FreeBSD/Linux Kernel Cross Reference
sys/dev/isci/isci.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * BSD LICENSE
5 *
6 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <dev/isci/isci.h>
37
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40
41 #include <cam/cam_periph.h>
42
43 #include <dev/led/led.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47
48 #include <dev/isci/scil/scic_logger.h>
49 #include <dev/isci/scil/scic_library.h>
50 #include <dev/isci/scil/scic_sgpio.h>
51 #include <dev/isci/scil/scic_user_callback.h>
52
53 #include <dev/isci/scil/scif_controller.h>
54 #include <dev/isci/scil/scif_library.h>
55 #include <dev/isci/scil/scif_logger.h>
56 #include <dev/isci/scil/scif_user_callback.h>
57
58 MALLOC_DEFINE(M_ISCI, "isci", "isci driver memory allocations");
59
60 struct isci_softc *g_isci;
61 uint32_t g_isci_debug_level = 0;
62
63 static int isci_probe(device_t);
64 static int isci_attach(device_t);
65 static int isci_detach(device_t);
66
67 int isci_initialize(struct isci_softc *isci);
68
69 void isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg,
70 int nseg, int error);
71
72 static device_method_t isci_pci_methods[] = {
73 /* Device interface */
74 DEVMETHOD(device_probe, isci_probe),
75 DEVMETHOD(device_attach, isci_attach),
76 DEVMETHOD(device_detach, isci_detach),
77 { 0, 0 }
78 };
79
80 static driver_t isci_pci_driver = {
81 "isci",
82 isci_pci_methods,
83 sizeof(struct isci_softc),
84 };
85
86 DRIVER_MODULE(isci, pci, isci_pci_driver, 0, 0);
87 MODULE_DEPEND(isci, cam, 1, 1, 1);
88
89 static struct _pcsid
90 {
91 u_int32_t type;
92 const char *desc;
93 } pci_ids[] = {
94 { 0x1d608086, "Intel(R) C600 Series Chipset SAS Controller" },
95 { 0x1d618086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
96 { 0x1d628086, "Intel(R) C600 Series Chipset SAS Controller" },
97 { 0x1d638086, "Intel(R) C600 Series Chipset SAS Controller" },
98 { 0x1d648086, "Intel(R) C600 Series Chipset SAS Controller" },
99 { 0x1d658086, "Intel(R) C600 Series Chipset SAS Controller" },
100 { 0x1d668086, "Intel(R) C600 Series Chipset SAS Controller" },
101 { 0x1d678086, "Intel(R) C600 Series Chipset SAS Controller" },
102 { 0x1d688086, "Intel(R) C600 Series Chipset SAS Controller" },
103 { 0x1d698086, "Intel(R) C600 Series Chipset SAS Controller" },
104 { 0x1d6a8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
105 { 0x1d6b8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
106 { 0x1d6c8086, "Intel(R) C600 Series Chipset SAS Controller" },
107 { 0x1d6d8086, "Intel(R) C600 Series Chipset SAS Controller" },
108 { 0x1d6e8086, "Intel(R) C600 Series Chipset SAS Controller" },
109 { 0x1d6f8086, "Intel(R) C600 Series Chipset SAS Controller (SATA mode)" },
110 { 0x00000000, NULL }
111 };
112
113 static int
114 isci_probe (device_t device)
115 {
116 u_int32_t type = pci_get_devid(device);
117 struct _pcsid *ep = pci_ids;
118
119 while (ep->type && ep->type != type)
120 ++ep;
121
122 if (ep->desc)
123 {
124 device_set_desc(device, ep->desc);
125 return (BUS_PROBE_DEFAULT);
126 }
127 else
128 return (ENXIO);
129 }
130
131 static int
132 isci_allocate_pci_memory(struct isci_softc *isci)
133 {
134 int i;
135
136 for (i = 0; i < ISCI_NUM_PCI_BARS; i++)
137 {
138 struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i];
139
140 pci_bar->resource_id = PCIR_BAR(i*2);
141 pci_bar->resource = bus_alloc_resource_any(isci->device,
142 SYS_RES_MEMORY, &pci_bar->resource_id,
143 RF_ACTIVE);
144
145 if(pci_bar->resource == NULL)
146 isci_log_message(0, "ISCI",
147 "unable to allocate pci resource\n");
148 else {
149 pci_bar->bus_tag = rman_get_bustag(pci_bar->resource);
150 pci_bar->bus_handle =
151 rman_get_bushandle(pci_bar->resource);
152 }
153 }
154
155 return (0);
156 }
157
158 static int
159 isci_attach(device_t device)
160 {
161 int error;
162 struct isci_softc *isci = DEVICE2SOFTC(device);
163
164 g_isci = isci;
165 isci->device = device;
166 pci_enable_busmaster(device);
167
168 isci_allocate_pci_memory(isci);
169
170 error = isci_initialize(isci);
171
172 if (error)
173 {
174 isci_detach(device);
175 return (error);
176 }
177
178 isci_interrupt_setup(isci);
179 isci_sysctl_initialize(isci);
180
181 return (0);
182 }
183
184 static int
185 isci_detach(device_t device)
186 {
187 struct isci_softc *isci = DEVICE2SOFTC(device);
188 int i, phy;
189
190 for (i = 0; i < isci->controller_count; i++) {
191 struct ISCI_CONTROLLER *controller = &isci->controllers[i];
192 SCI_STATUS status;
193 void *unmap_buffer;
194
195 if (controller->scif_controller_handle != NULL) {
196 scic_controller_disable_interrupts(
197 scif_controller_get_scic_handle(controller->scif_controller_handle));
198
199 mtx_lock(&controller->lock);
200 status = scif_controller_stop(controller->scif_controller_handle, 0);
201 mtx_unlock(&controller->lock);
202
203 while (controller->is_started == TRUE) {
204 /* Now poll for interrupts until the controller stop complete
205 * callback is received.
206 */
207 mtx_lock(&controller->lock);
208 isci_interrupt_poll_handler(controller);
209 mtx_unlock(&controller->lock);
210 pause("isci", 1);
211 }
212
213 if(controller->sim != NULL) {
214 mtx_lock(&controller->lock);
215 xpt_free_path(controller->path);
216 xpt_bus_deregister(cam_sim_path(controller->sim));
217 cam_sim_free(controller->sim, TRUE);
218 mtx_unlock(&controller->lock);
219 }
220 }
221
222 if (controller->timer_memory != NULL)
223 free(controller->timer_memory, M_ISCI);
224
225 if (controller->remote_device_memory != NULL)
226 free(controller->remote_device_memory, M_ISCI);
227
228 for (phy = 0; phy < SCI_MAX_PHYS; phy++) {
229 if (controller->phys[phy].cdev_fault)
230 led_destroy(controller->phys[phy].cdev_fault);
231
232 if (controller->phys[phy].cdev_locate)
233 led_destroy(controller->phys[phy].cdev_locate);
234 }
235
236 while (1) {
237 sci_pool_get(controller->unmap_buffer_pool, unmap_buffer);
238 if (unmap_buffer == NULL)
239 break;
240 contigfree(unmap_buffer, PAGE_SIZE, M_ISCI);
241 }
242 }
243
244 /* The SCIF controllers have been stopped, so we can now
245 * free the SCI library memory.
246 */
247 if (isci->sci_library_memory != NULL)
248 free(isci->sci_library_memory, M_ISCI);
249
250 for (i = 0; i < ISCI_NUM_PCI_BARS; i++)
251 {
252 struct ISCI_PCI_BAR *pci_bar = &isci->pci_bar[i];
253
254 if (pci_bar->resource != NULL)
255 bus_release_resource(device, SYS_RES_MEMORY,
256 pci_bar->resource_id, pci_bar->resource);
257 }
258
259 for (i = 0; i < isci->num_interrupts; i++)
260 {
261 struct ISCI_INTERRUPT_INFO *interrupt_info;
262
263 interrupt_info = &isci->interrupt_info[i];
264
265 if(interrupt_info->tag != NULL)
266 bus_teardown_intr(device, interrupt_info->res,
267 interrupt_info->tag);
268
269 if(interrupt_info->res != NULL)
270 bus_release_resource(device, SYS_RES_IRQ,
271 rman_get_rid(interrupt_info->res),
272 interrupt_info->res);
273
274 pci_release_msi(device);
275 }
276 pci_disable_busmaster(device);
277
278 return (0);
279 }
280
281 int
282 isci_initialize(struct isci_softc *isci)
283 {
284 int error;
285 uint32_t status = 0;
286 uint32_t library_object_size;
287 uint32_t verbosity_mask;
288 uint32_t scic_log_object_mask;
289 uint32_t scif_log_object_mask;
290 uint8_t *header_buffer;
291
292 library_object_size = scif_library_get_object_size(SCI_MAX_CONTROLLERS);
293
294 isci->sci_library_memory =
295 malloc(library_object_size, M_ISCI, M_NOWAIT | M_ZERO );
296
297 isci->sci_library_handle = scif_library_construct(
298 isci->sci_library_memory, SCI_MAX_CONTROLLERS);
299
300 sci_object_set_association( isci->sci_library_handle, (void *)isci);
301
302 verbosity_mask = (1<<SCI_LOG_VERBOSITY_ERROR) |
303 (1<<SCI_LOG_VERBOSITY_WARNING) | (1<<SCI_LOG_VERBOSITY_INFO) |
304 (1<<SCI_LOG_VERBOSITY_TRACE);
305
306 scic_log_object_mask = 0xFFFFFFFF;
307 scic_log_object_mask &= ~SCIC_LOG_OBJECT_COMPLETION_QUEUE;
308 scic_log_object_mask &= ~SCIC_LOG_OBJECT_SSP_IO_REQUEST;
309 scic_log_object_mask &= ~SCIC_LOG_OBJECT_STP_IO_REQUEST;
310 scic_log_object_mask &= ~SCIC_LOG_OBJECT_SMP_IO_REQUEST;
311 scic_log_object_mask &= ~SCIC_LOG_OBJECT_CONTROLLER;
312
313 scif_log_object_mask = 0xFFFFFFFF;
314 scif_log_object_mask &= ~SCIF_LOG_OBJECT_CONTROLLER;
315 scif_log_object_mask &= ~SCIF_LOG_OBJECT_IO_REQUEST;
316
317 TUNABLE_INT_FETCH("hw.isci.debug_level", &g_isci_debug_level);
318
319 sci_logger_enable(sci_object_get_logger(isci->sci_library_handle),
320 scif_log_object_mask, verbosity_mask);
321
322 sci_logger_enable(sci_object_get_logger(
323 scif_library_get_scic_handle(isci->sci_library_handle)),
324 scic_log_object_mask, verbosity_mask);
325
326 header_buffer = (uint8_t *)&isci->pci_common_header;
327 for (uint8_t i = 0; i < sizeof(isci->pci_common_header); i++)
328 header_buffer[i] = pci_read_config(isci->device, i, 1);
329
330 scic_library_set_pci_info(
331 scif_library_get_scic_handle(isci->sci_library_handle),
332 &isci->pci_common_header);
333
334 isci->oem_parameters_found = FALSE;
335
336 isci_get_oem_parameters(isci);
337
338 /* trigger interrupt if 32 completions occur before timeout expires */
339 isci->coalesce_number = 32;
340
341 /* trigger interrupt if 2 microseconds elapse after a completion occurs,
342 * regardless if "coalesce_number" completions have occurred
343 */
344 isci->coalesce_timeout = 2;
345
346 isci->controller_count = scic_library_get_pci_device_controller_count(
347 scif_library_get_scic_handle(isci->sci_library_handle));
348
349 for (int index = 0; index < isci->controller_count; index++) {
350 struct ISCI_CONTROLLER *controller = &isci->controllers[index];
351 SCI_CONTROLLER_HANDLE_T scif_controller_handle;
352
353 controller->index = index;
354 isci_controller_construct(controller, isci);
355
356 scif_controller_handle = controller->scif_controller_handle;
357
358 status = isci_controller_initialize(controller);
359
360 if(status != SCI_SUCCESS) {
361 isci_log_message(0, "ISCI",
362 "isci_controller_initialize FAILED: %x\n",
363 status);
364 return (status);
365 }
366
367 error = isci_controller_allocate_memory(controller);
368
369 if (error != 0)
370 return (error);
371
372 scif_controller_set_interrupt_coalescence(
373 scif_controller_handle, isci->coalesce_number,
374 isci->coalesce_timeout);
375 }
376
377 /* FreeBSD provides us a hook to ensure we get a chance to start
378 * our controllers and complete initial domain discovery before
379 * it searches for the boot device. Once we're done, we'll
380 * disestablish the hook, signaling the kernel that is can proceed
381 * with the boot process.
382 */
383 isci->config_hook.ich_func = &isci_controller_start;
384 isci->config_hook.ich_arg = &isci->controllers[0];
385
386 if (config_intrhook_establish(&isci->config_hook) != 0)
387 isci_log_message(0, "ISCI",
388 "config_intrhook_establish failed!\n");
389
390 return (status);
391 }
392
393 void
394 isci_allocate_dma_buffer_callback(void *arg, bus_dma_segment_t *seg,
395 int nseg, int error)
396 {
397 struct ISCI_MEMORY *memory = (struct ISCI_MEMORY *)arg;
398
399 memory->error = error;
400
401 if (nseg != 1 || error != 0)
402 isci_log_message(0, "ISCI",
403 "Failed to allocate physically contiguous memory!\n");
404 else
405 memory->physical_address = seg->ds_addr;
406 }
407
408 int
409 isci_allocate_dma_buffer(device_t device, struct ISCI_CONTROLLER *controller,
410 struct ISCI_MEMORY *memory)
411 {
412 uint32_t status;
413
414 status = bus_dma_tag_create(bus_get_dma_tag(device),
415 0x40 /* cacheline alignment */,
416 ISCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
417 BUS_SPACE_MAXADDR, NULL, NULL, memory->size,
418 0x1 /* we want physically contiguous */,
419 memory->size, 0, busdma_lock_mutex, &controller->lock,
420 &memory->dma_tag);
421
422 if(status == ENOMEM) {
423 isci_log_message(0, "ISCI", "bus_dma_tag_create failed\n");
424 return (status);
425 }
426
427 status = bus_dmamem_alloc(memory->dma_tag,
428 (void **)&memory->virtual_address, BUS_DMA_ZERO, &memory->dma_map);
429
430 if(status == ENOMEM)
431 {
432 isci_log_message(0, "ISCI", "bus_dmamem_alloc failed\n");
433 return (status);
434 }
435
436 status = bus_dmamap_load(memory->dma_tag, memory->dma_map,
437 (void *)memory->virtual_address, memory->size,
438 isci_allocate_dma_buffer_callback, memory, 0);
439
440 if(status == EINVAL)
441 {
442 isci_log_message(0, "ISCI", "bus_dmamap_load failed\n");
443 return (status);
444 }
445
446 return (0);
447 }
448
449 /**
450 * @brief This callback method asks the user to associate the supplied
451 * lock with an operating environment specific locking construct.
452 *
453 * @param[in] controller This parameter specifies the controller with
454 * which this lock is to be associated.
455 * @param[in] lock This parameter specifies the lock for which the
456 * user should associate an operating environment specific
457 * locking object.
458 *
459 * @see The SCI_LOCK_LEVEL enumeration for more information.
460 *
461 * @return none.
462 */
463 void
464 scif_cb_lock_associate(SCI_CONTROLLER_HANDLE_T controller,
465 SCI_LOCK_HANDLE_T lock)
466 {
467
468 }
469
470 /**
471 * @brief This callback method asks the user to de-associate the supplied
472 * lock with an operating environment specific locking construct.
473 *
474 * @param[in] controller This parameter specifies the controller with
475 * which this lock is to be de-associated.
476 * @param[in] lock This parameter specifies the lock for which the
477 * user should de-associate an operating environment specific
478 * locking object.
479 *
480 * @see The SCI_LOCK_LEVEL enumeration for more information.
481 *
482 * @return none.
483 */
484 void
485 scif_cb_lock_disassociate(SCI_CONTROLLER_HANDLE_T controller,
486 SCI_LOCK_HANDLE_T lock)
487 {
488
489 }
490
491
492 /**
493 * @brief This callback method asks the user to acquire/get the lock.
494 * This method should pend until the lock has been acquired.
495 *
496 * @param[in] controller This parameter specifies the controller with
497 * which this lock is associated.
498 * @param[in] lock This parameter specifies the lock to be acquired.
499 *
500 * @return none
501 */
502 void
503 scif_cb_lock_acquire(SCI_CONTROLLER_HANDLE_T controller,
504 SCI_LOCK_HANDLE_T lock)
505 {
506
507 }
508
509 /**
510 * @brief This callback method asks the user to release a lock.
511 *
512 * @param[in] controller This parameter specifies the controller with
513 * which this lock is associated.
514 * @param[in] lock This parameter specifies the lock to be released.
515 *
516 * @return none
517 */
518 void
519 scif_cb_lock_release(SCI_CONTROLLER_HANDLE_T controller,
520 SCI_LOCK_HANDLE_T lock)
521 {
522 }
523
524 /**
525 * @brief This callback method creates an OS specific deferred task
526 * for internal usage. The handler to deferred task is stored by OS
527 * driver.
528 *
529 * @param[in] controller This parameter specifies the controller object
530 * with which this callback is associated.
531 *
532 * @return none
533 */
534 void
535 scif_cb_start_internal_io_task_create(SCI_CONTROLLER_HANDLE_T controller)
536 {
537
538 }
539
540 /**
541 * @brief This callback method schedules a OS specific deferred task.
542 *
543 * @param[in] controller This parameter specifies the controller
544 * object with which this callback is associated.
545 * @param[in] start_internal_io_task_routine This parameter specifies the
546 * sci start_internal_io routine.
547 * @param[in] context This parameter specifies a handle to a parameter
548 * that will be passed into the "start_internal_io_task_routine"
549 * when it is invoked.
550 *
551 * @return none
552 */
553 void
554 scif_cb_start_internal_io_task_schedule(SCI_CONTROLLER_HANDLE_T scif_controller,
555 FUNCPTR start_internal_io_task_routine, void *context)
556 {
557 /** @todo Use FreeBSD tasklet to defer this routine to a later time,
558 * rather than calling the routine inline.
559 */
560 SCI_START_INTERNAL_IO_ROUTINE sci_start_internal_io_routine =
561 (SCI_START_INTERNAL_IO_ROUTINE)start_internal_io_task_routine;
562
563 sci_start_internal_io_routine(context);
564 }
565
566 /**
567 * @brief In this method the user must write to PCI memory via access.
568 * This method is used for access to memory space and IO space.
569 *
570 * @param[in] controller The controller for which to read a DWORD.
571 * @param[in] address This parameter depicts the address into
572 * which to write.
573 * @param[out] write_value This parameter depicts the value being written
574 * into the PCI memory location.
575 *
576 * @todo These PCI memory access calls likely needs to be optimized into macros?
577 */
578 void
579 scic_cb_pci_write_dword(SCI_CONTROLLER_HANDLE_T scic_controller,
580 void *address, uint32_t write_value)
581 {
582 SCI_CONTROLLER_HANDLE_T scif_controller =
583 (SCI_CONTROLLER_HANDLE_T) sci_object_get_association(scic_controller);
584 struct ISCI_CONTROLLER *isci_controller =
585 (struct ISCI_CONTROLLER *) sci_object_get_association(scif_controller);
586 struct isci_softc *isci = isci_controller->isci;
587 uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28);
588 bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF);
589
590 bus_space_write_4(isci->pci_bar[bar].bus_tag,
591 isci->pci_bar[bar].bus_handle, offset, write_value);
592 }
593
594 /**
595 * @brief In this method the user must read from PCI memory via access.
596 * This method is used for access to memory space and IO space.
597 *
598 * @param[in] controller The controller for which to read a DWORD.
599 * @param[in] address This parameter depicts the address from
600 * which to read.
601 *
602 * @return The value being returned from the PCI memory location.
603 *
604 * @todo This PCI memory access calls likely need to be optimized into macro?
605 */
606 uint32_t
607 scic_cb_pci_read_dword(SCI_CONTROLLER_HANDLE_T scic_controller, void *address)
608 {
609 SCI_CONTROLLER_HANDLE_T scif_controller =
610 (SCI_CONTROLLER_HANDLE_T)sci_object_get_association(scic_controller);
611 struct ISCI_CONTROLLER *isci_controller =
612 (struct ISCI_CONTROLLER *)sci_object_get_association(scif_controller);
613 struct isci_softc *isci = isci_controller->isci;
614 uint32_t bar = (uint32_t)(((POINTER_UINT)address & 0xF0000000) >> 28);
615 bus_size_t offset = (bus_size_t)((POINTER_UINT)address & 0x0FFFFFFF);
616
617 return (bus_space_read_4(isci->pci_bar[bar].bus_tag,
618 isci->pci_bar[bar].bus_handle, offset));
619 }
620
621 /**
622 * @brief This method is called when the core requires the OS driver
623 * to stall execution. This method is utilized during initialization
624 * or non-performance paths only.
625 *
626 * @param[in] microseconds This parameter specifies the number of
627 * microseconds for which to stall. The operating system driver
628 * is allowed to round this value up where necessary.
629 *
630 * @return none.
631 */
632 void
633 scic_cb_stall_execution(uint32_t microseconds)
634 {
635
636 DELAY(microseconds);
637 }
638
639 /**
640 * @brief In this method the user must return the base address register (BAR)
641 * value for the supplied base address register number.
642 *
643 * @param[in] controller The controller for which to retrieve the bar number.
644 * @param[in] bar_number This parameter depicts the BAR index/number to be read.
645 *
646 * @return Return a pointer value indicating the contents of the BAR.
647 * @retval NULL indicates an invalid BAR index/number was specified.
648 * @retval All other values indicate a valid VIRTUAL address from the BAR.
649 */
650 void *
651 scic_cb_pci_get_bar(SCI_CONTROLLER_HANDLE_T controller,
652 uint16_t bar_number)
653 {
654
655 return ((void *)(POINTER_UINT)((uint32_t)bar_number << 28));
656 }
657
658 /**
659 * @brief This method informs the SCI Core user that a phy/link became
660 * ready, but the phy is not allowed in the port. In some
661 * situations the underlying hardware only allows for certain phy
662 * to port mappings. If these mappings are violated, then this
663 * API is invoked.
664 *
665 * @param[in] controller This parameter represents the controller which
666 * contains the port.
667 * @param[in] port This parameter specifies the SCI port object for which
668 * the callback is being invoked.
669 * @param[in] phy This parameter specifies the phy that came ready, but the
670 * phy can't be a valid member of the port.
671 *
672 * @return none
673 */
674 void
675 scic_cb_port_invalid_link_up(SCI_CONTROLLER_HANDLE_T controller,
676 SCI_PORT_HANDLE_T port, SCI_PHY_HANDLE_T phy)
677 {
678
679 }
Cache object: 9644dc88d94dc5f067b2292575c97013
|