHNL_OP_DEL_ETH_ADDR:
  232                 return "VIRTCHNL_OP_DEL_ETH_ADDR";
  233         case VIRTCHNL_OP_ADD_VLAN:
  234                 return "VIRTCHNL_OP_ADD_VLAN";
  235         case VIRTCHNL_OP_DEL_VLAN:
  236                 return "VIRTCHNL_OP_DEL_VLAN";
  237         case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
  238                 return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
  239         case VIRTCHNL_OP_GET_STATS:
  240                 return "VIRTCHNL_OP_GET_STATS";
  241         case VIRTCHNL_OP_RSVD:
  242                 return "VIRTCHNL_OP_RSVD";
  243         case VIRTCHNL_OP_EVENT:
  244                 return "VIRTCHNL_OP_EVENT";
  245         case VIRTCHNL_OP_CONFIG_RSS_KEY:
  246                 return "VIRTCHNL_OP_CONFIG_RSS_KEY";
  247         case VIRTCHNL_OP_CONFIG_RSS_LUT:
  248                 return "VIRTCHNL_OP_CONFIG_RSS_LUT";
  249         case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
  250                 return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
  251         case VIRTCHNL_OP_SET_RSS_HENA:
  252                 return "VIRTCHNL_OP_SET_RSS_HENA";
  253         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
  254                 return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
  255         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
  256                 return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
  257         case VIRTCHNL_OP_REQUEST_QUEUES:
  258                 return "VIRTCHNL_OP_REQUEST_QUEUES";
  259         case VIRTCHNL_OP_ENABLE_CHANNELS:
  260                 return "VIRTCHNL_OP_ENABLE_CHANNELS";
  261         case VIRTCHNL_OP_DISABLE_CHANNELS:
  262                 return "VIRTCHNL_OP_DISABLE_CHANNELS";
  263         case VIRTCHNL_OP_ADD_CLOUD_FILTER:
  264                 return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
  265         case VIRTCHNL_OP_DEL_CLOUD_FILTER:
  266                 return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
  267         case VIRTCHNL_OP_ADD_RSS_CFG:
  268                 return "VIRTCHNL_OP_ADD_RSS_CFG";
  269         case VIRTCHNL_OP_DEL_RSS_CFG:
  270                 return "VIRTCHNL_OP_DEL_RSS_CFG";
  271         case VIRTCHNL_OP_ADD_FDIR_FILTER:
  272                 return "VIRTCHNL_OP_ADD_FDIR_FILTER";
  273         case VIRTCHNL_OP_DEL_FDIR_FILTER:
  274                 return "VIRTCHNL_OP_DEL_FDIR_FILTER";
  275         case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
  276                 return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
  277         case VIRTCHNL_OP_ENABLE_QUEUES_V2:
  278                 return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
  279         case VIRTCHNL_OP_DISABLE_QUEUES_V2:
  280                 return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
  281         case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
  282                 return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
  283         case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
  284                 return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
  285         case VIRTCHNL_OP_ADD_VLAN_V2:
  286                 return "VIRTCHNL_OP_ADD_VLAN_V2";
  287         case VIRTCHNL_OP_DEL_VLAN_V2:
  288                 return "VIRTCHNL_OP_DEL_VLAN_V2";
  289         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
  290                 return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
  291         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
  292                 return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
  293         case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
  294                 return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
  295         case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
  296                 return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
  297         case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
  298                 return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
  299         case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
  300                 return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
  301         case VIRTCHNL_OP_MAX:
  302                 return "VIRTCHNL_OP_MAX";
  303         default:
  304                 return "Unsupported (update virtchnl.h)";
  305         }
  306 }
  307 
  308 static inline const char *virtchnl_stat_str(enum virtchnl_status_code v_status)
  309 {
  310         switch (v_status) {
  311         case VIRTCHNL_STATUS_SUCCESS:
  312                 return "VIRTCHNL_STATUS_SUCCESS";
  313         case VIRTCHNL_STATUS_ERR_PARAM:
  314                 return "VIRTCHNL_STATUS_ERR_PARAM";
  315         case VIRTCHNL_STATUS_ERR_NO_MEMORY:
  316                 return "VIRTCHNL_STATUS_ERR_NO_MEMORY";
  317         case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
  318                 return "VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH";
  319         case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
  320                 return "VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR";
  321         case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
  322                 return "VIRTCHNL_STATUS_ERR_INVALID_VF_ID";
  323         case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
  324                 return "VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR";
  325         case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
  326                 return "VIRTCHNL_STATUS_ERR_NOT_SUPPORTED";
  327         default:
  328                 return "Unknown status code (update virtchnl.h)";
  329         }
  330 }
  331 
  332 /* Virtual channel message descriptor. This overlays the admin queue
  333  * descriptor. All other data is passed in external buffers.
  334  */
  335 
  336 struct virtchnl_msg {
  337         u8 pad[8];                       /* AQ flags/opcode/len/retval fields */
  338 
  339         /* avoid confusion with desc->opcode */
  340         enum virtchnl_ops v_opcode;
  341 
  342         /* ditto for desc->retval */
  343         enum virtchnl_status_code v_retval;
  344         u32 vfid;                        /* used by PF when sending to VF */
  345 };
  346 
  347 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
  348 
  349 /* Message descriptions and data structures. */
  350 
  351 /* VIRTCHNL_OP_VERSION
  352  * VF posts its version number to the PF. PF responds with its version number
  353  * in the same format, along with a return code.
  354  * Reply from PF has its major/minor versions also in param0 and param1.
  355  * If there is a major version mismatch, then the VF cannot operate.
  356  * If there is a minor version mismatch, then the VF can operate but should
  357  * add a warning to the system log.
  358  *
  359  * This enum element MUST always be specified as == 1, regardless of other
  360  * changes in the API. The PF must always respond to this message without
  361  * error regardless of version mismatch.
  362  */
  363 #define VIRTCHNL_VERSION_MAJOR          1
  364 #define VIRTCHNL_VERSION_MINOR          1
  365 #define VIRTCHNL_VERSION_MAJOR_2        2
  366 #define VIRTCHNL_VERSION_MINOR_0        0
  367 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS       0
  368 
  369 struct virtchnl_version_info {
  370         u32 major;
  371         u32 minor;
  372 };
  373 
  374 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
  375 
  376 #define VF_IS_V10(_ver) (((_ver)->major == 1) && ((_ver)->minor == 0))
  377 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
  378 #define VF_IS_V20(_ver) (((_ver)->major == 2) && ((_ver)->minor == 0))
  379 
  380 /* VIRTCHNL_OP_RESET_VF
  381  * VF sends this request to PF with no parameters
  382  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
  383  * until reset completion is indicated. The admin queue must be reinitialized
  384  * after this operation.
  385  *
  386  * When reset is complete, PF must ensure that all queues in all VSIs associated
  387  * with the VF are stopped, all queue configurations in the HMC are set to 0,
  388  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
  389  * are cleared.
  390  */
  391 
  392 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
  393  * vsi_type should always be 6 for backward compatibility. Add other fields
  394  * as needed.
  395  */
  396 enum virtchnl_vsi_type {
  397         VIRTCHNL_VSI_TYPE_INVALID = 0,
  398         VIRTCHNL_VSI_SRIOV = 6,
  399 };
  400 
  401 /* VIRTCHNL_OP_GET_VF_RESOURCES
  402  * Version 1.0 VF sends this request to PF with no parameters
  403  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
  404  * PF responds with an indirect message containing
  405  * virtchnl_vf_resource and one or more
  406  * virtchnl_vsi_resource structures.
  407  */
  408 
  409 struct virtchnl_vsi_resource {
  410         u16 vsi_id;
  411         u16 num_queue_pairs;
  412 
  413         /* see enum virtchnl_vsi_type */
  414         s32 vsi_type;
  415         u16 qset_handle;
  416         u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
  417 };
  418 
  419 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
  420 
  421 /* VF capability flags
  422  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
  423  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
  424  */
  425 #define VIRTCHNL_VF_OFFLOAD_L2                  BIT(0)
  426 #define VIRTCHNL_VF_OFFLOAD_IWARP               BIT(1)
  427 #define VIRTCHNL_VF_CAP_RDMA                    VIRTCHNL_VF_OFFLOAD_IWARP
  428 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ              BIT(3)
  429 #define VIRTCHNL_VF_OFFLOAD_RSS_REG             BIT(4)
  430 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR           BIT(5)
  431 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES          BIT(6)
  432 /* used to negotiate communicating link speeds in Mbps */
  433 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED          BIT(7)
  434         /* BIT(8) is reserved */
  435 #define VIRTCHNL_VF_LARGE_NUM_QPAIRS            BIT(9)
  436 #define VIRTCHNL_VF_OFFLOAD_CRC                 BIT(10)
  437 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2             BIT(15)
  438 #define VIRTCHNL_VF_OFFLOAD_VLAN                BIT(16)
  439 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING          BIT(17)
  440 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2       BIT(18)
  441 #define VIRTCHNL_VF_OFFLOAD_RSS_PF              BIT(19)
  442 #define VIRTCHNL_VF_OFFLOAD_ENCAP               BIT(20)
  443 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM          BIT(21)
  444 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM       BIT(22)
  445 #define VIRTCHNL_VF_OFFLOAD_ADQ                 BIT(23)
  446 #define VIRTCHNL_VF_OFFLOAD_ADQ_V2              BIT(24)
  447 #define VIRTCHNL_VF_OFFLOAD_USO                 BIT(25)
  448         /* BIT(26) is reserved */
  449 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF          BIT(27)
  450 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF             BIT(28)
  451 #define VIRTCHNL_VF_OFFLOAD_QOS                 BIT(29)
  452         /* BIT(30) is reserved */
  453         /* BIT(31) is reserved */
  454 
  455 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
  456                                VIRTCHNL_VF_OFFLOAD_VLAN | \
  457                                VIRTCHNL_VF_OFFLOAD_RSS_PF)
  458 
  459 struct virtchnl_vf_resource {
  460         u16 num_vsis;
  461         u16 num_queue_pairs;
  462         u16 max_vectors;
  463         u16 max_mtu;
  464 
  465         u32 vf_cap_flags;
  466         u32 rss_key_size;
  467         u32 rss_lut_size;
  468 
  469         struct virtchnl_vsi_resource vsi_res[1];
  470 };
  471 
  472 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
  473 
  474 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
  475  * VF sends this message to set up parameters for one TX queue.
  476  * External data buffer contains one instance of virtchnl_txq_info.
  477  * PF configures requested queue and returns a status code.
  478  */
  479 
  480 /* Tx queue config info */
  481 struct virtchnl_txq_info {
  482         u16 vsi_id;
  483         u16 queue_id;
  484         u16 ring_len;           /* number of descriptors, multiple of 8 */
  485         u16 headwb_enabled; /* deprecated with AVF 1.0 */
  486         u64 dma_ring_addr;
  487         u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
  488 };
  489 
  490 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
  491 
  492 /* RX descriptor IDs (range from 0 to 63) */
  493 enum virtchnl_rx_desc_ids {
  494         VIRTCHNL_RXDID_0_16B_BASE               = 0,
  495         /* 32B_BASE and FLEX_SPLITQ share desc ids as default descriptors
  496          * because they can be differentiated based on queue model; e.g. single
  497          * queue model can only use 32B_BASE and split queue model can only use
  498          * FLEX_SPLITQ.  Having these as 1 allows them to be used as default
  499          * descriptors without negotiation.
  500          */
  501         VIRTCHNL_RXDID_1_32B_BASE               = 1,
  502         VIRTCHNL_RXDID_1_FLEX_SPLITQ            = 1,
  503         VIRTCHNL_RXDID_2_FLEX_SQ_NIC            = 2,
  504         VIRTCHNL_RXDID_3_FLEX_SQ_SW             = 3,
  505         VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB        = 4,
  506         VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL        = 5,
  507         VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2          = 6,
  508         VIRTCHNL_RXDID_7_HW_RSVD                = 7,
  509         /* 9 through 15 are reserved */
  510         VIRTCHNL_RXDID_16_COMMS_GENERIC         = 16,
  511         VIRTCHNL_RXDID_17_COMMS_AUX_VLAN        = 17,
  512         VIRTCHNL_RXDID_18_COMMS_AUX_IPV4        = 18,
  513         VIRTCHNL_RXDID_19_COMMS_AUX_IPV6        = 19,
  514         VIRTCHNL_RXDID_20_COMMS_AUX_FLOW        = 20,
  515         VIRTCHNL_RXDID_21_COMMS_AUX_TCP         = 21,
  516         /* 22 through 63 are reserved */
  517 };
  518 
  519 /* RX descriptor ID bitmasks */
  520 enum virtchnl_rx_desc_id_bitmasks {
  521         VIRTCHNL_RXDID_0_16B_BASE_M             = BIT(VIRTCHNL_RXDID_0_16B_BASE),
  522         VIRTCHNL_RXDID_1_32B_BASE_M             = BIT(VIRTCHNL_RXDID_1_32B_BASE),
  523         VIRTCHNL_RXDID_1_FLEX_SPLITQ_M          = BIT(VIRTCHNL_RXDID_1_FLEX_SPLITQ),
  524         VIRTCHNL_RXDID_2_FLEX_SQ_NIC_M          = BIT(VIRTCHNL_RXDID_2_FLEX_SQ_NIC),
  525         VIRTCHNL_RXDID_3_FLEX_SQ_SW_M           = BIT(VIRTCHNL_RXDID_3_FLEX_SQ_SW),
  526         VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB_M      = BIT(VIRTCHNL_RXDID_4_FLEX_SQ_NIC_VEB),
  527         VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL_M      = BIT(VIRTCHNL_RXDID_5_FLEX_SQ_NIC_ACL),
  528         VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2_M        = BIT(VIRTCHNL_RXDID_6_FLEX_SQ_NIC_2),
  529         VIRTCHNL_RXDID_7_HW_RSVD_M              = BIT(VIRTCHNL_RXDID_7_HW_RSVD),
  530         /* 9 through 15 are reserved */
  531         VIRTCHNL_RXDID_16_COMMS_GENERIC_M       = BIT(VIRTCHNL_RXDID_16_COMMS_GENERIC),
  532         VIRTCHNL_RXDID_17_COMMS_AUX_VLAN_M      = BIT(VIRTCHNL_RXDID_17_COMMS_AUX_VLAN),
  533         VIRTCHNL_RXDID_18_COMMS_AUX_IPV4_M      = BIT(VIRTCHNL_RXDID_18_COMMS_AUX_IPV4),
  534         VIRTCHNL_RXDID_19_COMMS_AUX_IPV6_M      = BIT(VIRTCHNL_RXDID_19_COMMS_AUX_IPV6),
  535         VIRTCHNL_RXDID_20_COMMS_AUX_FLOW_M      = BIT(VIRTCHNL_RXDID_20_COMMS_AUX_FLOW),
  536         VIRTCHNL_RXDID_21_COMMS_AUX_TCP_M       = BIT(VIRTCHNL_RXDID_21_COMMS_AUX_TCP),
  537         /* 22 through 63 are reserved */
  538 };
  539 
  540 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
  541  * VF sends this message to set up parameters for one RX queue.
  542  * External data buffer contains one instance of virtchnl_rxq_info.
  543  * PF configures requested queue and returns a status code. The
  544  * crc_disable flag disables CRC stripping on the VF. Setting
  545  * the crc_disable flag to 1 will disable CRC stripping for each
  546  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
  547  * offload must have been set prior to sending this info or the PF
  548  * will ignore the request. This flag should be set the same for
  549  * all of the queues for a VF.
  550  */
  551 
  552 /* Rx queue config info */
  553 struct virtchnl_rxq_info {
  554         u16 vsi_id;
  555         u16 queue_id;
  556         u32 ring_len;           /* number of descriptors, multiple of 32 */
  557         u16 hdr_size;
  558         u16 splithdr_enabled; /* deprecated with AVF 1.0 */
  559         u32 databuffer_size;
  560         u32 max_pkt_size;
  561         u8 crc_disable;
  562         u8 pad1[3];
  563         u64 dma_ring_addr;
  564 
  565         /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
  566         s32 rx_split_pos;
  567         u32 pad2;
  568 };
  569 
  570 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
  571 
  572 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
  573  * VF sends this message to set parameters for active TX and RX queues
  574  * associated with the specified VSI.
  575  * PF configures queues and returns status.
  576  * If the number of queues specified is greater than the number of queues
  577  * associated with the VSI, an error is returned and no queues are configured.
  578  * NOTE: The VF is not required to configure all queues in a single request.
  579  * It may send multiple messages. PF drivers must correctly handle all VF
  580  * requests.
  581  */
  582 struct virtchnl_queue_pair_info {
  583         /* NOTE: vsi_id and queue_id should be identical for both queues. */
  584         struct virtchnl_txq_info txq;
  585         struct virtchnl_rxq_info rxq;
  586 };
  587 
  588 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
  589 
  590 struct virtchnl_vsi_queue_config_info {
  591         u16 vsi_id;
  592         u16 num_queue_pairs;
  593         u32 pad;
  594         struct virtchnl_queue_pair_info qpair[1];
  595 };
  596 
  597 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
  598 
  599 /* VIRTCHNL_OP_REQUEST_QUEUES
  600  * VF sends this message to request the PF to allocate additional queues to
  601  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
  602  * additional queues must be negotiated.  This is a best effort request as it
  603  * is possible the PF does not have enough queues left to support the request.
  604  * If the PF cannot support the number requested it will respond with the
  605  * maximum number it is able to support.  If the request is successful, PF will
  606  * then reset the VF to institute required changes.
  607  */
  608 
  609 /* VF resource request */
  610 struct virtchnl_vf_res_request {
  611         u16 num_queue_pairs;
  612 };
  613 
  614 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
  615  * VF uses this message to map vectors to queues.
  616  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
  617  * are to be associated with the specified vector.
  618  * The "other" causes are always mapped to vector 0. The VF may not request
  619  * that vector 0 be used for traffic.
  620  * PF configures interrupt mapping and returns status.
  621  * NOTE: due to hardware requirements, all active queues (both TX and RX)
  622  * should be mapped to interrupts, even if the driver intends to operate
  623  * only in polling mode. In this case the interrupt may be disabled, but
  624  * the ITR timer will still run to trigger writebacks.
  625  */
  626 struct virtchnl_vector_map {
  627         u16 vsi_id;
  628         u16 vector_id;
  629         u16 rxq_map;
  630         u16 txq_map;
  631         u16 rxitr_idx;
  632         u16 txitr_idx;
  633 };
  634 
  635 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
  636 
  637 struct virtchnl_irq_map_info {
  638         u16 num_vectors;
  639         struct virtchnl_vector_map vecmap[1];
  640 };
  641 
  642 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
  643 
  644 /* VIRTCHNL_OP_ENABLE_QUEUES
  645  * VIRTCHNL_OP_DISABLE_QUEUES
  646  * VF sends these message to enable or disable TX/RX queue pairs.
  647  * The queues fields are bitmaps indicating which queues to act upon.
  648  * (Currently, we only support 16 queues per VF, but we make the field
  649  * u32 to allow for expansion.)
  650  * PF performs requested action and returns status.
  651  * NOTE: The VF is not required to enable/disable all queues in a single
  652  * request. It may send multiple messages.
  653  * PF drivers must correctly handle all VF requests.
  654  */
  655 struct virtchnl_queue_select {
  656         u16 vsi_id;
  657         u16 pad;
  658         u32 rx_queues;
  659         u32 tx_queues;
  660 };
  661 
  662 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
  663 
  664 /* VIRTCHNL_OP_GET_MAX_RSS_QREGION
  665  *
  666  * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
  667  * then this op must be supported.
  668  *
  669  * VF sends this message in order to query the max RSS queue region
  670  * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
  671  * This information should be used when configuring the RSS LUT and/or
  672  * configuring queue region based filters.
  673  *
  674  * The maximum RSS queue region is 2^qregion_width. So, a qregion_width
  675  * of 6 would inform the VF that the PF supports a maximum RSS queue region
  676  * of 64.
  677  *
  678  * A queue region represents a range of queues that can be used to configure
  679  * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
  680  * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
  681  * to configure the RSS LUT with queue indices from 0 to 15. However, other
  682  * filters can be used to direct packets to queues >15 via specifying a queue
  683  * base/offset and queue region width.
  684  */
  685 struct virtchnl_max_rss_qregion {
  686         u16 vport_id;
  687         u16 qregion_width;
  688         u8 pad[4];
  689 };
  690 
  691 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
  692 
  693 /* VIRTCHNL_OP_ADD_ETH_ADDR
  694  * VF sends this message in order to add one or more unicast or multicast
  695  * address filters for the specified VSI.
  696  * PF adds the filters and returns status.
  697  */
  698 
  699 /* VIRTCHNL_OP_DEL_ETH_ADDR
  700  * VF sends this message in order to remove one or more unicast or multicast
  701  * filters for the specified VSI.
  702  * PF removes the filters and returns status.
  703  */
  704 
  705 /* VIRTCHNL_ETHER_ADDR_LEGACY
  706  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
  707  * bytes. Moving forward all VF drivers should not set type to
  708  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
  709  * behavior. The control plane function (i.e. PF) can use a best effort method
  710  * of tracking the primary/device unicast in this case, but there is no
  711  * guarantee and functionality depends on the implementation of the PF.
  712  */
  713 
  714 /* VIRTCHNL_ETHER_ADDR_PRIMARY
  715  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
  716  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
  717  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
  718  * function (i.e. PF) to accurately track and use this MAC address for
  719  * displaying on the host and for VM/function reset.
  720  */
  721 
  722 /* VIRTCHNL_ETHER_ADDR_EXTRA
  723  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
  724  * unicast and/or multicast filters that are being added/deleted via
  725  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
  726  */
  727 struct virtchnl_ether_addr {
  728         u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
  729         u8 type;
  730 #define VIRTCHNL_ETHER_ADDR_LEGACY      0
  731 #define VIRTCHNL_ETHER_ADDR_PRIMARY     1
  732 #define VIRTCHNL_ETHER_ADDR_EXTRA       2
  733 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK   3 /* first two bits of type are valid */
  734         u8 pad;
  735 };
  736 
  737 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
  738 
  739 struct virtchnl_ether_addr_list {
  740         u16 vsi_id;
  741         u16 num_elements;
  742         struct virtchnl_ether_addr list[1];
  743 };
  744 
  745 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
  746 
  747 /* VIRTCHNL_OP_ADD_VLAN
  748  * VF sends this message to add one or more VLAN tag filters for receives.
  749  * PF adds the filters and returns status.
  750  * If a port VLAN is configured by the PF, this operation will return an
  751  * error to the VF.
  752  */
  753 
  754 /* VIRTCHNL_OP_DEL_VLAN
  755  * VF sends this message to remove one or more VLAN tag filters for receives.
  756  * PF removes the filters and returns status.
  757  * If a port VLAN is configured by the PF, this operation will return an
  758  * error to the VF.
  759  */
  760 
  761 struct virtchnl_vlan_filter_list {
  762         u16 vsi_id;
  763         u16 num_elements;
  764         u16 vlan_id[1];
  765 };
  766 
  767 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
  768 
  769 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
  770  * structures and opcodes.
  771  *
  772  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
  773  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
  774  *
  775  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
  776  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
  777  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
  778  *
  779  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
  780  * by the PF concurrently. For example, if the PF can support
  781  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
  782  * would OR the following bits:
  783  *
  784  *      VIRTHCNL_VLAN_ETHERTYPE_8100 |
  785  *      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
  786  *      VIRTCHNL_VLAN_ETHERTYPE_AND;
  787  *
  788  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
  789  * and 0x88A8 VLAN ethertypes.
  790  *
  791  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
  792  * by the PF concurrently. For example if the PF can support
  793  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
  794  * offload it would OR the following bits:
  795  *
  796  *      VIRTCHNL_VLAN_ETHERTYPE_8100 |
  797  *      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
  798  *      VIRTCHNL_VLAN_ETHERTYPE_XOR;
  799  *
  800  * The VF would interpret this as VLAN stripping can be supported on either
  801  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
  802  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
  803  * the previously set value.
  804  *
  805  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
  806  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
  807  *
  808  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
  809  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
  810  *
  811  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
  812  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
  813  *
  814  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
  815  * VLAN filtering if the underlying PF supports it.
  816  *
  817  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
  818  * certain VLAN capability can be toggled. For example if the underlying PF/CP
  819  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
  820  * set this bit along with the supported ethertypes.
  821  */
  822 enum virtchnl_vlan_support {
  823         VIRTCHNL_VLAN_UNSUPPORTED =             0,
  824         VIRTCHNL_VLAN_ETHERTYPE_8100 =          0x00000001,
  825         VIRTCHNL_VLAN_ETHERTYPE_88A8 =          0x00000002,
  826         VIRTCHNL_VLAN_ETHERTYPE_9100 =          0x00000004,
  827         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =     0x00000100,
  828         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =     0x00000200,
  829         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =   0x00000400,
  830         VIRTCHNL_VLAN_PRIO =                    0x01000000,
  831         VIRTCHNL_VLAN_FILTER_MASK =             0x10000000,
  832         VIRTCHNL_VLAN_ETHERTYPE_AND =           0x20000000,
  833         VIRTCHNL_VLAN_ETHERTYPE_XOR =           0x40000000,
  834         VIRTCHNL_VLAN_TOGGLE =                  0x80000000
  835 };
  836 
  837 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
  838  * for filtering, insertion, and stripping capabilities.
  839  *
  840  * If only outer capabilities are supported (for filtering, insertion, and/or
  841  * stripping) then this refers to the outer most or single VLAN from the VF's
  842  * perspective.
  843  *
  844  * If only inner capabilities are supported (for filtering, insertion, and/or
  845  * stripping) then this refers to the outer most or single VLAN from the VF's
  846  * perspective. Functionally this is the same as if only outer capabilities are
  847  * supported. The VF driver is just forced to use the inner fields when
  848  * adding/deleting filters and enabling/disabling offloads (if supported).
  849  *
  850  * If both outer and inner capabilities are supported (for filtering, insertion,
  851  * and/or stripping) then outer refers to the outer most or single VLAN and
  852  * inner refers to the second VLAN, if it exists, in the packet.
  853  *
  854  * There is no support for tunneled VLAN offloads, so outer or inner are never
  855  * referring to a tunneled packet from the VF's perspective.
  856  */
  857 struct virtchnl_vlan_supported_caps {
  858         u32 outer;
  859         u32 inner;
  860 };
  861 
  862 /* The PF populates these fields based on the supported VLAN filtering. If a
  863  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
  864  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
  865  * the unsupported fields.
  866  *
  867  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
  868  * VIRTCHNL_VLAN_TOGGLE bit is set.
  869  *
  870  * The ethertype(s) specified in the ethertype_init field are the ethertypes
  871  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
  872  * most VLAN from the VF's perspective. If both inner and outer filtering are
  873  * allowed then ethertype_init only refers to the outer most VLAN as only
  874  * VLAN ethertype supported for inner VLAN filtering is
  875  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
  876  * when both inner and outer filtering are allowed.
  877  *
  878  * The max_filters field tells the VF how many VLAN filters it's allowed to have
  879  * at any one time. If it exceeds this amount and tries to add another filter,
  880  * then the request will be rejected by the PF. To prevent failures, the VF
  881  * should keep track of how many VLAN filters it has added and not attempt to
  882  * add more than max_filters.
  883  */
  884 struct virtchnl_vlan_filtering_caps {
  885         struct virtchnl_vlan_supported_caps filtering_support;
  886         u32 ethertype_init;
  887         u16 max_filters;
  888         u8 pad[2];
  889 };
  890 
  891 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
  892 
  893 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
  894  * if the PF supports a different ethertype for stripping and insertion.
  895  *
  896  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
  897  * for stripping affect the ethertype(s) specified for insertion and visa versa
  898  * as well. If the VF tries to configure VLAN stripping via
  899  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
  900  * that will be the ethertype for both stripping and insertion.
  901  *
  902  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
  903  * stripping do not affect the ethertype(s) specified for insertion and visa
  904  * versa.
  905  */
  906 enum virtchnl_vlan_ethertype_match {
  907         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
  908         VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
  909 };
  910 
  911 /* The PF populates these fields based on the supported VLAN offloads. If a
  912  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
  913  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
  914  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
  915  *
  916  * Also, a VF is only allowed to toggle its VLAN offload setting if the
  917  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
  918  *
  919  * The VF driver needs to be aware of how the tags are stripped by hardware and
  920  * inserted by the VF driver based on the level of offload support. The PF will
  921  * populate these fields based on where the VLAN tags are expected to be
  922  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
  923  * interpret these fields. See the definition of the
  924  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
  925  * enumeration.
  926  */
  927 struct virtchnl_vlan_offload_caps {
  928         struct virtchnl_vlan_supported_caps stripping_support;
  929         struct virtchnl_vlan_supported_caps insertion_support;
  930         u32 ethertype_init;
  931         u8 ethertype_match;
  932         u8 pad[3];
  933 };
  934 
  935 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
  936 
  937 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
  938  * VF sends this message to determine its VLAN capabilities.
  939  *
  940  * PF will mark which capabilities it supports based on hardware support and
  941  * current configuration. For example, if a port VLAN is configured the PF will
  942  * not allow outer VLAN filtering, stripping, or insertion to be configured so
  943  * it will block these features from the VF.
  944  *
  945  * The VF will need to cross reference its capabilities with the PFs
  946  * capabilities in the response message from the PF to determine the VLAN
  947  * support.
  948  */
  949 struct virtchnl_vlan_caps {
  950         struct virtchnl_vlan_filtering_caps filtering;
  951         struct virtchnl_vlan_offload_caps offloads;
  952 };
  953 
  954 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
  955 
  956 struct virtchnl_vlan {
  957         u16 tci;        /* tci[15:13] = PCP and tci[11:0] = VID */
  958         u16 tci_mask;   /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
  959                          * filtering caps
  960                          */
  961         u16 tpid;       /* 0x8100, 0x88a8, etc. and only type(s) set in
  962                          * filtering caps. Note that tpid here does not refer to
  963                          * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
  964                          * actual 2-byte VLAN TPID
  965                          */
  966         u8 pad[2];
  967 };
  968 
  969 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
  970 
  971 struct virtchnl_vlan_filter {
  972         struct virtchnl_vlan inner;
  973         struct virtchnl_vlan outer;
  974         u8 pad[16];
  975 };
  976 
  977 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
  978 
  979 /* VIRTCHNL_OP_ADD_VLAN_V2
  980  * VIRTCHNL_OP_DEL_VLAN_V2
  981  *
  982  * VF sends these messages to add/del one or more VLAN tag filters for Rx
  983  * traffic.
  984  *
  985  * The PF attempts to add the filters and returns status.
  986  *
  987  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
  988  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
  989  */
  990 struct virtchnl_vlan_filter_list_v2 {
  991         u16 vport_id;
  992         u16 num_elements;
  993         u8 pad[4];
  994         struct virtchnl_vlan_filter filters[1];
  995 };
  996 
  997 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
  998 
  999 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
 1000  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
 1001  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
 1002  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
 1003  *
 1004  * VF sends this message to enable or disable VLAN stripping or insertion. It
 1005  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
 1006  * allowed and whether or not it's allowed to enable/disable the specific
 1007  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
 1008  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
 1009  * messages are allowed.
 1010  *
 1011  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
 1012  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
 1013  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
 1014  * case means the outer most or single VLAN from the VF's perspective. This is
 1015  * because no outer offloads are supported. See the comments above the
 1016  * virtchnl_vlan_supported_caps structure for more details.
 1017  *
 1018  * virtchnl_vlan_caps.offloads.stripping_support.inner =
 1019  *                      VIRTCHNL_VLAN_TOGGLE |
 1020  *                      VIRTCHNL_VLAN_ETHERTYPE_8100;
 1021  *
 1022  * virtchnl_vlan_caps.offloads.insertion_support.inner =
 1023  *                      VIRTCHNL_VLAN_TOGGLE |
 1024  *                      VIRTCHNL_VLAN_ETHERTYPE_8100;
 1025  *
 1026  * In order to enable inner (again note that in this case inner is the outer
 1027  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
 1028  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
 1029  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
 1030  *
 1031  * virtchnl_vlan_setting.inner_ethertype_setting =
 1032  *                      VIRTCHNL_VLAN_ETHERTYPE_8100;
 1033  *
 1034  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
 1035  * initialization.
 1036  *
 1037  * The reason that VLAN TPID(s) are not being used for the
 1038  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
 1039  * possible a device could support VLAN insertion and/or stripping offload on
 1040  * multiple ethertypes concurrently, so this method allows a VF to request
 1041  * multiple ethertypes in one message using the virtchnl_vlan_support
 1042  * enumeration.
 1043  *
 1044  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
 1045  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
 1046  * VLAN insertion and stripping simultaneously. The
 1047  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
 1048  * populated based on what the PF can support.
 1049  *
 1050  * virtchnl_vlan_caps.offloads.stripping_support.outer =
 1051  *                      VIRTCHNL_VLAN_TOGGLE |
 1052  *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 1053  *                      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 1054  *                      VIRTCHNL_VLAN_ETHERTYPE_AND;
 1055  *
 1056  * virtchnl_vlan_caps.offloads.insertion_support.outer =
 1057  *                      VIRTCHNL_VLAN_TOGGLE |
 1058  *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 1059  *                      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 1060  *                      VIRTCHNL_VLAN_ETHERTYPE_AND;
 1061  *
 1062  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
 1063  * would populate the virthcnl_vlan_offload_structure in the following manner
 1064  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
 1065  *
 1066  * virtchnl_vlan_setting.outer_ethertype_setting =
 1067  *                      VIRTHCNL_VLAN_ETHERTYPE_8100 |
 1068  *                      VIRTHCNL_VLAN_ETHERTYPE_88A8;
 1069  *
 1070  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
 1071  * initialization.
 1072  *
 1073  * There is also the case where a PF and the underlying hardware can support
 1074  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
 1075  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
 1076  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
 1077  * offloads. The ethertypes must match for stripping and insertion.
 1078  *
 1079  * virtchnl_vlan_caps.offloads.stripping_support.outer =
 1080  *                      VIRTCHNL_VLAN_TOGGLE |
 1081  *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 1082  *                      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 1083  *                      VIRTCHNL_VLAN_ETHERTYPE_XOR;
 1084  *
 1085  * virtchnl_vlan_caps.offloads.insertion_support.outer =
 1086  *                      VIRTCHNL_VLAN_TOGGLE |
 1087  *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 1088  *                      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 1089  *                      VIRTCHNL_VLAN_ETHERTYPE_XOR;
 1090  *
 1091  * virtchnl_vlan_caps.offloads.ethertype_match =
 1092  *                      VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
 1093  *
 1094  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
 1095  * populate the virtchnl_vlan_setting structure in the following manner and send
 1096  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
 1097  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
 1098  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
 1099  *
 1100  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
 1101  *
 1102  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
 1103  * initialization.
 1104  *
 1105  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
 1106  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
 1107  *
 1108  * VF sends this message to enable or disable VLAN filtering. It also needs to
 1109  * specify an ethertype. The VF knows which VLAN ethertypes are allowed and
 1110  * whether or not it's allowed to enable/disable filtering via the
 1111  * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
 1112  * parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
 1113  * filtering messages are allowed.
 1114  *
 1115  * For example, if the PF populates the virtchnl_vlan_caps.filtering in the
 1116  * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
 1117  * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
 1118  * means that all filtering ethertypes will to be enabled and disabled together
 1119  * regardless of the request from the VF. This means that the underlying
 1120  * hardware only supports VLAN filtering for all VLAN the specified ethertypes
 1121  * or none of them.
 1122  *
 1123  * virtchnl_vlan_caps.filtering.filtering_support.outer =
 1124  *                      VIRTCHNL_VLAN_TOGGLE |
 1125  *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 1126  *                      VIRTHCNL_VLAN_ETHERTYPE_88A8 |
 1127  *                      VIRTCHNL_VLAN_ETHERTYPE_9100 |
 1128  *                      VIRTCHNL_VLAN_ETHERTYPE_AND;
 1129  *
 1130  * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
 1131  * VLANs aren't supported by the VF driver), the VF would populate the
 1132  * virtchnl_vlan_setting structure in the following manner and send the
 1133  * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
 1134  * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
 1135  * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
 1136  *
 1137  * virtchnl_vlan_setting.outer_ethertype_setting =
 1138  *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 1139  *                      VIRTCHNL_VLAN_ETHERTYPE_88A8;
 1140  *
 1141  */
 1142 struct virtchnl_vlan_setting {
 1143         u32 outer_ethertype_setting;
 1144         u32 inner_ethertype_setting;
 1145         u16 vport_id;
 1146         u8 pad[6];
 1147 };
 1148 
 1149 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
 1150 
 1151 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
 1152  * VF sends VSI id and flags.
 1153  * PF returns status code in retval.
 1154  * Note: we assume that broadcast accept mode is always enabled.
 1155  */
 1156 struct virtchnl_promisc_info {
 1157         u16 vsi_id;
 1158         u16 flags;
 1159 };
 1160 
 1161 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
 1162 
 1163 #define FLAG_VF_UNICAST_PROMISC 0x00000001
 1164 #define FLAG_VF_MULTICAST_PROMISC       0x00000002
 1165 
 1166 /* VIRTCHNL_OP_GET_STATS
 1167  * VF sends this message to request stats for the selected VSI. VF uses
 1168  * the virtchnl_queue_select struct to specify the VSI. The queue_id
 1169  * field is ignored by the PF.
 1170  *
 1171  * PF replies with struct virtchnl_eth_stats in an external buffer.
 1172  */
 1173 
 1174 struct virtchnl_eth_stats {
 1175         u64 rx_bytes;                   /* received bytes */
 1176         u64 rx_unicast;                 /* received unicast pkts */
 1177         u64 rx_multicast;               /* received multicast pkts */
 1178         u64 rx_broadcast;               /* received broadcast pkts */
 1179         u64 rx_discards;
 1180         u64 rx_unknown_protocol;
 1181         u64 tx_bytes;                   /* transmitted bytes */
 1182         u64 tx_unicast;                 /* transmitted unicast pkts */
 1183         u64 tx_multicast;               /* transmitted multicast pkts */
 1184         u64 tx_broadcast;               /* transmitted broadcast pkts */
 1185         u64 tx_discards;
 1186         u64 tx_errors;
 1187 };
 1188 
 1189 /* VIRTCHNL_OP_CONFIG_RSS_KEY
 1190  * VIRTCHNL_OP_CONFIG_RSS_LUT
 1191  * VF sends these messages to configure RSS. Only supported if both PF
 1192  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
 1193  * configuration negotiation. If this is the case, then the RSS fields in
 1194  * the VF resource struct are valid.
 1195  * Both the key and LUT are initialized to 0 by the PF, meaning that
 1196  * RSS is effectively disabled until set up by the VF.
 1197  */
 1198 struct virtchnl_rss_key {
 1199         u16 vsi_id;
 1200         u16 key_len;
 1201         u8 key[1];         /* RSS hash key, packed bytes */
 1202 };
 1203 
 1204 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
 1205 
 1206 struct virtchnl_rss_lut {
 1207         u16 vsi_id;
 1208         u16 lut_entries;
 1209         u8 lut[1];        /* RSS lookup table */
 1210 };
 1211 
 1212 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
 1213 
 1214 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
 1215  * VIRTCHNL_OP_SET_RSS_HENA
 1216  * VF sends these messages to get and set the hash filter enable bits for RSS.
 1217  * By default, the PF sets these to all possible traffic types that the
 1218  * hardware supports. The VF can query this value if it wants to change the
 1219  * traffic types that are hashed by the hardware.
 1220  */
 1221 struct virtchnl_rss_hena {
 1222         u64 hena;
 1223 };
 1224 
 1225 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
 1226 
 1227 /* Type of RSS algorithm */
 1228 enum virtchnl_rss_algorithm {
 1229         VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC    = 0,
 1230         VIRTCHNL_RSS_ALG_R_ASYMMETRIC           = 1,
 1231         VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC     = 2,
 1232         VIRTCHNL_RSS_ALG_XOR_SYMMETRIC          = 3,
 1233 };
 1234 
 1235 /* This is used by PF driver to enforce how many channels can be supported.
 1236  * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
 1237  * PF driver will allow only max 4 channels
 1238  */
 1239 #define VIRTCHNL_MAX_ADQ_CHANNELS 4
 1240 #define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
 1241 
 1242 /* VIRTCHNL_OP_ENABLE_CHANNELS
 1243  * VIRTCHNL_OP_DISABLE_CHANNELS
 1244  * VF sends these messages to enable or disable channels based on
 1245  * the user specified queue count and queue offset for each traffic class.
 1246  * This struct encompasses all the information that the PF needs from
 1247  * VF to create a channel.
 1248  */
 1249 struct virtchnl_channel_info {
 1250         u16 count; /* number of queues in a channel */
 1251         u16 offset; /* queues in a channel start from 'offset' */
 1252         u32 pad;
 1253         u64 max_tx_rate;
 1254 };
 1255 
 1256 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
 1257 
 1258 struct virtchnl_tc_info {
 1259         u32     num_tc;
 1260         u32     pad;
 1261         struct  virtchnl_channel_info list[1];
 1262 };
 1263 
 1264 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
 1265 
 1266 /* VIRTCHNL_ADD_CLOUD_FILTER
 1267  * VIRTCHNL_DEL_CLOUD_FILTER
 1268  * VF sends these messages to add or delete a cloud filter based on the
 1269  * user specified match and action filters. These structures encompass
 1270  * all the information that the PF needs from the VF to add/delete a
 1271  * cloud filter.
 1272  */
 1273 
 1274 struct virtchnl_l4_spec {
 1275         u8      src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
 1276         u8      dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
 1277         /* vlan_prio is part of this 16 bit field even from OS perspective
 1278          * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
 1279          * in future, when decided to offload vlan_prio, pass that information
 1280          * as part of the "vlan_id" field, Bit14..12
 1281          */
 1282         __be16  vlan_id;
 1283         __be16  pad; /* reserved for future use */
 1284         __be32  src_ip[4];
 1285         __be32  dst_ip[4];
 1286         __be16  src_port;
 1287         __be16  dst_port;
 1288 };
 1289 
 1290 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
 1291 
 1292 union virtchnl_flow_spec {
 1293         struct  virtchnl_l4_spec tcp_spec;
 1294         u8      buffer[128]; /* reserved for future use */
 1295 };
 1296 
 1297 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
 1298 
 1299 enum virtchnl_action {
 1300         /* action types */
 1301         VIRTCHNL_ACTION_DROP = 0,
 1302         VIRTCHNL_ACTION_TC_REDIRECT,
 1303         VIRTCHNL_ACTION_PASSTHRU,
 1304         VIRTCHNL_ACTION_QUEUE,
 1305         VIRTCHNL_ACTION_Q_REGION,
 1306         VIRTCHNL_ACTION_MARK,
 1307         VIRTCHNL_ACTION_COUNT,
 1308 };
 1309 
 1310 enum virtchnl_flow_type {
 1311         /* flow types */
 1312         VIRTCHNL_TCP_V4_FLOW = 0,
 1313         VIRTCHNL_TCP_V6_FLOW,
 1314         VIRTCHNL_UDP_V4_FLOW,
 1315         VIRTCHNL_UDP_V6_FLOW,
 1316 };
 1317 
 1318 struct virtchnl_filter {
 1319         union   virtchnl_flow_spec data;
 1320         union   virtchnl_flow_spec mask;
 1321 
 1322         /* see enum virtchnl_flow_type */
 1323         s32     flow_type;
 1324 
 1325         /* see enum virtchnl_action */
 1326         s32     action;
 1327         u32     action_meta;
 1328         u8      field_flags;
 1329 };
 1330 
 1331 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
 1332 
 1333 struct virtchnl_shaper_bw {
 1334         /* Unit is Kbps */
 1335         u32 committed;
 1336         u32 peak;
 1337 };
 1338 
 1339 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_shaper_bw);
 1340 
 1341 /* VIRTCHNL_OP_EVENT
 1342  * PF sends this message to inform the VF driver of events that may affect it.
 1343  * No direct response is expected from the VF, though it may generate other
 1344  * messages in response to this one.
 1345  */
 1346 enum virtchnl_event_codes {
 1347         VIRTCHNL_EVENT_UNKNOWN = 0,
 1348         VIRTCHNL_EVENT_LINK_CHANGE,
 1349         VIRTCHNL_EVENT_RESET_IMPENDING,
 1350         VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
 1351 };
 1352 
 1353 #define PF_EVENT_SEVERITY_INFO          0
 1354 #define PF_EVENT_SEVERITY_ATTENTION     1
 1355 #define PF_EVENT_SEVERITY_ACTION_REQUIRED       2
 1356 #define PF_EVENT_SEVERITY_CERTAIN_DOOM  255
 1357 
 1358 struct virtchnl_pf_event {
 1359         /* see enum virtchnl_event_codes */
 1360         s32 event;
 1361         union {
 1362                 /* If the PF driver does not support the new speed reporting
 1363                  * capabilities then use link_event else use link_event_adv to
 1364                  * get the speed and link information. The ability to understand
 1365                  * new speeds is indicated by setting the capability flag
 1366                  * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
 1367                  * in virtchnl_vf_resource struct and can be used to determine
 1368                  * which link event struct to use below.
 1369                  */
 1370                 struct {
 1371                         enum virtchnl_link_speed link_speed;
 1372                         bool link_status;
 1373                         u8 pad[3];
 1374                 } link_event;
 1375                 struct {
 1376                         /* link_speed provided in Mbps */
 1377                         u32 link_speed;
 1378                         u8 link_status;
 1379                         u8 pad[3];
 1380                 } link_event_adv;
 1381                 struct {
 1382                         /* link_speed provided in Mbps */
 1383                         u32 link_speed;
 1384                         u16 vport_id;
 1385                         u8 link_status;
 1386                         u8 pad;
 1387                 } link_event_adv_vport;
 1388         } event_data;
 1389 
 1390         s32 severity;
 1391 };
 1392 
 1393 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
 1394 
 1395 /* VF reset states - these are written into the RSTAT register:
 1396  * VFGEN_RSTAT on the VF
 1397  * When the PF initiates a reset, it writes 0
 1398  * When the reset is complete, it writes 1
 1399  * When the PF detects that the VF has recovered, it writes 2
 1400  * VF checks this register periodically to determine if a reset has occurred,
 1401  * then polls it to know when the reset is complete.
 1402  * If either the PF or VF reads the register while the hardware
 1403  * is in a reset state, it will return DEADBEEF, which, when masked
 1404  * will result in 3.
 1405  */
 1406 enum virtchnl_vfr_states {
 1407         VIRTCHNL_VFR_INPROGRESS = 0,
 1408         VIRTCHNL_VFR_COMPLETED,
 1409         VIRTCHNL_VFR_VFACTIVE,
 1410 };
 1411 
 1412 #define VIRTCHNL_MAX_NUM_PROTO_HDRS     32
 1413 #define PROTO_HDR_SHIFT                 5
 1414 #define PROTO_HDR_FIELD_START(proto_hdr_type) \
 1415                                         (proto_hdr_type << PROTO_HDR_SHIFT)
 1416 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
 1417 
 1418 /* VF use these macros to configure each protocol header.
 1419  * Specify which protocol headers and protocol header fields base on
 1420  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
 1421  * @param hdr: a struct of virtchnl_proto_hdr
 1422  * @param hdr_type: ETH/IPV4/TCP, etc
 1423  * @param field: SRC/DST/TEID/SPI, etc
 1424  */
 1425 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
 1426         ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
 1427 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
 1428         ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
 1429 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
 1430         ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
 1431 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)       ((hdr)->field_selector)
 1432 
 1433 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
 1434         (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
 1435                 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
 1436 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
 1437         (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
 1438                 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
 1439 
 1440 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
 1441         ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
 1442 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
 1443         (((hdr)->type) >> PROTO_HDR_SHIFT)
 1444 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
 1445         ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
 1446 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
 1447         (VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
 1448          VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
 1449 
 1450 /* Protocol header type within a packet segment. A segment consists of one or
 1451  * more protocol headers that make up a logical group of protocol headers. Each
 1452  * logical group of protocol headers encapsulates or is encapsulated using/by
 1453  * tunneling or encapsulation protocols for network virtualization.
 1454  */
 1455 enum virtchnl_proto_hdr_type {
 1456         VIRTCHNL_PROTO_HDR_NONE,
 1457         VIRTCHNL_PROTO_HDR_ETH,
 1458         VIRTCHNL_PROTO_HDR_S_VLAN,
 1459         VIRTCHNL_PROTO_HDR_C_VLAN,
 1460         VIRTCHNL_PROTO_HDR_IPV4,
 1461         VIRTCHNL_PROTO_HDR_IPV6,
 1462         VIRTCHNL_PROTO_HDR_TCP,
 1463         VIRTCHNL_PROTO_HDR_UDP,
 1464         VIRTCHNL_PROTO_HDR_SCTP,
 1465         VIRTCHNL_PROTO_HDR_GTPU_IP,
 1466         VIRTCHNL_PROTO_HDR_GTPU_EH,
 1467         VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
 1468         VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
 1469         VIRTCHNL_PROTO_HDR_PPPOE,
 1470         VIRTCHNL_PROTO_HDR_L2TPV3,
 1471         VIRTCHNL_PROTO_HDR_ESP,
 1472         VIRTCHNL_PROTO_HDR_AH,
 1473         VIRTCHNL_PROTO_HDR_PFCP,
 1474         VIRTCHNL_PROTO_HDR_GTPC,
 1475         VIRTCHNL_PROTO_HDR_ECPRI,
 1476         VIRTCHNL_PROTO_HDR_L2TPV2,
 1477         VIRTCHNL_PROTO_HDR_PPP,
 1478         /* IPv4 and IPv6 Fragment header types are only associated to
 1479          * VIRTCHNL_PROTO_HDR_IPV4 and VIRTCHNL_PROTO_HDR_IPV6 respectively,
 1480          * cannot be used independently.
 1481          */
 1482         VIRTCHNL_PROTO_HDR_IPV4_FRAG,
 1483         VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG,
 1484         VIRTCHNL_PROTO_HDR_GRE,
 1485 };
 1486 
 1487 /* Protocol header field within a protocol header. */
 1488 enum virtchnl_proto_hdr_field {
 1489         /* ETHER */
 1490         VIRTCHNL_PROTO_HDR_ETH_SRC =
 1491                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
 1492         VIRTCHNL_PROTO_HDR_ETH_DST,
 1493         VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
 1494         /* S-VLAN */
 1495         VIRTCHNL_PROTO_HDR_S_VLAN_ID =
 1496                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
 1497         /* C-VLAN */
 1498         VIRTCHNL_PROTO_HDR_C_VLAN_ID =
 1499                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
 1500         /* IPV4 */
 1501         VIRTCHNL_PROTO_HDR_IPV4_SRC =
 1502                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
 1503         VIRTCHNL_PROTO_HDR_IPV4_DST,
 1504         VIRTCHNL_PROTO_HDR_IPV4_DSCP,
 1505         VIRTCHNL_PROTO_HDR_IPV4_TTL,
 1506         VIRTCHNL_PROTO_HDR_IPV4_PROT,
 1507         VIRTCHNL_PROTO_HDR_IPV4_CHKSUM,
 1508         /* IPV6 */
 1509         VIRTCHNL_PROTO_HDR_IPV6_SRC =
 1510                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
 1511         VIRTCHNL_PROTO_HDR_IPV6_DST,
 1512         VIRTCHNL_PROTO_HDR_IPV6_TC,
 1513         VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
 1514         VIRTCHNL_PROTO_HDR_IPV6_PROT,
 1515         /* IPV6 Prefix */
 1516         VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
 1517         VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
 1518         VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
 1519         VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
 1520         VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
 1521         VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
 1522         VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
 1523         VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
 1524         VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
 1525         VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
 1526         VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
 1527         VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
 1528         /* TCP */
 1529         VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
 1530                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
 1531         VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
 1532         VIRTCHNL_PROTO_HDR_TCP_CHKSUM,
 1533         /* UDP */
 1534         VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
 1535                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
 1536         VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
 1537         VIRTCHNL_PROTO_HDR_UDP_CHKSUM,
 1538         /* SCTP */
 1539         VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
 1540                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
 1541         VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
 1542         VIRTCHNL_PROTO_HDR_SCTP_CHKSUM,
 1543         /* GTPU_IP */
 1544         VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
 1545                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
 1546         /* GTPU_EH */
 1547         VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
 1548                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
 1549         VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
 1550         /* PPPOE */
 1551         VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
 1552                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
 1553         /* L2TPV3 */
 1554         VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
 1555                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
 1556         /* ESP */
 1557         VIRTCHNL_PROTO_HDR_ESP_SPI =
 1558                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
 1559         /* AH */
 1560         VIRTCHNL_PROTO_HDR_AH_SPI =
 1561                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
 1562         /* PFCP */
 1563         VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
 1564                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
 1565         VIRTCHNL_PROTO_HDR_PFCP_SEID,
 1566         /* GTPC */
 1567         VIRTCHNL_PROTO_HDR_GTPC_TEID =
 1568                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
 1569         /* ECPRI */
 1570         VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
 1571                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
 1572         VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
 1573         /* IPv4 Dummy Fragment */
 1574         VIRTCHNL_PROTO_HDR_IPV4_FRAG_PKID =
 1575                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4_FRAG),
 1576         /* IPv6 Extension Fragment */
 1577         VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG_PKID =
 1578                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6_EH_FRAG),
 1579         /* GTPU_DWN/UP */
 1580         VIRTCHNL_PROTO_HDR_GTPU_DWN_QFI =
 1581                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN),
 1582         VIRTCHNL_PROTO_HDR_GTPU_UP_QFI =
 1583                 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP),
 1584 };
 1585 
 1586 struct virtchnl_proto_hdr {
 1587         /* see enum virtchnl_proto_hdr_type */
 1588         s32 type;
 1589         u32 field_selector; /* a bit mask to select field for header type */
 1590         u8 buffer[64];
 1591         /**
 1592          * binary buffer in network order for specific header type.
 1593          * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
 1594          * header is expected to be copied into the buffer.
 1595          */
 1596 };
 1597 
 1598 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
 1599 
 1600 struct virtchnl_proto_hdrs {
 1601         u8 tunnel_level;
 1602         /**
 1603          * specify where protocol header start from.
 1604          * 0 - from the outer layer
 1605          * 1 - from the first inner layer
 1606          * 2 - from the second inner layer
 1607          * ....
 1608          **/
 1609         int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
 1610         struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
 1611 };
 1612 
 1613 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
 1614 
 1615 struct virtchnl_rss_cfg {
 1616         struct virtchnl_proto_hdrs proto_hdrs;     /* protocol headers */
 1617 
 1618         /* see enum virtchnl_rss_algorithm; rss algorithm type */
 1619         s32 rss_algorithm;
 1620         u8 reserved[128];                          /* reserve for future */
 1621 };
 1622 
 1623 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
 1624 
 1625 /* action configuration for FDIR */
 1626 struct virtchnl_filter_action {
 1627         /* see enum virtchnl_action type */
 1628         s32 type;
 1629         union {
 1630                 /* used for queue and qgroup action */
 1631                 struct {
 1632                         u16 index;
 1633                         u8 region;
 1634                 } queue;
 1635                 /* used for count action */
 1636                 struct {
 1637                         /* share counter ID with other flow rules */
 1638                         u8 shared;
 1639                         u32 id; /* counter ID */
 1640                 } count;
 1641                 /* used for mark action */
 1642                 u32 mark_id;
 1643                 u8 reserve[32];
 1644         } act_conf;
 1645 };
 1646 
 1647 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
 1648 
 1649 #define VIRTCHNL_MAX_NUM_ACTIONS  8
 1650 
 1651 struct virtchnl_filter_action_set {
 1652         /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
 1653         int count;
 1654         struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
 1655 };
 1656 
 1657 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
 1658 
 1659 /* pattern and action for FDIR rule */
 1660 struct virtchnl_fdir_rule {
 1661         struct virtchnl_proto_hdrs proto_hdrs;
 1662         struct virtchnl_filter_action_set action_set;
 1663 };
 1664 
 1665 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
 1666 
 1667 /* Status returned to VF after VF requests FDIR commands
 1668  * VIRTCHNL_FDIR_SUCCESS
 1669  * VF FDIR related request is successfully done by PF
 1670  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
 1671  *
 1672  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
 1673  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
 1674  *
 1675  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
 1676  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
 1677  *
 1678  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
 1679  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
 1680  *
 1681  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
 1682  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
 1683  *
 1684  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
 1685  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
 1686  * or HW doesn't support.
 1687  *
 1688  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
 1689  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
 1690  * for programming.
 1691  *
 1692  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
 1693  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
 1694  * for example, VF query counter of a rule who has no counter action.
 1695  */
 1696 enum virtchnl_fdir_prgm_status {
 1697         VIRTCHNL_FDIR_SUCCESS = 0,
 1698         VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
 1699         VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
 1700         VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
 1701         VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
 1702         VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
 1703         VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
 1704         VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
 1705 };
 1706 
 1707 /* VIRTCHNL_OP_ADD_FDIR_FILTER
 1708  * VF sends this request to PF by filling out vsi_id,
 1709  * validate_only and rule_cfg. PF will return flow_id
 1710  * if the request is successfully done and return add_status to VF.
 1711  */
 1712 struct virtchnl_fdir_add {
 1713         u16 vsi_id;  /* INPUT */
 1714         /*
 1715          * 1 for validating a fdir rule, 0 for creating a fdir rule.
 1716          * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
 1717          */
 1718         u16 validate_only; /* INPUT */
 1719         u32 flow_id;       /* OUTPUT */
 1720         struct virtchnl_fdir_rule rule_cfg; /* INPUT */
 1721 
 1722         /* see enum virtchnl_fdir_prgm_status; OUTPUT */
 1723         s32 status;
 1724 };
 1725 
 1726 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
 1727 
 1728 /* VIRTCHNL_OP_DEL_FDIR_FILTER
 1729  * VF sends this request to PF by filling out vsi_id
 1730  * and flow_id. PF will return del_status to VF.
 1731  */
 1732 struct virtchnl_fdir_del {
 1733         u16 vsi_id;  /* INPUT */
 1734         u16 pad;
 1735         u32 flow_id; /* INPUT */
 1736 
 1737         /* see enum virtchnl_fdir_prgm_status; OUTPUT */
 1738         s32 status;
 1739 };
 1740 
 1741 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
 1742 
 1743 /* VIRTCHNL_OP_GET_QOS_CAPS
 1744  * VF sends this message to get its QoS Caps, such as
 1745  * TC number, Arbiter and Bandwidth.
 1746  */
 1747 struct virtchnl_qos_cap_elem {
 1748         u8 tc_num;
 1749         u8 tc_prio;
 1750 #define VIRTCHNL_ABITER_STRICT      0
 1751 #define VIRTCHNL_ABITER_ETS         2
 1752         u8 arbiter;
 1753 #define VIRTCHNL_STRICT_WEIGHT      1
 1754         u8 weight;
 1755         enum virtchnl_bw_limit_type type;
 1756         union {
 1757                 struct virtchnl_shaper_bw shaper;
 1758                 u8 pad2[32];
 1759         };
 1760 };
 1761 
 1762 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_qos_cap_elem);
 1763 
 1764 struct virtchnl_qos_cap_list {
 1765         u16 vsi_id;
 1766         u16 num_elem;
 1767         struct virtchnl_qos_cap_elem cap[1];
 1768 };
 1769 
 1770 VIRTCHNL_CHECK_STRUCT_LEN(44, virtchnl_qos_cap_list);
 1771 
 1772 /* VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP
 1773  * VF sends message virtchnl_queue_tc_mapping to set queue to tc
 1774  * mapping for all the Tx and Rx queues with a specified VSI, and
 1775  * would get response about bitmap of valid user priorities
 1776  * associated with queues.
 1777  */
 1778 struct virtchnl_queue_tc_mapping {
 1779         u16 vsi_id;
 1780         u16 num_tc;
 1781         u16 num_queue_pairs;
 1782         u8 pad[2];
 1783         union {
 1784                 struct {
 1785                         u16 start_queue_id;
 1786                         u16 queue_count;
 1787                 } req;
 1788                 struct {
 1789 #define VIRTCHNL_USER_PRIO_TYPE_UP      0
 1790 #define VIRTCHNL_USER_PRIO_TYPE_DSCP    1
 1791                         u16 prio_type;
 1792                         u16 valid_prio_bitmap;
 1793                 } resp;
 1794         } tc[1];
 1795 };
 1796 
 1797 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_tc_mapping);
 1798 
 1799 /* TX and RX queue types are valid in legacy as well as split queue models.
 1800  * With Split Queue model, 2 additional types are introduced - TX_COMPLETION
 1801  * and RX_BUFFER. In split queue model, RX corresponds to the queue where HW
 1802  * posts completions.
 1803  */
 1804 enum virtchnl_queue_type {
 1805         VIRTCHNL_QUEUE_TYPE_TX                  = 0,
 1806         VIRTCHNL_QUEUE_TYPE_RX                  = 1,
 1807         VIRTCHNL_QUEUE_TYPE_TX_COMPLETION       = 2,
 1808         VIRTCHNL_QUEUE_TYPE_RX_BUFFER           = 3,
 1809         VIRTCHNL_QUEUE_TYPE_CONFIG_TX           = 4,
 1810         VIRTCHNL_QUEUE_TYPE_CONFIG_RX           = 5
 1811 };
 1812 
 1813 /* structure to specify a chunk of contiguous queues */
 1814 struct virtchnl_queue_chunk {
 1815         /* see enum virtchnl_queue_type */
 1816         s32 type;
 1817         u16 start_queue_id;
 1818         u16 num_queues;
 1819 };
 1820 
 1821 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
 1822 
 1823 /* structure to specify several chunks of contiguous queues */
 1824 struct virtchnl_queue_chunks {
 1825         u16 num_chunks;
 1826         u16 rsvd;
 1827         struct virtchnl_queue_chunk chunks[1];
 1828 };
 1829 
 1830 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
 1831 
 1832 /* VIRTCHNL_OP_ENABLE_QUEUES_V2
 1833  * VIRTCHNL_OP_DISABLE_QUEUES_V2
 1834  * VIRTCHNL_OP_DEL_QUEUES
 1835  *
 1836  * If VIRTCHNL version was negotiated in VIRTCHNL_OP_VERSION as 2.0
 1837  * then all of these ops are available.
 1838  *
 1839  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
 1840  * then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are
 1841  * available.
 1842  *
 1843  * PF sends these messages to enable, disable or delete queues specified in
 1844  * chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues
 1845  * to be enabled/disabled/deleted. Also applicable to single queue RX or
 1846  * TX. CP performs requested action and returns status.
 1847  */
 1848 struct virtchnl_del_ena_dis_queues {
 1849         u16 vport_id;
 1850         u16 pad;
 1851         struct virtchnl_queue_chunks chunks;
 1852 };
 1853 
 1854 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
 1855 
 1856 /* Virtchannel interrupt throttling rate index */
 1857 enum virtchnl_itr_idx {
 1858         VIRTCHNL_ITR_IDX_0      = 0,
 1859         VIRTCHNL_ITR_IDX_1      = 1,
 1860         VIRTCHNL_ITR_IDX_NO_ITR = 3,
 1861 };
 1862 
 1863 /* Queue to vector mapping */
 1864 struct virtchnl_queue_vector {
 1865         u16 queue_id;
 1866         u16 vector_id;
 1867         u8 pad[4];
 1868 
 1869         /* see enum virtchnl_itr_idx */
 1870         s32 itr_idx;
 1871 
 1872         /* see enum virtchnl_queue_type */
 1873         s32 queue_type;
 1874 };
 1875 
 1876 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
 1877 
 1878 /* VIRTCHNL_OP_MAP_QUEUE_VECTOR
 1879  *
 1880  * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
 1881  * then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available.
 1882  *
 1883  * PF sends this message to map or unmap queues to vectors and ITR index
 1884  * registers. External data buffer contains virtchnl_queue_vector_maps structure
 1885  * that contains num_qv_maps of virtchnl_queue_vector structures.
 1886  * CP maps the requested queue vector maps after validating the queue and vector
 1887  * ids and returns a status code.
 1888  */
 1889 struct virtchnl_queue_vector_maps {
 1890         u16 vport_id;
 1891         u16 num_qv_maps;
 1892         u8 pad[4];
 1893         struct virtchnl_queue_vector qv_maps[1];
 1894 };
 1895 
 1896 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
 1897 
 1898 /* Since VF messages are limited by u16 size, precalculate the maximum possible
 1899  * values of nested elements in virtchnl structures that virtual channel can
 1900  * possibly handle in a single message.
 1901  */
 1902 enum virtchnl_vector_limits {
 1903         VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX       =
 1904                 ((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
 1905                 sizeof(struct virtchnl_queue_pair_info),
 1906 
 1907         VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX          =
 1908                 ((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
 1909                 sizeof(struct virtchnl_vector_map),
 1910 
 1911         VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX        =
 1912                 ((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
 1913                 sizeof(struct virtchnl_ether_addr),
 1914 
 1915         VIRTCHNL_OP_ADD_DEL_VLAN_MAX            =
 1916                 ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
 1917                 sizeof(u16),
 1918 
 1919         VIRTCHNL_OP_ENABLE_CHANNELS_MAX         =
 1920                 ((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
 1921                 sizeof(struct virtchnl_channel_info),
 1922 
 1923         VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX    =
 1924                 ((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
 1925                 sizeof(struct virtchnl_queue_chunk),
 1926 
 1927         VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX  =
 1928                 ((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
 1929                 sizeof(struct virtchnl_queue_vector),
 1930 
 1931         VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX         =
 1932                 ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
 1933                 sizeof(struct virtchnl_vlan_filter),
 1934 };
 1935 
 1936 /**
 1937  * virtchnl_vc_validate_vf_msg
 1938  * @ver: Virtchnl version info
 1939  * @v_opcode: Opcode for the message
 1940  * @msg: pointer to the msg buffer
 1941  * @msglen: msg length
 1942  *
 1943  * validate msg format against struct for each opcode
 1944  */
 1945 static inline int
 1946 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
 1947                             u8 *msg, u16 msglen)
 1948 {
 1949         bool err_msg_format = false;
 1950         u32 valid_len = 0;
 1951 
 1952         /* Validate message length. */
 1953         switch (v_opcode) {
 1954         case VIRTCHNL_OP_VERSION:
 1955                 valid_len = sizeof(struct virtchnl_version_info);
 1956                 break;
 1957         case VIRTCHNL_OP_RESET_VF:
 1958                 break;
 1959         case VIRTCHNL_OP_GET_VF_RESOURCES:
 1960                 if (VF_IS_V11(ver))
 1961                         valid_len = sizeof(u32);
 1962                 break;
 1963         case VIRTCHNL_OP_CONFIG_TX_QUEUE:
 1964                 valid_len = sizeof(struct virtchnl_txq_info);
 1965                 break;
 1966         case VIRTCHNL_OP_CONFIG_RX_QUEUE:
 1967                 valid_len = sizeof(struct virtchnl_rxq_info);
 1968                 break;
 1969         case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
 1970                 valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
 1971                 if (msglen >= valid_len) {
 1972                         struct virtchnl_vsi_queue_config_info *vqc =
 1973                             (struct virtchnl_vsi_queue_config_info *)msg;
 1974 
 1975                         if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
 1976                             VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
 1977                                 err_msg_format = true;
 1978                                 break;
 1979                         }
 1980 
 1981                         valid_len += (vqc->num_queue_pairs *
 1982                                       sizeof(struct
 1983                                              virtchnl_queue_pair_info));
 1984                 }
 1985                 break;
 1986         case VIRTCHNL_OP_CONFIG_IRQ_MAP:
 1987                 valid_len = sizeof(struct virtchnl_irq_map_info);
 1988                 if (msglen >= valid_len) {
 1989                         struct virtchnl_irq_map_info *vimi =
 1990                             (struct virtchnl_irq_map_info *)msg;
 1991 
 1992                         if (vimi->num_vectors == 0 || vimi->num_vectors >
 1993                             VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
 1994                                 err_msg_format = true;
 1995                                 break;
 1996                         }
 1997 
 1998                         valid_len += (vimi->num_vectors *
 1999                                       sizeof(struct virtchnl_vector_map));
 2000                 }
 2001                 break;
 2002         case VIRTCHNL_OP_ENABLE_QUEUES:
 2003         case VIRTCHNL_OP_DISABLE_QUEUES:
 2004                 valid_len = sizeof(struct virtchnl_queue_select);
 2005                 break;
 2006         case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
 2007                 break;
 2008         case VIRTCHNL_OP_ADD_ETH_ADDR:
 2009         case VIRTCHNL_OP_DEL_ETH_ADDR:
 2010                 valid_len = sizeof(struct virtchnl_ether_addr_list);
 2011                 if (msglen >= valid_len) {
 2012                         struct virtchnl_ether_addr_list *veal =
 2013                             (struct virtchnl_ether_addr_list *)msg;
 2014 
 2015                         if (veal->num_elements == 0 || veal->num_elements >
 2016                             VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
 2017                                 err_msg_format = true;
 2018                                 break;
 2019                         }
 2020 
 2021                         valid_len += veal->num_elements *
 2022                             sizeof(struct virtchnl_ether_addr);
 2023                 }
 2024                 break;
 2025         case VIRTCHNL_OP_ADD_VLAN:
 2026         case VIRTCHNL_OP_DEL_VLAN:
 2027                 valid_len = sizeof(struct virtchnl_vlan_filter_list);
 2028                 if (msglen >= valid_len) {
 2029                         struct virtchnl_vlan_filter_list *vfl =
 2030                             (struct virtchnl_vlan_filter_list *)msg;
 2031 
 2032                         if (vfl->num_elements == 0 || vfl->num_elements >
 2033                             VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
 2034                                 err_msg_format = true;
 2035                                 break;
 2036                         }
 2037 
 2038                         valid_len += vfl->num_elements * sizeof(u16);
 2039                 }
 2040                 break;
 2041         case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
 2042                 valid_len = sizeof(struct virtchnl_promisc_info);
 2043                 break;
 2044         case VIRTCHNL_OP_GET_STATS:
 2045                 valid_len = sizeof(struct virtchnl_queue_select);
 2046                 break;
 2047         case VIRTCHNL_OP_CONFIG_RSS_KEY:
 2048                 valid_len = sizeof(struct virtchnl_rss_key);
 2049                 if (msglen >= valid_len) {
 2050                         struct virtchnl_rss_key *vrk =
 2051                                 (struct virtchnl_rss_key *)msg;
 2052 
 2053                         if (vrk->key_len == 0) {
 2054                                 /* zero length is allowed as input */
 2055                                 break;
 2056                         }
 2057 
 2058                         valid_len += vrk->key_len - 1;
 2059                 }
 2060                 break;
 2061         case VIRTCHNL_OP_CONFIG_RSS_LUT:
 2062                 valid_len = sizeof(struct virtchnl_rss_lut);
 2063                 if (msglen >= valid_len) {
 2064                         struct virtchnl_rss_lut *vrl =
 2065                                 (struct virtchnl_rss_lut *)msg;
 2066 
 2067                         if (vrl->lut_entries == 0) {
 2068                                 /* zero entries is allowed as input */
 2069                                 break;
 2070                         }
 2071 
 2072                         valid_len += vrl->lut_entries - 1;
 2073                 }
 2074                 break;
 2075         case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
 2076                 break;
 2077         case VIRTCHNL_OP_SET_RSS_HENA:
 2078                 valid_len = sizeof(struct virtchnl_rss_hena);
 2079                 break;
 2080         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
 2081         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
 2082                 break;
 2083         case VIRTCHNL_OP_REQUEST_QUEUES:
 2084                 valid_len = sizeof(struct virtchnl_vf_res_request);
 2085                 break;
 2086         case VIRTCHNL_OP_ENABLE_CHANNELS:
 2087                 valid_len = sizeof(struct virtchnl_tc_info);
 2088                 if (msglen >= valid_len) {
 2089                         struct virtchnl_tc_info *vti =
 2090                                 (struct virtchnl_tc_info *)msg;
 2091 
 2092                         if (vti->num_tc == 0 || vti->num_tc >
 2093                             VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
 2094                                 err_msg_format = true;
 2095                                 break;
 2096                         }
 2097 
 2098                         valid_len += (vti->num_tc - 1) *
 2099                                      sizeof(struct virtchnl_channel_info);
 2100                 }
 2101                 break;
 2102         case VIRTCHNL_OP_DISABLE_CHANNELS:
 2103                 break;
 2104         case VIRTCHNL_OP_ADD_CLOUD_FILTER:
 2105         case VIRTCHNL_OP_DEL_CLOUD_FILTER:
 2106                 valid_len = sizeof(struct virtchnl_filter);
 2107                 break;
 2108         case VIRTCHNL_OP_ADD_RSS_CFG:
 2109         case VIRTCHNL_OP_DEL_RSS_CFG:
 2110                 valid_len = sizeof(struct virtchnl_rss_cfg);
 2111                 break;
 2112         case VIRTCHNL_OP_ADD_FDIR_FILTER:
 2113                 valid_len = sizeof(struct virtchnl_fdir_add);
 2114                 break;
 2115         case VIRTCHNL_OP_DEL_FDIR_FILTER:
 2116                 valid_len = sizeof(struct virtchnl_fdir_del);
 2117                 break;
 2118         case VIRTCHNL_OP_GET_QOS_CAPS:
 2119                 break;
 2120         case VIRTCHNL_OP_CONFIG_QUEUE_TC_MAP:
 2121                 valid_len = sizeof(struct virtchnl_queue_tc_mapping);
 2122                 if (msglen >= valid_len) {
 2123                         struct virtchnl_queue_tc_mapping *q_tc =
 2124                                 (struct virtchnl_queue_tc_mapping *)msg;
 2125                         if (q_tc->num_tc == 0) {
 2126                                 err_msg_format = true;
 2127                                 break;
 2128                         }
 2129                         valid_len += (q_tc->num_tc - 1) *
 2130                                          sizeof(q_tc->tc[0]);
 2131                 }
 2132                 break;
 2133         case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
 2134                 break;
 2135         case VIRTCHNL_OP_ADD_VLAN_V2:
 2136         case VIRTCHNL_OP_DEL_VLAN_V2:
 2137                 valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
 2138                 if (msglen >= valid_len) {
 2139                         struct virtchnl_vlan_filter_list_v2 *vfl =
 2140                             (struct virtchnl_vlan_filter_list_v2 *)msg;
 2141 
 2142                         if (vfl->num_elements == 0 || vfl->num_elements >
 2143                             VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
 2144                                 err_msg_format = true;
 2145                                 break;
 2146                         }
 2147 
 2148                         valid_len += (vfl->num_elements - 1) *
 2149                                 sizeof(struct virtchnl_vlan_filter);
 2150                 }
 2151                 break;
 2152         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
 2153         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
 2154         case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
 2155         case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
 2156         case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
 2157         case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
 2158                 valid_len = sizeof(struct virtchnl_vlan_setting);
 2159                 break;
 2160         case VIRTCHNL_OP_ENABLE_QUEUES_V2:
 2161         case VIRTCHNL_OP_DISABLE_QUEUES_V2:
 2162                 valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
 2163                 if (msglen >= valid_len) {
 2164                         struct virtchnl_del_ena_dis_queues *qs =
 2165                                 (struct virtchnl_del_ena_dis_queues *)msg;
 2166                         if (qs->chunks.num_chunks == 0 ||
 2167                             qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
 2168                                 err_msg_format = true;
 2169                                 break;
 2170                         }
 2171                         valid_len += (qs->chunks.num_chunks - 1) *
 2172                                       sizeof(struct virtchnl_queue_chunk);
 2173                 }
 2174                 break;
 2175         case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
 2176                 valid_len = sizeof(struct virtchnl_queue_vector_maps);
 2177                 if (msglen >= valid_len) {
 2178                         struct virtchnl_queue_vector_maps *v_qp =
 2179                                 (struct virtchnl_queue_vector_maps *)msg;
 2180                         if (v_qp->num_qv_maps == 0 ||
 2181                             v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
 2182                                 err_msg_format = true;
 2183                                 break;
 2184                         }
 2185                         valid_len += (v_qp->num_qv_maps - 1) *
 2186                                       sizeof(struct virtchnl_queue_vector);
 2187                 }
 2188                 break;
 2189         /* These are always errors coming from the VF. */
 2190         case VIRTCHNL_OP_EVENT:
 2191         case VIRTCHNL_OP_UNKNOWN:
 2192         default:
 2193                 return VIRTCHNL_STATUS_ERR_PARAM;
 2194         }
 2195         /* few more checks */
 2196         if (err_msg_format || valid_len != msglen)
 2197                 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
 2198 
 2199         return 0;
 2200 }
 2201 #endif /* _VIRTCHNL_H_ */

Cache object: c6379c410a11847ffc3e486b1a1bd3da


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.