The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/igc/igc_nvm.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright 2021 Intel Corp
    3  * Copyright 2021 Rubicon Communications, LLC (Netgate)
    4  * SPDX-License-Identifier: BSD-3-Clause
    5  */
    6 
    7 #include <sys/cdefs.h>
    8 __FBSDID("$FreeBSD$");
    9 
   10 #include "igc_api.h"
   11 
   12 static void igc_reload_nvm_generic(struct igc_hw *hw);
   13 
   14 /**
   15  *  igc_init_nvm_ops_generic - Initialize NVM function pointers
   16  *  @hw: pointer to the HW structure
   17  *
   18  *  Setups up the function pointers to no-op functions
   19  **/
   20 void igc_init_nvm_ops_generic(struct igc_hw *hw)
   21 {
   22         struct igc_nvm_info *nvm = &hw->nvm;
   23         DEBUGFUNC("igc_init_nvm_ops_generic");
   24 
   25         /* Initialize function pointers */
   26         nvm->ops.init_params = igc_null_ops_generic;
   27         nvm->ops.acquire = igc_null_ops_generic;
   28         nvm->ops.read = igc_null_read_nvm;
   29         nvm->ops.release = igc_null_nvm_generic;
   30         nvm->ops.reload = igc_reload_nvm_generic;
   31         nvm->ops.update = igc_null_ops_generic;
   32         nvm->ops.validate = igc_null_ops_generic;
   33         nvm->ops.write = igc_null_write_nvm;
   34 }
   35 
   36 /**
   37  *  igc_null_nvm_read - No-op function, return 0
   38  *  @hw: pointer to the HW structure
   39  *  @a: dummy variable
   40  *  @b: dummy variable
   41  *  @c: dummy variable
   42  **/
   43 s32 igc_null_read_nvm(struct igc_hw IGC_UNUSEDARG *hw,
   44                         u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
   45                         u16 IGC_UNUSEDARG *c)
   46 {
   47         DEBUGFUNC("igc_null_read_nvm");
   48         return IGC_SUCCESS;
   49 }
   50 
   51 /**
   52  *  igc_null_nvm_generic - No-op function, return void
   53  *  @hw: pointer to the HW structure
   54  **/
   55 void igc_null_nvm_generic(struct igc_hw IGC_UNUSEDARG *hw)
   56 {
   57         DEBUGFUNC("igc_null_nvm_generic");
   58         return;
   59 }
   60 
   61 /**
   62  *  igc_null_write_nvm - No-op function, return 0
   63  *  @hw: pointer to the HW structure
   64  *  @a: dummy variable
   65  *  @b: dummy variable
   66  *  @c: dummy variable
   67  **/
   68 s32 igc_null_write_nvm(struct igc_hw IGC_UNUSEDARG *hw,
   69                          u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
   70                          u16 IGC_UNUSEDARG *c)
   71 {
   72         DEBUGFUNC("igc_null_write_nvm");
   73         return IGC_SUCCESS;
   74 }
   75 
   76 /**
   77  *  igc_raise_eec_clk - Raise EEPROM clock
   78  *  @hw: pointer to the HW structure
   79  *  @eecd: pointer to the EEPROM
   80  *
   81  *  Enable/Raise the EEPROM clock bit.
   82  **/
   83 static void igc_raise_eec_clk(struct igc_hw *hw, u32 *eecd)
   84 {
   85         *eecd = *eecd | IGC_EECD_SK;
   86         IGC_WRITE_REG(hw, IGC_EECD, *eecd);
   87         IGC_WRITE_FLUSH(hw);
   88         usec_delay(hw->nvm.delay_usec);
   89 }
   90 
   91 /**
   92  *  igc_lower_eec_clk - Lower EEPROM clock
   93  *  @hw: pointer to the HW structure
   94  *  @eecd: pointer to the EEPROM
   95  *
   96  *  Clear/Lower the EEPROM clock bit.
   97  **/
   98 static void igc_lower_eec_clk(struct igc_hw *hw, u32 *eecd)
   99 {
  100         *eecd = *eecd & ~IGC_EECD_SK;
  101         IGC_WRITE_REG(hw, IGC_EECD, *eecd);
  102         IGC_WRITE_FLUSH(hw);
  103         usec_delay(hw->nvm.delay_usec);
  104 }
  105 
  106 /**
  107  *  igc_shift_out_eec_bits - Shift data bits our to the EEPROM
  108  *  @hw: pointer to the HW structure
  109  *  @data: data to send to the EEPROM
  110  *  @count: number of bits to shift out
  111  *
  112  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  113  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  114  *  In order to do this, "data" must be broken down into bits.
  115  **/
  116 static void igc_shift_out_eec_bits(struct igc_hw *hw, u16 data, u16 count)
  117 {
  118         struct igc_nvm_info *nvm = &hw->nvm;
  119         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
  120         u32 mask;
  121 
  122         DEBUGFUNC("igc_shift_out_eec_bits");
  123 
  124         mask = 0x01 << (count - 1);
  125         if (nvm->type == igc_nvm_eeprom_spi)
  126                 eecd |= IGC_EECD_DO;
  127 
  128         do {
  129                 eecd &= ~IGC_EECD_DI;
  130 
  131                 if (data & mask)
  132                         eecd |= IGC_EECD_DI;
  133 
  134                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
  135                 IGC_WRITE_FLUSH(hw);
  136 
  137                 usec_delay(nvm->delay_usec);
  138 
  139                 igc_raise_eec_clk(hw, &eecd);
  140                 igc_lower_eec_clk(hw, &eecd);
  141 
  142                 mask >>= 1;
  143         } while (mask);
  144 
  145         eecd &= ~IGC_EECD_DI;
  146         IGC_WRITE_REG(hw, IGC_EECD, eecd);
  147 }
  148 
  149 /**
  150  *  igc_shift_in_eec_bits - Shift data bits in from the EEPROM
  151  *  @hw: pointer to the HW structure
  152  *  @count: number of bits to shift in
  153  *
  154  *  In order to read a register from the EEPROM, we need to shift 'count' bits
  155  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
  156  *  the EEPROM (setting the SK bit), and then reading the value of the data out
  157  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
  158  *  always be clear.
  159  **/
  160 static u16 igc_shift_in_eec_bits(struct igc_hw *hw, u16 count)
  161 {
  162         u32 eecd;
  163         u32 i;
  164         u16 data;
  165 
  166         DEBUGFUNC("igc_shift_in_eec_bits");
  167 
  168         eecd = IGC_READ_REG(hw, IGC_EECD);
  169 
  170         eecd &= ~(IGC_EECD_DO | IGC_EECD_DI);
  171         data = 0;
  172 
  173         for (i = 0; i < count; i++) {
  174                 data <<= 1;
  175                 igc_raise_eec_clk(hw, &eecd);
  176 
  177                 eecd = IGC_READ_REG(hw, IGC_EECD);
  178 
  179                 eecd &= ~IGC_EECD_DI;
  180                 if (eecd & IGC_EECD_DO)
  181                         data |= 1;
  182 
  183                 igc_lower_eec_clk(hw, &eecd);
  184         }
  185 
  186         return data;
  187 }
  188 
  189 /**
  190  *  igc_poll_eerd_eewr_done - Poll for EEPROM read/write completion
  191  *  @hw: pointer to the HW structure
  192  *  @ee_reg: EEPROM flag for polling
  193  *
  194  *  Polls the EEPROM status bit for either read or write completion based
  195  *  upon the value of 'ee_reg'.
  196  **/
  197 s32 igc_poll_eerd_eewr_done(struct igc_hw *hw, int ee_reg)
  198 {
  199         u32 attempts = 100000;
  200         u32 i, reg = 0;
  201 
  202         DEBUGFUNC("igc_poll_eerd_eewr_done");
  203 
  204         for (i = 0; i < attempts; i++) {
  205                 if (ee_reg == IGC_NVM_POLL_READ)
  206                         reg = IGC_READ_REG(hw, IGC_EERD);
  207                 else
  208                         reg = IGC_READ_REG(hw, IGC_EEWR);
  209 
  210                 if (reg & IGC_NVM_RW_REG_DONE)
  211                         return IGC_SUCCESS;
  212 
  213                 usec_delay(5);
  214         }
  215 
  216         return -IGC_ERR_NVM;
  217 }
  218 
  219 /**
  220  *  igc_acquire_nvm_generic - Generic request for access to EEPROM
  221  *  @hw: pointer to the HW structure
  222  *
  223  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
  224  *  Return successful if access grant bit set, else clear the request for
  225  *  EEPROM access and return -IGC_ERR_NVM (-1).
  226  **/
  227 s32 igc_acquire_nvm_generic(struct igc_hw *hw)
  228 {
  229         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
  230         s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
  231 
  232         DEBUGFUNC("igc_acquire_nvm_generic");
  233 
  234         IGC_WRITE_REG(hw, IGC_EECD, eecd | IGC_EECD_REQ);
  235         eecd = IGC_READ_REG(hw, IGC_EECD);
  236 
  237         while (timeout) {
  238                 if (eecd & IGC_EECD_GNT)
  239                         break;
  240                 usec_delay(5);
  241                 eecd = IGC_READ_REG(hw, IGC_EECD);
  242                 timeout--;
  243         }
  244 
  245         if (!timeout) {
  246                 eecd &= ~IGC_EECD_REQ;
  247                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
  248                 DEBUGOUT("Could not acquire NVM grant\n");
  249                 return -IGC_ERR_NVM;
  250         }
  251 
  252         return IGC_SUCCESS;
  253 }
  254 
  255 /**
  256  *  igc_standby_nvm - Return EEPROM to standby state
  257  *  @hw: pointer to the HW structure
  258  *
  259  *  Return the EEPROM to a standby state.
  260  **/
  261 static void igc_standby_nvm(struct igc_hw *hw)
  262 {
  263         struct igc_nvm_info *nvm = &hw->nvm;
  264         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
  265 
  266         DEBUGFUNC("igc_standby_nvm");
  267 
  268         if (nvm->type == igc_nvm_eeprom_spi) {
  269                 /* Toggle CS to flush commands */
  270                 eecd |= IGC_EECD_CS;
  271                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
  272                 IGC_WRITE_FLUSH(hw);
  273                 usec_delay(nvm->delay_usec);
  274                 eecd &= ~IGC_EECD_CS;
  275                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
  276                 IGC_WRITE_FLUSH(hw);
  277                 usec_delay(nvm->delay_usec);
  278         }
  279 }
  280 
  281 /**
  282  *  igc_stop_nvm - Terminate EEPROM command
  283  *  @hw: pointer to the HW structure
  284  *
  285  *  Terminates the current command by inverting the EEPROM's chip select pin.
  286  **/
  287 static void igc_stop_nvm(struct igc_hw *hw)
  288 {
  289         u32 eecd;
  290 
  291         DEBUGFUNC("igc_stop_nvm");
  292 
  293         eecd = IGC_READ_REG(hw, IGC_EECD);
  294         if (hw->nvm.type == igc_nvm_eeprom_spi) {
  295                 /* Pull CS high */
  296                 eecd |= IGC_EECD_CS;
  297                 igc_lower_eec_clk(hw, &eecd);
  298         }
  299 }
  300 
  301 /**
  302  *  igc_release_nvm_generic - Release exclusive access to EEPROM
  303  *  @hw: pointer to the HW structure
  304  *
  305  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
  306  **/
  307 void igc_release_nvm_generic(struct igc_hw *hw)
  308 {
  309         u32 eecd;
  310 
  311         DEBUGFUNC("igc_release_nvm_generic");
  312 
  313         igc_stop_nvm(hw);
  314 
  315         eecd = IGC_READ_REG(hw, IGC_EECD);
  316         eecd &= ~IGC_EECD_REQ;
  317         IGC_WRITE_REG(hw, IGC_EECD, eecd);
  318 }
  319 
  320 /**
  321  *  igc_ready_nvm_eeprom - Prepares EEPROM for read/write
  322  *  @hw: pointer to the HW structure
  323  *
  324  *  Setups the EEPROM for reading and writing.
  325  **/
  326 static s32 igc_ready_nvm_eeprom(struct igc_hw *hw)
  327 {
  328         struct igc_nvm_info *nvm = &hw->nvm;
  329         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
  330         u8 spi_stat_reg;
  331 
  332         DEBUGFUNC("igc_ready_nvm_eeprom");
  333 
  334         if (nvm->type == igc_nvm_eeprom_spi) {
  335                 u16 timeout = NVM_MAX_RETRY_SPI;
  336 
  337                 /* Clear SK and CS */
  338                 eecd &= ~(IGC_EECD_CS | IGC_EECD_SK);
  339                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
  340                 IGC_WRITE_FLUSH(hw);
  341                 usec_delay(1);
  342 
  343                 /* Read "Status Register" repeatedly until the LSB is cleared.
  344                  * The EEPROM will signal that the command has been completed
  345                  * by clearing bit 0 of the internal status register.  If it's
  346                  * not cleared within 'timeout', then error out.
  347                  */
  348                 while (timeout) {
  349                         igc_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
  350                                                  hw->nvm.opcode_bits);
  351                         spi_stat_reg = (u8)igc_shift_in_eec_bits(hw, 8);
  352                         if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
  353                                 break;
  354 
  355                         usec_delay(5);
  356                         igc_standby_nvm(hw);
  357                         timeout--;
  358                 }
  359 
  360                 if (!timeout) {
  361                         DEBUGOUT("SPI NVM Status error\n");
  362                         return -IGC_ERR_NVM;
  363                 }
  364         }
  365 
  366         return IGC_SUCCESS;
  367 }
  368 
  369 /**
  370  *  igc_read_nvm_eerd - Reads EEPROM using EERD register
  371  *  @hw: pointer to the HW structure
  372  *  @offset: offset of word in the EEPROM to read
  373  *  @words: number of words to read
  374  *  @data: word read from the EEPROM
  375  *
  376  *  Reads a 16 bit word from the EEPROM using the EERD register.
  377  **/
  378 s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
  379 {
  380         struct igc_nvm_info *nvm = &hw->nvm;
  381         u32 i, eerd = 0;
  382         s32 ret_val = IGC_SUCCESS;
  383 
  384         DEBUGFUNC("igc_read_nvm_eerd");
  385 
  386         /* A check for invalid values:  offset too large, too many words,
  387          * too many words for the offset, and not enough words.
  388          */
  389         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
  390             (words == 0)) {
  391                 DEBUGOUT("nvm parameter(s) out of bounds\n");
  392                 return -IGC_ERR_NVM;
  393         }
  394 
  395         for (i = 0; i < words; i++) {
  396                 eerd = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) +
  397                        IGC_NVM_RW_REG_START;
  398 
  399                 IGC_WRITE_REG(hw, IGC_EERD, eerd);
  400                 ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ);
  401                 if (ret_val)
  402                         break;
  403 
  404                 data[i] = (IGC_READ_REG(hw, IGC_EERD) >>
  405                            IGC_NVM_RW_REG_DATA);
  406         }
  407 
  408         if (ret_val)
  409                 DEBUGOUT1("NVM read error: %d\n", ret_val);
  410 
  411         return ret_val;
  412 }
  413 
  414 /**
  415  *  igc_write_nvm_spi - Write to EEPROM using SPI
  416  *  @hw: pointer to the HW structure
  417  *  @offset: offset within the EEPROM to be written to
  418  *  @words: number of words to write
  419  *  @data: 16 bit word(s) to be written to the EEPROM
  420  *
  421  *  Writes data to EEPROM at offset using SPI interface.
  422  *
  423  *  If igc_update_nvm_checksum is not called after this function , the
  424  *  EEPROM will most likely contain an invalid checksum.
  425  **/
  426 s32 igc_write_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
  427 {
  428         struct igc_nvm_info *nvm = &hw->nvm;
  429         s32 ret_val = -IGC_ERR_NVM;
  430         u16 widx = 0;
  431 
  432         DEBUGFUNC("igc_write_nvm_spi");
  433 
  434         /* A check for invalid values:  offset too large, too many words,
  435          * and not enough words.
  436          */
  437         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
  438             (words == 0)) {
  439                 DEBUGOUT("nvm parameter(s) out of bounds\n");
  440                 return -IGC_ERR_NVM;
  441         }
  442 
  443         while (widx < words) {
  444                 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
  445 
  446                 ret_val = nvm->ops.acquire(hw);
  447                 if (ret_val)
  448                         return ret_val;
  449 
  450                 ret_val = igc_ready_nvm_eeprom(hw);
  451                 if (ret_val) {
  452                         nvm->ops.release(hw);
  453                         return ret_val;
  454                 }
  455 
  456                 igc_standby_nvm(hw);
  457 
  458                 /* Send the WRITE ENABLE command (8 bit opcode) */
  459                 igc_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
  460                                          nvm->opcode_bits);
  461 
  462                 igc_standby_nvm(hw);
  463 
  464                 /* Some SPI eeproms use the 8th address bit embedded in the
  465                  * opcode
  466                  */
  467                 if ((nvm->address_bits == 8) && (offset >= 128))
  468                         write_opcode |= NVM_A8_OPCODE_SPI;
  469 
  470                 /* Send the Write command (8-bit opcode + addr) */
  471                 igc_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
  472                 igc_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
  473                                          nvm->address_bits);
  474 
  475                 /* Loop to allow for up to whole page write of eeprom */
  476                 while (widx < words) {
  477                         u16 word_out = data[widx];
  478                         word_out = (word_out >> 8) | (word_out << 8);
  479                         igc_shift_out_eec_bits(hw, word_out, 16);
  480                         widx++;
  481 
  482                         if ((((offset + widx) * 2) % nvm->page_size) == 0) {
  483                                 igc_standby_nvm(hw);
  484                                 break;
  485                         }
  486                 }
  487                 msec_delay(10);
  488                 nvm->ops.release(hw);
  489         }
  490 
  491         return ret_val;
  492 }
  493 
  494 /**
  495  *  igc_read_pba_string_generic - Read device part number
  496  *  @hw: pointer to the HW structure
  497  *  @pba_num: pointer to device part number
  498  *  @pba_num_size: size of part number buffer
  499  *
  500  *  Reads the product board assembly (PBA) number from the EEPROM and stores
  501  *  the value in pba_num.
  502  **/
  503 s32 igc_read_pba_string_generic(struct igc_hw *hw, u8 *pba_num,
  504                                   u32 pba_num_size)
  505 {
  506         s32 ret_val;
  507         u16 nvm_data;
  508         u16 pba_ptr;
  509         u16 offset;
  510         u16 length;
  511 
  512         DEBUGFUNC("igc_read_pba_string_generic");
  513 
  514         if (pba_num == NULL) {
  515                 DEBUGOUT("PBA string buffer was null\n");
  516                 return -IGC_ERR_INVALID_ARGUMENT;
  517         }
  518 
  519         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
  520         if (ret_val) {
  521                 DEBUGOUT("NVM Read Error\n");
  522                 return ret_val;
  523         }
  524 
  525         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
  526         if (ret_val) {
  527                 DEBUGOUT("NVM Read Error\n");
  528                 return ret_val;
  529         }
  530 
  531         /* if nvm_data is not ptr guard the PBA must be in legacy format which
  532          * means pba_ptr is actually our second data word for the PBA number
  533          * and we can decode it into an ascii string
  534          */
  535         if (nvm_data != NVM_PBA_PTR_GUARD) {
  536                 DEBUGOUT("NVM PBA number is not stored as string\n");
  537 
  538                 /* make sure callers buffer is big enough to store the PBA */
  539                 if (pba_num_size < IGC_PBANUM_LENGTH) {
  540                         DEBUGOUT("PBA string buffer too small\n");
  541                         return IGC_ERR_NO_SPACE;
  542                 }
  543 
  544                 /* extract hex string from data and pba_ptr */
  545                 pba_num[0] = (nvm_data >> 12) & 0xF;
  546                 pba_num[1] = (nvm_data >> 8) & 0xF;
  547                 pba_num[2] = (nvm_data >> 4) & 0xF;
  548                 pba_num[3] = nvm_data & 0xF;
  549                 pba_num[4] = (pba_ptr >> 12) & 0xF;
  550                 pba_num[5] = (pba_ptr >> 8) & 0xF;
  551                 pba_num[6] = '-';
  552                 pba_num[7] = 0;
  553                 pba_num[8] = (pba_ptr >> 4) & 0xF;
  554                 pba_num[9] = pba_ptr & 0xF;
  555 
  556                 /* put a null character on the end of our string */
  557                 pba_num[10] = '\0';
  558 
  559                 /* switch all the data but the '-' to hex char */
  560                 for (offset = 0; offset < 10; offset++) {
  561                         if (pba_num[offset] < 0xA)
  562                                 pba_num[offset] += '';
  563                         else if (pba_num[offset] < 0x10)
  564                                 pba_num[offset] += 'A' - 0xA;
  565                 }
  566 
  567                 return IGC_SUCCESS;
  568         }
  569 
  570         ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
  571         if (ret_val) {
  572                 DEBUGOUT("NVM Read Error\n");
  573                 return ret_val;
  574         }
  575 
  576         if (length == 0xFFFF || length == 0) {
  577                 DEBUGOUT("NVM PBA number section invalid length\n");
  578                 return -IGC_ERR_NVM_PBA_SECTION;
  579         }
  580         /* check if pba_num buffer is big enough */
  581         if (pba_num_size < (((u32)length * 2) - 1)) {
  582                 DEBUGOUT("PBA string buffer too small\n");
  583                 return -IGC_ERR_NO_SPACE;
  584         }
  585 
  586         /* trim pba length from start of string */
  587         pba_ptr++;
  588         length--;
  589 
  590         for (offset = 0; offset < length; offset++) {
  591                 ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
  592                 if (ret_val) {
  593                         DEBUGOUT("NVM Read Error\n");
  594                         return ret_val;
  595                 }
  596                 pba_num[offset * 2] = (u8)(nvm_data >> 8);
  597                 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
  598         }
  599         pba_num[offset * 2] = '\0';
  600 
  601         return IGC_SUCCESS;
  602 }
  603 
  604 
  605 
  606 
  607 
  608 /**
  609  *  igc_read_mac_addr_generic - Read device MAC address
  610  *  @hw: pointer to the HW structure
  611  *
  612  *  Reads the device MAC address from the EEPROM and stores the value.
  613  *  Since devices with two ports use the same EEPROM, we increment the
  614  *  last bit in the MAC address for the second port.
  615  **/
  616 s32 igc_read_mac_addr_generic(struct igc_hw *hw)
  617 {
  618         u32 rar_high;
  619         u32 rar_low;
  620         u16 i;
  621 
  622         rar_high = IGC_READ_REG(hw, IGC_RAH(0));
  623         rar_low = IGC_READ_REG(hw, IGC_RAL(0));
  624 
  625         for (i = 0; i < IGC_RAL_MAC_ADDR_LEN; i++)
  626                 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
  627 
  628         for (i = 0; i < IGC_RAH_MAC_ADDR_LEN; i++)
  629                 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
  630 
  631         for (i = 0; i < ETH_ADDR_LEN; i++)
  632                 hw->mac.addr[i] = hw->mac.perm_addr[i];
  633 
  634         return IGC_SUCCESS;
  635 }
  636 
  637 /**
  638  *  igc_validate_nvm_checksum_generic - Validate EEPROM checksum
  639  *  @hw: pointer to the HW structure
  640  *
  641  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
  642  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
  643  **/
  644 s32 igc_validate_nvm_checksum_generic(struct igc_hw *hw)
  645 {
  646         s32 ret_val;
  647         u16 checksum = 0;
  648         u16 i, nvm_data;
  649 
  650         DEBUGFUNC("igc_validate_nvm_checksum_generic");
  651 
  652         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
  653                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
  654                 if (ret_val) {
  655                         DEBUGOUT("NVM Read Error\n");
  656                         return ret_val;
  657                 }
  658                 checksum += nvm_data;
  659         }
  660 
  661         if (checksum != (u16) NVM_SUM) {
  662                 DEBUGOUT("NVM Checksum Invalid\n");
  663                 return -IGC_ERR_NVM;
  664         }
  665 
  666         return IGC_SUCCESS;
  667 }
  668 
  669 /**
  670  *  igc_update_nvm_checksum_generic - Update EEPROM checksum
  671  *  @hw: pointer to the HW structure
  672  *
  673  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
  674  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
  675  *  value to the EEPROM.
  676  **/
  677 s32 igc_update_nvm_checksum_generic(struct igc_hw *hw)
  678 {
  679         s32 ret_val;
  680         u16 checksum = 0;
  681         u16 i, nvm_data;
  682 
  683         DEBUGFUNC("igc_update_nvm_checksum");
  684 
  685         for (i = 0; i < NVM_CHECKSUM_REG; i++) {
  686                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
  687                 if (ret_val) {
  688                         DEBUGOUT("NVM Read Error while updating checksum.\n");
  689                         return ret_val;
  690                 }
  691                 checksum += nvm_data;
  692         }
  693         checksum = (u16) NVM_SUM - checksum;
  694         ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
  695         if (ret_val)
  696                 DEBUGOUT("NVM Write Error while updating checksum.\n");
  697 
  698         return ret_val;
  699 }
  700 
  701 /**
  702  *  igc_reload_nvm_generic - Reloads EEPROM
  703  *  @hw: pointer to the HW structure
  704  *
  705  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
  706  *  extended control register.
  707  **/
  708 static void igc_reload_nvm_generic(struct igc_hw *hw)
  709 {
  710         u32 ctrl_ext;
  711 
  712         DEBUGFUNC("igc_reload_nvm_generic");
  713 
  714         usec_delay(10);
  715         ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
  716         ctrl_ext |= IGC_CTRL_EXT_EE_RST;
  717         IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
  718         IGC_WRITE_FLUSH(hw);
  719 }
  720 
  721 

Cache object: 367f169923fdd23d24d87baab31ca5b3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.