1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * BSD LICENSE
5 *
6 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35
36 #include <dev/isci/isci.h>
37
38 #include <sys/conf.h>
39 #include <sys/malloc.h>
40
41 #include <cam/cam_periph.h>
42 #include <cam/cam_xpt_periph.h>
43
44 #include <dev/isci/scil/sci_memory_descriptor_list.h>
45 #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>
46
47 #include <dev/isci/scil/scif_controller.h>
48 #include <dev/isci/scil/scif_library.h>
49 #include <dev/isci/scil/scif_io_request.h>
50 #include <dev/isci/scil/scif_task_request.h>
51 #include <dev/isci/scil/scif_remote_device.h>
52 #include <dev/isci/scil/scif_domain.h>
53 #include <dev/isci/scil/scif_user_callback.h>
54 #include <dev/isci/scil/scic_sgpio.h>
55
56 #include <dev/led/led.h>
57
58 void isci_action(struct cam_sim *sim, union ccb *ccb);
59 void isci_poll(struct cam_sim *sim);
60
61 #define ccb_sim_ptr sim_priv.entries[0].ptr
62
63 /**
64 * @brief This user callback will inform the user that the controller has
65 * had a serious unexpected error. The user should not the error,
66 * disable interrupts, and wait for current ongoing processing to
67 * complete. Subsequently, the user should reset the controller.
68 *
69 * @param[in] controller This parameter specifies the controller that had
70 * an error.
71 *
72 * @return none
73 */
74 void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
75 SCI_CONTROLLER_ERROR error)
76 {
77
78 isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
79 error);
80 }
81
82 /**
83 * @brief This user callback will inform the user that the controller has
84 * finished the start process.
85 *
86 * @param[in] controller This parameter specifies the controller that was
87 * started.
88 * @param[in] completion_status This parameter specifies the results of
89 * the start operation. SCI_SUCCESS indicates successful
90 * completion.
91 *
92 * @return none
93 */
94 void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
95 SCI_STATUS completion_status)
96 {
97 uint32_t index;
98 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
99 sci_object_get_association(controller);
100
101 isci_controller->is_started = TRUE;
102
103 /* Set bits for all domains. We will clear them one-by-one once
104 * the domains complete discovery, or return error when calling
105 * scif_domain_discover. Once all bits are clear, we will register
106 * the controller with CAM.
107 */
108 isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;
109
110 for(index = 0; index < SCI_MAX_DOMAINS; index++) {
111 SCI_STATUS status;
112 SCI_DOMAIN_HANDLE_T domain =
113 isci_controller->domain[index].sci_object;
114
115 status = scif_domain_discover(
116 domain,
117 scif_domain_get_suggested_discover_timeout(domain),
118 DEVICE_TIMEOUT
119 );
120
121 if (status != SCI_SUCCESS)
122 {
123 isci_controller_domain_discovery_complete(
124 isci_controller, &isci_controller->domain[index]);
125 }
126 }
127 }
128
129 /**
130 * @brief This user callback will inform the user that the controller has
131 * finished the stop process. Note, after user calls
132 * scif_controller_stop(), before user receives this controller stop
133 * complete callback, user should not expect any callback from
134 * framework, such like scif_cb_domain_change_notification().
135 *
136 * @param[in] controller This parameter specifies the controller that was
137 * stopped.
138 * @param[in] completion_status This parameter specifies the results of
139 * the stop operation. SCI_SUCCESS indicates successful
140 * completion.
141 *
142 * @return none
143 */
144 void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
145 SCI_STATUS completion_status)
146 {
147 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
148 sci_object_get_association(controller);
149
150 isci_controller->is_started = FALSE;
151 }
152
153 static void
154 isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
155 {
156 SCI_PHYSICAL_ADDRESS *phys_addr = arg;
157
158 *phys_addr = seg[0].ds_addr;
159 }
160
161 /**
162 * @brief This method will be invoked to allocate memory dynamically.
163 *
164 * @param[in] controller This parameter represents the controller
165 * object for which to allocate memory.
166 * @param[out] mde This parameter represents the memory descriptor to
167 * be filled in by the user that will reference the newly
168 * allocated memory.
169 *
170 * @return none
171 */
172 void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
173 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
174 {
175 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
176 sci_object_get_association(controller);
177
178 /*
179 * Note this routine is only used for buffers needed to translate
180 * SCSI UNMAP commands to ATA DSM commands for SATA disks.
181 *
182 * We first try to pull a buffer from the controller's pool, and only
183 * call contigmalloc if one isn't there.
184 */
185 if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
186 sci_pool_get(isci_controller->unmap_buffer_pool,
187 mde->virtual_address);
188 } else
189 mde->virtual_address = contigmalloc(PAGE_SIZE,
190 M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
191 mde->constant_memory_alignment, 0);
192
193 if (mde->virtual_address != NULL)
194 bus_dmamap_load(isci_controller->buffer_dma_tag,
195 NULL, mde->virtual_address, PAGE_SIZE,
196 isci_single_map, &mde->physical_address,
197 BUS_DMA_NOWAIT);
198 }
199
200 /**
201 * @brief This method will be invoked to allocate memory dynamically.
202 *
203 * @param[in] controller This parameter represents the controller
204 * object for which to allocate memory.
205 * @param[out] mde This parameter represents the memory descriptor to
206 * be filled in by the user that will reference the newly
207 * allocated memory.
208 *
209 * @return none
210 */
211 void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
212 SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
213 {
214 struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
215 sci_object_get_association(controller);
216
217 /*
218 * Put the buffer back into the controller's buffer pool, rather
219 * than invoking configfree. This helps reduce chance we won't
220 * have buffers available when system is under memory pressure.
221 */
222 sci_pool_put(isci_controller->unmap_buffer_pool,
223 mde->virtual_address);
224 }
225
226 void isci_controller_construct(struct ISCI_CONTROLLER *controller,
227 struct isci_softc *isci)
228 {
229 SCI_CONTROLLER_HANDLE_T scif_controller_handle;
230
231 scif_library_allocate_controller(isci->sci_library_handle,
232 &scif_controller_handle);
233
234 scif_controller_construct(isci->sci_library_handle,
235 scif_controller_handle, NULL);
236
237 controller->isci = isci;
238 controller->scif_controller_handle = scif_controller_handle;
239
240 /* This allows us to later use
241 * sci_object_get_association(scif_controller_handle)
242 * inside of a callback routine to get our struct ISCI_CONTROLLER object
243 */
244 sci_object_set_association(scif_controller_handle, (void *)controller);
245
246 controller->is_started = FALSE;
247 controller->is_frozen = FALSE;
248 controller->release_queued_ccbs = FALSE;
249 controller->sim = NULL;
250 controller->initial_discovery_mask = 0;
251
252 sci_fast_list_init(&controller->pending_device_reset_list);
253
254 mtx_init(&controller->lock, "isci", NULL, MTX_DEF);
255
256 uint32_t domain_index;
257
258 for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
259 isci_domain_construct( &controller->domain[domain_index],
260 domain_index, controller);
261 }
262
263 controller->timer_memory = malloc(
264 sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
265 M_NOWAIT | M_ZERO);
266
267 sci_pool_initialize(controller->timer_pool);
268
269 struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
270 controller->timer_memory;
271
272 for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
273 sci_pool_put(controller->timer_pool, timer++);
274 }
275
276 sci_pool_initialize(controller->unmap_buffer_pool);
277 }
278
279 static void isci_led_fault_func(void *priv, int onoff)
280 {
281 struct ISCI_PHY *phy = priv;
282
283 /* map onoff to the fault LED */
284 phy->led_fault = onoff;
285 scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
286 phy->led_fault, phy->led_locate, 0);
287 }
288
289 static void isci_led_locate_func(void *priv, int onoff)
290 {
291 struct ISCI_PHY *phy = priv;
292
293 /* map onoff to the locate LED */
294 phy->led_locate = onoff;
295 scic_sgpio_update_led_state(phy->handle, 1 << phy->index,
296 phy->led_fault, phy->led_locate, 0);
297 }
298
299 SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
300 {
301 SCIC_USER_PARAMETERS_T scic_user_parameters;
302 SCI_CONTROLLER_HANDLE_T scic_controller_handle;
303 char led_name[64];
304 unsigned long tunable;
305 uint32_t io_shortage;
306 uint32_t fail_on_timeout;
307 int i;
308
309 scic_controller_handle =
310 scif_controller_get_scic_handle(controller->scif_controller_handle);
311
312 if (controller->isci->oem_parameters_found == TRUE)
313 {
314 scic_oem_parameters_set(
315 scic_controller_handle,
316 &controller->oem_parameters,
317 (uint8_t)(controller->oem_parameters_version));
318 }
319
320 scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);
321
322 if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
323 scic_user_parameters.sds1.no_outbound_task_timeout =
324 (uint8_t)tunable;
325
326 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
327 scic_user_parameters.sds1.ssp_max_occupancy_timeout =
328 (uint16_t)tunable;
329
330 if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
331 scic_user_parameters.sds1.stp_max_occupancy_timeout =
332 (uint16_t)tunable;
333
334 if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
335 scic_user_parameters.sds1.ssp_inactivity_timeout =
336 (uint16_t)tunable;
337
338 if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
339 scic_user_parameters.sds1.stp_inactivity_timeout =
340 (uint16_t)tunable;
341
342 if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
343 for (i = 0; i < SCI_MAX_PHYS; i++)
344 scic_user_parameters.sds1.phys[i].max_speed_generation =
345 (uint8_t)tunable;
346
347 scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);
348
349 /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
350 * a workaround - one per domain.
351 */
352 controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;
353
354 if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
355 &controller->queue_depth)) {
356 controller->queue_depth = max(1, min(controller->queue_depth,
357 SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
358 }
359
360 /* Reserve one request so that we can ensure we have one available TC
361 * to do internal device resets.
362 */
363 controller->sim_queue_depth = controller->queue_depth - 1;
364
365 /* Although we save one TC to do internal device resets, it is possible
366 * we could end up using several TCs for simultaneous device resets
367 * while at the same time having CAM fill our controller queue. To
368 * simulate this condition, and how our driver handles it, we can set
369 * this io_shortage parameter, which will tell CAM that we have a
370 * large queue depth than we really do.
371 */
372 io_shortage = 0;
373 TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
374 controller->sim_queue_depth += io_shortage;
375
376 fail_on_timeout = 1;
377 TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout);
378 controller->fail_on_task_timeout = fail_on_timeout;
379
380 /* Attach to CAM using xpt_bus_register now, then immediately freeze
381 * the simq. It will get released later when initial domain discovery
382 * is complete.
383 */
384 controller->has_been_scanned = FALSE;
385 mtx_lock(&controller->lock);
386 isci_controller_attach_to_cam(controller);
387 xpt_freeze_simq(controller->sim, 1);
388 mtx_unlock(&controller->lock);
389
390 for (i = 0; i < SCI_MAX_PHYS; i++) {
391 controller->phys[i].handle = scic_controller_handle;
392 controller->phys[i].index = i;
393
394 /* fault */
395 controller->phys[i].led_fault = 0;
396 sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i);
397 controller->phys[i].cdev_fault = led_create(isci_led_fault_func,
398 &controller->phys[i], led_name);
399
400 /* locate */
401 controller->phys[i].led_locate = 0;
402 sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i);
403 controller->phys[i].cdev_locate = led_create(isci_led_locate_func,
404 &controller->phys[i], led_name);
405 }
406
407 return (scif_controller_initialize(controller->scif_controller_handle));
408 }
409
410 int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
411 {
412 int error;
413 device_t device = controller->isci->device;
414 uint32_t max_segment_size = isci_io_request_get_max_io_size();
415 struct ISCI_MEMORY *uncached_controller_memory =
416 &controller->uncached_controller_memory;
417 struct ISCI_MEMORY *cached_controller_memory =
418 &controller->cached_controller_memory;
419 struct ISCI_MEMORY *request_memory =
420 &controller->request_memory;
421 POINTER_UINT virtual_address;
422 bus_addr_t physical_address;
423
424 controller->mdl = sci_controller_get_memory_descriptor_list_handle(
425 controller->scif_controller_handle);
426
427 uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
428 controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);
429
430 error = isci_allocate_dma_buffer(device, controller,
431 uncached_controller_memory);
432
433 if (error != 0)
434 return (error);
435
436 sci_mdl_decorator_assign_memory( controller->mdl,
437 SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
438 uncached_controller_memory->virtual_address,
439 uncached_controller_memory->physical_address);
440
441 cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
442 controller->mdl,
443 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
444 );
445
446 error = isci_allocate_dma_buffer(device, controller,
447 cached_controller_memory);
448
449 if (error != 0)
450 return (error);
451
452 sci_mdl_decorator_assign_memory(controller->mdl,
453 SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
454 cached_controller_memory->virtual_address,
455 cached_controller_memory->physical_address);
456
457 request_memory->size =
458 controller->queue_depth * isci_io_request_get_object_size();
459
460 error = isci_allocate_dma_buffer(device, controller, request_memory);
461
462 if (error != 0)
463 return (error);
464
465 /* For STP PIO testing, we want to ensure we can force multiple SGLs
466 * since this has been a problem area in SCIL. This tunable parameter
467 * will allow us to force DMA segments to a smaller size, ensuring
468 * that even if a physically contiguous buffer is attached to this
469 * I/O, the DMA subsystem will pass us multiple segments in our DMA
470 * load callback.
471 */
472 TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);
473
474 /* Create DMA tag for our I/O requests. Then we can create DMA maps based off
475 * of this tag and store them in each of our ISCI_IO_REQUEST objects. This
476 * will enable better performance than creating the DMA maps every time we get
477 * an I/O.
478 */
479 error = bus_dma_tag_create(bus_get_dma_tag(device), 0x1,
480 ISCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
481 NULL, NULL, isci_io_request_get_max_io_size(),
482 SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0,
483 busdma_lock_mutex, &controller->lock,
484 &controller->buffer_dma_tag);
485
486 if (error != 0)
487 return (error);
488
489 sci_pool_initialize(controller->request_pool);
490
491 virtual_address = request_memory->virtual_address;
492 physical_address = request_memory->physical_address;
493
494 for (int i = 0; i < controller->queue_depth; i++) {
495 struct ISCI_REQUEST *request =
496 (struct ISCI_REQUEST *)virtual_address;
497
498 isci_request_construct(request,
499 controller->scif_controller_handle,
500 controller->buffer_dma_tag, physical_address);
501
502 sci_pool_put(controller->request_pool, request);
503
504 virtual_address += isci_request_get_object_size();
505 physical_address += isci_request_get_object_size();
506 }
507
508 uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
509 scif_remote_device_get_object_size();
510
511 controller->remote_device_memory = (uint8_t *) malloc(
512 remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
513 M_NOWAIT | M_ZERO);
514
515 sci_pool_initialize(controller->remote_device_pool);
516
517 uint8_t *remote_device_memory_ptr = controller->remote_device_memory;
518
519 for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
520 struct ISCI_REMOTE_DEVICE *remote_device =
521 (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;
522
523 controller->remote_device[i] = NULL;
524 remote_device->index = i;
525 remote_device->is_resetting = FALSE;
526 remote_device->frozen_lun_mask = 0;
527 sci_fast_list_element_init(remote_device,
528 &remote_device->pending_device_reset_element);
529 TAILQ_INIT(&remote_device->queued_ccbs);
530 remote_device->release_queued_ccb = FALSE;
531 remote_device->queued_ccb_in_progress = NULL;
532
533 /*
534 * For the first SCI_MAX_DOMAINS device objects, do not put
535 * them in the pool, rather assign them to each domain. This
536 * ensures that any device attached directly to port "i" will
537 * always get CAM target id "i".
538 */
539 if (i < SCI_MAX_DOMAINS)
540 controller->domain[i].da_remote_device = remote_device;
541 else
542 sci_pool_put(controller->remote_device_pool,
543 remote_device);
544 remote_device_memory_ptr += remote_device_size;
545 }
546
547 return (0);
548 }
549
550 void isci_controller_start(void *controller_handle)
551 {
552 struct ISCI_CONTROLLER *controller =
553 (struct ISCI_CONTROLLER *)controller_handle;
554 SCI_CONTROLLER_HANDLE_T scif_controller_handle =
555 controller->scif_controller_handle;
556
557 scif_controller_start(scif_controller_handle,
558 scif_controller_get_suggested_start_timeout(scif_controller_handle));
559
560 scic_controller_enable_interrupts(
561 scif_controller_get_scic_handle(controller->scif_controller_handle));
562 }
563
564 void isci_controller_domain_discovery_complete(
565 struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
566 {
567 if (!isci_controller->has_been_scanned)
568 {
569 /* Controller has not been scanned yet. We'll clear
570 * the discovery bit for this domain, then check if all bits
571 * are now clear. That would indicate that all domains are
572 * done with discovery and we can then proceed with initial
573 * scan.
574 */
575
576 isci_controller->initial_discovery_mask &=
577 ~(1 << isci_domain->index);
578
579 if (isci_controller->initial_discovery_mask == 0) {
580 struct isci_softc *driver = isci_controller->isci;
581 uint8_t next_index = isci_controller->index + 1;
582
583 isci_controller->has_been_scanned = TRUE;
584
585 /* Unfreeze simq to allow initial scan to proceed. */
586 xpt_release_simq(isci_controller->sim, TRUE);
587
588 if (next_index < driver->controller_count) {
589 /* There are more controllers that need to
590 * start. So start the next one.
591 */
592 isci_controller_start(
593 &driver->controllers[next_index]);
594 }
595 else
596 {
597 /* All controllers have been started and completed discovery.
598 * Disestablish the config hook while will signal to the
599 * kernel during boot that it is safe to try to find and
600 * mount the root partition.
601 */
602 config_intrhook_disestablish(
603 &driver->config_hook);
604 }
605 }
606 }
607 }
608
609 int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
610 {
611 struct isci_softc *isci = controller->isci;
612 device_t parent = device_get_parent(isci->device);
613 int unit = device_get_unit(isci->device);
614 struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);
615
616 if(isci_devq == NULL) {
617 isci_log_message(0, "ISCI", "isci_devq is NULL \n");
618 return (-1);
619 }
620
621 controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
622 controller, unit, &controller->lock, controller->sim_queue_depth,
623 controller->sim_queue_depth, isci_devq);
624
625 if(controller->sim == NULL) {
626 isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
627 cam_simq_free(isci_devq);
628 return (-1);
629 }
630
631 if(xpt_bus_register(controller->sim, parent, controller->index)
632 != CAM_SUCCESS) {
633 isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
634 cam_sim_free(controller->sim, TRUE);
635 mtx_unlock(&controller->lock);
636 return (-1);
637 }
638
639 if(xpt_create_path(&controller->path, NULL,
640 cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
641 CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
642 isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
643 xpt_bus_deregister(cam_sim_path(controller->sim));
644 cam_sim_free(controller->sim, TRUE);
645 mtx_unlock(&controller->lock);
646 return (-1);
647 }
648
649 return (0);
650 }
651
652 void isci_poll(struct cam_sim *sim)
653 {
654 struct ISCI_CONTROLLER *controller =
655 (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
656
657 isci_interrupt_poll_handler(controller);
658 }
659
660 void isci_action(struct cam_sim *sim, union ccb *ccb)
661 {
662 struct ISCI_CONTROLLER *controller =
663 (struct ISCI_CONTROLLER *)cam_sim_softc(sim);
664
665 switch ( ccb->ccb_h.func_code ) {
666 case XPT_PATH_INQ:
667 {
668 struct ccb_pathinq *cpi = &ccb->cpi;
669 int bus = cam_sim_bus(sim);
670 ccb->ccb_h.ccb_sim_ptr = sim;
671 cpi->version_num = 1;
672 cpi->hba_inquiry = PI_TAG_ABLE;
673 cpi->target_sprt = 0;
674 cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN |
675 PIM_UNMAPPED;
676 cpi->hba_eng_cnt = 0;
677 cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
678 cpi->max_lun = ISCI_MAX_LUN;
679 cpi->maxio = isci_io_request_get_max_io_size();
680 cpi->unit_number = cam_sim_unit(sim);
681 cpi->bus_id = bus;
682 cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
683 cpi->base_transfer_speed = 300000;
684 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
685 strlcpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
686 strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
687 cpi->transport = XPORT_SAS;
688 cpi->transport_version = 0;
689 cpi->protocol = PROTO_SCSI;
690 cpi->protocol_version = SCSI_REV_SPC2;
691 cpi->ccb_h.status = CAM_REQ_CMP;
692 xpt_done(ccb);
693 }
694 break;
695 case XPT_GET_TRAN_SETTINGS:
696 {
697 struct ccb_trans_settings *general_settings = &ccb->cts;
698 struct ccb_trans_settings_sas *sas_settings =
699 &general_settings->xport_specific.sas;
700 struct ccb_trans_settings_scsi *scsi_settings =
701 &general_settings->proto_specific.scsi;
702 struct ISCI_REMOTE_DEVICE *remote_device;
703
704 remote_device = controller->remote_device[ccb->ccb_h.target_id];
705
706 if (remote_device == NULL) {
707 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
708 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
709 ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
710 xpt_done(ccb);
711 break;
712 }
713
714 general_settings->protocol = PROTO_SCSI;
715 general_settings->transport = XPORT_SAS;
716 general_settings->protocol_version = SCSI_REV_SPC2;
717 general_settings->transport_version = 0;
718 scsi_settings->valid = CTS_SCSI_VALID_TQ;
719 scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
720 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
721 ccb->ccb_h.status |= CAM_REQ_CMP;
722
723 sas_settings->bitrate =
724 isci_remote_device_get_bitrate(remote_device);
725
726 if (sas_settings->bitrate != 0)
727 sas_settings->valid = CTS_SAS_VALID_SPEED;
728
729 xpt_done(ccb);
730 }
731 break;
732 case XPT_SCSI_IO:
733 if (ccb->ccb_h.flags & CAM_CDB_PHYS) {
734 ccb->ccb_h.status = CAM_REQ_INVALID;
735 xpt_done(ccb);
736 break;
737 }
738 isci_io_request_execute_scsi_io(ccb, controller);
739 break;
740 case XPT_SMP_IO:
741 isci_io_request_execute_smp_io(ccb, controller);
742 break;
743 case XPT_SET_TRAN_SETTINGS:
744 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
745 ccb->ccb_h.status |= CAM_REQ_CMP;
746 xpt_done(ccb);
747 break;
748 case XPT_CALC_GEOMETRY:
749 cam_calc_geometry(&ccb->ccg, /*extended*/1);
750 xpt_done(ccb);
751 break;
752 case XPT_RESET_DEV:
753 {
754 struct ISCI_REMOTE_DEVICE *remote_device =
755 controller->remote_device[ccb->ccb_h.target_id];
756
757 if (remote_device != NULL)
758 isci_remote_device_reset(remote_device, ccb);
759 else {
760 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
761 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
762 ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
763 xpt_done(ccb);
764 }
765 }
766 break;
767 case XPT_RESET_BUS:
768 ccb->ccb_h.status = CAM_REQ_CMP;
769 xpt_done(ccb);
770 break;
771 default:
772 isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
773 ccb->ccb_h.func_code);
774 ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
775 ccb->ccb_h.status &= ~CAM_STATUS_MASK;
776 ccb->ccb_h.status |= CAM_REQ_INVALID;
777 xpt_done(ccb);
778 break;
779 }
780 }
781
782 /*
783 * Unfortunately, SCIL doesn't cleanly handle retry conditions.
784 * CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So
785 * when SCIL denotes an I/O needs to be retried (typically because of mixing
786 * tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
787 * these I/O internally. Once SCIL completes an I/O to this device, or we get
788 * a ready notification, we will retry the first I/O on the queue.
789 * Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
790 * the context of the completion handler, so we need to retry these I/O after
791 * the completion handler is done executing.
792 */
793 void
794 isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
795 {
796 struct ISCI_REMOTE_DEVICE *dev;
797 struct ccb_hdr *ccb_h;
798 uint8_t *ptr;
799 int dev_idx;
800
801 KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));
802
803 controller->release_queued_ccbs = FALSE;
804 for (dev_idx = 0;
805 dev_idx < SCI_MAX_REMOTE_DEVICES;
806 dev_idx++) {
807
808 dev = controller->remote_device[dev_idx];
809 if (dev != NULL &&
810 dev->release_queued_ccb == TRUE &&
811 dev->queued_ccb_in_progress == NULL) {
812 dev->release_queued_ccb = FALSE;
813 ccb_h = TAILQ_FIRST(&dev->queued_ccbs);
814
815 if (ccb_h == NULL)
816 continue;
817
818 ptr = scsiio_cdb_ptr(&((union ccb *)ccb_h)->csio);
819 isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, *ptr);
820
821 dev->queued_ccb_in_progress = (union ccb *)ccb_h;
822 isci_io_request_execute_scsi_io(
823 (union ccb *)ccb_h, controller);
824 }
825 }
826 }
Cache object: 59d5d06136e9120e8369894a71319ab5
|