The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/igc/igc_i225.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 2021 Intel Corp
    3  * Copyright 2021 Rubicon Communications, LLC (Netgate)
    4  * SPDX-License-Identifier: BSD-3-Clause
    5  */
    6 
    7 #include <sys/cdefs.h>
    8 __FBSDID("$FreeBSD$");
    9 
   10 #include "igc_api.h"
   11 
   12 static s32 igc_init_nvm_params_i225(struct igc_hw *hw);
   13 static s32 igc_init_mac_params_i225(struct igc_hw *hw);
   14 static s32 igc_init_phy_params_i225(struct igc_hw *hw);
   15 static s32 igc_reset_hw_i225(struct igc_hw *hw);
   16 static s32 igc_acquire_nvm_i225(struct igc_hw *hw);
   17 static void igc_release_nvm_i225(struct igc_hw *hw);
   18 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw);
   19 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
   20                                   u16 *data);
   21 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw);
   22 
   23 /**
   24  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
   25  *  @hw: pointer to the HW structure
   26  **/
   27 static s32 igc_init_nvm_params_i225(struct igc_hw *hw)
   28 {
   29         struct igc_nvm_info *nvm = &hw->nvm;
   30         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
   31         u16 size;
   32 
   33         DEBUGFUNC("igc_init_nvm_params_i225");
   34 
   35         size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >>
   36                      IGC_EECD_SIZE_EX_SHIFT);
   37         /*
   38          * Added to a constant, "size" becomes the left-shift value
   39          * for setting word_size.
   40          */
   41         size += NVM_WORD_SIZE_BASE_SHIFT;
   42 
   43         /* Just in case size is out of range, cap it to the largest
   44          * EEPROM size supported
   45          */
   46         if (size > 15)
   47                 size = 15;
   48 
   49         nvm->word_size = 1 << size;
   50         nvm->opcode_bits = 8;
   51         nvm->delay_usec = 1;
   52         nvm->type = igc_nvm_eeprom_spi;
   53 
   54 
   55         nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
   56         nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ?
   57                             16 : 8;
   58 
   59         if (nvm->word_size == (1 << 15))
   60                 nvm->page_size = 128;
   61 
   62         nvm->ops.acquire = igc_acquire_nvm_i225;
   63         nvm->ops.release = igc_release_nvm_i225;
   64         if (igc_get_flash_presence_i225(hw)) {
   65                 hw->nvm.type = igc_nvm_flash_hw;
   66                 nvm->ops.read    = igc_read_nvm_srrd_i225;
   67                 nvm->ops.write   = igc_write_nvm_srwr_i225;
   68                 nvm->ops.validate = igc_validate_nvm_checksum_i225;
   69                 nvm->ops.update   = igc_update_nvm_checksum_i225;
   70         } else {
   71                 hw->nvm.type = igc_nvm_invm;
   72                 nvm->ops.write    = igc_null_write_nvm;
   73                 nvm->ops.validate = igc_null_ops_generic;
   74                 nvm->ops.update   = igc_null_ops_generic;
   75         }
   76 
   77         return IGC_SUCCESS;
   78 }
   79 
   80 /**
   81  *  igc_init_mac_params_i225 - Init MAC func ptrs.
   82  *  @hw: pointer to the HW structure
   83  **/
   84 static s32 igc_init_mac_params_i225(struct igc_hw *hw)
   85 {
   86         struct igc_mac_info *mac = &hw->mac;
   87         struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
   88 
   89         DEBUGFUNC("igc_init_mac_params_i225");
   90 
   91         /* Initialize function pointer */
   92         igc_init_mac_ops_generic(hw);
   93 
   94         /* Set media type */
   95         hw->phy.media_type = igc_media_type_copper;
   96         /* Set mta register count */
   97         mac->mta_reg_count = 128;
   98         /* Set rar entry count */
   99         mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
  100 
  101         /* reset */
  102         mac->ops.reset_hw = igc_reset_hw_i225;
  103         /* hw initialization */
  104         mac->ops.init_hw = igc_init_hw_i225;
  105         /* link setup */
  106         mac->ops.setup_link = igc_setup_link_generic;
  107         /* check for link */
  108         mac->ops.check_for_link = igc_check_for_link_i225;
  109         /* link info */
  110         mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
  111         /* acquire SW_FW sync */
  112         mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
  113         /* release SW_FW sync */
  114         mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
  115 
  116         /* Allow a single clear of the SW semaphore on I225 */
  117         dev_spec->clear_semaphore_once = true;
  118         mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
  119 
  120         /* Set if part includes ASF firmware */
  121         mac->asf_firmware_present = true;
  122 
  123         /* multicast address update */
  124         mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
  125 
  126         mac->ops.write_vfta = igc_write_vfta_generic;
  127 
  128         return IGC_SUCCESS;
  129 }
  130 
  131 /**
  132  *  igc_init_phy_params_i225 - Init PHY func ptrs.
  133  *  @hw: pointer to the HW structure
  134  **/
  135 static s32 igc_init_phy_params_i225(struct igc_hw *hw)
  136 {
  137         struct igc_phy_info *phy = &hw->phy;
  138         s32 ret_val = IGC_SUCCESS;
  139 
  140         DEBUGFUNC("igc_init_phy_params_i225");
  141 
  142 
  143         if (hw->phy.media_type != igc_media_type_copper) {
  144                 phy->type = igc_phy_none;
  145                 goto out;
  146         }
  147 
  148         phy->ops.power_up   = igc_power_up_phy_copper;
  149         phy->ops.power_down = igc_power_down_phy_copper_base;
  150 
  151         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
  152 
  153         phy->reset_delay_us     = 100;
  154 
  155         phy->ops.acquire        = igc_acquire_phy_base;
  156         phy->ops.check_reset_block = igc_check_reset_block_generic;
  157         phy->ops.release        = igc_release_phy_base;
  158         phy->ops.reset          = igc_phy_hw_reset_generic;
  159         phy->ops.read_reg       = igc_read_phy_reg_gpy;
  160         phy->ops.write_reg      = igc_write_phy_reg_gpy;
  161 
  162         /* Make sure the PHY is in a good state. Several people have reported
  163          * firmware leaving the PHY's page select register set to something
  164          * other than the default of zero, which causes the PHY ID read to
  165          * access something other than the intended register.
  166          */
  167         ret_val = hw->phy.ops.reset(hw);
  168         if (ret_val)
  169                 goto out;
  170 
  171         ret_val = igc_get_phy_id(hw);
  172         phy->type = igc_phy_i225;
  173 
  174 out:
  175         return ret_val;
  176 }
  177 
  178 /**
  179  *  igc_reset_hw_i225 - Reset hardware
  180  *  @hw: pointer to the HW structure
  181  *
  182  *  This resets the hardware into a known state.
  183  **/
  184 static s32 igc_reset_hw_i225(struct igc_hw *hw)
  185 {
  186         u32 ctrl;
  187         s32 ret_val;
  188 
  189         DEBUGFUNC("igc_reset_hw_i225");
  190 
  191         /*
  192          * Prevent the PCI-E bus from sticking if there is no TLP connection
  193          * on the last TLP read/write transaction when MAC is reset.
  194          */
  195         ret_val = igc_disable_pcie_master_generic(hw);
  196         if (ret_val)
  197                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
  198 
  199         DEBUGOUT("Masking off all interrupts\n");
  200         IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
  201 
  202         IGC_WRITE_REG(hw, IGC_RCTL, 0);
  203         IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
  204         IGC_WRITE_FLUSH(hw);
  205 
  206         msec_delay(10);
  207 
  208         ctrl = IGC_READ_REG(hw, IGC_CTRL);
  209 
  210         DEBUGOUT("Issuing a global reset to MAC\n");
  211         IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
  212 
  213         ret_val = igc_get_auto_rd_done_generic(hw);
  214         if (ret_val) {
  215                 /*
  216                  * When auto config read does not complete, do not
  217                  * return with an error. This can happen in situations
  218                  * where there is no eeprom and prevents getting link.
  219                  */
  220                 DEBUGOUT("Auto Read Done did not complete\n");
  221         }
  222 
  223         /* Clear any pending interrupt events. */
  224         IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
  225         IGC_READ_REG(hw, IGC_ICR);
  226 
  227         /* Install any alternate MAC address into RAR0 */
  228         ret_val = igc_check_alt_mac_addr_generic(hw);
  229 
  230         return ret_val;
  231 }
  232 
  233 /* igc_acquire_nvm_i225 - Request for access to EEPROM
  234  * @hw: pointer to the HW structure
  235  *
  236  * Acquire the necessary semaphores for exclusive access to the EEPROM.
  237  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
  238  * Return successful if access grant bit set, else clear the request for
  239  * EEPROM access and return -IGC_ERR_NVM (-1).
  240  */
  241 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
  242 {
  243         s32 ret_val;
  244 
  245         DEBUGFUNC("igc_acquire_nvm_i225");
  246 
  247         ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
  248 
  249         return ret_val;
  250 }
  251 
  252 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
  253  * @hw: pointer to the HW structure
  254  *
  255  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
  256  * then release the semaphores acquired.
  257  */
  258 static void igc_release_nvm_i225(struct igc_hw *hw)
  259 {
  260         DEBUGFUNC("igc_release_nvm_i225");
  261 
  262         igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
  263 }
  264 
  265 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
  266  * @hw: pointer to the HW structure
  267  * @mask: specifies which semaphore to acquire
  268  *
  269  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
  270  * will also specify which port we're acquiring the lock for.
  271  */
  272 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
  273 {
  274         u32 swfw_sync;
  275         u32 swmask = mask;
  276         u32 fwmask = mask << 16;
  277         s32 ret_val = IGC_SUCCESS;
  278         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
  279 
  280         DEBUGFUNC("igc_acquire_swfw_sync_i225");
  281 
  282         while (i < timeout) {
  283                 if (igc_get_hw_semaphore_i225(hw)) {
  284                         ret_val = -IGC_ERR_SWFW_SYNC;
  285                         goto out;
  286                 }
  287 
  288                 swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
  289                 if (!(swfw_sync & (fwmask | swmask)))
  290                         break;
  291 
  292                 /* Firmware currently using resource (fwmask)
  293                  * or other software thread using resource (swmask)
  294                  */
  295                 igc_put_hw_semaphore_generic(hw);
  296                 msec_delay_irq(5);
  297                 i++;
  298         }
  299 
  300         if (i == timeout) {
  301                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
  302                 ret_val = -IGC_ERR_SWFW_SYNC;
  303                 goto out;
  304         }
  305 
  306         swfw_sync |= swmask;
  307         IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
  308 
  309         igc_put_hw_semaphore_generic(hw);
  310 
  311 out:
  312         return ret_val;
  313 }
  314 
  315 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
  316  * @hw: pointer to the HW structure
  317  * @mask: specifies which semaphore to acquire
  318  *
  319  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
  320  * will also specify which port we're releasing the lock for.
  321  */
  322 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
  323 {
  324         u32 swfw_sync;
  325 
  326         DEBUGFUNC("igc_release_swfw_sync_i225");
  327 
  328         while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
  329                 ; /* Empty */
  330 
  331         swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
  332         swfw_sync &= ~mask;
  333         IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
  334 
  335         igc_put_hw_semaphore_generic(hw);
  336 }
  337 
  338 /*
  339  * igc_setup_copper_link_i225 - Configure copper link settings
  340  * @hw: pointer to the HW structure
  341  *
  342  * Configures the link for auto-neg or forced speed and duplex.  Then we check
  343  * for link, once link is established calls to configure collision distance
  344  * and flow control are called.
  345  */
  346 s32 igc_setup_copper_link_i225(struct igc_hw *hw)
  347 {
  348         u32 phpm_reg;
  349         s32 ret_val;
  350         u32 ctrl;
  351 
  352         DEBUGFUNC("igc_setup_copper_link_i225");
  353 
  354         ctrl = IGC_READ_REG(hw, IGC_CTRL);
  355         ctrl |= IGC_CTRL_SLU;
  356         ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
  357         IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
  358 
  359         phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
  360         phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
  361         IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
  362 
  363         ret_val = igc_setup_copper_link_generic(hw);
  364 
  365         return ret_val;
  366 }
  367 
  368 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
  369  * @hw: pointer to the HW structure
  370  *
  371  * Acquire the HW semaphore to access the PHY or NVM
  372  */
  373 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
  374 {
  375         u32 swsm;
  376         s32 timeout = hw->nvm.word_size + 1;
  377         s32 i = 0;
  378 
  379         DEBUGFUNC("igc_get_hw_semaphore_i225");
  380 
  381         /* Get the SW semaphore */
  382         while (i < timeout) {
  383                 swsm = IGC_READ_REG(hw, IGC_SWSM);
  384                 if (!(swsm & IGC_SWSM_SMBI))
  385                         break;
  386 
  387                 usec_delay(50);
  388                 i++;
  389         }
  390 
  391         if (i == timeout) {
  392                 /* In rare circumstances, the SW semaphore may already be held
  393                  * unintentionally. Clear the semaphore once before giving up.
  394                  */
  395                 if (hw->dev_spec._i225.clear_semaphore_once) {
  396                         hw->dev_spec._i225.clear_semaphore_once = false;
  397                         igc_put_hw_semaphore_generic(hw);
  398                         for (i = 0; i < timeout; i++) {
  399                                 swsm = IGC_READ_REG(hw, IGC_SWSM);
  400                                 if (!(swsm & IGC_SWSM_SMBI))
  401                                         break;
  402 
  403                                 usec_delay(50);
  404                         }
  405                 }
  406 
  407                 /* If we do not have the semaphore here, we have to give up. */
  408                 if (i == timeout) {
  409                         DEBUGOUT("Driver can't access device -\n");
  410                         DEBUGOUT("SMBI bit is set.\n");
  411                         return -IGC_ERR_NVM;
  412                 }
  413         }
  414 
  415         /* Get the FW semaphore. */
  416         for (i = 0; i < timeout; i++) {
  417                 swsm = IGC_READ_REG(hw, IGC_SWSM);
  418                 IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
  419 
  420                 /* Semaphore acquired if bit latched */
  421                 if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
  422                         break;
  423 
  424                 usec_delay(50);
  425         }
  426 
  427         if (i == timeout) {
  428                 /* Release semaphores */
  429                 igc_put_hw_semaphore_generic(hw);
  430                 DEBUGOUT("Driver can't access the NVM\n");
  431                 return -IGC_ERR_NVM;
  432         }
  433 
  434         return IGC_SUCCESS;
  435 }
  436 
  437 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
  438  * @hw: pointer to the HW structure
  439  * @offset: offset of word in the Shadow Ram to read
  440  * @words: number of words to read
  441  * @data: word read from the Shadow Ram
  442  *
  443  * Reads a 16 bit word from the Shadow Ram using the EERD register.
  444  * Uses necessary synchronization semaphores.
  445  */
  446 s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
  447                              u16 *data)
  448 {
  449         s32 status = IGC_SUCCESS;
  450         u16 i, count;
  451 
  452         DEBUGFUNC("igc_read_nvm_srrd_i225");
  453 
  454         /* We cannot hold synchronization semaphores for too long,
  455          * because of forceful takeover procedure. However it is more efficient
  456          * to read in bursts than synchronizing access for each word.
  457          */
  458         for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
  459                 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
  460                         IGC_EERD_EEWR_MAX_COUNT : (words - i);
  461                 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
  462                         status = igc_read_nvm_eerd(hw, offset, count,
  463                                                      data + i);
  464                         hw->nvm.ops.release(hw);
  465                 } else {
  466                         status = IGC_ERR_SWFW_SYNC;
  467                 }
  468 
  469                 if (status != IGC_SUCCESS)
  470                         break;
  471         }
  472 
  473         return status;
  474 }
  475 
  476 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
  477  * @hw: pointer to the HW structure
  478  * @offset: offset within the Shadow RAM to be written to
  479  * @words: number of words to write
  480  * @data: 16 bit word(s) to be written to the Shadow RAM
  481  *
  482  * Writes data to Shadow RAM at offset using EEWR register.
  483  *
  484  * If igc_update_nvm_checksum is not called after this function , the
  485  * data will not be committed to FLASH and also Shadow RAM will most likely
  486  * contain an invalid checksum.
  487  *
  488  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
  489  * partially written.
  490  */
  491 s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
  492                               u16 *data)
  493 {
  494         s32 status = IGC_SUCCESS;
  495         u16 i, count;
  496 
  497         DEBUGFUNC("igc_write_nvm_srwr_i225");
  498 
  499         /* We cannot hold synchronization semaphores for too long,
  500          * because of forceful takeover procedure. However it is more efficient
  501          * to write in bursts than synchronizing access for each word.
  502          */
  503         for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
  504                 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
  505                         IGC_EERD_EEWR_MAX_COUNT : (words - i);
  506                 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
  507                         status = __igc_write_nvm_srwr(hw, offset, count,
  508                                                         data + i);
  509                         hw->nvm.ops.release(hw);
  510                 } else {
  511                         status = IGC_ERR_SWFW_SYNC;
  512                 }
  513 
  514                 if (status != IGC_SUCCESS)
  515                         break;
  516         }
  517 
  518         return status;
  519 }
  520 
  521 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
  522  * @hw: pointer to the HW structure
  523  * @offset: offset within the Shadow Ram to be written to
  524  * @words: number of words to write
  525  * @data: 16 bit word(s) to be written to the Shadow Ram
  526  *
  527  * Writes data to Shadow Ram at offset using EEWR register.
  528  *
  529  * If igc_update_nvm_checksum is not called after this function , the
  530  * Shadow Ram will most likely contain an invalid checksum.
  531  */
  532 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
  533                                   u16 *data)
  534 {
  535         struct igc_nvm_info *nvm = &hw->nvm;
  536         u32 i, k, eewr = 0;
  537         u32 attempts = 100000;
  538         s32 ret_val = IGC_SUCCESS;
  539 
  540         DEBUGFUNC("__igc_write_nvm_srwr");
  541 
  542         /* A check for invalid values:  offset too large, too many words,
  543          * too many words for the offset, and not enough words.
  544          */
  545         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
  546             (words == 0)) {
  547                 DEBUGOUT("nvm parameter(s) out of bounds\n");
  548                 ret_val = -IGC_ERR_NVM;
  549                 goto out;
  550         }
  551 
  552         for (i = 0; i < words; i++) {
  553                 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
  554                         (data[i] << IGC_NVM_RW_REG_DATA) |
  555                         IGC_NVM_RW_REG_START;
  556 
  557                 IGC_WRITE_REG(hw, IGC_SRWR, eewr);
  558 
  559                 for (k = 0; k < attempts; k++) {
  560                         if (IGC_NVM_RW_REG_DONE &
  561                             IGC_READ_REG(hw, IGC_SRWR)) {
  562                                 ret_val = IGC_SUCCESS;
  563                                 break;
  564                         }
  565                         usec_delay(5);
  566                 }
  567 
  568                 if (ret_val != IGC_SUCCESS) {
  569                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
  570                         break;
  571                 }
  572         }
  573 
  574 out:
  575         return ret_val;
  576 }
  577 
  578 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
  579  * @hw: pointer to the HW structure
  580  *
  581  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
  582  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
  583  */
  584 s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
  585 {
  586         s32 status = IGC_SUCCESS;
  587         s32 (*read_op_ptr)(struct igc_hw *, u16, u16, u16 *);
  588 
  589         DEBUGFUNC("igc_validate_nvm_checksum_i225");
  590 
  591         if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
  592                 /* Replace the read function with semaphore grabbing with
  593                  * the one that skips this for a while.
  594                  * We have semaphore taken already here.
  595                  */
  596                 read_op_ptr = hw->nvm.ops.read;
  597                 hw->nvm.ops.read = igc_read_nvm_eerd;
  598 
  599                 status = igc_validate_nvm_checksum_generic(hw);
  600 
  601                 /* Revert original read operation. */
  602                 hw->nvm.ops.read = read_op_ptr;
  603 
  604                 hw->nvm.ops.release(hw);
  605         } else {
  606                 status = IGC_ERR_SWFW_SYNC;
  607         }
  608 
  609         return status;
  610 }
  611 
  612 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
  613  * @hw: pointer to the HW structure
  614  *
  615  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
  616  * up to the checksum.  Then calculates the EEPROM checksum and writes the
  617  * value to the EEPROM. Next commit EEPROM data onto the Flash.
  618  */
  619 s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
  620 {
  621         s32 ret_val;
  622         u16 checksum = 0;
  623         u16 i, nvm_data;
  624 
  625         DEBUGFUNC("igc_update_nvm_checksum_i225");
  626 
  627         /* Read the first word from the EEPROM. If this times out or fails, do
  628          * not continue or we could be in for a very long wait while every
  629          * EEPROM read fails
  630          */
  631         ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
  632         if (ret_val != IGC_SUCCESS) {
  633                 DEBUGOUT("EEPROM read failed\n");
  634                 goto out;
  635         }
  636 
  637         if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
  638                 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
  639                  * because we do not want to take the synchronization
  640                  * semaphores twice here.
  641                  */
  642 
  643                 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
  644                         ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
  645                         if (ret_val) {
  646                                 hw->nvm.ops.release(hw);
  647                                 DEBUGOUT("NVM Read Error while updating\n");
  648                                 DEBUGOUT("checksum.\n");
  649                                 goto out;
  650                         }
  651                         checksum += nvm_data;
  652                 }
  653                 checksum = (u16)NVM_SUM - checksum;
  654                 ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
  655                                                  &checksum);
  656                 if (ret_val != IGC_SUCCESS) {
  657                         hw->nvm.ops.release(hw);
  658                         DEBUGOUT("NVM Write Error while updating checksum.\n");
  659                         goto out;
  660                 }
  661 
  662                 hw->nvm.ops.release(hw);
  663 
  664                 ret_val = igc_update_flash_i225(hw);
  665         } else {
  666                 ret_val = IGC_ERR_SWFW_SYNC;
  667         }
  668 out:
  669         return ret_val;
  670 }
  671 
  672 /* igc_get_flash_presence_i225 - Check if flash device is detected.
  673  * @hw: pointer to the HW structure
  674  */
  675 bool igc_get_flash_presence_i225(struct igc_hw *hw)
  676 {
  677         u32 eec = 0;
  678         bool ret_val = false;
  679 
  680         DEBUGFUNC("igc_get_flash_presence_i225");
  681 
  682         eec = IGC_READ_REG(hw, IGC_EECD);
  683 
  684         if (eec & IGC_EECD_FLASH_DETECTED_I225)
  685                 ret_val = true;
  686 
  687         return ret_val;
  688 }
  689 
  690 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
  691  * Counter in FLSWCNT register.
  692  *
  693  * @hw: pointer to the HW structure
  694  * @burst_counter: size in bytes of the Flash burst to read or write
  695  */
  696 s32 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw,
  697                                             u32 burst_counter)
  698 {
  699         s32 ret_val = IGC_SUCCESS;
  700 
  701         DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
  702 
  703         /* Validate input data */
  704         if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
  705                 /* Write FLSWCNT - burst counter */
  706                 IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
  707         } else {
  708                 ret_val = IGC_ERR_INVALID_ARGUMENT;
  709         }
  710 
  711         return ret_val;
  712 }
  713 
  714 /* igc_write_erase_flash_command_i225 - write/erase to a sector
  715  * region on a given address.
  716  *
  717  * @hw: pointer to the HW structure
  718  * @opcode: opcode to be used for the write command
  719  * @address: the offset to write into the FLASH image
  720  */
  721 s32 igc_write_erase_flash_command_i225(struct igc_hw *hw, u32 opcode,
  722                                          u32 address)
  723 {
  724         u32 flswctl = 0;
  725         s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
  726         s32 ret_val = IGC_SUCCESS;
  727 
  728         DEBUGFUNC("igc_write_erase_flash_command_i225");
  729 
  730         flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
  731         /* Polling done bit on FLSWCTL register */
  732         while (timeout) {
  733                 if (flswctl & IGC_FLSWCTL_DONE)
  734                         break;
  735                 usec_delay(5);
  736                 flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
  737                 timeout--;
  738         }
  739 
  740         if (!timeout) {
  741                 DEBUGOUT("Flash transaction was not done\n");
  742                 return -IGC_ERR_NVM;
  743         }
  744 
  745         /* Build and issue command on FLSWCTL register */
  746         flswctl = address | opcode;
  747         IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
  748 
  749         /* Check if issued command is valid on FLSWCTL register */
  750         flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
  751         if (!(flswctl & IGC_FLSWCTL_CMDV)) {
  752                 DEBUGOUT("Write flash command failed\n");
  753                 ret_val = IGC_ERR_INVALID_ARGUMENT;
  754         }
  755 
  756         return ret_val;
  757 }
  758 
  759 /* igc_update_flash_i225 - Commit EEPROM to the flash
  760  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
  761  * register makes the FW load the internal shadow RAM into the flash.
  762  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
  763  * then FW is not active so the SW is responsible shadow RAM dump.
  764  *
  765  * @hw: pointer to the HW structure
  766  */
  767 s32 igc_update_flash_i225(struct igc_hw *hw)
  768 {
  769         u16 current_offset_data = 0;
  770         u32 block_sw_protect = 1;
  771         u16 base_address = 0x0;
  772         u32 i, fw_valid_bit;
  773         u16 current_offset;
  774         s32 ret_val = 0;
  775         u32 flup;
  776 
  777         DEBUGFUNC("igc_update_flash_i225");
  778 
  779         block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
  780                                           IGC_FLSECU_BLK_SW_ACCESS_I225;
  781         fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) &
  782                                       IGC_FWSM_FW_VALID_I225;
  783         if (fw_valid_bit) {
  784                 ret_val = igc_pool_flash_update_done_i225(hw);
  785                 if (ret_val == -IGC_ERR_NVM) {
  786                         DEBUGOUT("Flash update time out\n");
  787                         goto out;
  788                 }
  789 
  790                 flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
  791                 IGC_WRITE_REG(hw, IGC_EECD, flup);
  792 
  793                 ret_val = igc_pool_flash_update_done_i225(hw);
  794                 if (ret_val == IGC_SUCCESS)
  795                         DEBUGOUT("Flash update complete\n");
  796                 else
  797                         DEBUGOUT("Flash update time out\n");
  798         } else if (!block_sw_protect) {
  799                 /* FW is not active and security protection is disabled.
  800                  * therefore, SW is in charge of shadow RAM dump.
  801                  * Check which sector is valid. if sector 0 is valid,
  802                  * base address remains 0x0. otherwise, sector 1 is
  803                  * valid and it's base address is 0x1000
  804                  */
  805                 if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
  806                         base_address = 0x1000;
  807 
  808                 /* Valid sector erase */
  809                 ret_val = igc_write_erase_flash_command_i225(hw,
  810                                                   IGC_I225_ERASE_CMD_OPCODE,
  811                                                   base_address);
  812                 if (!ret_val) {
  813                         DEBUGOUT("Sector erase failed\n");
  814                         goto out;
  815                 }
  816 
  817                 current_offset = base_address;
  818 
  819                 /* Write */
  820                 for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
  821                         /* Set burst write length */
  822                         ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
  823                                                                           0x2);
  824                         if (ret_val != IGC_SUCCESS)
  825                                 break;
  826 
  827                         /* Set address and opcode */
  828                         ret_val = igc_write_erase_flash_command_i225(hw,
  829                                                 IGC_I225_WRITE_CMD_OPCODE,
  830                                                 2 * current_offset);
  831                         if (ret_val != IGC_SUCCESS)
  832                                 break;
  833 
  834                         ret_val = igc_read_nvm_eerd(hw, current_offset,
  835                                                       1, &current_offset_data);
  836                         if (ret_val) {
  837                                 DEBUGOUT("Failed to read from EEPROM\n");
  838                                 goto out;
  839                         }
  840 
  841                         /* Write CurrentOffseData to FLSWDATA register */
  842                         IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
  843                                         current_offset_data);
  844                         current_offset++;
  845 
  846                         /* Wait till operation has finished */
  847                         ret_val = igc_poll_eerd_eewr_done(hw,
  848                                                 IGC_NVM_POLL_READ);
  849                         if (ret_val)
  850                                 break;
  851 
  852                         usec_delay(1000);
  853                 }
  854         }
  855 out:
  856         return ret_val;
  857 }
  858 
  859 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
  860  * @hw: pointer to the HW structure
  861  */
  862 s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
  863 {
  864         s32 ret_val = -IGC_ERR_NVM;
  865         u32 i, reg;
  866 
  867         DEBUGFUNC("igc_pool_flash_update_done_i225");
  868 
  869         for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
  870                 reg = IGC_READ_REG(hw, IGC_EECD);
  871                 if (reg & IGC_EECD_FLUDONE_I225) {
  872                         ret_val = IGC_SUCCESS;
  873                         break;
  874                 }
  875                 usec_delay(5);
  876         }
  877 
  878         return ret_val;
  879 }
  880 
  881 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
  882  * @hw: pointer to the HW structure
  883  * @link: bool indicating link status
  884  *
  885  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
  886  * settings, otherwise specify that there is no LTR requirement.
  887  */
  888 static s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
  889 {
  890         u16 speed, duplex;
  891         u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
  892         s32 size;
  893 
  894         DEBUGFUNC("igc_set_ltr_i225");
  895 
  896         /* If we do not have link, LTR thresholds are zero. */
  897         if (link) {
  898                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
  899 
  900                 /* Check if using copper interface with EEE enabled or if the
  901                  * link speed is 10 Mbps.
  902                  */
  903                 if ((hw->phy.media_type == igc_media_type_copper) &&
  904                     !(hw->dev_spec._i225.eee_disable) &&
  905                      (speed != SPEED_10)) {
  906                         /* EEE enabled, so send LTRMAX threshold. */
  907                         ltrc = IGC_READ_REG(hw, IGC_LTRC) |
  908                                 IGC_LTRC_EEEMS_EN;
  909                         IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
  910 
  911                         /* Calculate tw_system (nsec). */
  912                         if (speed == SPEED_100) {
  913                                 tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
  914                                              IGC_TW_SYSTEM_100_MASK) >>
  915                                              IGC_TW_SYSTEM_100_SHIFT) * 500;
  916                         } else {
  917                                 tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
  918                                              IGC_TW_SYSTEM_1000_MASK) * 500;
  919                                 }
  920                 } else {
  921                         tw_system = 0;
  922                         }
  923 
  924                 /* Get the Rx packet buffer size. */
  925                 size = IGC_READ_REG(hw, IGC_RXPBS) &
  926                         IGC_RXPBS_SIZE_I225_MASK;
  927 
  928                 /* Calculations vary based on DMAC settings. */
  929                 if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
  930                         size -= (IGC_READ_REG(hw, IGC_DMACR) &
  931                                  IGC_DMACR_DMACTHR_MASK) >>
  932                                  IGC_DMACR_DMACTHR_SHIFT;
  933                         /* Convert size to bits. */
  934                         size *= 1024 * 8;
  935                 } else {
  936                         /* Convert size to bytes, subtract the MTU, and then
  937                          * convert the size to bits.
  938                          */
  939                         size *= 1024;
  940                         size -= hw->dev_spec._i225.mtu;
  941                         size *= 8;
  942                 }
  943 
  944                 if (size < 0) {
  945                         DEBUGOUT1("Invalid effective Rx buffer size %d\n",
  946                                   size);
  947                         return -IGC_ERR_CONFIG;
  948                 }
  949 
  950                 /* Calculate the thresholds. Since speed is in Mbps, simplify
  951                  * the calculation by multiplying size/speed by 1000 for result
  952                  * to be in nsec before dividing by the scale in nsec. Set the
  953                  * scale such that the LTR threshold fits in the register.
  954                  */
  955                 ltr_min = (1000 * size) / speed;
  956                 ltr_max = ltr_min + tw_system;
  957                 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
  958                             IGC_LTRMINV_SCALE_32768;
  959                 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
  960                             IGC_LTRMAXV_SCALE_32768;
  961                 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
  962                 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
  963 
  964                 /* Only write the LTR thresholds if they differ from before. */
  965                 ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
  966                 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
  967                         ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
  968                               (scale_min << IGC_LTRMINV_SCALE_SHIFT);
  969                         IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
  970                 }
  971 
  972                 ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
  973                 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
  974                         ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
  975                               (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
  976                         IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
  977                 }
  978         }
  979 
  980         return IGC_SUCCESS;
  981 }
  982 
  983 /* igc_check_for_link_i225 - Check for link
  984  * @hw: pointer to the HW structure
  985  *
  986  * Checks to see of the link status of the hardware has changed.  If a
  987  * change in link status has been detected, then we read the PHY registers
  988  * to get the current speed/duplex if link exists.
  989  */
  990 s32 igc_check_for_link_i225(struct igc_hw *hw)
  991 {
  992         struct igc_mac_info *mac = &hw->mac;
  993         s32 ret_val;
  994         bool link = false;
  995 
  996         DEBUGFUNC("igc_check_for_link_i225");
  997 
  998         /* We only want to go out to the PHY registers to see if
  999          * Auto-Neg has completed and/or if our link status has
 1000          * changed.  The get_link_status flag is set upon receiving
 1001          * a Link Status Change or Rx Sequence Error interrupt.
 1002          */
 1003         if (!mac->get_link_status) {
 1004                 ret_val = IGC_SUCCESS;
 1005                 goto out;
 1006         }
 1007 
 1008         /* First we want to see if the MII Status Register reports
 1009          * link.  If so, then we want to get the current speed/duplex
 1010          * of the PHY.
 1011          */
 1012         ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
 1013         if (ret_val)
 1014                 goto out;
 1015 
 1016         if (!link)
 1017                 goto out; /* No link detected */
 1018 
 1019         /* First we want to see if the MII Status Register reports
 1020          * link.  If so, then we want to get the current speed/duplex
 1021          * of the PHY.
 1022          */
 1023         ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
 1024         if (ret_val)
 1025                 goto out;
 1026 
 1027         if (!link)
 1028                 goto out; /* No link detected */
 1029 
 1030         mac->get_link_status = false;
 1031 
 1032         /* Check if there was DownShift, must be checked
 1033          * immediately after link-up
 1034          */
 1035         igc_check_downshift_generic(hw);
 1036 
 1037         /* If we are forcing speed/duplex, then we simply return since
 1038          * we have already determined whether we have link or not.
 1039          */
 1040         if (!mac->autoneg)
 1041                 goto out;
 1042 
 1043         /* Auto-Neg is enabled.  Auto Speed Detection takes care
 1044          * of MAC speed/duplex configuration.  So we only need to
 1045          * configure Collision Distance in the MAC.
 1046          */
 1047         mac->ops.config_collision_dist(hw);
 1048 
 1049         /* Configure Flow Control now that Auto-Neg has completed.
 1050          * First, we need to restore the desired flow control
 1051          * settings because we may have had to re-autoneg with a
 1052          * different link partner.
 1053          */
 1054         ret_val = igc_config_fc_after_link_up_generic(hw);
 1055         if (ret_val)
 1056                 DEBUGOUT("Error configuring flow control\n");
 1057 out:
 1058         /* Now that we are aware of our link settings, we can set the LTR
 1059          * thresholds.
 1060          */
 1061         ret_val = igc_set_ltr_i225(hw, link);
 1062 
 1063         return ret_val;
 1064 }
 1065 
 1066 /* igc_init_function_pointers_i225 - Init func ptrs.
 1067  * @hw: pointer to the HW structure
 1068  *
 1069  * Called to initialize all function pointers and parameters.
 1070  */
 1071 void igc_init_function_pointers_i225(struct igc_hw *hw)
 1072 {
 1073         igc_init_mac_ops_generic(hw);
 1074         igc_init_phy_ops_generic(hw);
 1075         igc_init_nvm_ops_generic(hw);
 1076         hw->mac.ops.init_params = igc_init_mac_params_i225;
 1077         hw->nvm.ops.init_params = igc_init_nvm_params_i225;
 1078         hw->phy.ops.init_params = igc_init_phy_params_i225;
 1079 }
 1080 
 1081 /* igc_init_hw_i225 - Init hw for I225
 1082  * @hw: pointer to the HW structure
 1083  *
 1084  * Called to initialize hw for i225 hw family.
 1085  */
 1086 s32 igc_init_hw_i225(struct igc_hw *hw)
 1087 {
 1088         s32 ret_val;
 1089 
 1090         DEBUGFUNC("igc_init_hw_i225");
 1091 
 1092         ret_val = igc_init_hw_base(hw);
 1093         return ret_val;
 1094 }
 1095 
 1096 /*
 1097  * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state
 1098  * @hw: pointer to the HW structure
 1099  * @active: true to enable LPLU, false to disable
 1100  *
 1101  * Note: since I225 does not actually support LPLU, this function
 1102  * simply enables/disables 1G and 2.5G speeds in D0.
 1103  */
 1104 s32 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active)
 1105 {
 1106         u32 data;
 1107 
 1108         DEBUGFUNC("igc_set_d0_lplu_state_i225");
 1109 
 1110         data = IGC_READ_REG(hw, IGC_I225_PHPM);
 1111 
 1112         if (active) {
 1113                 data |= IGC_I225_PHPM_DIS_1000;
 1114                 data |= IGC_I225_PHPM_DIS_2500;
 1115         } else {
 1116                 data &= ~IGC_I225_PHPM_DIS_1000;
 1117                 data &= ~IGC_I225_PHPM_DIS_2500;
 1118         }
 1119 
 1120         IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
 1121         return IGC_SUCCESS;
 1122 }
 1123 
 1124 /*
 1125  * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state
 1126  * @hw: pointer to the HW structure
 1127  * @active: true to enable LPLU, false to disable
 1128  *
 1129  * Note: since I225 does not actually support LPLU, this function
 1130  * simply enables/disables 100M, 1G and 2.5G speeds in D3.
 1131  */
 1132 s32 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active)
 1133 {
 1134         u32 data;
 1135 
 1136         DEBUGFUNC("igc_set_d3_lplu_state_i225");
 1137 
 1138         data = IGC_READ_REG(hw, IGC_I225_PHPM);
 1139 
 1140         if (active) {
 1141                 data |= IGC_I225_PHPM_DIS_100_D3;
 1142                 data |= IGC_I225_PHPM_DIS_1000_D3;
 1143                 data |= IGC_I225_PHPM_DIS_2500_D3;
 1144         } else {
 1145                 data &= ~IGC_I225_PHPM_DIS_100_D3;
 1146                 data &= ~IGC_I225_PHPM_DIS_1000_D3;
 1147                 data &= ~IGC_I225_PHPM_DIS_2500_D3;
 1148         }
 1149 
 1150         IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
 1151         return IGC_SUCCESS;
 1152 }
 1153 
 1154 /**
 1155  *  igc_set_eee_i225 - Enable/disable EEE support
 1156  *  @hw: pointer to the HW structure
 1157  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
 1158  *  @adv1G: boolean flag enabling 1G EEE advertisement
 1159  *  @adv100M: boolean flag enabling 100M EEE advertisement
 1160  *
 1161  *  Enable/disable EEE based on setting in dev_spec structure.
 1162  *
 1163  **/
 1164 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
 1165                        bool adv100M)
 1166 {
 1167         u32 ipcnfg, eeer;
 1168 
 1169         DEBUGFUNC("igc_set_eee_i225");
 1170 
 1171         if (hw->mac.type != igc_i225 ||
 1172             hw->phy.media_type != igc_media_type_copper)
 1173                 goto out;
 1174         ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
 1175         eeer = IGC_READ_REG(hw, IGC_EEER);
 1176 
 1177         /* enable or disable per user setting */
 1178         if (!(hw->dev_spec._i225.eee_disable)) {
 1179                 u32 eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
 1180 
 1181                 if (adv100M)
 1182                         ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
 1183                 else
 1184                         ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
 1185 
 1186                 if (adv1G)
 1187                         ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
 1188                 else
 1189                         ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
 1190 
 1191                 if (adv2p5G)
 1192                         ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
 1193                 else
 1194                         ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
 1195 
 1196                 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
 1197                         IGC_EEER_LPI_FC);
 1198 
 1199                 /* This bit should not be set in normal operation. */
 1200                 if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
 1201                         DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
 1202         } else {
 1203                 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
 1204                         IGC_IPCNFG_EEE_100M_AN);
 1205                 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
 1206                         IGC_EEER_LPI_FC);
 1207         }
 1208         IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
 1209         IGC_WRITE_REG(hw, IGC_EEER, eeer);
 1210         IGC_READ_REG(hw, IGC_IPCNFG);
 1211         IGC_READ_REG(hw, IGC_EEER);
 1212 out:
 1213 
 1214         return IGC_SUCCESS;
 1215 }
 1216 

Cache object: 5ff549aeba62a7e4af485edcc1b4e5ce


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.