FreeBSD/Linux Kernel Cross Reference
sys/dev/igc/igc_phy.c
1 /*-
2 * Copyright 2021 Intel Corp
3 * Copyright 2021 Rubicon Communications, LLC (Netgate)
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <sys/cdefs.h>
8 __FBSDID("$FreeBSD$");
9
10 #include "igc_api.h"
11
12 static s32 igc_wait_autoneg(struct igc_hw *hw);
13
14 /**
15 * igc_init_phy_ops_generic - Initialize PHY function pointers
16 * @hw: pointer to the HW structure
17 *
18 * Setups up the function pointers to no-op functions
19 **/
20 void igc_init_phy_ops_generic(struct igc_hw *hw)
21 {
22 struct igc_phy_info *phy = &hw->phy;
23 DEBUGFUNC("igc_init_phy_ops_generic");
24
25 /* Initialize function pointers */
26 phy->ops.init_params = igc_null_ops_generic;
27 phy->ops.acquire = igc_null_ops_generic;
28 phy->ops.check_reset_block = igc_null_ops_generic;
29 phy->ops.force_speed_duplex = igc_null_ops_generic;
30 phy->ops.get_info = igc_null_ops_generic;
31 phy->ops.set_page = igc_null_set_page;
32 phy->ops.read_reg = igc_null_read_reg;
33 phy->ops.read_reg_locked = igc_null_read_reg;
34 phy->ops.read_reg_page = igc_null_read_reg;
35 phy->ops.release = igc_null_phy_generic;
36 phy->ops.reset = igc_null_ops_generic;
37 phy->ops.set_d0_lplu_state = igc_null_lplu_state;
38 phy->ops.set_d3_lplu_state = igc_null_lplu_state;
39 phy->ops.write_reg = igc_null_write_reg;
40 phy->ops.write_reg_locked = igc_null_write_reg;
41 phy->ops.write_reg_page = igc_null_write_reg;
42 phy->ops.power_up = igc_null_phy_generic;
43 phy->ops.power_down = igc_null_phy_generic;
44 }
45
46 /**
47 * igc_null_set_page - No-op function, return 0
48 * @hw: pointer to the HW structure
49 * @data: dummy variable
50 **/
51 s32 igc_null_set_page(struct igc_hw IGC_UNUSEDARG *hw,
52 u16 IGC_UNUSEDARG data)
53 {
54 DEBUGFUNC("igc_null_set_page");
55 return IGC_SUCCESS;
56 }
57
58 /**
59 * igc_null_read_reg - No-op function, return 0
60 * @hw: pointer to the HW structure
61 * @offset: dummy variable
62 * @data: dummy variable
63 **/
64 s32 igc_null_read_reg(struct igc_hw IGC_UNUSEDARG *hw,
65 u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG *data)
66 {
67 DEBUGFUNC("igc_null_read_reg");
68 return IGC_SUCCESS;
69 }
70
71 /**
72 * igc_null_phy_generic - No-op function, return void
73 * @hw: pointer to the HW structure
74 **/
75 void igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG *hw)
76 {
77 DEBUGFUNC("igc_null_phy_generic");
78 return;
79 }
80
81 /**
82 * igc_null_lplu_state - No-op function, return 0
83 * @hw: pointer to the HW structure
84 * @active: dummy variable
85 **/
86 s32 igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG *hw,
87 bool IGC_UNUSEDARG active)
88 {
89 DEBUGFUNC("igc_null_lplu_state");
90 return IGC_SUCCESS;
91 }
92
93 /**
94 * igc_null_write_reg - No-op function, return 0
95 * @hw: pointer to the HW structure
96 * @offset: dummy variable
97 * @data: dummy variable
98 **/
99 s32 igc_null_write_reg(struct igc_hw IGC_UNUSEDARG *hw,
100 u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG data)
101 {
102 DEBUGFUNC("igc_null_write_reg");
103 return IGC_SUCCESS;
104 }
105
106 /**
107 * igc_check_reset_block_generic - Check if PHY reset is blocked
108 * @hw: pointer to the HW structure
109 *
110 * Read the PHY management control register and check whether a PHY reset
111 * is blocked. If a reset is not blocked return IGC_SUCCESS, otherwise
112 * return IGC_BLK_PHY_RESET (12).
113 **/
114 s32 igc_check_reset_block_generic(struct igc_hw *hw)
115 {
116 u32 manc;
117
118 DEBUGFUNC("igc_check_reset_block");
119
120 manc = IGC_READ_REG(hw, IGC_MANC);
121
122 return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
123 IGC_BLK_PHY_RESET : IGC_SUCCESS;
124 }
125
126 /**
127 * igc_get_phy_id - Retrieve the PHY ID and revision
128 * @hw: pointer to the HW structure
129 *
130 * Reads the PHY registers and stores the PHY ID and possibly the PHY
131 * revision in the hardware structure.
132 **/
133 s32 igc_get_phy_id(struct igc_hw *hw)
134 {
135 struct igc_phy_info *phy = &hw->phy;
136 s32 ret_val = IGC_SUCCESS;
137 u16 phy_id;
138
139 DEBUGFUNC("igc_get_phy_id");
140
141 if (!phy->ops.read_reg)
142 return IGC_SUCCESS;
143
144 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
145 if (ret_val)
146 return ret_val;
147
148 phy->id = (u32)(phy_id << 16);
149 usec_delay(200);
150 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
151 if (ret_val)
152 return ret_val;
153
154 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
155 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
156
157 return IGC_SUCCESS;
158 }
159
160 /**
161 * igc_read_phy_reg_mdic - Read MDI control register
162 * @hw: pointer to the HW structure
163 * @offset: register offset to be read
164 * @data: pointer to the read data
165 *
166 * Reads the MDI control register in the PHY at offset and stores the
167 * information read to data.
168 **/
169 s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
170 {
171 struct igc_phy_info *phy = &hw->phy;
172 u32 i, mdic = 0;
173
174 DEBUGFUNC("igc_read_phy_reg_mdic");
175
176 if (offset > MAX_PHY_REG_ADDRESS) {
177 DEBUGOUT1("PHY Address %d is out of range\n", offset);
178 return -IGC_ERR_PARAM;
179 }
180
181 /* Set up Op-code, Phy Address, and register offset in the MDI
182 * Control register. The MAC will take care of interfacing with the
183 * PHY to retrieve the desired data.
184 */
185 mdic = ((offset << IGC_MDIC_REG_SHIFT) |
186 (phy->addr << IGC_MDIC_PHY_SHIFT) |
187 (IGC_MDIC_OP_READ));
188
189 IGC_WRITE_REG(hw, IGC_MDIC, mdic);
190
191 /* Poll the ready bit to see if the MDI read completed
192 * Increasing the time out as testing showed failures with
193 * the lower time out
194 */
195 for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
196 usec_delay_irq(50);
197 mdic = IGC_READ_REG(hw, IGC_MDIC);
198 if (mdic & IGC_MDIC_READY)
199 break;
200 }
201 if (!(mdic & IGC_MDIC_READY)) {
202 DEBUGOUT("MDI Read did not complete\n");
203 return -IGC_ERR_PHY;
204 }
205 if (mdic & IGC_MDIC_ERROR) {
206 DEBUGOUT("MDI Error\n");
207 return -IGC_ERR_PHY;
208 }
209 if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
210 DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
211 offset,
212 (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
213 return -IGC_ERR_PHY;
214 }
215 *data = (u16) mdic;
216
217 return IGC_SUCCESS;
218 }
219
220 /**
221 * igc_write_phy_reg_mdic - Write MDI control register
222 * @hw: pointer to the HW structure
223 * @offset: register offset to write to
224 * @data: data to write to register at offset
225 *
226 * Writes data to MDI control register in the PHY at offset.
227 **/
228 s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
229 {
230 struct igc_phy_info *phy = &hw->phy;
231 u32 i, mdic = 0;
232
233 DEBUGFUNC("igc_write_phy_reg_mdic");
234
235 if (offset > MAX_PHY_REG_ADDRESS) {
236 DEBUGOUT1("PHY Address %d is out of range\n", offset);
237 return -IGC_ERR_PARAM;
238 }
239
240 /* Set up Op-code, Phy Address, and register offset in the MDI
241 * Control register. The MAC will take care of interfacing with the
242 * PHY to retrieve the desired data.
243 */
244 mdic = (((u32)data) |
245 (offset << IGC_MDIC_REG_SHIFT) |
246 (phy->addr << IGC_MDIC_PHY_SHIFT) |
247 (IGC_MDIC_OP_WRITE));
248
249 IGC_WRITE_REG(hw, IGC_MDIC, mdic);
250
251 /* Poll the ready bit to see if the MDI read completed
252 * Increasing the time out as testing showed failures with
253 * the lower time out
254 */
255 for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
256 usec_delay_irq(50);
257 mdic = IGC_READ_REG(hw, IGC_MDIC);
258 if (mdic & IGC_MDIC_READY)
259 break;
260 }
261 if (!(mdic & IGC_MDIC_READY)) {
262 DEBUGOUT("MDI Write did not complete\n");
263 return -IGC_ERR_PHY;
264 }
265 if (mdic & IGC_MDIC_ERROR) {
266 DEBUGOUT("MDI Error\n");
267 return -IGC_ERR_PHY;
268 }
269 if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
270 DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
271 offset,
272 (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
273 return -IGC_ERR_PHY;
274 }
275
276 return IGC_SUCCESS;
277 }
278
279 /**
280 * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
281 * @hw: pointer to the HW structure
282 *
283 * Reads the MII auto-neg advertisement register and/or the 1000T control
284 * register and if the PHY is already setup for auto-negotiation, then
285 * return successful. Otherwise, setup advertisement and flow control to
286 * the appropriate values for the wanted auto-negotiation.
287 **/
288 static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
289 {
290 struct igc_phy_info *phy = &hw->phy;
291 s32 ret_val;
292 u16 mii_autoneg_adv_reg;
293 u16 mii_1000t_ctrl_reg = 0;
294 u16 aneg_multigbt_an_ctrl = 0;
295
296 DEBUGFUNC("igc_phy_setup_autoneg");
297
298 phy->autoneg_advertised &= phy->autoneg_mask;
299
300 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
301 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
302 if (ret_val)
303 return ret_val;
304
305 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
306 /* Read the MII 1000Base-T Control Register (Address 9). */
307 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
308 &mii_1000t_ctrl_reg);
309 if (ret_val)
310 return ret_val;
311 }
312
313 if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
314 /* Read the MULTI GBT AN Control Register - reg 7.32 */
315 ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
316 MMD_DEVADDR_SHIFT) |
317 ANEG_MULTIGBT_AN_CTRL,
318 &aneg_multigbt_an_ctrl);
319
320 if (ret_val)
321 return ret_val;
322 }
323
324 /* Need to parse both autoneg_advertised and fc and set up
325 * the appropriate PHY registers. First we will parse for
326 * autoneg_advertised software override. Since we can advertise
327 * a plethora of combinations, we need to check each bit
328 * individually.
329 */
330
331 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
332 * Advertisement Register (Address 4) and the 1000 mb speed bits in
333 * the 1000Base-T Control Register (Address 9).
334 */
335 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
336 NWAY_AR_100TX_HD_CAPS |
337 NWAY_AR_10T_FD_CAPS |
338 NWAY_AR_10T_HD_CAPS);
339 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
340
341 DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
342
343 /* Do we want to advertise 10 Mb Half Duplex? */
344 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
345 DEBUGOUT("Advertise 10mb Half duplex\n");
346 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
347 }
348
349 /* Do we want to advertise 10 Mb Full Duplex? */
350 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
351 DEBUGOUT("Advertise 10mb Full duplex\n");
352 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
353 }
354
355 /* Do we want to advertise 100 Mb Half Duplex? */
356 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
357 DEBUGOUT("Advertise 100mb Half duplex\n");
358 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
359 }
360
361 /* Do we want to advertise 100 Mb Full Duplex? */
362 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
363 DEBUGOUT("Advertise 100mb Full duplex\n");
364 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
365 }
366
367 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
368 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
369 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
370
371 /* Do we want to advertise 1000 Mb Full Duplex? */
372 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
373 DEBUGOUT("Advertise 1000mb Full duplex\n");
374 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
375 }
376
377 /* We do not allow the Phy to advertise 2500 Mb Half Duplex */
378 if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
379 DEBUGOUT("Advertise 2500mb Half duplex request denied!\n");
380
381 /* Do we want to advertise 2500 Mb Full Duplex? */
382 if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
383 DEBUGOUT("Advertise 2500mb Full duplex\n");
384 aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
385 } else {
386 aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
387 }
388
389 /* Check for a software override of the flow control settings, and
390 * setup the PHY advertisement registers accordingly. If
391 * auto-negotiation is enabled, then software will have to set the
392 * "PAUSE" bits to the correct value in the Auto-Negotiation
393 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
394 * negotiation.
395 *
396 * The possible values of the "fc" parameter are:
397 * 0: Flow control is completely disabled
398 * 1: Rx flow control is enabled (we can receive pause frames
399 * but not send pause frames).
400 * 2: Tx flow control is enabled (we can send pause frames
401 * but we do not support receiving pause frames).
402 * 3: Both Rx and Tx flow control (symmetric) are enabled.
403 * other: No software override. The flow control configuration
404 * in the EEPROM is used.
405 */
406 switch (hw->fc.current_mode) {
407 case igc_fc_none:
408 /* Flow control (Rx & Tx) is completely disabled by a
409 * software over-ride.
410 */
411 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
412 break;
413 case igc_fc_rx_pause:
414 /* Rx Flow control is enabled, and Tx Flow control is
415 * disabled, by a software over-ride.
416 *
417 * Since there really isn't a way to advertise that we are
418 * capable of Rx Pause ONLY, we will advertise that we
419 * support both symmetric and asymmetric Rx PAUSE. Later
420 * (in igc_config_fc_after_link_up) we will disable the
421 * hw's ability to send PAUSE frames.
422 */
423 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
424 break;
425 case igc_fc_tx_pause:
426 /* Tx Flow control is enabled, and Rx Flow control is
427 * disabled, by a software over-ride.
428 */
429 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
430 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
431 break;
432 case igc_fc_full:
433 /* Flow control (both Rx and Tx) is enabled by a software
434 * over-ride.
435 */
436 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
437 break;
438 default:
439 DEBUGOUT("Flow control param set incorrectly\n");
440 return -IGC_ERR_CONFIG;
441 }
442
443 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
444 if (ret_val)
445 return ret_val;
446
447 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
448
449 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
450 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
451 mii_1000t_ctrl_reg);
452
453 if (phy->autoneg_mask & ADVERTISE_2500_FULL)
454 ret_val = phy->ops.write_reg(hw,
455 (STANDARD_AN_REG_MASK <<
456 MMD_DEVADDR_SHIFT) |
457 ANEG_MULTIGBT_AN_CTRL,
458 aneg_multigbt_an_ctrl);
459
460 return ret_val;
461 }
462
463 /**
464 * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
465 * @hw: pointer to the HW structure
466 *
467 * Performs initial bounds checking on autoneg advertisement parameter, then
468 * configure to advertise the full capability. Setup the PHY to autoneg
469 * and restart the negotiation process between the link partner. If
470 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
471 **/
472 static s32 igc_copper_link_autoneg(struct igc_hw *hw)
473 {
474 struct igc_phy_info *phy = &hw->phy;
475 s32 ret_val;
476 u16 phy_ctrl;
477
478 DEBUGFUNC("igc_copper_link_autoneg");
479
480 /* Perform some bounds checking on the autoneg advertisement
481 * parameter.
482 */
483 phy->autoneg_advertised &= phy->autoneg_mask;
484
485 /* If autoneg_advertised is zero, we assume it was not defaulted
486 * by the calling code so we set to advertise full capability.
487 */
488 if (!phy->autoneg_advertised)
489 phy->autoneg_advertised = phy->autoneg_mask;
490
491 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
492 ret_val = igc_phy_setup_autoneg(hw);
493 if (ret_val) {
494 DEBUGOUT("Error Setting up Auto-Negotiation\n");
495 return ret_val;
496 }
497 DEBUGOUT("Restarting Auto-Neg\n");
498
499 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
500 * the Auto Neg Restart bit in the PHY control register.
501 */
502 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
503 if (ret_val)
504 return ret_val;
505
506 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
507 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
508 if (ret_val)
509 return ret_val;
510
511 /* Does the user want to wait for Auto-Neg to complete here, or
512 * check at a later time (for example, callback routine).
513 */
514 if (phy->autoneg_wait_to_complete) {
515 ret_val = igc_wait_autoneg(hw);
516 if (ret_val) {
517 DEBUGOUT("Error while waiting for autoneg to complete\n");
518 return ret_val;
519 }
520 }
521
522 hw->mac.get_link_status = true;
523
524 return ret_val;
525 }
526
527 /**
528 * igc_setup_copper_link_generic - Configure copper link settings
529 * @hw: pointer to the HW structure
530 *
531 * Calls the appropriate function to configure the link for auto-neg or forced
532 * speed and duplex. Then we check for link, once link is established calls
533 * to configure collision distance and flow control are called. If link is
534 * not established, we return -IGC_ERR_PHY (-2).
535 **/
536 s32 igc_setup_copper_link_generic(struct igc_hw *hw)
537 {
538 s32 ret_val;
539 bool link;
540
541 DEBUGFUNC("igc_setup_copper_link_generic");
542
543 if (hw->mac.autoneg) {
544 /* Setup autoneg and flow control advertisement and perform
545 * autonegotiation.
546 */
547 ret_val = igc_copper_link_autoneg(hw);
548 if (ret_val)
549 return ret_val;
550 } else {
551 /* PHY will be set to 10H, 10F, 100H or 100F
552 * depending on user settings.
553 */
554 DEBUGOUT("Forcing Speed and Duplex\n");
555 ret_val = hw->phy.ops.force_speed_duplex(hw);
556 if (ret_val) {
557 DEBUGOUT("Error Forcing Speed and Duplex\n");
558 return ret_val;
559 }
560 }
561
562 /* Check link status. Wait up to 100 microseconds for link to become
563 * valid.
564 */
565 ret_val = igc_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
566 &link);
567 if (ret_val)
568 return ret_val;
569
570 if (link) {
571 DEBUGOUT("Valid link established!!!\n");
572 hw->mac.ops.config_collision_dist(hw);
573 ret_val = igc_config_fc_after_link_up_generic(hw);
574 } else {
575 DEBUGOUT("Unable to establish link!!!\n");
576 }
577
578 return ret_val;
579 }
580
581 /**
582 * igc_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
583 * @hw: pointer to the HW structure
584 * @phy_ctrl: pointer to current value of PHY_CONTROL
585 *
586 * Forces speed and duplex on the PHY by doing the following: disable flow
587 * control, force speed/duplex on the MAC, disable auto speed detection,
588 * disable auto-negotiation, configure duplex, configure speed, configure
589 * the collision distance, write configuration to CTRL register. The
590 * caller must write to the PHY_CONTROL register for these settings to
591 * take effect.
592 **/
593 void igc_phy_force_speed_duplex_setup(struct igc_hw *hw, u16 *phy_ctrl)
594 {
595 struct igc_mac_info *mac = &hw->mac;
596 u32 ctrl;
597
598 DEBUGFUNC("igc_phy_force_speed_duplex_setup");
599
600 /* Turn off flow control when forcing speed/duplex */
601 hw->fc.current_mode = igc_fc_none;
602
603 /* Force speed/duplex on the mac */
604 ctrl = IGC_READ_REG(hw, IGC_CTRL);
605 ctrl |= (IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
606 ctrl &= ~IGC_CTRL_SPD_SEL;
607
608 /* Disable Auto Speed Detection */
609 ctrl &= ~IGC_CTRL_ASDE;
610
611 /* Disable autoneg on the phy */
612 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
613
614 /* Forcing Full or Half Duplex? */
615 if (mac->forced_speed_duplex & IGC_ALL_HALF_DUPLEX) {
616 ctrl &= ~IGC_CTRL_FD;
617 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
618 DEBUGOUT("Half Duplex\n");
619 } else {
620 ctrl |= IGC_CTRL_FD;
621 *phy_ctrl |= MII_CR_FULL_DUPLEX;
622 DEBUGOUT("Full Duplex\n");
623 }
624
625 /* Forcing 10mb or 100mb? */
626 if (mac->forced_speed_duplex & IGC_ALL_100_SPEED) {
627 ctrl |= IGC_CTRL_SPD_100;
628 *phy_ctrl |= MII_CR_SPEED_100;
629 *phy_ctrl &= ~MII_CR_SPEED_1000;
630 DEBUGOUT("Forcing 100mb\n");
631 } else {
632 ctrl &= ~(IGC_CTRL_SPD_1000 | IGC_CTRL_SPD_100);
633 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
634 DEBUGOUT("Forcing 10mb\n");
635 }
636
637 hw->mac.ops.config_collision_dist(hw);
638
639 IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
640 }
641
642 /**
643 * igc_set_d3_lplu_state_generic - Sets low power link up state for D3
644 * @hw: pointer to the HW structure
645 * @active: boolean used to enable/disable lplu
646 *
647 * Success returns 0, Failure returns 1
648 *
649 * The low power link up (lplu) state is set to the power management level D3
650 * and SmartSpeed is disabled when active is true, else clear lplu for D3
651 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
652 * is used during Dx states where the power conservation is most important.
653 * During driver activity, SmartSpeed should be enabled so performance is
654 * maintained.
655 **/
656 s32 igc_set_d3_lplu_state_generic(struct igc_hw *hw, bool active)
657 {
658 struct igc_phy_info *phy = &hw->phy;
659 s32 ret_val;
660 u16 data;
661
662 DEBUGFUNC("igc_set_d3_lplu_state_generic");
663
664 if (!hw->phy.ops.read_reg)
665 return IGC_SUCCESS;
666
667 ret_val = phy->ops.read_reg(hw, IGP02IGC_PHY_POWER_MGMT, &data);
668 if (ret_val)
669 return ret_val;
670
671 if (!active) {
672 data &= ~IGP02IGC_PM_D3_LPLU;
673 ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
674 data);
675 if (ret_val)
676 return ret_val;
677 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
678 * during Dx states where the power conservation is most
679 * important. During driver activity we should enable
680 * SmartSpeed, so performance is maintained.
681 */
682 if (phy->smart_speed == igc_smart_speed_on) {
683 ret_val = phy->ops.read_reg(hw,
684 IGP01IGC_PHY_PORT_CONFIG,
685 &data);
686 if (ret_val)
687 return ret_val;
688
689 data |= IGP01IGC_PSCFR_SMART_SPEED;
690 ret_val = phy->ops.write_reg(hw,
691 IGP01IGC_PHY_PORT_CONFIG,
692 data);
693 if (ret_val)
694 return ret_val;
695 } else if (phy->smart_speed == igc_smart_speed_off) {
696 ret_val = phy->ops.read_reg(hw,
697 IGP01IGC_PHY_PORT_CONFIG,
698 &data);
699 if (ret_val)
700 return ret_val;
701
702 data &= ~IGP01IGC_PSCFR_SMART_SPEED;
703 ret_val = phy->ops.write_reg(hw,
704 IGP01IGC_PHY_PORT_CONFIG,
705 data);
706 if (ret_val)
707 return ret_val;
708 }
709 } else if ((phy->autoneg_advertised == IGC_ALL_SPEED_DUPLEX) ||
710 (phy->autoneg_advertised == IGC_ALL_NOT_GIG) ||
711 (phy->autoneg_advertised == IGC_ALL_10_SPEED)) {
712 data |= IGP02IGC_PM_D3_LPLU;
713 ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
714 data);
715 if (ret_val)
716 return ret_val;
717
718 /* When LPLU is enabled, we should disable SmartSpeed */
719 ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
720 &data);
721 if (ret_val)
722 return ret_val;
723
724 data &= ~IGP01IGC_PSCFR_SMART_SPEED;
725 ret_val = phy->ops.write_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
726 data);
727 }
728
729 return ret_val;
730 }
731
732 /**
733 * igc_check_downshift_generic - Checks whether a downshift in speed occurred
734 * @hw: pointer to the HW structure
735 *
736 * Success returns 0, Failure returns 1
737 *
738 * A downshift is detected by querying the PHY link health.
739 **/
740 s32 igc_check_downshift_generic(struct igc_hw *hw)
741 {
742 struct igc_phy_info *phy = &hw->phy;
743 s32 ret_val;
744
745 DEBUGFUNC("igc_check_downshift_generic");
746
747 switch (phy->type) {
748 case igc_phy_i225:
749 default:
750 /* speed downshift not supported */
751 phy->speed_downgraded = false;
752 return IGC_SUCCESS;
753 }
754
755 return ret_val;
756 }
757
758 /**
759 * igc_wait_autoneg - Wait for auto-neg completion
760 * @hw: pointer to the HW structure
761 *
762 * Waits for auto-negotiation to complete or for the auto-negotiation time
763 * limit to expire, which ever happens first.
764 **/
765 static s32 igc_wait_autoneg(struct igc_hw *hw)
766 {
767 s32 ret_val = IGC_SUCCESS;
768 u16 i, phy_status;
769
770 DEBUGFUNC("igc_wait_autoneg");
771
772 if (!hw->phy.ops.read_reg)
773 return IGC_SUCCESS;
774
775 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
776 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
777 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
778 if (ret_val)
779 break;
780 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
781 if (ret_val)
782 break;
783 if (phy_status & MII_SR_AUTONEG_COMPLETE)
784 break;
785 msec_delay(100);
786 }
787
788 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
789 * has completed.
790 */
791 return ret_val;
792 }
793
794 /**
795 * igc_phy_has_link_generic - Polls PHY for link
796 * @hw: pointer to the HW structure
797 * @iterations: number of times to poll for link
798 * @usec_interval: delay between polling attempts
799 * @success: pointer to whether polling was successful or not
800 *
801 * Polls the PHY status register for link, 'iterations' number of times.
802 **/
803 s32 igc_phy_has_link_generic(struct igc_hw *hw, u32 iterations,
804 u32 usec_interval, bool *success)
805 {
806 s32 ret_val = IGC_SUCCESS;
807 u16 i, phy_status;
808
809 DEBUGFUNC("igc_phy_has_link_generic");
810
811 if (!hw->phy.ops.read_reg)
812 return IGC_SUCCESS;
813
814 for (i = 0; i < iterations; i++) {
815 /* Some PHYs require the PHY_STATUS register to be read
816 * twice due to the link bit being sticky. No harm doing
817 * it across the board.
818 */
819 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
820 if (ret_val) {
821 /* If the first read fails, another entity may have
822 * ownership of the resources, wait and try again to
823 * see if they have relinquished the resources yet.
824 */
825 if (usec_interval >= 1000)
826 msec_delay(usec_interval/1000);
827 else
828 usec_delay(usec_interval);
829 }
830 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
831 if (ret_val)
832 break;
833 if (phy_status & MII_SR_LINK_STATUS)
834 break;
835 if (usec_interval >= 1000)
836 msec_delay(usec_interval/1000);
837 else
838 usec_delay(usec_interval);
839 }
840
841 *success = (i < iterations);
842
843 return ret_val;
844 }
845
846 /**
847 * igc_phy_hw_reset_generic - PHY hardware reset
848 * @hw: pointer to the HW structure
849 *
850 * Verify the reset block is not blocking us from resetting. Acquire
851 * semaphore (if necessary) and read/set/write the device control reset
852 * bit in the PHY. Wait the appropriate delay time for the device to
853 * reset and release the semaphore (if necessary).
854 **/
855 s32 igc_phy_hw_reset_generic(struct igc_hw *hw)
856 {
857 struct igc_phy_info *phy = &hw->phy;
858 s32 ret_val;
859 u32 ctrl, timeout = 10000, phpm = 0;
860
861 DEBUGFUNC("igc_phy_hw_reset_generic");
862
863 if (phy->ops.check_reset_block) {
864 ret_val = phy->ops.check_reset_block(hw);
865 if (ret_val)
866 return IGC_SUCCESS;
867 }
868
869 ret_val = phy->ops.acquire(hw);
870 if (ret_val)
871 return ret_val;
872
873 phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
874
875 ctrl = IGC_READ_REG(hw, IGC_CTRL);
876 IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
877 IGC_WRITE_FLUSH(hw);
878
879 usec_delay(phy->reset_delay_us);
880
881 IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
882 IGC_WRITE_FLUSH(hw);
883
884 usec_delay(150);
885
886 do {
887 phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
888 timeout--;
889 usec_delay(1);
890 } while (!(phpm & IGC_I225_PHPM_RST_COMPL) && timeout);
891
892 if (!timeout)
893 DEBUGOUT("Timeout expired after a phy reset\n");
894
895 phy->ops.release(hw);
896
897 return ret_val;
898 }
899
900 /**
901 * igc_power_up_phy_copper - Restore copper link in case of PHY power down
902 * @hw: pointer to the HW structure
903 *
904 * In the case of a PHY power down to save power, or to turn off link during a
905 * driver unload, or wake on lan is not enabled, restore the link to previous
906 * settings.
907 **/
908 void igc_power_up_phy_copper(struct igc_hw *hw)
909 {
910 u16 mii_reg = 0;
911
912 /* The PHY will retain its settings across a power down/up cycle */
913 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
914 mii_reg &= ~MII_CR_POWER_DOWN;
915 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
916 usec_delay(300);
917 }
918
919 /**
920 * igc_power_down_phy_copper - Restore copper link in case of PHY power down
921 * @hw: pointer to the HW structure
922 *
923 * In the case of a PHY power down to save power, or to turn off link during a
924 * driver unload, or wake on lan is not enabled, restore the link to previous
925 * settings.
926 **/
927 void igc_power_down_phy_copper(struct igc_hw *hw)
928 {
929 u16 mii_reg = 0;
930
931 /* The PHY will retain its settings across a power down/up cycle */
932 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
933 mii_reg |= MII_CR_POWER_DOWN;
934 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
935 msec_delay(1);
936 }
937 /**
938 * igc_write_phy_reg_gpy - Write GPY PHY register
939 * @hw: pointer to the HW structure
940 * @offset: register offset to write to
941 * @data: data to write at register offset
942 *
943 * Acquires semaphore, if necessary, then writes the data to PHY register
944 * at the offset. Release any acquired semaphores before exiting.
945 **/
946 s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
947 {
948 s32 ret_val;
949 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
950
951 DEBUGFUNC("igc_write_phy_reg_gpy");
952
953 offset = offset & GPY_REG_MASK;
954
955 if (!dev_addr) {
956 ret_val = hw->phy.ops.acquire(hw);
957 if (ret_val)
958 return ret_val;
959 ret_val = igc_write_phy_reg_mdic(hw, offset, data);
960 if (ret_val)
961 return ret_val;
962 hw->phy.ops.release(hw);
963 } else {
964 ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
965 data);
966 }
967 return ret_val;
968 }
969
970 /**
971 * igc_read_phy_reg_gpy - Read GPY PHY register
972 * @hw: pointer to the HW structure
973 * @offset: lower half is register offset to read to
974 * upper half is MMD to use.
975 * @data: data to read at register offset
976 *
977 * Acquires semaphore, if necessary, then reads the data in the PHY register
978 * at the offset. Release any acquired semaphores before exiting.
979 **/
980 s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
981 {
982 s32 ret_val;
983 u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
984
985 DEBUGFUNC("igc_read_phy_reg_gpy");
986
987 offset = offset & GPY_REG_MASK;
988
989 if (!dev_addr) {
990 ret_val = hw->phy.ops.acquire(hw);
991 if (ret_val)
992 return ret_val;
993 ret_val = igc_read_phy_reg_mdic(hw, offset, data);
994 if (ret_val)
995 return ret_val;
996 hw->phy.ops.release(hw);
997 } else {
998 ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
999 data);
1000 }
1001 return ret_val;
1002 }
1003
1004
1005 /**
1006 * __igc_access_xmdio_reg - Read/write XMDIO register
1007 * @hw: pointer to the HW structure
1008 * @address: XMDIO address to program
1009 * @dev_addr: device address to program
1010 * @data: pointer to value to read/write from/to the XMDIO address
1011 * @read: boolean flag to indicate read or write
1012 **/
1013 static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
1014 u8 dev_addr, u16 *data, bool read)
1015 {
1016 s32 ret_val;
1017
1018 DEBUGFUNC("__igc_access_xmdio_reg");
1019
1020 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
1021 if (ret_val)
1022 return ret_val;
1023
1024 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
1025 if (ret_val)
1026 return ret_val;
1027
1028 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
1029 dev_addr);
1030 if (ret_val)
1031 return ret_val;
1032
1033 if (read)
1034 ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
1035 else
1036 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
1037 if (ret_val)
1038 return ret_val;
1039
1040 /* Recalibrate the device back to 0 */
1041 ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
1042 if (ret_val)
1043 return ret_val;
1044
1045 return ret_val;
1046 }
1047
1048 /**
1049 * igc_read_xmdio_reg - Read XMDIO register
1050 * @hw: pointer to the HW structure
1051 * @addr: XMDIO address to program
1052 * @dev_addr: device address to program
1053 * @data: value to be read from the EMI address
1054 **/
1055 s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 *data)
1056 {
1057 DEBUGFUNC("igc_read_xmdio_reg");
1058
1059 return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
1060 }
1061
1062 /**
1063 * igc_write_xmdio_reg - Write XMDIO register
1064 * @hw: pointer to the HW structure
1065 * @addr: XMDIO address to program
1066 * @dev_addr: device address to program
1067 * @data: value to be written to the XMDIO address
1068 **/
1069 s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 data)
1070 {
1071 DEBUGFUNC("igc_write_xmdio_reg");
1072
1073 return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
1074 }
Cache object: cd711e9e0809dcf78a99b3a9b4bacaf2
|