1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
23 * The full GNU General Public License is included in this distribution
24 * in the file called LICENSE.GPL.
25 *
26 * BSD LICENSE
27 *
28 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
29 * All rights reserved.
30 *
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 *
35 * * Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * * Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in
39 * the documentation and/or other materials provided with the
40 * distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53 *
54 * $FreeBSD$
55 */
56 #ifndef _SCIC_CONTROLLER_H_
57 #define _SCIC_CONTROLLER_H_
58
59 /**
60 * @file
61 *
62 * @brief This file contains all of the interface methods that can be called
63 * by an SCIC user on a controller object.
64 */
65
66 #ifdef __cplusplus
67 extern "C" {
68 #endif // __cplusplus
69
70 #include <dev/isci/scil/sci_types.h>
71 #include <dev/isci/scil/sci_status.h>
72 #include <dev/isci/scil/sci_controller.h>
73 #include <dev/isci/scil/scic_config_parameters.h>
74
75 /**
76 * @enum
77 *
78 * Allowed PORT configuration modes
79 *
80 * APC Automatic PORT configuration mode is defined by the OEM configuration
81 * parameters providing no PHY_MASK parameters for any PORT. i.e. There are
82 * no phys assigned to any of the ports at start.
83 *
84 * MPC Manual PORT configuration mode is defined by the OEM configuration
85 * parameters providing a PHY_MASK value for any PORT. It is assumed that
86 * any PORT with no PHY_MASK is an invalid port and not all PHYs must be
87 * assigned. A PORT_PHY mask that assigns just a single PHY to a port and no
88 * other PHYs being assigned is sufficient to declare manual PORT configuration.
89 */
90 enum SCIC_PORT_CONFIGURATION_MODE
91 {
92 SCIC_PORT_MANUAL_CONFIGURATION_MODE,
93 SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
94 };
95
96 /**
97 * @enum _SCIC_INTERRUPT_TYPE
98 *
99 * @brief This enumeration depicts the various types of interrupts that
100 * are potentially supported by a SCI Core implementation.
101 */
102 typedef enum _SCIC_INTERRUPT_TYPE
103 {
104 SCIC_LEGACY_LINE_INTERRUPT_TYPE,
105 SCIC_MSIX_INTERRUPT_TYPE,
106
107 /**
108 * This enumeration value indicates the use of polling.
109 */
110 SCIC_NO_INTERRUPTS
111
112 } SCIC_INTERRUPT_TYPE;
113
114 /**
115 * @typedef SCIC_CONTROLLER_INTERRUPT_HANDLER
116 *
117 * @brief This method is called by the SCI user in order to have the SCI
118 * implementation handle the interrupt. This method performs
119 * minimal processing to allow for streamlined interrupt time usage.
120 * @note
121 * TRUE: returned if there is an interrupt to process and it was
122 * processed.
123 * FALSE: returned if no interrupt was processed.
124 *
125 */
126 typedef BOOL (*SCIC_CONTROLLER_INTERRUPT_HANDLER)(
127 SCI_CONTROLLER_HANDLE_T controller
128 );
129
130 /**
131 * @brief This method is called by the SCI user to process completions
132 * generated as a result of a previously handled interrupt. This
133 * method will result in the completion of IO requests and handling
134 * of other controller generated events. This method should be
135 * called some time after the interrupt handler.
136 *
137 * @note Most, if not all, of the user callback APIs are invoked from within
138 * this API. As a result, the user should be cognizant of the operating
139 * level at which they invoke this API.
140 *
141 */
142 typedef void (*SCIC_CONTROLLER_COMPLETION_HANDLER)(
143 SCI_CONTROLLER_HANDLE_T controller
144 );
145
146 /**
147 * @struct SCIC_CONTROLLER_HANDLER_METHODS
148 *
149 * @brief This structure contains an interrupt handler and completion
150 * handler function pointers.
151 */
152 typedef struct SCIC_CONTROLLER_HANDLER_METHODS
153 {
154 SCIC_CONTROLLER_INTERRUPT_HANDLER interrupt_handler;
155 SCIC_CONTROLLER_COMPLETION_HANDLER completion_handler;
156
157 } SCIC_CONTROLLER_HANDLER_METHODS_T;
158
159 /**
160 * @brief This method will attempt to construct a controller object
161 * utilizing the supplied parameter information.
162 *
163 * @param[in] library This parameter specifies the handle to the library
164 * object associated with the controller being constructed.
165 * @param[in] controller This parameter specifies the controller to be
166 * constructed.
167 * @param[in] user_object This parameter is a reference to the SCIL users
168 * controller object and will be used to associate with the core
169 * controller.
170 *
171 * @return Indicate if the controller was successfully constructed or if
172 * it failed in some way.
173 * @retval SCI_SUCCESS This value is returned if the controller was
174 * successfully constructed.
175 * @retval SCI_WARNING_TIMER_CONFLICT This value is returned if the
176 * interrupt coalescence timer may cause SAS compliance issues
177 * for SMP Target mode response processing.
178 * @retval SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE This value is returned if
179 * the controller does not support the supplied type.
180 * @retval SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned
181 * if the controller does not support the supplied initialization
182 * data version.
183 */
184 SCI_STATUS scic_controller_construct(
185 SCI_LIBRARY_HANDLE_T library,
186 SCI_CONTROLLER_HANDLE_T controller,
187 void * user_object
188 );
189
190 /**
191 * @brief This method will enable all controller interrupts.
192 *
193 * @param[in] controller This parameter specifies the controller for which
194 * to enable interrupts.
195 *
196 * @return none
197 */
198 void scic_controller_enable_interrupts(
199 SCI_CONTROLLER_HANDLE_T controller
200 );
201
202 /**
203 * @brief This method will disable all controller interrupts.
204 *
205 * @param[in] controller This parameter specifies the controller for which
206 * to disable interrupts.
207 *
208 * @return none
209 */
210 void scic_controller_disable_interrupts(
211 SCI_CONTROLLER_HANDLE_T controller
212 );
213
214 /**
215 * @brief This method will return provide function pointers for the
216 * interrupt handler and completion handler. The interrupt handler
217 * is expected to be invoked at interrupt time. The completion
218 * handler is scheduled to run as a result of the interrupt handler.
219 * The completion handler performs the bulk work for processing
220 * silicon events.
221 *
222 * @param[in] interrupt_type This parameter informs the core which type
223 * of interrupt/completion methods are being requested. These
224 * are the types: SCIC_LEGACY_LINE_INTERRUPT_TYPE,
225 * SCIC_MSIX_INTERRUPT_TYPE, SCIC_NO_INTERRUPTS (POLLING)
226 * @param[in] message_count This parameter informs the core the
227 * number of MSI-X messages to be utilized. This parameter must
228 * be 0 when requesting legacy line based handlers.
229 * @param[in] handler_methods The caller provides a pointer to a buffer of
230 * type SCIC_CONTROLLER_HANDLER_METHODS_T. The size depends on
231 * the combination of the interrupt_type and message_count input
232 * parameters:
233 * SCIC_LEGACY_LINE_INTERRUPT_TYPE:
234 * - size = sizeof(SCIC_CONTROLLER_HANDLER_METHODS_T)
235 * SCIC_MSIX_INTERRUPT_TYPE:
236 * - size = message_count*sizeof(SCIC_CONTROLLER_HANDLER_METHODS_T)
237 * @param[out] handler_methods SCIC fills out the caller's buffer with the
238 * appropriate interrupt and completion handlers based on the info
239 * provided in the interrupt_type and message_count input
240 * parameters. For SCIC_LEGACY_LINE_INTERRUPT_TYPE, the buffer
241 * receives a single SCIC_CONTROLLER_HANDLER_METHODS_T element
242 * regardless that the message_count parameter is zero.
243 * For SCIC_MSIX_INTERRUPT_TYPE, the buffer receives an array of
244 * elements of type SCIC_CONTROLLER_HANDLER_METHODS_T where the
245 * array size is equivalent to the message_count parameter. The
246 * array is zero-relative where entry zero corresponds to
247 * message-vector zero, entry one corresponds to message-vector one,
248 * and so forth.
249 *
250 * @return Indicate if the handler retrieval operation was successful.
251 * @retval SCI_SUCCESS This value is returned if retrieval succeeded.
252 * @retval SCI_FAILURE_UNSUPPORTED_MESSAGE_COUNT This value is returned
253 * if the user supplied an unsupported number of MSI-X messages.
254 * For legacy line interrupts the only valid value is 0.
255 */
256 SCI_STATUS scic_controller_get_handler_methods(
257 SCIC_INTERRUPT_TYPE interrupt_type,
258 U16 message_count,
259 SCIC_CONTROLLER_HANDLER_METHODS_T * handler_methods
260 );
261
262 /**
263 * @brief This method will initialize the controller hardware managed by
264 * the supplied core controller object. This method will bring the
265 * physical controller hardware out of reset and enable the core to
266 * determine the capabilities of the hardware being managed. Thus,
267 * the core controller can determine it's exact physical (DMA capable)
268 * memory requirements.
269 *
270 * @pre The SCI Core user must have called scic_controller_construct()
271 * on the supplied controller object previously.
272 *
273 * @param[in] controller This parameter specifies the controller to be
274 * initialized.
275 *
276 * @return Indicate if the controller was successfully initialized or if
277 * it failed in some way.
278 * @retval SCI_SUCCESS This value is returned if the controller hardware
279 * was successfully initialized.
280 */
281 SCI_STATUS scic_controller_initialize(
282 SCI_CONTROLLER_HANDLE_T controller
283 );
284
285 /**
286 * @brief This method returns the suggested scic_controller_start()
287 * timeout amount. The user is free to use any timeout value,
288 * but this method provides the suggested minimum start timeout
289 * value. The returned value is based upon empirical information
290 * determined as a result of interoperability testing.
291 *
292 * @param[in] controller the handle to the controller object for which
293 * to return the suggested start timeout.
294 *
295 * @return This method returns the number of milliseconds for the
296 * suggested start operation timeout.
297 */
298 U32 scic_controller_get_suggested_start_timeout(
299 SCI_CONTROLLER_HANDLE_T controller
300 );
301
302 /**
303 * @brief This method will start the supplied core controller. This method
304 * will start the staggered spin up operation. The SCI User completion
305 * callback is called when the following conditions are met:
306 * -# the return status of this method is SCI_SUCCESS.
307 * -# after all of the phys have successfully started or been given
308 * the opportunity to start.
309 *
310 * @pre The SCI Core user must have filled in the physical memory
311 * descriptor structure via the
312 * sci_controller_get_memory_descriptor_list() method.
313 * @pre The SCI Core user must have invoked the scic_controller_initialize()
314 * method prior to invoking this method.
315 *
316 * @pre The controller must be in the INITIALIZED or STARTED state.
317 *
318 * @param[in] controller the handle to the controller object to start.
319 * @param[in] timeout This parameter specifies the number of milliseconds
320 * in which the start operation should complete.
321 *
322 * @return Indicate if the controller start method succeeded or failed in
323 * some way.
324 * @retval SCI_SUCCESS if the start operation succeeded.
325 * @retval SCI_WARNING_ALREADY_IN_STATE if the controller is already in
326 * the STARTED state.
327 * @retval SCI_FAILURE_INVALID_STATE if the controller is not either in
328 * the INITIALIZED or STARTED states.
329 * @retval SCI_FAILURE_INVALID_MEMORY_DESCRIPTOR if there are
330 * inconsistent or invalid values in the supplied
331 * SCI_PHYSICAL_MEMORY_DESCRIPTOR array.
332 */
333 SCI_STATUS scic_controller_start(
334 SCI_CONTROLLER_HANDLE_T controller,
335 U32 timeout
336 );
337
338 /**
339 * @brief This method will stop an individual controller object.This method
340 * will invoke the associated user callback upon completion. The
341 * completion callback is called when the following conditions are met:
342 * -# the method return status is SCI_SUCCESS.
343 * -# the controller has been quiesced.
344 * This method will ensure that all IO requests are quiesced, phys
345 * are stopped, and all additional operation by the hardware is halted.
346 *
347 * @pre The controller must be in the STARTED or STOPPED state.
348 *
349 * @param[in] controller the handle to the controller object to stop.
350 * @param[in] timeout This parameter specifies the number of milliseconds
351 * in which the stop operation should complete.
352 *
353 * @return Indicate if the controller stop method succeeded or failed in
354 * some way.
355 * @retval SCI_SUCCESS if the stop operation successfully began.
356 * @retval SCI_WARNING_ALREADY_IN_STATE if the controller is already in
357 * the STOPPED state.
358 * @retval SCI_FAILURE_INVALID_STATE if the controller is not either in
359 * the STARTED or STOPPED states.
360 */
361 SCI_STATUS scic_controller_stop(
362 SCI_CONTROLLER_HANDLE_T controller,
363 U32 timeout
364 );
365
366 /**
367 * @brief This method will reset the supplied core controller regardless of
368 * the state of said controller. This operation is considered
369 * destructive. In other words, all current operations are wiped
370 * out. No IO completions for outstanding devices occur. Outstanding
371 * IO requests are not aborted or completed at the actual remote
372 * device.
373 *
374 * @param[in] controller the handle to the controller object to reset.
375 *
376 * @return Indicate if the controller reset method succeeded or failed in
377 * some way.
378 * @retval SCI_SUCCESS if the reset operation successfully started.
379 * @retval SCI_FATAL_ERROR if the controller reset operation is unable to
380 * complete.
381 */
382 SCI_STATUS scic_controller_reset(
383 SCI_CONTROLLER_HANDLE_T controller
384 );
385
386 /**
387 * @brief This method is called by the SCI user to send/start an IO request.
388 * If the method invocation is successful, then the IO request has
389 * been queued to the hardware for processing.
390 *
391 * @warning
392 * - IO tags are a protected resource. It is incumbent upon the
393 * SCI Core user to ensure that each of the methods that may
394 * allocate or free available IO tags are handled in a mutually
395 * exclusive manner. This method is one of said methods requiring
396 * proper critical code section protection (e.g. semaphore,
397 * spin-lock, etc.).
398 * - For SATA, the user is required to manage NCQ tags. As a
399 * result, it is expected the user will have set the NCQ tag
400 * field in the host to device register FIS prior to calling
401 * this method. There is also a requirement for the user
402 * to call scic_stp_io_set_ncq_tag() prior to invoking the
403 * scic_controller_start_io() method.
404 *
405 * @param[in] controller the handle to the controller object for which
406 * to start an IO request.
407 * @param[in] remote_device the handle to the remote device object for which
408 * to start an IO request.
409 * @param[in] io_request the handle to the io request object to start.
410 * @param[in] io_tag This parameter specifies a previously allocated IO tag
411 * that the user desires to be utilized for this request.
412 * This parameter is optional. The user is allowed to supply
413 * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
414 * @see scic_controller_allocate_tag() for more information
415 * on allocating a tag.
416 *
417 * @return Indicate if the controller successfully started the IO request.
418 * @retval SCI_IO_SUCCESS if the IO request was successfully started.
419 *
420 * @todo Determine the failure situations and return values.
421 */
422 SCI_IO_STATUS scic_controller_start_io(
423 SCI_CONTROLLER_HANDLE_T controller,
424 SCI_REMOTE_DEVICE_HANDLE_T remote_device,
425 SCI_IO_REQUEST_HANDLE_T io_request,
426 U16 io_tag
427 );
428
429 #if !defined(DISABLE_TASK_MANAGEMENT)
430
431 /**
432 * @brief This method is called by the SCIC user to send/start a framework
433 * task management request.
434 *
435 * @warning
436 * - IO tags are a protected resource. It is incumbent upon the
437 * SCI Core user to ensure that each of the methods that may
438 * allocate or free available IO tags are handled in a mutually
439 * exclusive manner. This method is one of said methods requiring
440 * proper critical code section protection (e.g. semaphore,
441 * spin-lock, etc.).
442 * - The user must synchronize this task with completion queue
443 * processing. If they are not synchronized then it is possible
444 * for the io requests that are being managed by the task request
445 * can complete before starting the task request.
446 *
447 * @param[in] controller the handle to the controller object for which
448 * to start the task management request.
449 * @param[in] remote_device the handle to the remote device object for which
450 * to start the task management request.
451 * @param[in] task_request the handle to the task request object to start.
452 * @param[in] io_tag This parameter specifies a previously allocated IO tag
453 * that the user desires to be utilized for this request. Note
454 * this not the io_tag of the request being managed. It is to
455 * be utilized for the task request itself.
456 * This parameter is optional. The user is allowed to supply
457 * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
458 * @see scic_controller_allocate_tag() for more information
459 * on allocating a tag.
460 *
461 * @return Indicate if the controller successfully started the IO request.
462 * @retval SCI_TASK_SUCCESS if the task request was successfully started.
463 * @retval SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is returned if
464 * there is/are task(s) outstanding that require termination or
465 * completion before this request can succeed.
466 */
467 SCI_TASK_STATUS scic_controller_start_task(
468 SCI_CONTROLLER_HANDLE_T controller,
469 SCI_REMOTE_DEVICE_HANDLE_T remote_device,
470 SCI_TASK_REQUEST_HANDLE_T task_request,
471 U16 io_tag
472 );
473
474 /**
475 * @brief This method will perform core specific completion operations for
476 * task management request. After this method is invoked, the user should
477 * consider the task request as invalid until it is properly reused
478 * (i.e. re-constructed).
479 *
480 * @param[in] controller The handle to the controller object for which
481 * to complete the task management request.
482 * @param[in] remote_device The handle to the remote device object for which
483 * to complete the task management request.
484 * @param[in] task_request the handle to the task management request object
485 * to complete.
486 *
487 * @return Indicate if the controller successfully completed the task
488 * management request.
489 * @retval SCI_SUCCESS if the completion process was successful.
490 */
491 SCI_STATUS scic_controller_complete_task(
492 SCI_CONTROLLER_HANDLE_T controller,
493 SCI_REMOTE_DEVICE_HANDLE_T remote_device,
494 SCI_TASK_REQUEST_HANDLE_T task_request
495 );
496
497 #else // !defined(DISABLE_TASK_MANAGEMENT)
498
499 #define scic_controller_start_task(controller, dev, task, tag) SCI_TASK_FAILURE
500 #define scic_controller_complete_task(controller, dev, task) SCI_FAILURE
501
502 #endif // !defined(DISABLE_TASK_MANAGEMENT)
503
504 /**
505 * @brief This method is called by the SCI Core user to terminate an ongoing
506 * (i.e. started) core IO request. This does not abort the IO request
507 * at the target, but rather removes the IO request from the host
508 * controller.
509 *
510 * @param[in] controller the handle to the controller object for which
511 * to terminate a request.
512 * @param[in] remote_device the handle to the remote device object for which
513 * to terminate a request.
514 * @param[in] request the handle to the io or task management request
515 * object to terminate.
516 *
517 * @return Indicate if the controller successfully began the terminate process
518 * for the IO request.
519 * @retval SCI_SUCCESS if the terminate process was successfully started for
520 * the request.
521 *
522 * @todo Determine the failure situations and return values.
523 */
524 SCI_STATUS scic_controller_terminate_request(
525 SCI_CONTROLLER_HANDLE_T controller,
526 SCI_REMOTE_DEVICE_HANDLE_T remote_device,
527 SCI_IO_REQUEST_HANDLE_T request
528 );
529
530 /**
531 * @brief This method will perform core specific completion operations for
532 * an IO request. After this method is invoked, the user should
533 * consider the IO request as invalid until it is properly reused
534 * (i.e. re-constructed).
535 *
536 * @warning
537 * - IO tags are a protected resource. It is incumbent upon the
538 * SCI Core user to ensure that each of the methods that may
539 * allocate or free available IO tags are handled in a mutually
540 * exclusive manner. This method is one of said methods requiring
541 * proper critical code section protection (e.g. semaphore,
542 * spin-lock, etc.).
543 * - If the IO tag for a request was allocated, by the SCI Core user,
544 * using the scic_controller_allocate_io_tag() method, then it is
545 * the responsibility of the caller to invoke the
546 * scic_controller_free_io_tag() method to free the tag (i.e. this
547 * method will not free the IO tag).
548 *
549 * @param[in] controller The handle to the controller object for which
550 * to complete the IO request.
551 * @param[in] remote_device The handle to the remote device object for which
552 * to complete the IO request.
553 * @param[in] io_request the handle to the io request object to complete.
554 *
555 * @return Indicate if the controller successfully completed the IO request.
556 * @retval SCI_SUCCESS if the completion process was successful.
557 */
558 SCI_STATUS scic_controller_complete_io(
559 SCI_CONTROLLER_HANDLE_T controller,
560 SCI_REMOTE_DEVICE_HANDLE_T remote_device,
561 SCI_IO_REQUEST_HANDLE_T io_request
562 );
563
564
565 /**
566 * @brief This method simply provides the user with a unique handle for a
567 * given SAS/SATA core port index.
568 *
569 * @param[in] controller This parameter represents the handle to the
570 * controller object from which to retrieve a port (SAS or
571 * SATA) handle.
572 * @param[in] port_index This parameter specifies the port index in
573 * the controller for which to retrieve the port handle.
574 * 0 <= port_index < maximum number of phys.
575 * @param[out] port_handle This parameter specifies the retrieved port handle
576 * to be provided to the caller.
577 *
578 * @return Indicate if the retrieval of the port handle was successful.
579 * @retval SCI_SUCCESS This value is returned if the retrieval was successful.
580 * @retval SCI_FAILURE_INVALID_PORT This value is returned if the supplied
581 * port id is not in the supported range.
582 */
583 SCI_STATUS scic_controller_get_port_handle(
584 SCI_CONTROLLER_HANDLE_T controller,
585 U8 port_index,
586 SCI_PORT_HANDLE_T * port_handle
587 );
588
589 /**
590 * @brief This method simply provides the user with a unique handle for a
591 * given SAS/SATA phy index/identifier.
592 *
593 * @param[in] controller This parameter represents the handle to the
594 * controller object from which to retrieve a phy (SAS or
595 * SATA) handle.
596 * @param[in] phy_index This parameter specifies the phy index in
597 * the controller for which to retrieve the phy handle.
598 * 0 <= phy_index < maximum number of phys.
599 * @param[out] phy_handle This parameter specifies the retrieved phy handle
600 * to be provided to the caller.
601 *
602 * @return Indicate if the retrieval of the phy handle was successful.
603 * @retval SCI_SUCCESS This value is returned if the retrieval was successful.
604 * @retval SCI_FAILURE_INVALID_PHY This value is returned if the supplied phy
605 * id is not in the supported range.
606 */
607 SCI_STATUS scic_controller_get_phy_handle(
608 SCI_CONTROLLER_HANDLE_T controller,
609 U8 phy_index,
610 SCI_PHY_HANDLE_T * phy_handle
611 );
612
613 /**
614 * @brief This method will allocate a tag from the pool of free IO tags.
615 * Direct allocation of IO tags by the SCI Core user is optional.
616 * The scic_controller_start_io() method will allocate an IO
617 * tag if this method is not utilized and the tag is not
618 * supplied to the IO construct routine. Direct allocation of IO tags
619 * may provide additional performance improvements in environments
620 * capable of supporting this usage model. Additionally, direct
621 * allocation of IO tags also provides additional flexibility to the
622 * SCI Core user. Specifically, the user may retain IO tags across
623 * the lives of multiple IO requests.
624 *
625 * @warning IO tags are a protected resource. It is incumbent upon the
626 * SCI Core user to ensure that each of the methods that may
627 * allocate or free available IO tags are handled in a mutually
628 * exclusive manner. This method is one of said methods requiring
629 * proper critical code section protection (e.g. semaphore,
630 * spin-lock, etc.).
631 *
632 * @param[in] controller the handle to the controller object for which to
633 * allocate the tag.
634 *
635 * @return An unsigned integer representing an available IO tag.
636 * @retval SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there
637 * are no currently available tags to be allocated.
638 * @retval All return other values indicate a legitimate tag.
639 */
640 U16 scic_controller_allocate_io_tag(
641 SCI_CONTROLLER_HANDLE_T controller
642 );
643
644 /**
645 * @brief This method will free an IO tag to the pool of free IO tags.
646 * This method provides the SCI Core user more flexibility with
647 * regards to IO tags. The user may desire to keep an IO tag after
648 * an IO request has completed, because they plan on re-using the
649 * tag for a subsequent IO request. This method is only legal if
650 * the tag was allocated via scic_controller_allocate_io_tag().
651 *
652 * @warning
653 * - IO tags are a protected resource. It is incumbent upon the
654 * SCI Core user to ensure that each of the methods that may
655 * allocate or free available IO tags are handled in a mutually
656 * exclusive manner. This method is one of said methods requiring
657 * proper critical code section protection (e.g. semaphore,
658 * spin-lock, etc.).
659 * - If the IO tag for a request was allocated, by the SCI Core user,
660 * using the scic_controller_allocate_io_tag() method, then it is
661 * the responsibility of the caller to invoke this method to free
662 * the tag.
663 *
664 * @param[in] controller This parameter specifies the handle to the
665 * controller object for which to free/return the tag.
666 * @param[in] io_tag This parameter represents the tag to be freed to the
667 * pool of available tags.
668 *
669 * @return This method returns an indication of whether the tag was
670 * successfully put back (freed) to the pool of available tags.
671 * @retval SCI_SUCCESS This return value indicates the tag was successfully
672 * placed into the pool of available IO tags.
673 * @retval SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied
674 * tag is not a valid IO tag value.
675 */
676 SCI_STATUS scic_controller_free_io_tag(
677 SCI_CONTROLLER_HANDLE_T controller,
678 U16 io_tag
679 );
680
681 /**
682 * @brief This method returns the size of the core's scratch RAM.
683 *
684 * @return Size of the scratch RAM in dwords.
685 */
686 U32 scic_controller_get_scratch_ram_size(
687 SCI_CONTROLLER_HANDLE_T controller
688 );
689
690 /**
691 * @brief This method allows the user to read a U32 from the core's
692 * scratch RAM.
693 *
694 * @param[in] controller This parameter represents the handle to the
695 * controller object for which to read scratch RAM.
696 * @param[in] offset The offset (in dwords) into the scratch RAM.
697 * @param[out] value The location where the read value should be stored.
698 *
699 * @return Indicate if the user specified a valid offset into the
700 * scratch RAM.
701 * @retval SCI_SUCCESS The scratch RAM was successfully read.
702 * @retval SCI_FAILURE_INVALID_PARAMETER_VALUE The user specified an
703 * invalid offset.
704 */
705 SCI_STATUS scic_controller_read_scratch_ram_dword(
706 SCI_CONTROLLER_HANDLE_T controller,
707 U32 offset,
708 U32 * value
709 );
710
711 /**
712 * @brief This method allows the user to write a U32 to the core's
713 * scratch RAM.
714 *
715 * @param[in] controller This parameter represents the handle to the
716 * controller object for which to write scratch RAM.
717 * @param[in] offset The offset (in dwords) into the scratch RAM.
718 * @param[out] value The value to be written to scratch RAM.
719 *
720 * @return Indicate if the user specified a valid offset into the
721 * scratch RAM.
722 * @retval SCI_SUCCESS The scratch RAM was successfully written.
723 * @retval SCI_FAILURE_INVALID_PARAMETER_VALUE The user specified an
724 * invalid offset.
725 */
726 SCI_STATUS scic_controller_write_scratch_ram_dword(
727 SCI_CONTROLLER_HANDLE_T controller,
728 U32 offset,
729 U32 value
730 );
731
732 /**
733 * @brief This method allows the user to configure the SCI core into
734 * either a performance mode or a memory savings mode.
735 *
736 * @param[in] controller This parameter represents the handle to the
737 * controller object for which to update the operating
738 * mode.
739 * @param[in] mode This parameter specifies the new mode for the
740 * controller.
741 *
742 * @return Indicate if the user successfully change the operating mode
743 * of the controller.
744 * @retval SCI_SUCCESS The user successfully updated the mode.
745 */
746 SCI_STATUS scic_controller_set_mode(
747 SCI_CONTROLLER_HANDLE_T controller,
748 SCI_CONTROLLER_MODE mode
749 );
750
751
752 #if !defined(DISABLE_INTERRUPTS)
753 /**
754 * @brief This method allows the user to configure the interrupt coalescence.
755 *
756 * @param[in] controller This parameter represents the handle to the
757 * controller object for which its interrupt coalesce register
758 * is overridden.
759 *
760 * @param[in] coalesce_number Used to control the number of entries in the
761 * Completion Queue before an interrupt is generated. If the
762 * number of entries exceed this number, an interrupt will be
763 * generated. The valid range of the input is [0, 256].
764 * A setting of 0 results in coalescing being disabled.
765 * @param[in] coalesce_timeout Timeout value in microseconds. The valid range
766 * of the input is [0, 2700000] . A setting of 0 is allowed and
767 * results in no interrupt coalescing timeout.
768 *
769 * @return Indicate if the user successfully set the interrupt coalesce parameters.
770 * @retval SCI_SUCCESS The user successfully updated the interrupt coalescence.
771 * @retval SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
772 */
773 SCI_STATUS scic_controller_set_interrupt_coalescence(
774 SCI_CONTROLLER_HANDLE_T controller,
775 U32 coalesce_number,
776 U32 coalesce_timeout
777 );
778
779 /**
780 * @brief This method retrieves the interrupt coalescing values
781 *
782 * @param[in] controller This parameter specifies the controller for
783 * which its interrupt coalescing number is read.
784 *
785 * @param[out] coalesce_number, interrupt coalescing number read from controller.
786 *
787 * @param[out] coalesce_timeout, timeout value in microseconds.
788 *
789 * @return None
790 */
791 void scic_controller_get_interrupt_coalescence(
792 SCI_CONTROLLER_HANDLE_T controller,
793 U32 * coalesce_number,
794 U32 * coalesce_timeout
795 );
796 #else // !defined(DISABLE_INTERRUPTS)
797 #define scic_controller_set_interrupt_coalescence(controller, num, timeout) \
798 SCI_FAILURE
799 #define scic_controller_get_interrupt_coalescence(controller, num, timeout)
800 #endif // !defined(DISABLE_INTERRUPTS)
801
802
803 /**
804 * @brief This method suspend the controller, reinitialize RAMs, then resume
805 * the controller.
806 *
807 * @param[in] controller This parameter specifies the controller which is transitioning.
808 *
809 * @param[in] restrict_completions This parameter specifies whether the controller should
810 * ignore completion processing for non-fastpath events. This will cause
811 * the completions to be thrown away.
812 *
813 * @return SCI_STATUS The status of controller transition.
814 */
815 SCI_STATUS scic_controller_transition(
816 SCI_CONTROLLER_HANDLE_T controller,
817 BOOL restrict_completions
818 );
819
820
821 /**
822 * @brief This method suspends the controller.
823 *
824 * @param[in] controller This parameter specifies the controller which is to be suspended.
825 *
826 * @return SCI_STATUS The status of controller suspend.
827 */
828 SCI_STATUS scic_controller_suspend(
829 SCI_CONTROLLER_HANDLE_T controller
830 );
831
832 /**
833 * @brief This method resumes the controller.
834 *
835 * @param[in] controller This parameter specifies the controller which is to be resumed.
836 *
837 * @return SCI_STATUS The status of controller resume.
838 */
839 SCI_STATUS scic_controller_resume(
840 SCI_CONTROLLER_HANDLE_T controller
841 );
842
843 SCI_STATUS scic_controller_get_max_ports(
844 SCI_CONTROLLER_HANDLE_T controller,
845 U8 * count
846 );
847
848 SCI_STATUS scic_controller_get_max_phys(
849 SCI_CONTROLLER_HANDLE_T controller,
850 U8 * count
851 );
852
853 #ifdef __cplusplus
854 }
855 #endif // __cplusplus
856
857 #endif // _SCIC_CONTROLLER_H_
858
Cache object: ad7fcd392b6fa13fbdfb0f1fa0a92ee8
|