FreeBSD/Linux Kernel Cross Reference
sys/dev/iwn/if_iwn.c
1 /*-
2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4 * Copyright (c) 2008 Sam Leffler, Errno Consulting
5 * Copyright (c) 2011 Intel Corporation
6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*
23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24 * adapters.
25 */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78
79 struct iwn_ident {
80 uint16_t vendor;
81 uint16_t device;
82 const char *name;
83 };
84
85 static const struct iwn_ident iwn_ident_table[] = {
86 { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" },
87 { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" },
88 { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" },
89 { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" },
90 { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" },
91 { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" },
92 { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" },
93 { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" },
94 { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" },
95 { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" },
96 { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" },
97 { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" },
98 { 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN" },
99 { 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN" },
100 /* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" },
102 { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" },
103 { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" },
104 { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" },
105 { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" },
106 { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" },
107 { 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105" },
108 { 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105" },
109 { 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135" },
110 { 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135" },
111 { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" },
112 { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" },
113 { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" },
114 { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" },
115 { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" },
116 { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" },
117 { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" },
118 { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" },
119 { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" },
120 { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" },
121 { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" },
122 { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" },
123 { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" },
124 { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" },
125 { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" },
126 { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" },
127 { 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235" },
128 { 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235" },
129 { 0, 0, NULL }
130 };
131
132 static int iwn_probe(device_t);
133 static int iwn_attach(device_t);
134 static void iwn4965_attach(struct iwn_softc *, uint16_t);
135 static void iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void iwn_radiotap_attach(struct iwn_softc *);
138 static void iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 const uint8_t [IEEE80211_ADDR_LEN],
142 const uint8_t [IEEE80211_ADDR_LEN]);
143 static void iwn_vap_delete(struct ieee80211vap *);
144 static int iwn_detach(device_t);
145 static int iwn_shutdown(device_t);
146 static int iwn_suspend(device_t);
147 static int iwn_resume(device_t);
148 static int iwn_nic_lock(struct iwn_softc *);
149 static int iwn_eeprom_lock(struct iwn_softc *);
150 static int iwn_init_otprom(struct iwn_softc *);
151 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 void **, bus_size_t, bus_size_t);
155 static void iwn_dma_contig_free(struct iwn_dma_info *);
156 static int iwn_alloc_sched(struct iwn_softc *);
157 static void iwn_free_sched(struct iwn_softc *);
158 static int iwn_alloc_kw(struct iwn_softc *);
159 static void iwn_free_kw(struct iwn_softc *);
160 static int iwn_alloc_ict(struct iwn_softc *);
161 static void iwn_free_ict(struct iwn_softc *);
162 static int iwn_alloc_fwmem(struct iwn_softc *);
163 static void iwn_free_fwmem(struct iwn_softc *);
164 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 int);
169 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void iwn_check_tx_ring(struct iwn_softc *, int);
172 static void iwn5000_ict_reset(struct iwn_softc *);
173 static int iwn_read_eeprom(struct iwn_softc *,
174 uint8_t macaddr[IEEE80211_ADDR_LEN]);
175 static void iwn4965_read_eeprom(struct iwn_softc *);
176 #ifdef IWN_DEBUG
177 static void iwn4965_print_power_group(struct iwn_softc *, int);
178 #endif
179 static void iwn5000_read_eeprom(struct iwn_softc *);
180 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
181 static void iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
182 struct ieee80211_channel[]);
183 static void iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
184 struct ieee80211_channel[]);
185 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
186 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
187 struct ieee80211_channel *);
188 static void iwn_getradiocaps(struct ieee80211com *, int, int *,
189 struct ieee80211_channel[]);
190 static int iwn_setregdomain(struct ieee80211com *,
191 struct ieee80211_regdomain *, int,
192 struct ieee80211_channel[]);
193 static void iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void iwn_newassoc(struct ieee80211_node *, int);
197 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void iwn_calib_timeout(void *);
199 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
200 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
201 struct iwn_rx_data *);
202 static void iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *,
203 int, int, int);
204 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
205 static void iwn5000_rx_calib_results(struct iwn_softc *,
206 struct iwn_rx_desc *);
207 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
208 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
209 struct iwn_rx_data *);
210 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
211 struct iwn_rx_data *);
212 static void iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *);
213 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
214 uint8_t);
215 static int iwn_ampdu_check_bitmap(uint64_t, int, int);
216 static int iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *,
217 uint64_t, int, int);
218 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
219 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
220 static void iwn_notif_intr(struct iwn_softc *);
221 static void iwn_wakeup_intr(struct iwn_softc *);
222 static void iwn_rftoggle_task(void *, int);
223 static void iwn_fatal_intr(struct iwn_softc *);
224 static void iwn_intr(void *);
225 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
226 uint16_t);
227 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
228 uint16_t);
229 #ifdef notyet
230 static void iwn5000_reset_sched(struct iwn_softc *, int, int);
231 #endif
232 static int iwn_tx_data(struct iwn_softc *, struct mbuf *,
233 struct ieee80211_node *);
234 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
235 struct ieee80211_node *,
236 const struct ieee80211_bpf_params *params);
237 static int iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
238 struct ieee80211_node *, struct iwn_tx_ring *);
239 static void iwn_xmit_task(void *arg0, int pending);
240 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
241 const struct ieee80211_bpf_params *);
242 static int iwn_transmit(struct ieee80211com *, struct mbuf *);
243 static void iwn_scan_timeout(void *);
244 static void iwn_watchdog(void *);
245 static int iwn_ioctl(struct ieee80211com *, u_long , void *);
246 static void iwn_parent(struct ieee80211com *);
247 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
248 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
249 int);
250 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
251 int);
252 static int iwn_set_link_quality(struct iwn_softc *,
253 struct ieee80211_node *);
254 static int iwn_add_broadcast_node(struct iwn_softc *, int);
255 static int iwn_updateedca(struct ieee80211com *);
256 static void iwn_set_promisc(struct iwn_softc *);
257 static void iwn_update_promisc(struct ieee80211com *);
258 static void iwn_update_mcast(struct ieee80211com *);
259 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
260 static int iwn_set_critical_temp(struct iwn_softc *);
261 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
262 static void iwn4965_power_calibration(struct iwn_softc *, int);
263 static int iwn4965_set_txpower(struct iwn_softc *, int);
264 static int iwn5000_set_txpower(struct iwn_softc *, int);
265 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
266 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
267 static int iwn_get_noise(const struct iwn_rx_general_stats *);
268 static int iwn4965_get_temperature(struct iwn_softc *);
269 static int iwn5000_get_temperature(struct iwn_softc *);
270 static int iwn_init_sensitivity(struct iwn_softc *);
271 static void iwn_collect_noise(struct iwn_softc *,
272 const struct iwn_rx_general_stats *);
273 static int iwn4965_init_gains(struct iwn_softc *);
274 static int iwn5000_init_gains(struct iwn_softc *);
275 static int iwn4965_set_gains(struct iwn_softc *);
276 static int iwn5000_set_gains(struct iwn_softc *);
277 static void iwn_tune_sensitivity(struct iwn_softc *,
278 const struct iwn_rx_stats *);
279 static void iwn_save_stats_counters(struct iwn_softc *,
280 const struct iwn_stats *);
281 static int iwn_send_sensitivity(struct iwn_softc *);
282 static void iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
283 static int iwn_set_pslevel(struct iwn_softc *, int, int, int);
284 static int iwn_send_btcoex(struct iwn_softc *);
285 static int iwn_send_advanced_btcoex(struct iwn_softc *);
286 static int iwn5000_runtime_calib(struct iwn_softc *);
287 static int iwn_check_bss_filter(struct iwn_softc *);
288 static int iwn4965_rxon_assoc(struct iwn_softc *, int);
289 static int iwn5000_rxon_assoc(struct iwn_softc *, int);
290 static int iwn_send_rxon(struct iwn_softc *, int, int);
291 static int iwn_config(struct iwn_softc *);
292 static int iwn_scan(struct iwn_softc *, struct ieee80211vap *,
293 struct ieee80211_scan_state *, struct ieee80211_channel *);
294 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
295 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
296 static int iwn_ampdu_rx_start(struct ieee80211_node *,
297 struct ieee80211_rx_ampdu *, int, int, int);
298 static void iwn_ampdu_rx_stop(struct ieee80211_node *,
299 struct ieee80211_rx_ampdu *);
300 static int iwn_addba_request(struct ieee80211_node *,
301 struct ieee80211_tx_ampdu *, int, int, int);
302 static int iwn_addba_response(struct ieee80211_node *,
303 struct ieee80211_tx_ampdu *, int, int, int);
304 static int iwn_ampdu_tx_start(struct ieee80211com *,
305 struct ieee80211_node *, uint8_t);
306 static void iwn_ampdu_tx_stop(struct ieee80211_node *,
307 struct ieee80211_tx_ampdu *);
308 static void iwn4965_ampdu_tx_start(struct iwn_softc *,
309 struct ieee80211_node *, int, uint8_t, uint16_t);
310 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
311 uint8_t, uint16_t);
312 static void iwn5000_ampdu_tx_start(struct iwn_softc *,
313 struct ieee80211_node *, int, uint8_t, uint16_t);
314 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
315 uint8_t, uint16_t);
316 static int iwn5000_query_calibration(struct iwn_softc *);
317 static int iwn5000_send_calibration(struct iwn_softc *);
318 static int iwn5000_send_wimax_coex(struct iwn_softc *);
319 static int iwn5000_crystal_calib(struct iwn_softc *);
320 static int iwn5000_temp_offset_calib(struct iwn_softc *);
321 static int iwn5000_temp_offset_calibv2(struct iwn_softc *);
322 static int iwn4965_post_alive(struct iwn_softc *);
323 static int iwn5000_post_alive(struct iwn_softc *);
324 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
325 int);
326 static int iwn4965_load_firmware(struct iwn_softc *);
327 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
328 const uint8_t *, int);
329 static int iwn5000_load_firmware(struct iwn_softc *);
330 static int iwn_read_firmware_leg(struct iwn_softc *,
331 struct iwn_fw_info *);
332 static int iwn_read_firmware_tlv(struct iwn_softc *,
333 struct iwn_fw_info *, uint16_t);
334 static int iwn_read_firmware(struct iwn_softc *);
335 static void iwn_unload_firmware(struct iwn_softc *);
336 static int iwn_clock_wait(struct iwn_softc *);
337 static int iwn_apm_init(struct iwn_softc *);
338 static void iwn_apm_stop_master(struct iwn_softc *);
339 static void iwn_apm_stop(struct iwn_softc *);
340 static int iwn4965_nic_config(struct iwn_softc *);
341 static int iwn5000_nic_config(struct iwn_softc *);
342 static int iwn_hw_prepare(struct iwn_softc *);
343 static int iwn_hw_init(struct iwn_softc *);
344 static void iwn_hw_stop(struct iwn_softc *);
345 static void iwn_panicked(void *, int);
346 static int iwn_init_locked(struct iwn_softc *);
347 static int iwn_init(struct iwn_softc *);
348 static void iwn_stop_locked(struct iwn_softc *);
349 static void iwn_stop(struct iwn_softc *);
350 static void iwn_scan_start(struct ieee80211com *);
351 static void iwn_scan_end(struct ieee80211com *);
352 static void iwn_set_channel(struct ieee80211com *);
353 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
354 static void iwn_scan_mindwell(struct ieee80211_scan_state *);
355 #ifdef IWN_DEBUG
356 static char *iwn_get_csr_string(int);
357 static void iwn_debug_register(struct iwn_softc *);
358 #endif
359
360 static device_method_t iwn_methods[] = {
361 /* Device interface */
362 DEVMETHOD(device_probe, iwn_probe),
363 DEVMETHOD(device_attach, iwn_attach),
364 DEVMETHOD(device_detach, iwn_detach),
365 DEVMETHOD(device_shutdown, iwn_shutdown),
366 DEVMETHOD(device_suspend, iwn_suspend),
367 DEVMETHOD(device_resume, iwn_resume),
368
369 DEVMETHOD_END
370 };
371
372 static driver_t iwn_driver = {
373 "iwn",
374 iwn_methods,
375 sizeof(struct iwn_softc)
376 };
377
378 DRIVER_MODULE(iwn, pci, iwn_driver, NULL, NULL);
379 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
380 nitems(iwn_ident_table) - 1);
381 MODULE_VERSION(iwn, 1);
382
383 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
384 MODULE_DEPEND(iwn, pci, 1, 1, 1);
385 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
386
387 static d_ioctl_t iwn_cdev_ioctl;
388 static d_open_t iwn_cdev_open;
389 static d_close_t iwn_cdev_close;
390
391 static struct cdevsw iwn_cdevsw = {
392 .d_version = D_VERSION,
393 .d_flags = 0,
394 .d_open = iwn_cdev_open,
395 .d_close = iwn_cdev_close,
396 .d_ioctl = iwn_cdev_ioctl,
397 .d_name = "iwn",
398 };
399
400 static int
401 iwn_probe(device_t dev)
402 {
403 const struct iwn_ident *ident;
404
405 for (ident = iwn_ident_table; ident->name != NULL; ident++) {
406 if (pci_get_vendor(dev) == ident->vendor &&
407 pci_get_device(dev) == ident->device) {
408 device_set_desc(dev, ident->name);
409 return (BUS_PROBE_DEFAULT);
410 }
411 }
412 return ENXIO;
413 }
414
415 static int
416 iwn_is_3stream_device(struct iwn_softc *sc)
417 {
418 /* XXX for now only 5300, until the 5350 can be tested */
419 if (sc->hw_type == IWN_HW_REV_TYPE_5300)
420 return (1);
421 return (0);
422 }
423
424 static int
425 iwn_attach(device_t dev)
426 {
427 struct iwn_softc *sc = device_get_softc(dev);
428 struct ieee80211com *ic;
429 int i, error, rid;
430
431 sc->sc_dev = dev;
432
433 #ifdef IWN_DEBUG
434 error = resource_int_value(device_get_name(sc->sc_dev),
435 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
436 if (error != 0)
437 sc->sc_debug = 0;
438 #else
439 sc->sc_debug = 0;
440 #endif
441
442 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
443
444 /*
445 * Get the offset of the PCI Express Capability Structure in PCI
446 * Configuration Space.
447 */
448 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
449 if (error != 0) {
450 device_printf(dev, "PCIe capability structure not found!\n");
451 return error;
452 }
453
454 /* Clear device-specific "PCI retry timeout" register (41h). */
455 pci_write_config(dev, 0x41, 0, 1);
456
457 /* Enable bus-mastering. */
458 pci_enable_busmaster(dev);
459
460 rid = PCIR_BAR(0);
461 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
462 RF_ACTIVE);
463 if (sc->mem == NULL) {
464 device_printf(dev, "can't map mem space\n");
465 error = ENOMEM;
466 return error;
467 }
468 sc->sc_st = rman_get_bustag(sc->mem);
469 sc->sc_sh = rman_get_bushandle(sc->mem);
470
471 i = 1;
472 rid = 0;
473 if (pci_alloc_msi(dev, &i) == 0)
474 rid = 1;
475 /* Install interrupt handler. */
476 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
477 (rid != 0 ? 0 : RF_SHAREABLE));
478 if (sc->irq == NULL) {
479 device_printf(dev, "can't map interrupt\n");
480 error = ENOMEM;
481 goto fail;
482 }
483
484 IWN_LOCK_INIT(sc);
485
486 /* Read hardware revision and attach. */
487 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
488 & IWN_HW_REV_TYPE_MASK;
489 sc->subdevice_id = pci_get_subdevice(dev);
490
491 /*
492 * 4965 versus 5000 and later have different methods.
493 * Let's set those up first.
494 */
495 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
496 iwn4965_attach(sc, pci_get_device(dev));
497 else
498 iwn5000_attach(sc, pci_get_device(dev));
499
500 /*
501 * Next, let's setup the various parameters of each NIC.
502 */
503 error = iwn_config_specific(sc, pci_get_device(dev));
504 if (error != 0) {
505 device_printf(dev, "could not attach device, error %d\n",
506 error);
507 goto fail;
508 }
509
510 if ((error = iwn_hw_prepare(sc)) != 0) {
511 device_printf(dev, "hardware not ready, error %d\n", error);
512 goto fail;
513 }
514
515 /* Allocate DMA memory for firmware transfers. */
516 if ((error = iwn_alloc_fwmem(sc)) != 0) {
517 device_printf(dev,
518 "could not allocate memory for firmware, error %d\n",
519 error);
520 goto fail;
521 }
522
523 /* Allocate "Keep Warm" page. */
524 if ((error = iwn_alloc_kw(sc)) != 0) {
525 device_printf(dev,
526 "could not allocate keep warm page, error %d\n", error);
527 goto fail;
528 }
529
530 /* Allocate ICT table for 5000 Series. */
531 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
532 (error = iwn_alloc_ict(sc)) != 0) {
533 device_printf(dev, "could not allocate ICT table, error %d\n",
534 error);
535 goto fail;
536 }
537
538 /* Allocate TX scheduler "rings". */
539 if ((error = iwn_alloc_sched(sc)) != 0) {
540 device_printf(dev,
541 "could not allocate TX scheduler rings, error %d\n", error);
542 goto fail;
543 }
544
545 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
546 for (i = 0; i < sc->ntxqs; i++) {
547 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
548 device_printf(dev,
549 "could not allocate TX ring %d, error %d\n", i,
550 error);
551 goto fail;
552 }
553 }
554
555 /* Allocate RX ring. */
556 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
557 device_printf(dev, "could not allocate RX ring, error %d\n",
558 error);
559 goto fail;
560 }
561
562 /* Clear pending interrupts. */
563 IWN_WRITE(sc, IWN_INT, 0xffffffff);
564
565 ic = &sc->sc_ic;
566 ic->ic_softc = sc;
567 ic->ic_name = device_get_nameunit(dev);
568 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
569 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
570
571 /* Set device capabilities. */
572 ic->ic_caps =
573 IEEE80211_C_STA /* station mode supported */
574 | IEEE80211_C_MONITOR /* monitor mode supported */
575 #if 0
576 | IEEE80211_C_BGSCAN /* background scanning */
577 #endif
578 | IEEE80211_C_TXPMGT /* tx power management */
579 | IEEE80211_C_SHSLOT /* short slot time supported */
580 | IEEE80211_C_WPA
581 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
582 #if 0
583 | IEEE80211_C_IBSS /* ibss/adhoc mode */
584 #endif
585 | IEEE80211_C_WME /* WME */
586 | IEEE80211_C_PMGT /* Station-side power mgmt */
587 ;
588
589 /* Read MAC address, channels, etc from EEPROM. */
590 if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
591 device_printf(dev, "could not read EEPROM, error %d\n",
592 error);
593 goto fail;
594 }
595
596 /* Count the number of available chains. */
597 sc->ntxchains =
598 ((sc->txchainmask >> 2) & 1) +
599 ((sc->txchainmask >> 1) & 1) +
600 ((sc->txchainmask >> 0) & 1);
601 sc->nrxchains =
602 ((sc->rxchainmask >> 2) & 1) +
603 ((sc->rxchainmask >> 1) & 1) +
604 ((sc->rxchainmask >> 0) & 1);
605 if (bootverbose) {
606 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
607 sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
608 ic->ic_macaddr, ":");
609 }
610
611 if (sc->sc_flags & IWN_FLAG_HAS_11N) {
612 ic->ic_rxstream = sc->nrxchains;
613 ic->ic_txstream = sc->ntxchains;
614
615 /*
616 * Some of the 3 antenna devices (ie, the 4965) only supports
617 * 2x2 operation. So correct the number of streams if
618 * it's not a 3-stream device.
619 */
620 if (! iwn_is_3stream_device(sc)) {
621 if (ic->ic_rxstream > 2)
622 ic->ic_rxstream = 2;
623 if (ic->ic_txstream > 2)
624 ic->ic_txstream = 2;
625 }
626
627 ic->ic_htcaps =
628 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */
629 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */
630 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/
631 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */
632 #ifdef notyet
633 | IEEE80211_HTCAP_GREENFIELD
634 #if IWN_RBUF_SIZE == 8192
635 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */
636 #else
637 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */
638 #endif
639 #endif
640 /* s/w capabilities */
641 | IEEE80211_HTC_HT /* HT operation */
642 | IEEE80211_HTC_AMPDU /* tx A-MPDU */
643 #ifdef notyet
644 | IEEE80211_HTC_AMSDU /* tx A-MSDU */
645 #endif
646 ;
647 }
648
649 ieee80211_ifattach(ic);
650 ic->ic_vap_create = iwn_vap_create;
651 ic->ic_ioctl = iwn_ioctl;
652 ic->ic_parent = iwn_parent;
653 ic->ic_vap_delete = iwn_vap_delete;
654 ic->ic_transmit = iwn_transmit;
655 ic->ic_raw_xmit = iwn_raw_xmit;
656 ic->ic_node_alloc = iwn_node_alloc;
657 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
658 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
659 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
660 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
661 sc->sc_addba_request = ic->ic_addba_request;
662 ic->ic_addba_request = iwn_addba_request;
663 sc->sc_addba_response = ic->ic_addba_response;
664 ic->ic_addba_response = iwn_addba_response;
665 sc->sc_addba_stop = ic->ic_addba_stop;
666 ic->ic_addba_stop = iwn_ampdu_tx_stop;
667 ic->ic_newassoc = iwn_newassoc;
668 ic->ic_wme.wme_update = iwn_updateedca;
669 ic->ic_update_promisc = iwn_update_promisc;
670 ic->ic_update_mcast = iwn_update_mcast;
671 ic->ic_scan_start = iwn_scan_start;
672 ic->ic_scan_end = iwn_scan_end;
673 ic->ic_set_channel = iwn_set_channel;
674 ic->ic_scan_curchan = iwn_scan_curchan;
675 ic->ic_scan_mindwell = iwn_scan_mindwell;
676 ic->ic_getradiocaps = iwn_getradiocaps;
677 ic->ic_setregdomain = iwn_setregdomain;
678
679 iwn_radiotap_attach(sc);
680
681 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
682 callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
683 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
684 TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
685 TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
686 TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
687
688 mbufq_init(&sc->sc_xmit_queue, 1024);
689
690 sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
691 taskqueue_thread_enqueue, &sc->sc_tq);
692 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
693 if (error != 0) {
694 device_printf(dev, "can't start threads, error %d\n", error);
695 goto fail;
696 }
697
698 iwn_sysctlattach(sc);
699
700 /*
701 * Hook our interrupt after all initialization is complete.
702 */
703 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
704 NULL, iwn_intr, sc, &sc->sc_ih);
705 if (error != 0) {
706 device_printf(dev, "can't establish interrupt, error %d\n",
707 error);
708 goto fail;
709 }
710
711 #if 0
712 device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
713 __func__,
714 sizeof(struct iwn_stats),
715 sizeof(struct iwn_stats_bt));
716 #endif
717
718 if (bootverbose)
719 ieee80211_announce(ic);
720 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
721
722 /* Add debug ioctl right at the end */
723 sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
724 UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
725 if (sc->sc_cdev == NULL) {
726 device_printf(dev, "failed to create debug character device\n");
727 } else {
728 sc->sc_cdev->si_drv1 = sc;
729 }
730 return 0;
731 fail:
732 iwn_detach(dev);
733 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
734 return error;
735 }
736
737 /*
738 * Define specific configuration based on device id and subdevice id
739 * pid : PCI device id
740 */
741 static int
742 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
743 {
744
745 switch (pid) {
746 /* 4965 series */
747 case IWN_DID_4965_1:
748 case IWN_DID_4965_2:
749 case IWN_DID_4965_3:
750 case IWN_DID_4965_4:
751 sc->base_params = &iwn4965_base_params;
752 sc->limits = &iwn4965_sensitivity_limits;
753 sc->fwname = "iwn4965fw";
754 /* Override chains masks, ROM is known to be broken. */
755 sc->txchainmask = IWN_ANT_AB;
756 sc->rxchainmask = IWN_ANT_ABC;
757 /* Enable normal btcoex */
758 sc->sc_flags |= IWN_FLAG_BTCOEX;
759 break;
760 /* 1000 Series */
761 case IWN_DID_1000_1:
762 case IWN_DID_1000_2:
763 switch(sc->subdevice_id) {
764 case IWN_SDID_1000_1:
765 case IWN_SDID_1000_2:
766 case IWN_SDID_1000_3:
767 case IWN_SDID_1000_4:
768 case IWN_SDID_1000_5:
769 case IWN_SDID_1000_6:
770 case IWN_SDID_1000_7:
771 case IWN_SDID_1000_8:
772 case IWN_SDID_1000_9:
773 case IWN_SDID_1000_10:
774 case IWN_SDID_1000_11:
775 case IWN_SDID_1000_12:
776 sc->limits = &iwn1000_sensitivity_limits;
777 sc->base_params = &iwn1000_base_params;
778 sc->fwname = "iwn1000fw";
779 break;
780 default:
781 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
782 "0x%04x rev %d not supported (subdevice)\n", pid,
783 sc->subdevice_id,sc->hw_type);
784 return ENOTSUP;
785 }
786 break;
787 /* 6x00 Series */
788 case IWN_DID_6x00_2:
789 case IWN_DID_6x00_4:
790 case IWN_DID_6x00_1:
791 case IWN_DID_6x00_3:
792 sc->fwname = "iwn6000fw";
793 sc->limits = &iwn6000_sensitivity_limits;
794 switch(sc->subdevice_id) {
795 case IWN_SDID_6x00_1:
796 case IWN_SDID_6x00_2:
797 case IWN_SDID_6x00_8:
798 //iwl6000_3agn_cfg
799 sc->base_params = &iwn_6000_base_params;
800 break;
801 case IWN_SDID_6x00_3:
802 case IWN_SDID_6x00_6:
803 case IWN_SDID_6x00_9:
804 ////iwl6000i_2agn
805 case IWN_SDID_6x00_4:
806 case IWN_SDID_6x00_7:
807 case IWN_SDID_6x00_10:
808 //iwl6000i_2abg_cfg
809 case IWN_SDID_6x00_5:
810 //iwl6000i_2bg_cfg
811 sc->base_params = &iwn_6000i_base_params;
812 sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
813 sc->txchainmask = IWN_ANT_BC;
814 sc->rxchainmask = IWN_ANT_BC;
815 break;
816 default:
817 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
818 "0x%04x rev %d not supported (subdevice)\n", pid,
819 sc->subdevice_id,sc->hw_type);
820 return ENOTSUP;
821 }
822 break;
823 /* 6x05 Series */
824 case IWN_DID_6x05_1:
825 case IWN_DID_6x05_2:
826 switch(sc->subdevice_id) {
827 case IWN_SDID_6x05_1:
828 case IWN_SDID_6x05_4:
829 case IWN_SDID_6x05_6:
830 //iwl6005_2agn_cfg
831 case IWN_SDID_6x05_2:
832 case IWN_SDID_6x05_5:
833 case IWN_SDID_6x05_7:
834 //iwl6005_2abg_cfg
835 case IWN_SDID_6x05_3:
836 //iwl6005_2bg_cfg
837 case IWN_SDID_6x05_8:
838 case IWN_SDID_6x05_9:
839 //iwl6005_2agn_sff_cfg
840 case IWN_SDID_6x05_10:
841 //iwl6005_2agn_d_cfg
842 case IWN_SDID_6x05_11:
843 //iwl6005_2agn_mow1_cfg
844 case IWN_SDID_6x05_12:
845 //iwl6005_2agn_mow2_cfg
846 sc->fwname = "iwn6000g2afw";
847 sc->limits = &iwn6000_sensitivity_limits;
848 sc->base_params = &iwn_6000g2_base_params;
849 break;
850 default:
851 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
852 "0x%04x rev %d not supported (subdevice)\n", pid,
853 sc->subdevice_id,sc->hw_type);
854 return ENOTSUP;
855 }
856 break;
857 /* 6x35 Series */
858 case IWN_DID_6035_1:
859 case IWN_DID_6035_2:
860 switch(sc->subdevice_id) {
861 case IWN_SDID_6035_1:
862 case IWN_SDID_6035_2:
863 case IWN_SDID_6035_3:
864 case IWN_SDID_6035_4:
865 case IWN_SDID_6035_5:
866 sc->fwname = "iwn6000g2bfw";
867 sc->limits = &iwn6235_sensitivity_limits;
868 sc->base_params = &iwn_6235_base_params;
869 break;
870 default:
871 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
872 "0x%04x rev %d not supported (subdevice)\n", pid,
873 sc->subdevice_id,sc->hw_type);
874 return ENOTSUP;
875 }
876 break;
877 /* 6x50 WiFi/WiMax Series */
878 case IWN_DID_6050_1:
879 case IWN_DID_6050_2:
880 switch(sc->subdevice_id) {
881 case IWN_SDID_6050_1:
882 case IWN_SDID_6050_3:
883 case IWN_SDID_6050_5:
884 //iwl6050_2agn_cfg
885 case IWN_SDID_6050_2:
886 case IWN_SDID_6050_4:
887 case IWN_SDID_6050_6:
888 //iwl6050_2abg_cfg
889 sc->fwname = "iwn6050fw";
890 sc->txchainmask = IWN_ANT_AB;
891 sc->rxchainmask = IWN_ANT_AB;
892 sc->limits = &iwn6000_sensitivity_limits;
893 sc->base_params = &iwn_6050_base_params;
894 break;
895 default:
896 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
897 "0x%04x rev %d not supported (subdevice)\n", pid,
898 sc->subdevice_id,sc->hw_type);
899 return ENOTSUP;
900 }
901 break;
902 /* 6150 WiFi/WiMax Series */
903 case IWN_DID_6150_1:
904 case IWN_DID_6150_2:
905 switch(sc->subdevice_id) {
906 case IWN_SDID_6150_1:
907 case IWN_SDID_6150_3:
908 case IWN_SDID_6150_5:
909 // iwl6150_bgn_cfg
910 case IWN_SDID_6150_2:
911 case IWN_SDID_6150_4:
912 case IWN_SDID_6150_6:
913 //iwl6150_bg_cfg
914 sc->fwname = "iwn6050fw";
915 sc->limits = &iwn6000_sensitivity_limits;
916 sc->base_params = &iwn_6150_base_params;
917 break;
918 default:
919 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
920 "0x%04x rev %d not supported (subdevice)\n", pid,
921 sc->subdevice_id,sc->hw_type);
922 return ENOTSUP;
923 }
924 break;
925 /* 6030 Series and 1030 Series */
926 case IWN_DID_x030_1:
927 case IWN_DID_x030_2:
928 case IWN_DID_x030_3:
929 case IWN_DID_x030_4:
930 switch(sc->subdevice_id) {
931 case IWN_SDID_x030_1:
932 case IWN_SDID_x030_3:
933 case IWN_SDID_x030_5:
934 // iwl1030_bgn_cfg
935 case IWN_SDID_x030_2:
936 case IWN_SDID_x030_4:
937 case IWN_SDID_x030_6:
938 //iwl1030_bg_cfg
939 case IWN_SDID_x030_7:
940 case IWN_SDID_x030_10:
941 case IWN_SDID_x030_14:
942 //iwl6030_2agn_cfg
943 case IWN_SDID_x030_8:
944 case IWN_SDID_x030_11:
945 case IWN_SDID_x030_15:
946 // iwl6030_2bgn_cfg
947 case IWN_SDID_x030_9:
948 case IWN_SDID_x030_12:
949 case IWN_SDID_x030_16:
950 // iwl6030_2abg_cfg
951 case IWN_SDID_x030_13:
952 //iwl6030_2bg_cfg
953 sc->fwname = "iwn6000g2bfw";
954 sc->limits = &iwn6000_sensitivity_limits;
955 sc->base_params = &iwn_6000g2b_base_params;
956 break;
957 default:
958 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
959 "0x%04x rev %d not supported (subdevice)\n", pid,
960 sc->subdevice_id,sc->hw_type);
961 return ENOTSUP;
962 }
963 break;
964 /* 130 Series WiFi */
965 /* XXX: This series will need adjustment for rate.
966 * see rx_with_siso_diversity in linux kernel
967 */
968 case IWN_DID_130_1:
969 case IWN_DID_130_2:
970 switch(sc->subdevice_id) {
971 case IWN_SDID_130_1:
972 case IWN_SDID_130_3:
973 case IWN_SDID_130_5:
974 //iwl130_bgn_cfg
975 case IWN_SDID_130_2:
976 case IWN_SDID_130_4:
977 case IWN_SDID_130_6:
978 //iwl130_bg_cfg
979 sc->fwname = "iwn6000g2bfw";
980 sc->limits = &iwn6000_sensitivity_limits;
981 sc->base_params = &iwn_6000g2b_base_params;
982 break;
983 default:
984 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
985 "0x%04x rev %d not supported (subdevice)\n", pid,
986 sc->subdevice_id,sc->hw_type);
987 return ENOTSUP;
988 }
989 break;
990 /* 100 Series WiFi */
991 case IWN_DID_100_1:
992 case IWN_DID_100_2:
993 switch(sc->subdevice_id) {
994 case IWN_SDID_100_1:
995 case IWN_SDID_100_2:
996 case IWN_SDID_100_3:
997 case IWN_SDID_100_4:
998 case IWN_SDID_100_5:
999 case IWN_SDID_100_6:
1000 sc->limits = &iwn1000_sensitivity_limits;
1001 sc->base_params = &iwn1000_base_params;
1002 sc->fwname = "iwn100fw";
1003 break;
1004 default:
1005 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1006 "0x%04x rev %d not supported (subdevice)\n", pid,
1007 sc->subdevice_id,sc->hw_type);
1008 return ENOTSUP;
1009 }
1010 break;
1011
1012 /* 105 Series */
1013 /* XXX: This series will need adjustment for rate.
1014 * see rx_with_siso_diversity in linux kernel
1015 */
1016 case IWN_DID_105_1:
1017 case IWN_DID_105_2:
1018 switch(sc->subdevice_id) {
1019 case IWN_SDID_105_1:
1020 case IWN_SDID_105_2:
1021 case IWN_SDID_105_3:
1022 //iwl105_bgn_cfg
1023 case IWN_SDID_105_4:
1024 //iwl105_bgn_d_cfg
1025 sc->limits = &iwn2030_sensitivity_limits;
1026 sc->base_params = &iwn2000_base_params;
1027 sc->fwname = "iwn105fw";
1028 break;
1029 default:
1030 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1031 "0x%04x rev %d not supported (subdevice)\n", pid,
1032 sc->subdevice_id,sc->hw_type);
1033 return ENOTSUP;
1034 }
1035 break;
1036
1037 /* 135 Series */
1038 /* XXX: This series will need adjustment for rate.
1039 * see rx_with_siso_diversity in linux kernel
1040 */
1041 case IWN_DID_135_1:
1042 case IWN_DID_135_2:
1043 switch(sc->subdevice_id) {
1044 case IWN_SDID_135_1:
1045 case IWN_SDID_135_2:
1046 case IWN_SDID_135_3:
1047 sc->limits = &iwn2030_sensitivity_limits;
1048 sc->base_params = &iwn2030_base_params;
1049 sc->fwname = "iwn135fw";
1050 break;
1051 default:
1052 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1053 "0x%04x rev %d not supported (subdevice)\n", pid,
1054 sc->subdevice_id,sc->hw_type);
1055 return ENOTSUP;
1056 }
1057 break;
1058
1059 /* 2x00 Series */
1060 case IWN_DID_2x00_1:
1061 case IWN_DID_2x00_2:
1062 switch(sc->subdevice_id) {
1063 case IWN_SDID_2x00_1:
1064 case IWN_SDID_2x00_2:
1065 case IWN_SDID_2x00_3:
1066 //iwl2000_2bgn_cfg
1067 case IWN_SDID_2x00_4:
1068 //iwl2000_2bgn_d_cfg
1069 sc->limits = &iwn2030_sensitivity_limits;
1070 sc->base_params = &iwn2000_base_params;
1071 sc->fwname = "iwn2000fw";
1072 break;
1073 default:
1074 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1075 "0x%04x rev %d not supported (subdevice) \n",
1076 pid, sc->subdevice_id, sc->hw_type);
1077 return ENOTSUP;
1078 }
1079 break;
1080 /* 2x30 Series */
1081 case IWN_DID_2x30_1:
1082 case IWN_DID_2x30_2:
1083 switch(sc->subdevice_id) {
1084 case IWN_SDID_2x30_1:
1085 case IWN_SDID_2x30_3:
1086 case IWN_SDID_2x30_5:
1087 //iwl100_bgn_cfg
1088 case IWN_SDID_2x30_2:
1089 case IWN_SDID_2x30_4:
1090 case IWN_SDID_2x30_6:
1091 //iwl100_bg_cfg
1092 sc->limits = &iwn2030_sensitivity_limits;
1093 sc->base_params = &iwn2030_base_params;
1094 sc->fwname = "iwn2030fw";
1095 break;
1096 default:
1097 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1098 "0x%04x rev %d not supported (subdevice)\n", pid,
1099 sc->subdevice_id,sc->hw_type);
1100 return ENOTSUP;
1101 }
1102 break;
1103 /* 5x00 Series */
1104 case IWN_DID_5x00_1:
1105 case IWN_DID_5x00_2:
1106 case IWN_DID_5x00_3:
1107 case IWN_DID_5x00_4:
1108 sc->limits = &iwn5000_sensitivity_limits;
1109 sc->base_params = &iwn5000_base_params;
1110 sc->fwname = "iwn5000fw";
1111 switch(sc->subdevice_id) {
1112 case IWN_SDID_5x00_1:
1113 case IWN_SDID_5x00_2:
1114 case IWN_SDID_5x00_3:
1115 case IWN_SDID_5x00_4:
1116 case IWN_SDID_5x00_9:
1117 case IWN_SDID_5x00_10:
1118 case IWN_SDID_5x00_11:
1119 case IWN_SDID_5x00_12:
1120 case IWN_SDID_5x00_17:
1121 case IWN_SDID_5x00_18:
1122 case IWN_SDID_5x00_19:
1123 case IWN_SDID_5x00_20:
1124 //iwl5100_agn_cfg
1125 sc->txchainmask = IWN_ANT_B;
1126 sc->rxchainmask = IWN_ANT_AB;
1127 break;
1128 case IWN_SDID_5x00_5:
1129 case IWN_SDID_5x00_6:
1130 case IWN_SDID_5x00_13:
1131 case IWN_SDID_5x00_14:
1132 case IWN_SDID_5x00_21:
1133 case IWN_SDID_5x00_22:
1134 //iwl5100_bgn_cfg
1135 sc->txchainmask = IWN_ANT_B;
1136 sc->rxchainmask = IWN_ANT_AB;
1137 break;
1138 case IWN_SDID_5x00_7:
1139 case IWN_SDID_5x00_8:
1140 case IWN_SDID_5x00_15:
1141 case IWN_SDID_5x00_16:
1142 case IWN_SDID_5x00_23:
1143 case IWN_SDID_5x00_24:
1144 //iwl5100_abg_cfg
1145 sc->txchainmask = IWN_ANT_B;
1146 sc->rxchainmask = IWN_ANT_AB;
1147 break;
1148 case IWN_SDID_5x00_25:
1149 case IWN_SDID_5x00_26:
1150 case IWN_SDID_5x00_27:
1151 case IWN_SDID_5x00_28:
1152 case IWN_SDID_5x00_29:
1153 case IWN_SDID_5x00_30:
1154 case IWN_SDID_5x00_31:
1155 case IWN_SDID_5x00_32:
1156 case IWN_SDID_5x00_33:
1157 case IWN_SDID_5x00_34:
1158 case IWN_SDID_5x00_35:
1159 case IWN_SDID_5x00_36:
1160 //iwl5300_agn_cfg
1161 sc->txchainmask = IWN_ANT_ABC;
1162 sc->rxchainmask = IWN_ANT_ABC;
1163 break;
1164 default:
1165 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1166 "0x%04x rev %d not supported (subdevice)\n", pid,
1167 sc->subdevice_id,sc->hw_type);
1168 return ENOTSUP;
1169 }
1170 break;
1171 /* 5x50 Series */
1172 case IWN_DID_5x50_1:
1173 case IWN_DID_5x50_2:
1174 case IWN_DID_5x50_3:
1175 case IWN_DID_5x50_4:
1176 sc->limits = &iwn5000_sensitivity_limits;
1177 sc->base_params = &iwn5000_base_params;
1178 sc->fwname = "iwn5000fw";
1179 switch(sc->subdevice_id) {
1180 case IWN_SDID_5x50_1:
1181 case IWN_SDID_5x50_2:
1182 case IWN_SDID_5x50_3:
1183 //iwl5350_agn_cfg
1184 sc->limits = &iwn5000_sensitivity_limits;
1185 sc->base_params = &iwn5000_base_params;
1186 sc->fwname = "iwn5000fw";
1187 break;
1188 case IWN_SDID_5x50_4:
1189 case IWN_SDID_5x50_5:
1190 case IWN_SDID_5x50_8:
1191 case IWN_SDID_5x50_9:
1192 case IWN_SDID_5x50_10:
1193 case IWN_SDID_5x50_11:
1194 //iwl5150_agn_cfg
1195 case IWN_SDID_5x50_6:
1196 case IWN_SDID_5x50_7:
1197 case IWN_SDID_5x50_12:
1198 case IWN_SDID_5x50_13:
1199 //iwl5150_abg_cfg
1200 sc->limits = &iwn5000_sensitivity_limits;
1201 sc->fwname = "iwn5150fw";
1202 sc->base_params = &iwn_5x50_base_params;
1203 break;
1204 default:
1205 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1206 "0x%04x rev %d not supported (subdevice)\n", pid,
1207 sc->subdevice_id,sc->hw_type);
1208 return ENOTSUP;
1209 }
1210 break;
1211 default:
1212 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1213 "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1214 sc->hw_type);
1215 return ENOTSUP;
1216 }
1217 return 0;
1218 }
1219
1220 static void
1221 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1222 {
1223 struct iwn_ops *ops = &sc->ops;
1224
1225 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1226
1227 ops->load_firmware = iwn4965_load_firmware;
1228 ops->read_eeprom = iwn4965_read_eeprom;
1229 ops->post_alive = iwn4965_post_alive;
1230 ops->nic_config = iwn4965_nic_config;
1231 ops->update_sched = iwn4965_update_sched;
1232 ops->get_temperature = iwn4965_get_temperature;
1233 ops->get_rssi = iwn4965_get_rssi;
1234 ops->set_txpower = iwn4965_set_txpower;
1235 ops->init_gains = iwn4965_init_gains;
1236 ops->set_gains = iwn4965_set_gains;
1237 ops->rxon_assoc = iwn4965_rxon_assoc;
1238 ops->add_node = iwn4965_add_node;
1239 ops->tx_done = iwn4965_tx_done;
1240 ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1241 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1242 sc->ntxqs = IWN4965_NTXQUEUES;
1243 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1244 sc->ndmachnls = IWN4965_NDMACHNLS;
1245 sc->broadcast_id = IWN4965_ID_BROADCAST;
1246 sc->rxonsz = IWN4965_RXONSZ;
1247 sc->schedsz = IWN4965_SCHEDSZ;
1248 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1249 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1250 sc->fwsz = IWN4965_FWSZ;
1251 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1252 sc->limits = &iwn4965_sensitivity_limits;
1253 sc->fwname = "iwn4965fw";
1254 /* Override chains masks, ROM is known to be broken. */
1255 sc->txchainmask = IWN_ANT_AB;
1256 sc->rxchainmask = IWN_ANT_ABC;
1257 /* Enable normal btcoex */
1258 sc->sc_flags |= IWN_FLAG_BTCOEX;
1259
1260 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1261 }
1262
1263 static void
1264 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1265 {
1266 struct iwn_ops *ops = &sc->ops;
1267
1268 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1269
1270 ops->load_firmware = iwn5000_load_firmware;
1271 ops->read_eeprom = iwn5000_read_eeprom;
1272 ops->post_alive = iwn5000_post_alive;
1273 ops->nic_config = iwn5000_nic_config;
1274 ops->update_sched = iwn5000_update_sched;
1275 ops->get_temperature = iwn5000_get_temperature;
1276 ops->get_rssi = iwn5000_get_rssi;
1277 ops->set_txpower = iwn5000_set_txpower;
1278 ops->init_gains = iwn5000_init_gains;
1279 ops->set_gains = iwn5000_set_gains;
1280 ops->rxon_assoc = iwn5000_rxon_assoc;
1281 ops->add_node = iwn5000_add_node;
1282 ops->tx_done = iwn5000_tx_done;
1283 ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1284 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1285 sc->ntxqs = IWN5000_NTXQUEUES;
1286 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1287 sc->ndmachnls = IWN5000_NDMACHNLS;
1288 sc->broadcast_id = IWN5000_ID_BROADCAST;
1289 sc->rxonsz = IWN5000_RXONSZ;
1290 sc->schedsz = IWN5000_SCHEDSZ;
1291 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1292 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1293 sc->fwsz = IWN5000_FWSZ;
1294 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1295 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1296 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1297
1298 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1299 }
1300
1301 /*
1302 * Attach the interface to 802.11 radiotap.
1303 */
1304 static void
1305 iwn_radiotap_attach(struct iwn_softc *sc)
1306 {
1307
1308 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1309 ieee80211_radiotap_attach(&sc->sc_ic,
1310 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1311 IWN_TX_RADIOTAP_PRESENT,
1312 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1313 IWN_RX_RADIOTAP_PRESENT);
1314 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1315 }
1316
1317 static void
1318 iwn_sysctlattach(struct iwn_softc *sc)
1319 {
1320 #ifdef IWN_DEBUG
1321 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1322 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1323
1324 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1325 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1326 "control debugging printfs");
1327 #endif
1328 }
1329
1330 static struct ieee80211vap *
1331 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1332 enum ieee80211_opmode opmode, int flags,
1333 const uint8_t bssid[IEEE80211_ADDR_LEN],
1334 const uint8_t mac[IEEE80211_ADDR_LEN])
1335 {
1336 struct iwn_softc *sc = ic->ic_softc;
1337 struct iwn_vap *ivp;
1338 struct ieee80211vap *vap;
1339
1340 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
1341 return NULL;
1342
1343 ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1344 vap = &ivp->iv_vap;
1345 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1346 ivp->ctx = IWN_RXON_BSS_CTX;
1347 vap->iv_bmissthreshold = 10; /* override default */
1348 /* Override with driver methods. */
1349 ivp->iv_newstate = vap->iv_newstate;
1350 vap->iv_newstate = iwn_newstate;
1351 sc->ivap[IWN_RXON_BSS_CTX] = vap;
1352 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1353 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */
1354
1355 ieee80211_ratectl_init(vap);
1356 /* Complete setup. */
1357 ieee80211_vap_attach(vap, ieee80211_media_change,
1358 ieee80211_media_status, mac);
1359 ic->ic_opmode = opmode;
1360 return vap;
1361 }
1362
1363 static void
1364 iwn_vap_delete(struct ieee80211vap *vap)
1365 {
1366 struct iwn_vap *ivp = IWN_VAP(vap);
1367
1368 ieee80211_ratectl_deinit(vap);
1369 ieee80211_vap_detach(vap);
1370 free(ivp, M_80211_VAP);
1371 }
1372
1373 static void
1374 iwn_xmit_queue_drain(struct iwn_softc *sc)
1375 {
1376 struct mbuf *m;
1377 struct ieee80211_node *ni;
1378
1379 IWN_LOCK_ASSERT(sc);
1380 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1381 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1382 ieee80211_free_node(ni);
1383 m_freem(m);
1384 }
1385 }
1386
1387 static int
1388 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1389 {
1390
1391 IWN_LOCK_ASSERT(sc);
1392 return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1393 }
1394
1395 static int
1396 iwn_detach(device_t dev)
1397 {
1398 struct iwn_softc *sc = device_get_softc(dev);
1399 int qid;
1400
1401 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1402
1403 if (sc->sc_ic.ic_softc != NULL) {
1404 /* Free the mbuf queue and node references */
1405 IWN_LOCK(sc);
1406 iwn_xmit_queue_drain(sc);
1407 IWN_UNLOCK(sc);
1408
1409 iwn_stop(sc);
1410
1411 taskqueue_drain_all(sc->sc_tq);
1412 taskqueue_free(sc->sc_tq);
1413
1414 callout_drain(&sc->watchdog_to);
1415 callout_drain(&sc->scan_timeout);
1416 callout_drain(&sc->calib_to);
1417 ieee80211_ifdetach(&sc->sc_ic);
1418 }
1419
1420 /* Uninstall interrupt handler. */
1421 if (sc->irq != NULL) {
1422 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1423 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1424 sc->irq);
1425 pci_release_msi(dev);
1426 }
1427
1428 /* Free DMA resources. */
1429 iwn_free_rx_ring(sc, &sc->rxq);
1430 for (qid = 0; qid < sc->ntxqs; qid++)
1431 iwn_free_tx_ring(sc, &sc->txq[qid]);
1432 iwn_free_sched(sc);
1433 iwn_free_kw(sc);
1434 if (sc->ict != NULL)
1435 iwn_free_ict(sc);
1436 iwn_free_fwmem(sc);
1437
1438 if (sc->mem != NULL)
1439 bus_release_resource(dev, SYS_RES_MEMORY,
1440 rman_get_rid(sc->mem), sc->mem);
1441
1442 if (sc->sc_cdev) {
1443 destroy_dev(sc->sc_cdev);
1444 sc->sc_cdev = NULL;
1445 }
1446
1447 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1448 IWN_LOCK_DESTROY(sc);
1449 return 0;
1450 }
1451
1452 static int
1453 iwn_shutdown(device_t dev)
1454 {
1455 struct iwn_softc *sc = device_get_softc(dev);
1456
1457 iwn_stop(sc);
1458 return 0;
1459 }
1460
1461 static int
1462 iwn_suspend(device_t dev)
1463 {
1464 struct iwn_softc *sc = device_get_softc(dev);
1465
1466 ieee80211_suspend_all(&sc->sc_ic);
1467 return 0;
1468 }
1469
1470 static int
1471 iwn_resume(device_t dev)
1472 {
1473 struct iwn_softc *sc = device_get_softc(dev);
1474
1475 /* Clear device-specific "PCI retry timeout" register (41h). */
1476 pci_write_config(dev, 0x41, 0, 1);
1477
1478 ieee80211_resume_all(&sc->sc_ic);
1479 return 0;
1480 }
1481
1482 static int
1483 iwn_nic_lock(struct iwn_softc *sc)
1484 {
1485 int ntries;
1486
1487 /* Request exclusive access to NIC. */
1488 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1489
1490 /* Spin until we actually get the lock. */
1491 for (ntries = 0; ntries < 1000; ntries++) {
1492 if ((IWN_READ(sc, IWN_GP_CNTRL) &
1493 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1494 IWN_GP_CNTRL_MAC_ACCESS_ENA)
1495 return 0;
1496 DELAY(10);
1497 }
1498 return ETIMEDOUT;
1499 }
1500
1501 static __inline void
1502 iwn_nic_unlock(struct iwn_softc *sc)
1503 {
1504 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1505 }
1506
1507 static __inline uint32_t
1508 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1509 {
1510 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1511 IWN_BARRIER_READ_WRITE(sc);
1512 return IWN_READ(sc, IWN_PRPH_RDATA);
1513 }
1514
1515 static __inline void
1516 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1517 {
1518 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1519 IWN_BARRIER_WRITE(sc);
1520 IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1521 }
1522
1523 static __inline void
1524 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1525 {
1526 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1527 }
1528
1529 static __inline void
1530 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1531 {
1532 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1533 }
1534
1535 static __inline void
1536 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1537 const uint32_t *data, int count)
1538 {
1539 for (; count > 0; count--, data++, addr += 4)
1540 iwn_prph_write(sc, addr, *data);
1541 }
1542
1543 static __inline uint32_t
1544 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1545 {
1546 IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1547 IWN_BARRIER_READ_WRITE(sc);
1548 return IWN_READ(sc, IWN_MEM_RDATA);
1549 }
1550
1551 static __inline void
1552 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1553 {
1554 IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1555 IWN_BARRIER_WRITE(sc);
1556 IWN_WRITE(sc, IWN_MEM_WDATA, data);
1557 }
1558
1559 static __inline void
1560 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1561 {
1562 uint32_t tmp;
1563
1564 tmp = iwn_mem_read(sc, addr & ~3);
1565 if (addr & 3)
1566 tmp = (tmp & 0x0000ffff) | data << 16;
1567 else
1568 tmp = (tmp & 0xffff0000) | data;
1569 iwn_mem_write(sc, addr & ~3, tmp);
1570 }
1571
1572 static __inline void
1573 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1574 int count)
1575 {
1576 for (; count > 0; count--, addr += 4)
1577 *data++ = iwn_mem_read(sc, addr);
1578 }
1579
1580 static __inline void
1581 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1582 int count)
1583 {
1584 for (; count > 0; count--, addr += 4)
1585 iwn_mem_write(sc, addr, val);
1586 }
1587
1588 static int
1589 iwn_eeprom_lock(struct iwn_softc *sc)
1590 {
1591 int i, ntries;
1592
1593 for (i = 0; i < 100; i++) {
1594 /* Request exclusive access to EEPROM. */
1595 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1596 IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1597
1598 /* Spin until we actually get the lock. */
1599 for (ntries = 0; ntries < 100; ntries++) {
1600 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1601 IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1602 return 0;
1603 DELAY(10);
1604 }
1605 }
1606 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1607 return ETIMEDOUT;
1608 }
1609
1610 static __inline void
1611 iwn_eeprom_unlock(struct iwn_softc *sc)
1612 {
1613 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1614 }
1615
1616 /*
1617 * Initialize access by host to One Time Programmable ROM.
1618 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1619 */
1620 static int
1621 iwn_init_otprom(struct iwn_softc *sc)
1622 {
1623 uint16_t prev, base, next;
1624 int count, error;
1625
1626 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1627
1628 /* Wait for clock stabilization before accessing prph. */
1629 if ((error = iwn_clock_wait(sc)) != 0)
1630 return error;
1631
1632 if ((error = iwn_nic_lock(sc)) != 0)
1633 return error;
1634 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1635 DELAY(5);
1636 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1637 iwn_nic_unlock(sc);
1638
1639 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1640 if (sc->base_params->shadow_ram_support) {
1641 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1642 IWN_RESET_LINK_PWR_MGMT_DIS);
1643 }
1644 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1645 /* Clear ECC status. */
1646 IWN_SETBITS(sc, IWN_OTP_GP,
1647 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1648
1649 /*
1650 * Find the block before last block (contains the EEPROM image)
1651 * for HW without OTP shadow RAM.
1652 */
1653 if (! sc->base_params->shadow_ram_support) {
1654 /* Switch to absolute addressing mode. */
1655 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1656 base = prev = 0;
1657 for (count = 0; count < sc->base_params->max_ll_items;
1658 count++) {
1659 error = iwn_read_prom_data(sc, base, &next, 2);
1660 if (error != 0)
1661 return error;
1662 if (next == 0) /* End of linked-list. */
1663 break;
1664 prev = base;
1665 base = le16toh(next);
1666 }
1667 if (count == 0 || count == sc->base_params->max_ll_items)
1668 return EIO;
1669 /* Skip "next" word. */
1670 sc->prom_base = prev + 1;
1671 }
1672
1673 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1674
1675 return 0;
1676 }
1677
1678 static int
1679 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1680 {
1681 uint8_t *out = data;
1682 uint32_t val, tmp;
1683 int ntries;
1684
1685 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1686
1687 addr += sc->prom_base;
1688 for (; count > 0; count -= 2, addr++) {
1689 IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1690 for (ntries = 0; ntries < 20; ntries++) {
1691 val = IWN_READ(sc, IWN_EEPROM);
1692 if (val & IWN_EEPROM_READ_VALID)
1693 break;
1694 DELAY(5);
1695 }
1696 if (ntries == 20) {
1697 device_printf(sc->sc_dev,
1698 "timeout reading ROM at 0x%x\n", addr);
1699 return ETIMEDOUT;
1700 }
1701 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1702 /* OTPROM, check for ECC errors. */
1703 tmp = IWN_READ(sc, IWN_OTP_GP);
1704 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1705 device_printf(sc->sc_dev,
1706 "OTPROM ECC error at 0x%x\n", addr);
1707 return EIO;
1708 }
1709 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1710 /* Correctable ECC error, clear bit. */
1711 IWN_SETBITS(sc, IWN_OTP_GP,
1712 IWN_OTP_GP_ECC_CORR_STTS);
1713 }
1714 }
1715 *out++ = val >> 16;
1716 if (count > 1)
1717 *out++ = val >> 24;
1718 }
1719
1720 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1721
1722 return 0;
1723 }
1724
1725 static void
1726 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1727 {
1728 if (error != 0)
1729 return;
1730 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1731 *(bus_addr_t *)arg = segs[0].ds_addr;
1732 }
1733
1734 static int
1735 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1736 void **kvap, bus_size_t size, bus_size_t alignment)
1737 {
1738 int error;
1739
1740 dma->tag = NULL;
1741 dma->size = size;
1742
1743 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1744 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1745 1, size, 0, NULL, NULL, &dma->tag);
1746 if (error != 0)
1747 goto fail;
1748
1749 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1750 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1751 if (error != 0)
1752 goto fail;
1753
1754 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1755 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1756 if (error != 0)
1757 goto fail;
1758
1759 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1760
1761 if (kvap != NULL)
1762 *kvap = dma->vaddr;
1763
1764 return 0;
1765
1766 fail: iwn_dma_contig_free(dma);
1767 return error;
1768 }
1769
1770 static void
1771 iwn_dma_contig_free(struct iwn_dma_info *dma)
1772 {
1773 if (dma->vaddr != NULL) {
1774 bus_dmamap_sync(dma->tag, dma->map,
1775 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1776 bus_dmamap_unload(dma->tag, dma->map);
1777 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1778 dma->vaddr = NULL;
1779 }
1780 if (dma->tag != NULL) {
1781 bus_dma_tag_destroy(dma->tag);
1782 dma->tag = NULL;
1783 }
1784 }
1785
1786 static int
1787 iwn_alloc_sched(struct iwn_softc *sc)
1788 {
1789 /* TX scheduler rings must be aligned on a 1KB boundary. */
1790 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1791 sc->schedsz, 1024);
1792 }
1793
1794 static void
1795 iwn_free_sched(struct iwn_softc *sc)
1796 {
1797 iwn_dma_contig_free(&sc->sched_dma);
1798 }
1799
1800 static int
1801 iwn_alloc_kw(struct iwn_softc *sc)
1802 {
1803 /* "Keep Warm" page must be aligned on a 4KB boundary. */
1804 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1805 }
1806
1807 static void
1808 iwn_free_kw(struct iwn_softc *sc)
1809 {
1810 iwn_dma_contig_free(&sc->kw_dma);
1811 }
1812
1813 static int
1814 iwn_alloc_ict(struct iwn_softc *sc)
1815 {
1816 /* ICT table must be aligned on a 4KB boundary. */
1817 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1818 IWN_ICT_SIZE, 4096);
1819 }
1820
1821 static void
1822 iwn_free_ict(struct iwn_softc *sc)
1823 {
1824 iwn_dma_contig_free(&sc->ict_dma);
1825 }
1826
1827 static int
1828 iwn_alloc_fwmem(struct iwn_softc *sc)
1829 {
1830 /* Must be aligned on a 16-byte boundary. */
1831 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1832 }
1833
1834 static void
1835 iwn_free_fwmem(struct iwn_softc *sc)
1836 {
1837 iwn_dma_contig_free(&sc->fw_dma);
1838 }
1839
1840 static int
1841 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1842 {
1843 bus_size_t size;
1844 int i, error;
1845
1846 ring->cur = 0;
1847
1848 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1849
1850 /* Allocate RX descriptors (256-byte aligned). */
1851 size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1852 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1853 size, 256);
1854 if (error != 0) {
1855 device_printf(sc->sc_dev,
1856 "%s: could not allocate RX ring DMA memory, error %d\n",
1857 __func__, error);
1858 goto fail;
1859 }
1860
1861 /* Allocate RX status area (16-byte aligned). */
1862 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1863 sizeof (struct iwn_rx_status), 16);
1864 if (error != 0) {
1865 device_printf(sc->sc_dev,
1866 "%s: could not allocate RX status DMA memory, error %d\n",
1867 __func__, error);
1868 goto fail;
1869 }
1870
1871 /* Create RX buffer DMA tag. */
1872 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1873 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1874 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1875 if (error != 0) {
1876 device_printf(sc->sc_dev,
1877 "%s: could not create RX buf DMA tag, error %d\n",
1878 __func__, error);
1879 goto fail;
1880 }
1881
1882 /*
1883 * Allocate and map RX buffers.
1884 */
1885 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1886 struct iwn_rx_data *data = &ring->data[i];
1887 bus_addr_t paddr;
1888
1889 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1890 if (error != 0) {
1891 device_printf(sc->sc_dev,
1892 "%s: could not create RX buf DMA map, error %d\n",
1893 __func__, error);
1894 goto fail;
1895 }
1896
1897 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1898 IWN_RBUF_SIZE);
1899 if (data->m == NULL) {
1900 device_printf(sc->sc_dev,
1901 "%s: could not allocate RX mbuf\n", __func__);
1902 error = ENOBUFS;
1903 goto fail;
1904 }
1905
1906 error = bus_dmamap_load(ring->data_dmat, data->map,
1907 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1908 &paddr, BUS_DMA_NOWAIT);
1909 if (error != 0 && error != EFBIG) {
1910 device_printf(sc->sc_dev,
1911 "%s: can't map mbuf, error %d\n", __func__,
1912 error);
1913 goto fail;
1914 }
1915
1916 bus_dmamap_sync(ring->data_dmat, data->map,
1917 BUS_DMASYNC_PREREAD);
1918
1919 /* Set physical address of RX buffer (256-byte aligned). */
1920 ring->desc[i] = htole32(paddr >> 8);
1921 }
1922
1923 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1924 BUS_DMASYNC_PREWRITE);
1925
1926 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1927
1928 return 0;
1929
1930 fail: iwn_free_rx_ring(sc, ring);
1931
1932 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1933
1934 return error;
1935 }
1936
1937 static void
1938 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1939 {
1940 int ntries;
1941
1942 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1943
1944 if (iwn_nic_lock(sc) == 0) {
1945 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1946 for (ntries = 0; ntries < 1000; ntries++) {
1947 if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1948 IWN_FH_RX_STATUS_IDLE)
1949 break;
1950 DELAY(10);
1951 }
1952 iwn_nic_unlock(sc);
1953 }
1954 ring->cur = 0;
1955 sc->last_rx_valid = 0;
1956 }
1957
1958 static void
1959 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1960 {
1961 int i;
1962
1963 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1964
1965 iwn_dma_contig_free(&ring->desc_dma);
1966 iwn_dma_contig_free(&ring->stat_dma);
1967
1968 for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1969 struct iwn_rx_data *data = &ring->data[i];
1970
1971 if (data->m != NULL) {
1972 bus_dmamap_sync(ring->data_dmat, data->map,
1973 BUS_DMASYNC_POSTREAD);
1974 bus_dmamap_unload(ring->data_dmat, data->map);
1975 m_freem(data->m);
1976 data->m = NULL;
1977 }
1978 if (data->map != NULL)
1979 bus_dmamap_destroy(ring->data_dmat, data->map);
1980 }
1981 if (ring->data_dmat != NULL) {
1982 bus_dma_tag_destroy(ring->data_dmat);
1983 ring->data_dmat = NULL;
1984 }
1985 }
1986
1987 static int
1988 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1989 {
1990 bus_addr_t paddr;
1991 bus_size_t size;
1992 int i, error;
1993
1994 ring->qid = qid;
1995 ring->queued = 0;
1996 ring->cur = 0;
1997
1998 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1999
2000 /* Allocate TX descriptors (256-byte aligned). */
2001 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2002 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2003 size, 256);
2004 if (error != 0) {
2005 device_printf(sc->sc_dev,
2006 "%s: could not allocate TX ring DMA memory, error %d\n",
2007 __func__, error);
2008 goto fail;
2009 }
2010
2011 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2012 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2013 size, 4);
2014 if (error != 0) {
2015 device_printf(sc->sc_dev,
2016 "%s: could not allocate TX cmd DMA memory, error %d\n",
2017 __func__, error);
2018 goto fail;
2019 }
2020
2021 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2022 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2023 IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2024 if (error != 0) {
2025 device_printf(sc->sc_dev,
2026 "%s: could not create TX buf DMA tag, error %d\n",
2027 __func__, error);
2028 goto fail;
2029 }
2030
2031 paddr = ring->cmd_dma.paddr;
2032 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2033 struct iwn_tx_data *data = &ring->data[i];
2034
2035 data->cmd_paddr = paddr;
2036 data->scratch_paddr = paddr + 12;
2037 paddr += sizeof (struct iwn_tx_cmd);
2038
2039 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2040 if (error != 0) {
2041 device_printf(sc->sc_dev,
2042 "%s: could not create TX buf DMA map, error %d\n",
2043 __func__, error);
2044 goto fail;
2045 }
2046 }
2047
2048 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2049
2050 return 0;
2051
2052 fail: iwn_free_tx_ring(sc, ring);
2053 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2054 return error;
2055 }
2056
2057 static void
2058 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2059 {
2060 int i;
2061
2062 DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2063
2064 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2065 struct iwn_tx_data *data = &ring->data[i];
2066
2067 if (data->m != NULL) {
2068 bus_dmamap_sync(ring->data_dmat, data->map,
2069 BUS_DMASYNC_POSTWRITE);
2070 bus_dmamap_unload(ring->data_dmat, data->map);
2071 m_freem(data->m);
2072 data->m = NULL;
2073 }
2074 if (data->ni != NULL) {
2075 ieee80211_free_node(data->ni);
2076 data->ni = NULL;
2077 }
2078 data->remapped = 0;
2079 data->long_retries = 0;
2080 }
2081 /* Clear TX descriptors. */
2082 memset(ring->desc, 0, ring->desc_dma.size);
2083 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2084 BUS_DMASYNC_PREWRITE);
2085 sc->qfullmsk &= ~(1 << ring->qid);
2086 ring->queued = 0;
2087 ring->cur = 0;
2088 }
2089
2090 static void
2091 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2092 {
2093 int i;
2094
2095 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2096
2097 iwn_dma_contig_free(&ring->desc_dma);
2098 iwn_dma_contig_free(&ring->cmd_dma);
2099
2100 for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2101 struct iwn_tx_data *data = &ring->data[i];
2102
2103 if (data->m != NULL) {
2104 bus_dmamap_sync(ring->data_dmat, data->map,
2105 BUS_DMASYNC_POSTWRITE);
2106 bus_dmamap_unload(ring->data_dmat, data->map);
2107 m_freem(data->m);
2108 }
2109 if (data->map != NULL)
2110 bus_dmamap_destroy(ring->data_dmat, data->map);
2111 }
2112 if (ring->data_dmat != NULL) {
2113 bus_dma_tag_destroy(ring->data_dmat);
2114 ring->data_dmat = NULL;
2115 }
2116 }
2117
2118 static void
2119 iwn_check_tx_ring(struct iwn_softc *sc, int qid)
2120 {
2121 struct iwn_tx_ring *ring = &sc->txq[qid];
2122
2123 KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!",
2124 __func__, ring->queued, qid));
2125
2126 if (qid >= sc->firstaggqueue) {
2127 struct iwn_ops *ops = &sc->ops;
2128 struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
2129
2130 if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) {
2131 uint16_t ssn = tap->txa_start & 0xfff;
2132 uint8_t tid = tap->txa_tid;
2133 int *res = tap->txa_private;
2134
2135 iwn_nic_lock(sc);
2136 ops->ampdu_tx_stop(sc, qid, tid, ssn);
2137 iwn_nic_unlock(sc);
2138
2139 sc->qid2tap[qid] = NULL;
2140 free(res, M_DEVBUF);
2141 }
2142 }
2143
2144 if (ring->queued < IWN_TX_RING_LOMARK) {
2145 sc->qfullmsk &= ~(1 << qid);
2146
2147 if (ring->queued == 0)
2148 sc->sc_tx_timer = 0;
2149 else
2150 sc->sc_tx_timer = 5;
2151 }
2152 }
2153
2154 static void
2155 iwn5000_ict_reset(struct iwn_softc *sc)
2156 {
2157 /* Disable interrupts. */
2158 IWN_WRITE(sc, IWN_INT_MASK, 0);
2159
2160 /* Reset ICT table. */
2161 memset(sc->ict, 0, IWN_ICT_SIZE);
2162 sc->ict_cur = 0;
2163
2164 bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2165 BUS_DMASYNC_PREWRITE);
2166
2167 /* Set physical address of ICT table (4KB aligned). */
2168 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2169 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2170 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2171
2172 /* Enable periodic RX interrupt. */
2173 sc->int_mask |= IWN_INT_RX_PERIODIC;
2174 /* Switch to ICT interrupt mode in driver. */
2175 sc->sc_flags |= IWN_FLAG_USE_ICT;
2176
2177 /* Re-enable interrupts. */
2178 IWN_WRITE(sc, IWN_INT, 0xffffffff);
2179 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2180 }
2181
2182 static int
2183 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2184 {
2185 struct iwn_ops *ops = &sc->ops;
2186 uint16_t val;
2187 int error;
2188
2189 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2190
2191 /* Check whether adapter has an EEPROM or an OTPROM. */
2192 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2193 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2194 sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2195 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2196 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2197
2198 /* Adapter has to be powered on for EEPROM access to work. */
2199 if ((error = iwn_apm_init(sc)) != 0) {
2200 device_printf(sc->sc_dev,
2201 "%s: could not power ON adapter, error %d\n", __func__,
2202 error);
2203 return error;
2204 }
2205
2206 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2207 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2208 return EIO;
2209 }
2210 if ((error = iwn_eeprom_lock(sc)) != 0) {
2211 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2212 __func__, error);
2213 return error;
2214 }
2215 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2216 if ((error = iwn_init_otprom(sc)) != 0) {
2217 device_printf(sc->sc_dev,
2218 "%s: could not initialize OTPROM, error %d\n",
2219 __func__, error);
2220 return error;
2221 }
2222 }
2223
2224 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2225 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2226 /* Check if HT support is bonded out. */
2227 if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2228 sc->sc_flags |= IWN_FLAG_HAS_11N;
2229
2230 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2231 sc->rfcfg = le16toh(val);
2232 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2233 /* Read Tx/Rx chains from ROM unless it's known to be broken. */
2234 if (sc->txchainmask == 0)
2235 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2236 if (sc->rxchainmask == 0)
2237 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2238
2239 /* Read MAC address. */
2240 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2241
2242 /* Read adapter-specific information from EEPROM. */
2243 ops->read_eeprom(sc);
2244
2245 iwn_apm_stop(sc); /* Power OFF adapter. */
2246
2247 iwn_eeprom_unlock(sc);
2248
2249 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2250
2251 return 0;
2252 }
2253
2254 static void
2255 iwn4965_read_eeprom(struct iwn_softc *sc)
2256 {
2257 uint32_t addr;
2258 uint16_t val;
2259 int i;
2260
2261 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2262
2263 /* Read regulatory domain (4 ASCII characters). */
2264 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2265
2266 /* Read the list of authorized channels (20MHz & 40MHz). */
2267 for (i = 0; i < IWN_NBANDS - 1; i++) {
2268 addr = iwn4965_regulatory_bands[i];
2269 iwn_read_eeprom_channels(sc, i, addr);
2270 }
2271
2272 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2273 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2274 sc->maxpwr2GHz = val & 0xff;
2275 sc->maxpwr5GHz = val >> 8;
2276 /* Check that EEPROM values are within valid range. */
2277 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2278 sc->maxpwr5GHz = 38;
2279 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2280 sc->maxpwr2GHz = 38;
2281 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2282 sc->maxpwr2GHz, sc->maxpwr5GHz);
2283
2284 /* Read samples for each TX power group. */
2285 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2286 sizeof sc->bands);
2287
2288 /* Read voltage at which samples were taken. */
2289 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2290 sc->eeprom_voltage = (int16_t)le16toh(val);
2291 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2292 sc->eeprom_voltage);
2293
2294 #ifdef IWN_DEBUG
2295 /* Print samples. */
2296 if (sc->sc_debug & IWN_DEBUG_ANY) {
2297 for (i = 0; i < IWN_NBANDS - 1; i++)
2298 iwn4965_print_power_group(sc, i);
2299 }
2300 #endif
2301
2302 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2303 }
2304
2305 #ifdef IWN_DEBUG
2306 static void
2307 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2308 {
2309 struct iwn4965_eeprom_band *band = &sc->bands[i];
2310 struct iwn4965_eeprom_chan_samples *chans = band->chans;
2311 int j, c;
2312
2313 printf("===band %d===\n", i);
2314 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2315 printf("chan1 num=%d\n", chans[0].num);
2316 for (c = 0; c < 2; c++) {
2317 for (j = 0; j < IWN_NSAMPLES; j++) {
2318 printf("chain %d, sample %d: temp=%d gain=%d "
2319 "power=%d pa_det=%d\n", c, j,
2320 chans[0].samples[c][j].temp,
2321 chans[0].samples[c][j].gain,
2322 chans[0].samples[c][j].power,
2323 chans[0].samples[c][j].pa_det);
2324 }
2325 }
2326 printf("chan2 num=%d\n", chans[1].num);
2327 for (c = 0; c < 2; c++) {
2328 for (j = 0; j < IWN_NSAMPLES; j++) {
2329 printf("chain %d, sample %d: temp=%d gain=%d "
2330 "power=%d pa_det=%d\n", c, j,
2331 chans[1].samples[c][j].temp,
2332 chans[1].samples[c][j].gain,
2333 chans[1].samples[c][j].power,
2334 chans[1].samples[c][j].pa_det);
2335 }
2336 }
2337 }
2338 #endif
2339
2340 static void
2341 iwn5000_read_eeprom(struct iwn_softc *sc)
2342 {
2343 struct iwn5000_eeprom_calib_hdr hdr;
2344 int32_t volt;
2345 uint32_t base, addr;
2346 uint16_t val;
2347 int i;
2348
2349 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2350
2351 /* Read regulatory domain (4 ASCII characters). */
2352 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2353 base = le16toh(val);
2354 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2355 sc->eeprom_domain, 4);
2356
2357 /* Read the list of authorized channels (20MHz & 40MHz). */
2358 for (i = 0; i < IWN_NBANDS - 1; i++) {
2359 addr = base + sc->base_params->regulatory_bands[i];
2360 iwn_read_eeprom_channels(sc, i, addr);
2361 }
2362
2363 /* Read enhanced TX power information for 6000 Series. */
2364 if (sc->base_params->enhanced_TX_power)
2365 iwn_read_eeprom_enhinfo(sc);
2366
2367 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2368 base = le16toh(val);
2369 iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2370 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2371 "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2372 hdr.version, hdr.pa_type, le16toh(hdr.volt));
2373 sc->calib_ver = hdr.version;
2374
2375 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2376 sc->eeprom_voltage = le16toh(hdr.volt);
2377 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2378 sc->eeprom_temp_high=le16toh(val);
2379 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2380 sc->eeprom_temp = le16toh(val);
2381 }
2382
2383 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2384 /* Compute temperature offset. */
2385 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2386 sc->eeprom_temp = le16toh(val);
2387 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2388 volt = le16toh(val);
2389 sc->temp_off = sc->eeprom_temp - (volt / -5);
2390 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2391 sc->eeprom_temp, volt, sc->temp_off);
2392 } else {
2393 /* Read crystal calibration. */
2394 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2395 &sc->eeprom_crystal, sizeof (uint32_t));
2396 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2397 le32toh(sc->eeprom_crystal));
2398 }
2399
2400 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2401
2402 }
2403
2404 /*
2405 * Translate EEPROM flags to net80211.
2406 */
2407 static uint32_t
2408 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2409 {
2410 uint32_t nflags;
2411
2412 nflags = 0;
2413 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2414 nflags |= IEEE80211_CHAN_PASSIVE;
2415 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2416 nflags |= IEEE80211_CHAN_NOADHOC;
2417 if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2418 nflags |= IEEE80211_CHAN_DFS;
2419 /* XXX apparently IBSS may still be marked */
2420 nflags |= IEEE80211_CHAN_NOADHOC;
2421 }
2422
2423 return nflags;
2424 }
2425
2426 static void
2427 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2428 struct ieee80211_channel chans[])
2429 {
2430 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2431 const struct iwn_chan_band *band = &iwn_bands[n];
2432 uint8_t bands[IEEE80211_MODE_BYTES];
2433 uint8_t chan;
2434 int i, error, nflags;
2435
2436 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2437
2438 memset(bands, 0, sizeof(bands));
2439 if (n == 0) {
2440 setbit(bands, IEEE80211_MODE_11B);
2441 setbit(bands, IEEE80211_MODE_11G);
2442 if (sc->sc_flags & IWN_FLAG_HAS_11N)
2443 setbit(bands, IEEE80211_MODE_11NG);
2444 } else {
2445 setbit(bands, IEEE80211_MODE_11A);
2446 if (sc->sc_flags & IWN_FLAG_HAS_11N)
2447 setbit(bands, IEEE80211_MODE_11NA);
2448 }
2449
2450 for (i = 0; i < band->nchan; i++) {
2451 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2452 DPRINTF(sc, IWN_DEBUG_RESET,
2453 "skip chan %d flags 0x%x maxpwr %d\n",
2454 band->chan[i], channels[i].flags,
2455 channels[i].maxpwr);
2456 continue;
2457 }
2458
2459 chan = band->chan[i];
2460 nflags = iwn_eeprom_channel_flags(&channels[i]);
2461 error = ieee80211_add_channel(chans, maxchans, nchans,
2462 chan, 0, channels[i].maxpwr, nflags, bands);
2463 if (error != 0)
2464 break;
2465
2466 /* Save maximum allowed TX power for this channel. */
2467 /* XXX wrong */
2468 sc->maxpwr[chan] = channels[i].maxpwr;
2469
2470 DPRINTF(sc, IWN_DEBUG_RESET,
2471 "add chan %d flags 0x%x maxpwr %d\n", chan,
2472 channels[i].flags, channels[i].maxpwr);
2473 }
2474
2475 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2476
2477 }
2478
2479 static void
2480 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2481 struct ieee80211_channel chans[])
2482 {
2483 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2484 const struct iwn_chan_band *band = &iwn_bands[n];
2485 uint8_t chan;
2486 int i, error, nflags;
2487
2488 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2489
2490 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2491 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2492 return;
2493 }
2494
2495 for (i = 0; i < band->nchan; i++) {
2496 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2497 DPRINTF(sc, IWN_DEBUG_RESET,
2498 "skip chan %d flags 0x%x maxpwr %d\n",
2499 band->chan[i], channels[i].flags,
2500 channels[i].maxpwr);
2501 continue;
2502 }
2503
2504 chan = band->chan[i];
2505 nflags = iwn_eeprom_channel_flags(&channels[i]);
2506 nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2507 error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2508 chan, channels[i].maxpwr, nflags);
2509 switch (error) {
2510 case EINVAL:
2511 device_printf(sc->sc_dev,
2512 "%s: no entry for channel %d\n", __func__, chan);
2513 continue;
2514 case ENOENT:
2515 DPRINTF(sc, IWN_DEBUG_RESET,
2516 "%s: skip chan %d, extension channel not found\n",
2517 __func__, chan);
2518 continue;
2519 case ENOBUFS:
2520 device_printf(sc->sc_dev,
2521 "%s: channel table is full!\n", __func__);
2522 break;
2523 case 0:
2524 DPRINTF(sc, IWN_DEBUG_RESET,
2525 "add ht40 chan %d flags 0x%x maxpwr %d\n",
2526 chan, channels[i].flags, channels[i].maxpwr);
2527 /* FALLTHROUGH */
2528 default:
2529 break;
2530 }
2531 }
2532
2533 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2534
2535 }
2536
2537 static void
2538 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2539 {
2540 struct ieee80211com *ic = &sc->sc_ic;
2541
2542 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2543 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2544
2545 if (n < 5) {
2546 iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2547 ic->ic_channels);
2548 } else {
2549 iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2550 ic->ic_channels);
2551 }
2552 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2553 }
2554
2555 static struct iwn_eeprom_chan *
2556 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2557 {
2558 int band, chan, i, j;
2559
2560 if (IEEE80211_IS_CHAN_HT40(c)) {
2561 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2562 if (IEEE80211_IS_CHAN_HT40D(c))
2563 chan = c->ic_extieee;
2564 else
2565 chan = c->ic_ieee;
2566 for (i = 0; i < iwn_bands[band].nchan; i++) {
2567 if (iwn_bands[band].chan[i] == chan)
2568 return &sc->eeprom_channels[band][i];
2569 }
2570 } else {
2571 for (j = 0; j < 5; j++) {
2572 for (i = 0; i < iwn_bands[j].nchan; i++) {
2573 if (iwn_bands[j].chan[i] == c->ic_ieee &&
2574 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2575 return &sc->eeprom_channels[j][i];
2576 }
2577 }
2578 }
2579 return NULL;
2580 }
2581
2582 static void
2583 iwn_getradiocaps(struct ieee80211com *ic,
2584 int maxchans, int *nchans, struct ieee80211_channel chans[])
2585 {
2586 struct iwn_softc *sc = ic->ic_softc;
2587 int i;
2588
2589 /* Parse the list of authorized channels. */
2590 for (i = 0; i < 5 && *nchans < maxchans; i++)
2591 iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2592 for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2593 iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2594 }
2595
2596 /*
2597 * Enforce flags read from EEPROM.
2598 */
2599 static int
2600 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2601 int nchan, struct ieee80211_channel chans[])
2602 {
2603 struct iwn_softc *sc = ic->ic_softc;
2604 int i;
2605
2606 for (i = 0; i < nchan; i++) {
2607 struct ieee80211_channel *c = &chans[i];
2608 struct iwn_eeprom_chan *channel;
2609
2610 channel = iwn_find_eeprom_channel(sc, c);
2611 if (channel == NULL) {
2612 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2613 __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2614 return EINVAL;
2615 }
2616 c->ic_flags |= iwn_eeprom_channel_flags(channel);
2617 }
2618
2619 return 0;
2620 }
2621
2622 static void
2623 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2624 {
2625 struct iwn_eeprom_enhinfo enhinfo[35];
2626 struct ieee80211com *ic = &sc->sc_ic;
2627 struct ieee80211_channel *c;
2628 uint16_t val, base;
2629 int8_t maxpwr;
2630 uint8_t flags;
2631 int i, j;
2632
2633 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2634
2635 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2636 base = le16toh(val);
2637 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2638 enhinfo, sizeof enhinfo);
2639
2640 for (i = 0; i < nitems(enhinfo); i++) {
2641 flags = enhinfo[i].flags;
2642 if (!(flags & IWN_ENHINFO_VALID))
2643 continue; /* Skip invalid entries. */
2644
2645 maxpwr = 0;
2646 if (sc->txchainmask & IWN_ANT_A)
2647 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2648 if (sc->txchainmask & IWN_ANT_B)
2649 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2650 if (sc->txchainmask & IWN_ANT_C)
2651 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2652 if (sc->ntxchains == 2)
2653 maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2654 else if (sc->ntxchains == 3)
2655 maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2656
2657 for (j = 0; j < ic->ic_nchans; j++) {
2658 c = &ic->ic_channels[j];
2659 if ((flags & IWN_ENHINFO_5GHZ)) {
2660 if (!IEEE80211_IS_CHAN_A(c))
2661 continue;
2662 } else if ((flags & IWN_ENHINFO_OFDM)) {
2663 if (!IEEE80211_IS_CHAN_G(c))
2664 continue;
2665 } else if (!IEEE80211_IS_CHAN_B(c))
2666 continue;
2667 if ((flags & IWN_ENHINFO_HT40)) {
2668 if (!IEEE80211_IS_CHAN_HT40(c))
2669 continue;
2670 } else {
2671 if (IEEE80211_IS_CHAN_HT40(c))
2672 continue;
2673 }
2674 if (enhinfo[i].chan != 0 &&
2675 enhinfo[i].chan != c->ic_ieee)
2676 continue;
2677
2678 DPRINTF(sc, IWN_DEBUG_RESET,
2679 "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2680 c->ic_flags, maxpwr / 2);
2681 c->ic_maxregpower = maxpwr / 2;
2682 c->ic_maxpower = maxpwr;
2683 }
2684 }
2685
2686 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2687
2688 }
2689
2690 static struct ieee80211_node *
2691 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2692 {
2693 struct iwn_node *wn;
2694
2695 wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2696 if (wn == NULL)
2697 return (NULL);
2698
2699 wn->id = IWN_ID_UNDEFINED;
2700
2701 return (&wn->ni);
2702 }
2703
2704 static __inline int
2705 rate2plcp(int rate)
2706 {
2707 switch (rate & 0xff) {
2708 case 12: return 0xd;
2709 case 18: return 0xf;
2710 case 24: return 0x5;
2711 case 36: return 0x7;
2712 case 48: return 0x9;
2713 case 72: return 0xb;
2714 case 96: return 0x1;
2715 case 108: return 0x3;
2716 case 2: return 10;
2717 case 4: return 20;
2718 case 11: return 55;
2719 case 22: return 110;
2720 }
2721 return 0;
2722 }
2723
2724 static __inline uint8_t
2725 plcp2rate(const uint8_t rate_plcp)
2726 {
2727 switch (rate_plcp) {
2728 case 0xd: return 12;
2729 case 0xf: return 18;
2730 case 0x5: return 24;
2731 case 0x7: return 36;
2732 case 0x9: return 48;
2733 case 0xb: return 72;
2734 case 0x1: return 96;
2735 case 0x3: return 108;
2736 case 10: return 2;
2737 case 20: return 4;
2738 case 55: return 11;
2739 case 110: return 22;
2740 default: return 0;
2741 }
2742 }
2743
2744 static int
2745 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2746 {
2747
2748 return IWN_LSB(sc->txchainmask);
2749 }
2750
2751 static int
2752 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2753 {
2754 int tx;
2755
2756 /*
2757 * The '2 stream' setup is a bit .. odd.
2758 *
2759 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2760 * the firmware panics (eg Intel 5100.)
2761 *
2762 * For NICs that support two antennas, we use ANT_AB.
2763 *
2764 * For NICs that support three antennas, we use the two that
2765 * wasn't the default one.
2766 *
2767 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2768 * this to only one antenna.
2769 */
2770
2771 /* Default - transmit on the other antennas */
2772 tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2773
2774 /* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2775 if (tx == 0)
2776 tx = IWN_ANT_AB;
2777
2778 /*
2779 * If the NIC is a two-stream TX NIC, configure the TX mask to
2780 * the default chainmask
2781 */
2782 else if (sc->ntxchains == 2)
2783 tx = sc->txchainmask;
2784
2785 return (tx);
2786 }
2787
2788
2789
2790 /*
2791 * Calculate the required PLCP value from the given rate,
2792 * to the given node.
2793 *
2794 * This will take the node configuration (eg 11n, rate table
2795 * setup, etc) into consideration.
2796 */
2797 static uint32_t
2798 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2799 uint8_t rate)
2800 {
2801 struct ieee80211com *ic = ni->ni_ic;
2802 uint32_t plcp = 0;
2803 int ridx;
2804
2805 /*
2806 * If it's an MCS rate, let's set the plcp correctly
2807 * and set the relevant flags based on the node config.
2808 */
2809 if (rate & IEEE80211_RATE_MCS) {
2810 /*
2811 * Set the initial PLCP value to be between 0->31 for
2812 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2813 * flag.
2814 */
2815 plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2816
2817 /*
2818 * XXX the following should only occur if both
2819 * the local configuration _and_ the remote node
2820 * advertise these capabilities. Thus this code
2821 * may need fixing!
2822 */
2823
2824 /*
2825 * Set the channel width and guard interval.
2826 */
2827 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2828 plcp |= IWN_RFLAG_HT40;
2829 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2830 plcp |= IWN_RFLAG_SGI;
2831 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2832 plcp |= IWN_RFLAG_SGI;
2833 }
2834
2835 /*
2836 * Ensure the selected rate matches the link quality
2837 * table entries being used.
2838 */
2839 if (rate > 0x8f)
2840 plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2841 else if (rate > 0x87)
2842 plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2843 else
2844 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2845 } else {
2846 /*
2847 * Set the initial PLCP - fine for both
2848 * OFDM and CCK rates.
2849 */
2850 plcp = rate2plcp(rate);
2851
2852 /* Set CCK flag if it's CCK */
2853
2854 /* XXX It would be nice to have a method
2855 * to map the ridx -> phy table entry
2856 * so we could just query that, rather than
2857 * this hack to check against IWN_RIDX_OFDM6.
2858 */
2859 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2860 rate & IEEE80211_RATE_VAL);
2861 if (ridx < IWN_RIDX_OFDM6 &&
2862 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2863 plcp |= IWN_RFLAG_CCK;
2864
2865 /* Set antenna configuration */
2866 /* XXX TODO: is this the right antenna to use for legacy? */
2867 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2868 }
2869
2870 DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2871 __func__,
2872 rate,
2873 plcp);
2874
2875 return (htole32(plcp));
2876 }
2877
2878 static void
2879 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2880 {
2881 /* Doesn't do anything at the moment */
2882 }
2883
2884 static int
2885 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2886 {
2887 struct iwn_vap *ivp = IWN_VAP(vap);
2888 struct ieee80211com *ic = vap->iv_ic;
2889 struct iwn_softc *sc = ic->ic_softc;
2890 int error = 0;
2891
2892 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2893
2894 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2895 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2896
2897 IEEE80211_UNLOCK(ic);
2898 IWN_LOCK(sc);
2899 callout_stop(&sc->calib_to);
2900
2901 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2902
2903 switch (nstate) {
2904 case IEEE80211_S_ASSOC:
2905 if (vap->iv_state != IEEE80211_S_RUN)
2906 break;
2907 /* FALLTHROUGH */
2908 case IEEE80211_S_AUTH:
2909 if (vap->iv_state == IEEE80211_S_AUTH)
2910 break;
2911
2912 /*
2913 * !AUTH -> AUTH transition requires state reset to handle
2914 * reassociations correctly.
2915 */
2916 sc->rxon->associd = 0;
2917 sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2918 sc->calib.state = IWN_CALIB_STATE_INIT;
2919
2920 /* Wait until we hear a beacon before we transmit */
2921 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2922 sc->sc_beacon_wait = 1;
2923
2924 if ((error = iwn_auth(sc, vap)) != 0) {
2925 device_printf(sc->sc_dev,
2926 "%s: could not move to auth state\n", __func__);
2927 }
2928 break;
2929
2930 case IEEE80211_S_RUN:
2931 /*
2932 * RUN -> RUN transition; Just restart the timers.
2933 */
2934 if (vap->iv_state == IEEE80211_S_RUN) {
2935 sc->calib_cnt = 0;
2936 break;
2937 }
2938
2939 /* Wait until we hear a beacon before we transmit */
2940 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2941 sc->sc_beacon_wait = 1;
2942
2943 /*
2944 * !RUN -> RUN requires setting the association id
2945 * which is done with a firmware cmd. We also defer
2946 * starting the timers until that work is done.
2947 */
2948 if ((error = iwn_run(sc, vap)) != 0) {
2949 device_printf(sc->sc_dev,
2950 "%s: could not move to run state\n", __func__);
2951 }
2952 break;
2953
2954 case IEEE80211_S_INIT:
2955 sc->calib.state = IWN_CALIB_STATE_INIT;
2956 /*
2957 * Purge the xmit queue so we don't have old frames
2958 * during a new association attempt.
2959 */
2960 sc->sc_beacon_wait = 0;
2961 iwn_xmit_queue_drain(sc);
2962 break;
2963
2964 default:
2965 break;
2966 }
2967 IWN_UNLOCK(sc);
2968 IEEE80211_LOCK(ic);
2969 if (error != 0){
2970 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2971 return error;
2972 }
2973
2974 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2975
2976 return ivp->iv_newstate(vap, nstate, arg);
2977 }
2978
2979 static void
2980 iwn_calib_timeout(void *arg)
2981 {
2982 struct iwn_softc *sc = arg;
2983
2984 IWN_LOCK_ASSERT(sc);
2985
2986 /* Force automatic TX power calibration every 60 secs. */
2987 if (++sc->calib_cnt >= 120) {
2988 uint32_t flags = 0;
2989
2990 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2991 "sending request for statistics");
2992 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2993 sizeof flags, 1);
2994 sc->calib_cnt = 0;
2995 }
2996 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2997 sc);
2998 }
2999
3000 /*
3001 * Process an RX_PHY firmware notification. This is usually immediately
3002 * followed by an MPDU_RX_DONE notification.
3003 */
3004 static void
3005 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3006 {
3007 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3008
3009 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3010
3011 /* Save RX statistics, they will be used on MPDU_RX_DONE. */
3012 memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3013 sc->last_rx_valid = 1;
3014 }
3015
3016 /*
3017 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3018 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3019 */
3020 static void
3021 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3022 struct iwn_rx_data *data)
3023 {
3024 struct epoch_tracker et;
3025 struct iwn_ops *ops = &sc->ops;
3026 struct ieee80211com *ic = &sc->sc_ic;
3027 struct iwn_rx_ring *ring = &sc->rxq;
3028 struct ieee80211_frame_min *wh;
3029 struct ieee80211_node *ni;
3030 struct mbuf *m, *m1;
3031 struct iwn_rx_stat *stat;
3032 caddr_t head;
3033 bus_addr_t paddr;
3034 uint32_t flags;
3035 int error, len, rssi, nf;
3036
3037 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3038
3039 if (desc->type == IWN_MPDU_RX_DONE) {
3040 /* Check for prior RX_PHY notification. */
3041 if (!sc->last_rx_valid) {
3042 DPRINTF(sc, IWN_DEBUG_ANY,
3043 "%s: missing RX_PHY\n", __func__);
3044 return;
3045 }
3046 stat = &sc->last_rx_stat;
3047 } else
3048 stat = (struct iwn_rx_stat *)(desc + 1);
3049
3050 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3051 device_printf(sc->sc_dev,
3052 "%s: invalid RX statistic header, len %d\n", __func__,
3053 stat->cfg_phy_len);
3054 return;
3055 }
3056 if (desc->type == IWN_MPDU_RX_DONE) {
3057 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3058 head = (caddr_t)(mpdu + 1);
3059 len = le16toh(mpdu->len);
3060 } else {
3061 head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3062 len = le16toh(stat->len);
3063 }
3064
3065 flags = le32toh(*(uint32_t *)(head + len));
3066
3067 /* Discard frames with a bad FCS early. */
3068 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3069 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3070 __func__, flags);
3071 counter_u64_add(ic->ic_ierrors, 1);
3072 return;
3073 }
3074 /* Discard frames that are too short. */
3075 if (len < sizeof (struct ieee80211_frame_ack)) {
3076 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3077 __func__, len);
3078 counter_u64_add(ic->ic_ierrors, 1);
3079 return;
3080 }
3081
3082 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3083 if (m1 == NULL) {
3084 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3085 __func__);
3086 counter_u64_add(ic->ic_ierrors, 1);
3087 return;
3088 }
3089 bus_dmamap_unload(ring->data_dmat, data->map);
3090
3091 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3092 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3093 if (error != 0 && error != EFBIG) {
3094 device_printf(sc->sc_dev,
3095 "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3096 m_freem(m1);
3097
3098 /* Try to reload the old mbuf. */
3099 error = bus_dmamap_load(ring->data_dmat, data->map,
3100 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3101 &paddr, BUS_DMA_NOWAIT);
3102 if (error != 0 && error != EFBIG) {
3103 panic("%s: could not load old RX mbuf", __func__);
3104 }
3105 bus_dmamap_sync(ring->data_dmat, data->map,
3106 BUS_DMASYNC_PREREAD);
3107 /* Physical address may have changed. */
3108 ring->desc[ring->cur] = htole32(paddr >> 8);
3109 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3110 BUS_DMASYNC_PREWRITE);
3111 counter_u64_add(ic->ic_ierrors, 1);
3112 return;
3113 }
3114
3115 bus_dmamap_sync(ring->data_dmat, data->map,
3116 BUS_DMASYNC_PREREAD);
3117
3118 m = data->m;
3119 data->m = m1;
3120 /* Update RX descriptor. */
3121 ring->desc[ring->cur] = htole32(paddr >> 8);
3122 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3123 BUS_DMASYNC_PREWRITE);
3124
3125 /* Finalize mbuf. */
3126 m->m_data = head;
3127 m->m_pkthdr.len = m->m_len = len;
3128
3129 /* Grab a reference to the source node. */
3130 wh = mtod(m, struct ieee80211_frame_min *);
3131 if (len >= sizeof(struct ieee80211_frame_min))
3132 ni = ieee80211_find_rxnode(ic, wh);
3133 else
3134 ni = NULL;
3135 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3136 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3137
3138 rssi = ops->get_rssi(sc, stat);
3139
3140 if (ieee80211_radiotap_active(ic)) {
3141 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3142 uint32_t rate = le32toh(stat->rate);
3143
3144 tap->wr_flags = 0;
3145 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3146 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3147 tap->wr_dbm_antsignal = (int8_t)rssi;
3148 tap->wr_dbm_antnoise = (int8_t)nf;
3149 tap->wr_tsft = stat->tstamp;
3150 if (rate & IWN_RFLAG_MCS) {
3151 tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3152 tap->wr_rate |= IEEE80211_RATE_MCS;
3153 } else
3154 tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3155 }
3156
3157 /*
3158 * If it's a beacon and we're waiting, then do the
3159 * wakeup. This should unblock raw_xmit/start.
3160 */
3161 if (sc->sc_beacon_wait) {
3162 uint8_t type, subtype;
3163 /* NB: Re-assign wh */
3164 wh = mtod(m, struct ieee80211_frame_min *);
3165 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3166 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3167 /*
3168 * This assumes at this point we've received our own
3169 * beacon.
3170 */
3171 DPRINTF(sc, IWN_DEBUG_TRACE,
3172 "%s: beacon_wait, type=%d, subtype=%d\n",
3173 __func__, type, subtype);
3174 if (type == IEEE80211_FC0_TYPE_MGT &&
3175 subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3176 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3177 "%s: waking things up\n", __func__);
3178 /* queue taskqueue to transmit! */
3179 taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3180 }
3181 }
3182
3183 IWN_UNLOCK(sc);
3184 NET_EPOCH_ENTER(et);
3185
3186 /* Send the frame to the 802.11 layer. */
3187 if (ni != NULL) {
3188 if (ni->ni_flags & IEEE80211_NODE_HT)
3189 m->m_flags |= M_AMPDU;
3190 (void)ieee80211_input(ni, m, rssi - nf, nf);
3191 /* Node is no longer needed. */
3192 ieee80211_free_node(ni);
3193 } else
3194 (void)ieee80211_input_all(ic, m, rssi - nf, nf);
3195
3196 NET_EPOCH_EXIT(et);
3197 IWN_LOCK(sc);
3198
3199 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3200
3201 }
3202
3203 static void
3204 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid,
3205 int idx, int success)
3206 {
3207 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3208 struct iwn_tx_data *data = &ring->data[idx];
3209 struct iwn_node *wn;
3210 struct mbuf *m;
3211 struct ieee80211_node *ni;
3212
3213 KASSERT(data->ni != NULL, ("idx %d: no node", idx));
3214 KASSERT(data->m != NULL, ("idx %d: no mbuf", idx));
3215
3216 /* Unmap and free mbuf. */
3217 bus_dmamap_sync(ring->data_dmat, data->map,
3218 BUS_DMASYNC_POSTWRITE);
3219 bus_dmamap_unload(ring->data_dmat, data->map);
3220 m = data->m, data->m = NULL;
3221 ni = data->ni, data->ni = NULL;
3222 wn = (void *)ni;
3223
3224 #if 0
3225 /* XXX causes significant performance degradation. */
3226 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3227 IEEE80211_RATECTL_STATUS_LONG_RETRY;
3228 txs->long_retries = data->long_retries - 1;
3229 #else
3230 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY;
3231 #endif
3232 txs->short_retries = wn->agg[tid].short_retries;
3233 if (success)
3234 txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3235 else
3236 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3237
3238 wn->agg[tid].short_retries = 0;
3239 data->long_retries = 0;
3240
3241 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n",
3242 __func__, m, ni, idx, ring->qid);
3243 ieee80211_ratectl_tx_complete(ni, txs);
3244 ieee80211_tx_complete(ni, m, !success);
3245 }
3246
3247 /* Process an incoming Compressed BlockAck. */
3248 static void
3249 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3250 {
3251 struct iwn_tx_ring *ring;
3252 struct iwn_tx_data *data;
3253 struct iwn_node *wn;
3254 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3255 struct ieee80211_tx_ampdu *tap;
3256 uint64_t bitmap;
3257 uint8_t tid;
3258 int i, qid, shift;
3259 int tx_ok = 0;
3260
3261 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3262
3263 qid = le16toh(ba->qid);
3264 tap = sc->qid2tap[qid];
3265 ring = &sc->txq[qid];
3266 tid = tap->txa_tid;
3267 wn = (void *)tap->txa_ni;
3268
3269 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n"
3270 "bitmap: ba %016jX wn %016jX, start %d\n",
3271 __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn),
3272 (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap,
3273 wn->agg[tid].startidx);
3274
3275 if (wn->agg[tid].bitmap == 0)
3276 return;
3277
3278 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3279 if (shift <= -64)
3280 shift += 0x100;
3281
3282 /*
3283 * Walk the bitmap and calculate how many successful attempts
3284 * are made.
3285 *
3286 * Yes, the rate control code doesn't know these are A-MPDU
3287 * subframes; due to that long_retries stats are not used here.
3288 */
3289 bitmap = le64toh(ba->bitmap);
3290 if (shift >= 0)
3291 bitmap >>= shift;
3292 else
3293 bitmap <<= -shift;
3294 bitmap &= wn->agg[tid].bitmap;
3295 wn->agg[tid].bitmap = 0;
3296
3297 for (i = wn->agg[tid].startidx;
3298 bitmap;
3299 bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) {
3300 if ((bitmap & 1) == 0)
3301 continue;
3302
3303 data = &ring->data[i];
3304 if (__predict_false(data->m == NULL)) {
3305 /*
3306 * There is no frame; skip this entry.
3307 *
3308 * NB: it is "ok" to have both
3309 * 'tx done' + 'compressed BA' replies for frame
3310 * with STATE_SCD_QUERY status.
3311 */
3312 DPRINTF(sc, IWN_DEBUG_AMPDU,
3313 "%s: ring %d: no entry %d\n", __func__, qid, i);
3314 continue;
3315 }
3316
3317 tx_ok++;
3318 iwn_agg_tx_complete(sc, ring, tid, i, 1);
3319 }
3320
3321 ring->queued -= tx_ok;
3322 iwn_check_tx_ring(sc, qid);
3323
3324 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU,
3325 "->%s: end; %d ok\n",__func__, tx_ok);
3326 }
3327
3328 /*
3329 * Process a CALIBRATION_RESULT notification sent by the initialization
3330 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3331 */
3332 static void
3333 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3334 {
3335 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3336 int len, idx = -1;
3337
3338 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3339
3340 /* Runtime firmware should not send such a notification. */
3341 if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3342 DPRINTF(sc, IWN_DEBUG_TRACE,
3343 "->%s received after calib done\n", __func__);
3344 return;
3345 }
3346 len = (le32toh(desc->len) & 0x3fff) - 4;
3347
3348 switch (calib->code) {
3349 case IWN5000_PHY_CALIB_DC:
3350 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3351 idx = 0;
3352 break;
3353 case IWN5000_PHY_CALIB_LO:
3354 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3355 idx = 1;
3356 break;
3357 case IWN5000_PHY_CALIB_TX_IQ:
3358 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3359 idx = 2;
3360 break;
3361 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3362 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3363 idx = 3;
3364 break;
3365 case IWN5000_PHY_CALIB_BASE_BAND:
3366 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3367 idx = 4;
3368 break;
3369 }
3370 if (idx == -1) /* Ignore other results. */
3371 return;
3372
3373 /* Save calibration result. */
3374 if (sc->calibcmd[idx].buf != NULL)
3375 free(sc->calibcmd[idx].buf, M_DEVBUF);
3376 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3377 if (sc->calibcmd[idx].buf == NULL) {
3378 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3379 "not enough memory for calibration result %d\n",
3380 calib->code);
3381 return;
3382 }
3383 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3384 "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3385 sc->calibcmd[idx].len = len;
3386 memcpy(sc->calibcmd[idx].buf, calib, len);
3387 }
3388
3389 static void
3390 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3391 struct iwn_stats *stats, int len)
3392 {
3393 struct iwn_stats_bt *stats_bt;
3394 struct iwn_stats *lstats;
3395
3396 /*
3397 * First - check whether the length is the bluetooth or normal.
3398 *
3399 * If it's normal - just copy it and bump out.
3400 * Otherwise we have to convert things.
3401 */
3402
3403 if (len == sizeof(struct iwn_stats) + 4) {
3404 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3405 sc->last_stat_valid = 1;
3406 return;
3407 }
3408
3409 /*
3410 * If it's not the bluetooth size - log, then just copy.
3411 */
3412 if (len != sizeof(struct iwn_stats_bt) + 4) {
3413 DPRINTF(sc, IWN_DEBUG_STATS,
3414 "%s: size of rx statistics (%d) not an expected size!\n",
3415 __func__,
3416 len);
3417 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3418 sc->last_stat_valid = 1;
3419 return;
3420 }
3421
3422 /*
3423 * Ok. Time to copy.
3424 */
3425 stats_bt = (struct iwn_stats_bt *) stats;
3426 lstats = &sc->last_stat;
3427
3428 /* flags */
3429 lstats->flags = stats_bt->flags;
3430 /* rx_bt */
3431 memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3432 sizeof(struct iwn_rx_phy_stats));
3433 memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3434 sizeof(struct iwn_rx_phy_stats));
3435 memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3436 sizeof(struct iwn_rx_general_stats));
3437 memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3438 sizeof(struct iwn_rx_ht_phy_stats));
3439 /* tx */
3440 memcpy(&lstats->tx, &stats_bt->tx,
3441 sizeof(struct iwn_tx_stats));
3442 /* general */
3443 memcpy(&lstats->general, &stats_bt->general,
3444 sizeof(struct iwn_general_stats));
3445
3446 /* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3447 sc->last_stat_valid = 1;
3448 }
3449
3450 /*
3451 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3452 * The latter is sent by the firmware after each received beacon.
3453 */
3454 static void
3455 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3456 {
3457 struct iwn_ops *ops = &sc->ops;
3458 struct ieee80211com *ic = &sc->sc_ic;
3459 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3460 struct iwn_calib_state *calib = &sc->calib;
3461 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3462 struct iwn_stats *lstats;
3463 int temp;
3464
3465 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3466
3467 /* Ignore statistics received during a scan. */
3468 if (vap->iv_state != IEEE80211_S_RUN ||
3469 (ic->ic_flags & IEEE80211_F_SCAN)){
3470 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3471 __func__);
3472 return;
3473 }
3474
3475 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3476 "%s: received statistics, cmd %d, len %d\n",
3477 __func__, desc->type, le16toh(desc->len));
3478 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
3479
3480 /*
3481 * Collect/track general statistics for reporting.
3482 *
3483 * This takes care of ensuring that the bluetooth sized message
3484 * will be correctly converted to the legacy sized message.
3485 */
3486 iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3487
3488 /*
3489 * And now, let's take a reference of it to use!
3490 */
3491 lstats = &sc->last_stat;
3492
3493 /* Test if temperature has changed. */
3494 if (lstats->general.temp != sc->rawtemp) {
3495 /* Convert "raw" temperature to degC. */
3496 sc->rawtemp = stats->general.temp;
3497 temp = ops->get_temperature(sc);
3498 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3499 __func__, temp);
3500
3501 /* Update TX power if need be (4965AGN only). */
3502 if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3503 iwn4965_power_calibration(sc, temp);
3504 }
3505
3506 if (desc->type != IWN_BEACON_STATISTICS)
3507 return; /* Reply to a statistics request. */
3508
3509 sc->noise = iwn_get_noise(&lstats->rx.general);
3510 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3511
3512 /* Test that RSSI and noise are present in stats report. */
3513 if (le32toh(lstats->rx.general.flags) != 1) {
3514 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3515 "received statistics without RSSI");
3516 return;
3517 }
3518
3519 if (calib->state == IWN_CALIB_STATE_ASSOC)
3520 iwn_collect_noise(sc, &lstats->rx.general);
3521 else if (calib->state == IWN_CALIB_STATE_RUN) {
3522 iwn_tune_sensitivity(sc, &lstats->rx);
3523 /*
3524 * XXX TODO: Only run the RX recovery if we're associated!
3525 */
3526 iwn_check_rx_recovery(sc, lstats);
3527 iwn_save_stats_counters(sc, lstats);
3528 }
3529
3530 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3531 }
3532
3533 /*
3534 * Save the relevant statistic counters for the next calibration
3535 * pass.
3536 */
3537 static void
3538 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3539 {
3540 struct iwn_calib_state *calib = &sc->calib;
3541
3542 /* Save counters values for next call. */
3543 calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3544 calib->fa_cck = le32toh(rs->rx.cck.fa);
3545 calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3546 calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3547 calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3548
3549 /* Last time we received these tick values */
3550 sc->last_calib_ticks = ticks;
3551 }
3552
3553 /*
3554 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
3555 * and 5000 adapters have different incompatible TX status formats.
3556 */
3557 static void
3558 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3559 struct iwn_rx_data *data)
3560 {
3561 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3562 int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3563
3564 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3565 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3566 __func__, desc->qid, desc->idx,
3567 stat->rtsfailcnt,
3568 stat->ackfailcnt,
3569 stat->btkillcnt,
3570 stat->rate, le16toh(stat->duration),
3571 le32toh(stat->status));
3572
3573 if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3574 iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3575 &stat->status);
3576 } else {
3577 iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3578 le32toh(stat->status) & 0xff);
3579 }
3580 }
3581
3582 static void
3583 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3584 struct iwn_rx_data *data)
3585 {
3586 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3587 int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3588
3589 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3590 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3591 __func__, desc->qid, desc->idx,
3592 stat->rtsfailcnt,
3593 stat->ackfailcnt,
3594 stat->btkillcnt,
3595 stat->rate, le16toh(stat->duration),
3596 le32toh(stat->status));
3597
3598 #ifdef notyet
3599 /* Reset TX scheduler slot. */
3600 iwn5000_reset_sched(sc, qid, desc->idx);
3601 #endif
3602
3603 if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3604 iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3605 &stat->status);
3606 } else {
3607 iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3608 le16toh(stat->status) & 0xff);
3609 }
3610 }
3611
3612 static void
3613 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring)
3614 {
3615 int i;
3616
3617 for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) {
3618 struct iwn_tx_data *data = &ring->data[i];
3619
3620 if (data->m != NULL)
3621 break;
3622
3623 data->remapped = 0;
3624 }
3625
3626 ring->read = i;
3627 }
3628
3629 /*
3630 * Adapter-independent backend for TX_DONE firmware notifications.
3631 */
3632 static void
3633 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3634 int ackfailcnt, uint8_t status)
3635 {
3636 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3637 struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3638 struct iwn_tx_data *data = &ring->data[desc->idx];
3639 struct mbuf *m;
3640 struct ieee80211_node *ni;
3641
3642 if (__predict_false(data->m == NULL &&
3643 ring->qid >= sc->firstaggqueue)) {
3644 /*
3645 * There is no frame; skip this entry.
3646 */
3647 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n",
3648 __func__, ring->qid, desc->idx);
3649 return;
3650 }
3651
3652 KASSERT(data->ni != NULL, ("no node"));
3653 KASSERT(data->m != NULL, ("no mbuf"));
3654
3655 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3656
3657 /* Unmap and free mbuf. */
3658 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3659 bus_dmamap_unload(ring->data_dmat, data->map);
3660 m = data->m, data->m = NULL;
3661 ni = data->ni, data->ni = NULL;
3662
3663 data->long_retries = 0;
3664
3665 if (ring->qid >= sc->firstaggqueue)
3666 iwn_adj_ampdu_ptr(sc, ring);
3667
3668 /*
3669 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64
3670 * (aggregation queues only).
3671 */
3672
3673 ring->queued--;
3674 iwn_check_tx_ring(sc, ring->qid);
3675
3676 /*
3677 * Update rate control statistics for the node.
3678 */
3679 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3680 IEEE80211_RATECTL_STATUS_LONG_RETRY;
3681 txs->short_retries = rtsfailcnt;
3682 txs->long_retries = ackfailcnt;
3683 if (!(status & IWN_TX_FAIL))
3684 txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3685 else {
3686 switch (status) {
3687 case IWN_TX_FAIL_SHORT_LIMIT:
3688 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3689 break;
3690 case IWN_TX_FAIL_LONG_LIMIT:
3691 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3692 break;
3693 case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3694 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3695 break;
3696 default:
3697 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3698 break;
3699 }
3700 }
3701 ieee80211_ratectl_tx_complete(ni, txs);
3702
3703 /*
3704 * Channels marked for "radar" require traffic to be received
3705 * to unlock before we can transmit. Until traffic is seen
3706 * any attempt to transmit is returned immediately with status
3707 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily
3708 * happen on first authenticate after scanning. To workaround
3709 * this we ignore a failure of this sort in AUTH state so the
3710 * 802.11 layer will fall back to using a timeout to wait for
3711 * the AUTH reply. This allows the firmware time to see
3712 * traffic so a subsequent retry of AUTH succeeds. It's
3713 * unclear why the firmware does not maintain state for
3714 * channels recently visited as this would allow immediate
3715 * use of the channel after a scan (where we see traffic).
3716 */
3717 if (status == IWN_TX_FAIL_TX_LOCKED &&
3718 ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3719 ieee80211_tx_complete(ni, m, 0);
3720 else
3721 ieee80211_tx_complete(ni, m,
3722 (status & IWN_TX_FAIL) != 0);
3723
3724 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3725 }
3726
3727 /*
3728 * Process a "command done" firmware notification. This is where we wakeup
3729 * processes waiting for a synchronous command completion.
3730 */
3731 static void
3732 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3733 {
3734 struct iwn_tx_ring *ring;
3735 struct iwn_tx_data *data;
3736 int cmd_queue_num;
3737
3738 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3739 cmd_queue_num = IWN_PAN_CMD_QUEUE;
3740 else
3741 cmd_queue_num = IWN_CMD_QUEUE_NUM;
3742
3743 if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3744 return; /* Not a command ack. */
3745
3746 ring = &sc->txq[cmd_queue_num];
3747 data = &ring->data[desc->idx];
3748
3749 /* If the command was mapped in an mbuf, free it. */
3750 if (data->m != NULL) {
3751 bus_dmamap_sync(ring->data_dmat, data->map,
3752 BUS_DMASYNC_POSTWRITE);
3753 bus_dmamap_unload(ring->data_dmat, data->map);
3754 m_freem(data->m);
3755 data->m = NULL;
3756 }
3757 wakeup(&ring->desc[desc->idx]);
3758 }
3759
3760 static int
3761 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx)
3762 {
3763 int bit, shift;
3764
3765 bit = idx - start;
3766 shift = 0;
3767 if (bit >= 64) {
3768 shift = 0x100 - bit;
3769 bit = 0;
3770 } else if (bit <= -64)
3771 bit = 0x100 + bit;
3772 else if (bit < 0) {
3773 shift = -bit;
3774 bit = 0;
3775 }
3776
3777 if (bit - shift >= 64)
3778 return (0);
3779
3780 return ((bitmap & (1ULL << (bit - shift))) != 0);
3781 }
3782
3783 /*
3784 * Firmware bug workaround: in case if 'retries' counter
3785 * overflows 'seqno' field will be incremented:
3786 * status|sequence|status|sequence|status|sequence
3787 * 0000 0A48 0001 0A49 0000 0A6A
3788 * 1000 0A48 1000 0A49 1000 0A6A
3789 * 2000 0A48 2000 0A49 2000 0A6A
3790 * ...
3791 * E000 0A48 E000 0A49 E000 0A6A
3792 * F000 0A48 F000 0A49 F000 0A6A
3793 * 0000 0A49 0000 0A49 0000 0A6B
3794 * 1000 0A49 1000 0A49 1000 0A6B
3795 * ...
3796 * D000 0A49 D000 0A49 D000 0A6B
3797 * E000 0A49 E001 0A49 E000 0A6B
3798 * F000 0A49 F001 0A49 F000 0A6B
3799 * 0000 0A4A 0000 0A4B 0000 0A6A
3800 * 1000 0A4A 1000 0A4B 1000 0A6A
3801 * ...
3802 *
3803 * Odd 'seqno' numbers are incremened by 2 every 2 overflows.
3804 * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0).
3805 * Not checked with nretries >= 64.
3806 *
3807 */
3808 static int
3809 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring,
3810 uint64_t bitmap, int start, int idx)
3811 {
3812 struct ieee80211com *ic = &sc->sc_ic;
3813 struct iwn_tx_data *data;
3814 int diff, min_retries, max_retries, new_idx, loop_end;
3815
3816 new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG;
3817 if (new_idx < 0)
3818 new_idx += IWN_TX_RING_COUNT;
3819
3820 /*
3821 * Corner case: check if retry count is not too big;
3822 * reset device otherwise.
3823 */
3824 if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) {
3825 data = &ring->data[new_idx];
3826 if (data->long_retries > IWN_LONG_RETRY_LIMIT) {
3827 device_printf(sc->sc_dev,
3828 "%s: retry count (%d) for idx %d/%d overflow, "
3829 "resetting...\n", __func__, data->long_retries,
3830 ring->qid, new_idx);
3831 ieee80211_restart_all(ic);
3832 return (-1);
3833 }
3834 }
3835
3836 /* Correct index if needed. */
3837 loop_end = idx;
3838 do {
3839 data = &ring->data[new_idx];
3840 diff = idx - new_idx;
3841 if (diff < 0)
3842 diff += IWN_TX_RING_COUNT;
3843
3844 min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff;
3845 if ((new_idx % 2) == 0)
3846 max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1);
3847 else
3848 max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2);
3849
3850 if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) &&
3851 ((data->long_retries >= min_retries &&
3852 data->long_retries < max_retries) ||
3853 (diff == 1 &&
3854 (new_idx & 0x03) == 0x02 &&
3855 data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) {
3856 DPRINTF(sc, IWN_DEBUG_AMPDU,
3857 "%s: correcting index %d -> %d in queue %d"
3858 " (retries %d)\n", __func__, idx, new_idx,
3859 ring->qid, data->long_retries);
3860 return (new_idx);
3861 }
3862
3863 new_idx = (new_idx + 1) % IWN_TX_RING_COUNT;
3864 } while (new_idx != loop_end);
3865
3866 return (idx);
3867 }
3868
3869 static void
3870 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt,
3871 void *stat)
3872 {
3873 struct iwn_tx_ring *ring = &sc->txq[qid];
3874 struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
3875 struct iwn_node *wn = (void *)tap->txa_ni;
3876 struct iwn_tx_data *data;
3877 uint64_t bitmap = 0;
3878 uint16_t *aggstatus = stat;
3879 uint8_t tid = tap->txa_tid;
3880 int bit, i, idx, shift, start, tx_err;
3881
3882 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3883
3884 start = le16toh(*(aggstatus + nframes * 2)) & 0xff;
3885
3886 for (i = 0; i < nframes; i++) {
3887 uint16_t status = le16toh(aggstatus[i * 2]);
3888
3889 if (status & IWN_AGG_TX_STATE_IGNORE_MASK)
3890 continue;
3891
3892 idx = le16toh(aggstatus[i * 2 + 1]) & 0xff;
3893 data = &ring->data[idx];
3894 if (data->remapped) {
3895 idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx);
3896 if (idx == -1) {
3897 /* skip error (device will be restarted anyway). */
3898 continue;
3899 }
3900
3901 /* Index may have changed. */
3902 data = &ring->data[idx];
3903 }
3904
3905 /*
3906 * XXX Sometimes (rarely) some frames are excluded from events.
3907 * XXX Due to that long_retries counter may be wrong.
3908 */
3909 data->long_retries &= ~0x0f;
3910 data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1;
3911
3912 if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) {
3913 int diff, wrong_idx;
3914
3915 diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW;
3916 wrong_idx = (idx + diff) % IWN_TX_RING_COUNT;
3917
3918 /*
3919 * Mark the entry so the above code will check it
3920 * next time.
3921 */
3922 ring->data[wrong_idx].remapped = 1;
3923 }
3924
3925 if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) {
3926 /*
3927 * NB: count retries but postpone - it was not
3928 * transmitted.
3929 */
3930 continue;
3931 }
3932
3933 bit = idx - start;
3934 shift = 0;
3935 if (bit >= 64) {
3936 shift = 0x100 - bit;
3937 bit = 0;
3938 } else if (bit <= -64)
3939 bit = 0x100 + bit;
3940 else if (bit < 0) {
3941 shift = -bit;
3942 bit = 0;
3943 }
3944 bitmap = bitmap << shift;
3945 bitmap |= 1ULL << bit;
3946 }
3947 wn->agg[tid].startidx = start;
3948 wn->agg[tid].bitmap = bitmap;
3949 wn->agg[tid].short_retries = rtsfailcnt;
3950
3951 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n",
3952 __func__, nframes, start, (uintmax_t)bitmap);
3953
3954 i = ring->read;
3955
3956 for (tx_err = 0;
3957 i != wn->agg[tid].startidx;
3958 i = (i + 1) % IWN_TX_RING_COUNT) {
3959 data = &ring->data[i];
3960 data->remapped = 0;
3961 if (data->m == NULL)
3962 continue;
3963
3964 tx_err++;
3965 iwn_agg_tx_complete(sc, ring, tid, i, 0);
3966 }
3967
3968 ring->read = wn->agg[tid].startidx;
3969 ring->queued -= tx_err;
3970
3971 iwn_check_tx_ring(sc, qid);
3972
3973 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3974 }
3975
3976 /*
3977 * Process an INT_FH_RX or INT_SW_RX interrupt.
3978 */
3979 static void
3980 iwn_notif_intr(struct iwn_softc *sc)
3981 {
3982 struct iwn_ops *ops = &sc->ops;
3983 struct ieee80211com *ic = &sc->sc_ic;
3984 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3985 uint16_t hw;
3986 int is_stopped;
3987
3988 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3989 BUS_DMASYNC_POSTREAD);
3990
3991 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3992 while (sc->rxq.cur != hw) {
3993 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3994 struct iwn_rx_desc *desc;
3995
3996 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3997 BUS_DMASYNC_POSTREAD);
3998 desc = mtod(data->m, struct iwn_rx_desc *);
3999
4000 DPRINTF(sc, IWN_DEBUG_RECV,
4001 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
4002 __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
4003 desc->idx, desc->flags, desc->type,
4004 iwn_intr_str(desc->type), le16toh(desc->len));
4005
4006 if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF)) /* Reply to a command. */
4007 iwn_cmd_done(sc, desc);
4008
4009 switch (desc->type) {
4010 case IWN_RX_PHY:
4011 iwn_rx_phy(sc, desc);
4012 break;
4013
4014 case IWN_RX_DONE: /* 4965AGN only. */
4015 case IWN_MPDU_RX_DONE:
4016 /* An 802.11 frame has been received. */
4017 iwn_rx_done(sc, desc, data);
4018
4019 is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4020 if (__predict_false(is_stopped))
4021 return;
4022
4023 break;
4024
4025 case IWN_RX_COMPRESSED_BA:
4026 /* A Compressed BlockAck has been received. */
4027 iwn_rx_compressed_ba(sc, desc);
4028 break;
4029
4030 case IWN_TX_DONE:
4031 /* An 802.11 frame has been transmitted. */
4032 ops->tx_done(sc, desc, data);
4033 break;
4034
4035 case IWN_RX_STATISTICS:
4036 case IWN_BEACON_STATISTICS:
4037 iwn_rx_statistics(sc, desc);
4038 break;
4039
4040 case IWN_BEACON_MISSED:
4041 {
4042 struct iwn_beacon_missed *miss =
4043 (struct iwn_beacon_missed *)(desc + 1);
4044 int misses;
4045
4046 misses = le32toh(miss->consecutive);
4047
4048 DPRINTF(sc, IWN_DEBUG_STATE,
4049 "%s: beacons missed %d/%d\n", __func__,
4050 misses, le32toh(miss->total));
4051 /*
4052 * If more than 5 consecutive beacons are missed,
4053 * reinitialize the sensitivity state machine.
4054 */
4055 if (vap->iv_state == IEEE80211_S_RUN &&
4056 (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4057 if (misses > 5)
4058 (void)iwn_init_sensitivity(sc);
4059 if (misses >= vap->iv_bmissthreshold) {
4060 IWN_UNLOCK(sc);
4061 ieee80211_beacon_miss(ic);
4062 IWN_LOCK(sc);
4063
4064 is_stopped = (sc->sc_flags &
4065 IWN_FLAG_RUNNING) == 0;
4066 if (__predict_false(is_stopped))
4067 return;
4068 }
4069 }
4070 break;
4071 }
4072 case IWN_UC_READY:
4073 {
4074 struct iwn_ucode_info *uc =
4075 (struct iwn_ucode_info *)(desc + 1);
4076
4077 /* The microcontroller is ready. */
4078 DPRINTF(sc, IWN_DEBUG_RESET,
4079 "microcode alive notification version=%d.%d "
4080 "subtype=%x alive=%x\n", uc->major, uc->minor,
4081 uc->subtype, le32toh(uc->valid));
4082
4083 if (le32toh(uc->valid) != 1) {
4084 device_printf(sc->sc_dev,
4085 "microcontroller initialization failed");
4086 break;
4087 }
4088 if (uc->subtype == IWN_UCODE_INIT) {
4089 /* Save microcontroller report. */
4090 memcpy(&sc->ucode_info, uc, sizeof (*uc));
4091 }
4092 /* Save the address of the error log in SRAM. */
4093 sc->errptr = le32toh(uc->errptr);
4094 break;
4095 }
4096 #ifdef IWN_DEBUG
4097 case IWN_STATE_CHANGED:
4098 {
4099 /*
4100 * State change allows hardware switch change to be
4101 * noted. However, we handle this in iwn_intr as we
4102 * get both the enable/disble intr.
4103 */
4104 uint32_t *status = (uint32_t *)(desc + 1);
4105 DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4106 "state changed to %x\n",
4107 le32toh(*status));
4108 break;
4109 }
4110 case IWN_START_SCAN:
4111 {
4112 struct iwn_start_scan *scan =
4113 (struct iwn_start_scan *)(desc + 1);
4114 DPRINTF(sc, IWN_DEBUG_ANY,
4115 "%s: scanning channel %d status %x\n",
4116 __func__, scan->chan, le32toh(scan->status));
4117 break;
4118 }
4119 #endif
4120 case IWN_STOP_SCAN:
4121 {
4122 #ifdef IWN_DEBUG
4123 struct iwn_stop_scan *scan =
4124 (struct iwn_stop_scan *)(desc + 1);
4125 DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4126 "scan finished nchan=%d status=%d chan=%d\n",
4127 scan->nchan, scan->status, scan->chan);
4128 #endif
4129 sc->sc_is_scanning = 0;
4130 callout_stop(&sc->scan_timeout);
4131 IWN_UNLOCK(sc);
4132 ieee80211_scan_next(vap);
4133 IWN_LOCK(sc);
4134
4135 is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4136 if (__predict_false(is_stopped))
4137 return;
4138
4139 break;
4140 }
4141 case IWN5000_CALIBRATION_RESULT:
4142 iwn5000_rx_calib_results(sc, desc);
4143 break;
4144
4145 case IWN5000_CALIBRATION_DONE:
4146 sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4147 wakeup(sc);
4148 break;
4149 }
4150
4151 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4152 }
4153
4154 /* Tell the firmware what we have processed. */
4155 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4156 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4157 }
4158
4159 /*
4160 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4161 * from power-down sleep mode.
4162 */
4163 static void
4164 iwn_wakeup_intr(struct iwn_softc *sc)
4165 {
4166 int qid;
4167
4168 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4169 __func__);
4170
4171 /* Wakeup RX and TX rings. */
4172 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4173 for (qid = 0; qid < sc->ntxqs; qid++) {
4174 struct iwn_tx_ring *ring = &sc->txq[qid];
4175 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4176 }
4177 }
4178
4179 static void
4180 iwn_rftoggle_task(void *arg, int npending)
4181 {
4182 struct iwn_softc *sc = arg;
4183 struct ieee80211com *ic = &sc->sc_ic;
4184 uint32_t tmp;
4185
4186 IWN_LOCK(sc);
4187 tmp = IWN_READ(sc, IWN_GP_CNTRL);
4188 IWN_UNLOCK(sc);
4189
4190 device_printf(sc->sc_dev, "RF switch: radio %s\n",
4191 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4192 if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4193 ieee80211_suspend_all(ic);
4194
4195 /* Enable interrupts to get RF toggle notification. */
4196 IWN_LOCK(sc);
4197 IWN_WRITE(sc, IWN_INT, 0xffffffff);
4198 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4199 IWN_UNLOCK(sc);
4200 } else
4201 ieee80211_resume_all(ic);
4202 }
4203
4204 /*
4205 * Dump the error log of the firmware when a firmware panic occurs. Although
4206 * we can't debug the firmware because it is neither open source nor free, it
4207 * can help us to identify certain classes of problems.
4208 */
4209 static void
4210 iwn_fatal_intr(struct iwn_softc *sc)
4211 {
4212 struct iwn_fw_dump dump;
4213 int i;
4214
4215 IWN_LOCK_ASSERT(sc);
4216
4217 /* Force a complete recalibration on next init. */
4218 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4219
4220 /* Check that the error log address is valid. */
4221 if (sc->errptr < IWN_FW_DATA_BASE ||
4222 sc->errptr + sizeof (dump) >
4223 IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4224 printf("%s: bad firmware error log address 0x%08x\n", __func__,
4225 sc->errptr);
4226 return;
4227 }
4228 if (iwn_nic_lock(sc) != 0) {
4229 printf("%s: could not read firmware error log\n", __func__);
4230 return;
4231 }
4232 /* Read firmware error log from SRAM. */
4233 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4234 sizeof (dump) / sizeof (uint32_t));
4235 iwn_nic_unlock(sc);
4236
4237 if (dump.valid == 0) {
4238 printf("%s: firmware error log is empty\n", __func__);
4239 return;
4240 }
4241 printf("firmware error log:\n");
4242 printf(" error type = \"%s\" (0x%08X)\n",
4243 (dump.id < nitems(iwn_fw_errmsg)) ?
4244 iwn_fw_errmsg[dump.id] : "UNKNOWN",
4245 dump.id);
4246 printf(" program counter = 0x%08X\n", dump.pc);
4247 printf(" source line = 0x%08X\n", dump.src_line);
4248 printf(" error data = 0x%08X%08X\n",
4249 dump.error_data[0], dump.error_data[1]);
4250 printf(" branch link = 0x%08X%08X\n",
4251 dump.branch_link[0], dump.branch_link[1]);
4252 printf(" interrupt link = 0x%08X%08X\n",
4253 dump.interrupt_link[0], dump.interrupt_link[1]);
4254 printf(" time = %u\n", dump.time[0]);
4255
4256 /* Dump driver status (TX and RX rings) while we're here. */
4257 printf("driver status:\n");
4258 for (i = 0; i < sc->ntxqs; i++) {
4259 struct iwn_tx_ring *ring = &sc->txq[i];
4260 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4261 i, ring->qid, ring->cur, ring->queued);
4262 }
4263 printf(" rx ring: cur=%d\n", sc->rxq.cur);
4264 }
4265
4266 static void
4267 iwn_intr(void *arg)
4268 {
4269 struct iwn_softc *sc = arg;
4270 uint32_t r1, r2, tmp;
4271
4272 IWN_LOCK(sc);
4273
4274 /* Disable interrupts. */
4275 IWN_WRITE(sc, IWN_INT_MASK, 0);
4276
4277 /* Read interrupts from ICT (fast) or from registers (slow). */
4278 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4279 bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4280 BUS_DMASYNC_POSTREAD);
4281 tmp = 0;
4282 while (sc->ict[sc->ict_cur] != 0) {
4283 tmp |= sc->ict[sc->ict_cur];
4284 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
4285 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4286 }
4287 tmp = le32toh(tmp);
4288 if (tmp == 0xffffffff) /* Shouldn't happen. */
4289 tmp = 0;
4290 else if (tmp & 0xc0000) /* Workaround a HW bug. */
4291 tmp |= 0x8000;
4292 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4293 r2 = 0; /* Unused. */
4294 } else {
4295 r1 = IWN_READ(sc, IWN_INT);
4296 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4297 IWN_UNLOCK(sc);
4298 return; /* Hardware gone! */
4299 }
4300 r2 = IWN_READ(sc, IWN_FH_INT);
4301 }
4302
4303 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4304 , r1, r2);
4305
4306 if (r1 == 0 && r2 == 0)
4307 goto done; /* Interrupt not for us. */
4308
4309 /* Acknowledge interrupts. */
4310 IWN_WRITE(sc, IWN_INT, r1);
4311 if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4312 IWN_WRITE(sc, IWN_FH_INT, r2);
4313
4314 if (r1 & IWN_INT_RF_TOGGLED) {
4315 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4316 goto done;
4317 }
4318 if (r1 & IWN_INT_CT_REACHED) {
4319 device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4320 __func__);
4321 }
4322 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4323 device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4324 __func__);
4325 #ifdef IWN_DEBUG
4326 iwn_debug_register(sc);
4327 #endif
4328 /* Dump firmware error log and stop. */
4329 iwn_fatal_intr(sc);
4330
4331 taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4332 goto done;
4333 }
4334 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4335 (r2 & IWN_FH_INT_RX)) {
4336 if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4337 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4338 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4339 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4340 IWN_INT_PERIODIC_DIS);
4341 iwn_notif_intr(sc);
4342 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4343 IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4344 IWN_INT_PERIODIC_ENA);
4345 }
4346 } else
4347 iwn_notif_intr(sc);
4348 }
4349
4350 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4351 if (sc->sc_flags & IWN_FLAG_USE_ICT)
4352 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4353 wakeup(sc); /* FH DMA transfer completed. */
4354 }
4355
4356 if (r1 & IWN_INT_ALIVE)
4357 wakeup(sc); /* Firmware is alive. */
4358
4359 if (r1 & IWN_INT_WAKEUP)
4360 iwn_wakeup_intr(sc);
4361
4362 done:
4363 /* Re-enable interrupts. */
4364 if (sc->sc_flags & IWN_FLAG_RUNNING)
4365 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4366
4367 IWN_UNLOCK(sc);
4368 }
4369
4370 /*
4371 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4372 * 5000 adapters use a slightly different format).
4373 */
4374 static void
4375 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4376 uint16_t len)
4377 {
4378 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4379
4380 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4381
4382 *w = htole16(len + 8);
4383 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4384 BUS_DMASYNC_PREWRITE);
4385 if (idx < IWN_SCHED_WINSZ) {
4386 *(w + IWN_TX_RING_COUNT) = *w;
4387 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4388 BUS_DMASYNC_PREWRITE);
4389 }
4390 }
4391
4392 static void
4393 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4394 uint16_t len)
4395 {
4396 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4397
4398 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4399
4400 *w = htole16(id << 12 | (len + 8));
4401 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4402 BUS_DMASYNC_PREWRITE);
4403 if (idx < IWN_SCHED_WINSZ) {
4404 *(w + IWN_TX_RING_COUNT) = *w;
4405 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4406 BUS_DMASYNC_PREWRITE);
4407 }
4408 }
4409
4410 #ifdef notyet
4411 static void
4412 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4413 {
4414 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4415
4416 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4417
4418 *w = (*w & htole16(0xf000)) | htole16(1);
4419 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4420 BUS_DMASYNC_PREWRITE);
4421 if (idx < IWN_SCHED_WINSZ) {
4422 *(w + IWN_TX_RING_COUNT) = *w;
4423 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4424 BUS_DMASYNC_PREWRITE);
4425 }
4426 }
4427 #endif
4428
4429 /*
4430 * Check whether OFDM 11g protection will be enabled for the given rate.
4431 *
4432 * The original driver code only enabled protection for OFDM rates.
4433 * It didn't check to see whether it was operating in 11a or 11bg mode.
4434 */
4435 static int
4436 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4437 struct ieee80211vap *vap, uint8_t rate)
4438 {
4439 struct ieee80211com *ic = vap->iv_ic;
4440
4441 /*
4442 * Not in 2GHz mode? Then there's no need to enable OFDM
4443 * 11bg protection.
4444 */
4445 if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4446 return (0);
4447 }
4448
4449 /*
4450 * 11bg protection not enabled? Then don't use it.
4451 */
4452 if ((vap->iv_flags & IEEE80211_F_USEPROT) == 0)
4453 return (0);
4454
4455 /*
4456 * If it's an 11n rate - no protection.
4457 * We'll do it via a specific 11n check.
4458 */
4459 if (rate & IEEE80211_RATE_MCS) {
4460 return (0);
4461 }
4462
4463 /*
4464 * Do a rate table lookup. If the PHY is CCK,
4465 * don't do protection.
4466 */
4467 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4468 return (0);
4469
4470 /*
4471 * Yup, enable protection.
4472 */
4473 return (1);
4474 }
4475
4476 /*
4477 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4478 * the link quality table that reflects this particular entry.
4479 */
4480 static int
4481 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4482 uint8_t rate)
4483 {
4484 struct ieee80211_rateset *rs;
4485 int is_11n;
4486 int nr;
4487 int i;
4488 uint8_t cmp_rate;
4489
4490 /*
4491 * Figure out if we're using 11n or not here.
4492 */
4493 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4494 is_11n = 1;
4495 else
4496 is_11n = 0;
4497
4498 /*
4499 * Use the correct rate table.
4500 */
4501 if (is_11n) {
4502 rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4503 nr = ni->ni_htrates.rs_nrates;
4504 } else {
4505 rs = &ni->ni_rates;
4506 nr = rs->rs_nrates;
4507 }
4508
4509 /*
4510 * Find the relevant link quality entry in the table.
4511 */
4512 for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4513 /*
4514 * The link quality table index starts at 0 == highest
4515 * rate, so we walk the rate table backwards.
4516 */
4517 cmp_rate = rs->rs_rates[(nr - 1) - i];
4518 if (rate & IEEE80211_RATE_MCS)
4519 cmp_rate |= IEEE80211_RATE_MCS;
4520
4521 #if 0
4522 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4523 __func__,
4524 i,
4525 nr,
4526 rate,
4527 cmp_rate);
4528 #endif
4529
4530 if (cmp_rate == rate)
4531 return (i);
4532 }
4533
4534 /* Failed? Start at the end */
4535 return (IWN_MAX_TX_RETRIES - 1);
4536 }
4537
4538 static int
4539 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4540 {
4541 const struct ieee80211_txparam *tp = ni->ni_txparms;
4542 struct ieee80211vap *vap = ni->ni_vap;
4543 struct ieee80211com *ic = ni->ni_ic;
4544 struct iwn_node *wn = (void *)ni;
4545 struct iwn_tx_ring *ring;
4546 struct iwn_tx_cmd *cmd;
4547 struct iwn_cmd_data *tx;
4548 struct ieee80211_frame *wh;
4549 struct ieee80211_key *k = NULL;
4550 uint32_t flags;
4551 uint16_t qos;
4552 uint8_t tid, type;
4553 int ac, totlen, rate;
4554
4555 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4556
4557 IWN_LOCK_ASSERT(sc);
4558
4559 wh = mtod(m, struct ieee80211_frame *);
4560 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4561
4562 /* Select EDCA Access Category and TX ring for this frame. */
4563 if (IEEE80211_QOS_HAS_SEQ(wh)) {
4564 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4565 tid = qos & IEEE80211_QOS_TID;
4566 } else {
4567 qos = 0;
4568 tid = 0;
4569 }
4570
4571 /* Choose a TX rate index. */
4572 if (type == IEEE80211_FC0_TYPE_MGT ||
4573 type == IEEE80211_FC0_TYPE_CTL ||
4574 (m->m_flags & M_EAPOL) != 0)
4575 rate = tp->mgmtrate;
4576 else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4577 rate = tp->mcastrate;
4578 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4579 rate = tp->ucastrate;
4580 else {
4581 /* XXX pass pktlen */
4582 (void) ieee80211_ratectl_rate(ni, NULL, 0);
4583 rate = ni->ni_txrate;
4584 }
4585
4586 /*
4587 * XXX TODO: Group addressed frames aren't aggregated and must
4588 * go to the normal non-aggregation queue, and have a NONQOS TID
4589 * assigned from net80211.
4590 */
4591
4592 ac = M_WME_GETAC(m);
4593 if (m->m_flags & M_AMPDU_MPDU) {
4594 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4595
4596 if (!IEEE80211_AMPDU_RUNNING(tap))
4597 return (EINVAL);
4598
4599 ac = *(int *)tap->txa_private;
4600 }
4601
4602 /* Encrypt the frame if need be. */
4603 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4604 /* Retrieve key for TX. */
4605 k = ieee80211_crypto_encap(ni, m);
4606 if (k == NULL) {
4607 return ENOBUFS;
4608 }
4609 /* 802.11 header may have moved. */
4610 wh = mtod(m, struct ieee80211_frame *);
4611 }
4612 totlen = m->m_pkthdr.len;
4613
4614 if (ieee80211_radiotap_active_vap(vap)) {
4615 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4616
4617 tap->wt_flags = 0;
4618 tap->wt_rate = rate;
4619 if (k != NULL)
4620 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4621
4622 ieee80211_radiotap_tx(vap, m);
4623 }
4624
4625 flags = 0;
4626 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4627 /* Unicast frame, check if an ACK is expected. */
4628 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4629 IEEE80211_QOS_ACKPOLICY_NOACK)
4630 flags |= IWN_TX_NEED_ACK;
4631 }
4632 if ((wh->i_fc[0] &
4633 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4634 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4635 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
4636
4637 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4638 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
4639
4640 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4641 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4642 /* NB: Group frames are sent using CCK in 802.11b/g. */
4643 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4644 flags |= IWN_TX_NEED_RTS;
4645 } else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4646 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4647 flags |= IWN_TX_NEED_CTS;
4648 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4649 flags |= IWN_TX_NEED_RTS;
4650 } else if ((rate & IEEE80211_RATE_MCS) &&
4651 (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4652 flags |= IWN_TX_NEED_RTS;
4653 }
4654
4655 /* XXX HT protection? */
4656
4657 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4658 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4659 /* 5000 autoselects RTS/CTS or CTS-to-self. */
4660 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4661 flags |= IWN_TX_NEED_PROTECTION;
4662 } else
4663 flags |= IWN_TX_FULL_TXOP;
4664 }
4665 }
4666
4667 ring = &sc->txq[ac];
4668 if (m->m_flags & M_AMPDU_MPDU) {
4669 uint16_t seqno = ni->ni_txseqs[tid];
4670
4671 if (ring->queued > IWN_TX_RING_COUNT / 2 &&
4672 (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) {
4673 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space "
4674 "(queued %d) left in %d queue!\n",
4675 __func__, ring->queued, ac);
4676 return (ENOBUFS);
4677 }
4678
4679 /*
4680 * Queue this frame to the hardware ring that we've
4681 * negotiated AMPDU TX on.
4682 *
4683 * Note that the sequence number must match the TX slot
4684 * being used!
4685 */
4686 if ((seqno % 256) != ring->cur) {
4687 device_printf(sc->sc_dev,
4688 "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4689 __func__,
4690 m,
4691 seqno,
4692 seqno % 256,
4693 ring->cur);
4694
4695 /* XXX until D9195 will not be committed */
4696 ni->ni_txseqs[tid] &= ~0xff;
4697 ni->ni_txseqs[tid] += ring->cur;
4698 seqno = ni->ni_txseqs[tid];
4699 }
4700
4701 *(uint16_t *)wh->i_seq =
4702 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4703 ni->ni_txseqs[tid]++;
4704 }
4705
4706 /* Prepare TX firmware command. */
4707 cmd = &ring->cmd[ring->cur];
4708 tx = (struct iwn_cmd_data *)cmd->data;
4709
4710 /* NB: No need to clear tx, all fields are reinitialized here. */
4711 tx->scratch = 0; /* clear "scratch" area */
4712
4713 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4714 type != IEEE80211_FC0_TYPE_DATA)
4715 tx->id = sc->broadcast_id;
4716 else
4717 tx->id = wn->id;
4718
4719 if (type == IEEE80211_FC0_TYPE_MGT) {
4720 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4721
4722 /* Tell HW to set timestamp in probe responses. */
4723 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4724 flags |= IWN_TX_INSERT_TSTAMP;
4725 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4726 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4727 tx->timeout = htole16(3);
4728 else
4729 tx->timeout = htole16(2);
4730 } else
4731 tx->timeout = htole16(0);
4732
4733 if (tx->id == sc->broadcast_id) {
4734 /* Group or management frame. */
4735 tx->linkq = 0;
4736 } else {
4737 tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4738 flags |= IWN_TX_LINKQ; /* enable MRR */
4739 }
4740
4741 tx->tid = tid;
4742 tx->rts_ntries = 60;
4743 tx->data_ntries = 15;
4744 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4745 tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4746 tx->security = 0;
4747 tx->flags = htole32(flags);
4748
4749 return (iwn_tx_cmd(sc, m, ni, ring));
4750 }
4751
4752 static int
4753 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4754 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4755 {
4756 struct ieee80211vap *vap = ni->ni_vap;
4757 struct iwn_tx_cmd *cmd;
4758 struct iwn_cmd_data *tx;
4759 struct ieee80211_frame *wh;
4760 struct iwn_tx_ring *ring;
4761 uint32_t flags;
4762 int ac, rate;
4763 uint8_t type;
4764
4765 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4766
4767 IWN_LOCK_ASSERT(sc);
4768
4769 wh = mtod(m, struct ieee80211_frame *);
4770 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4771
4772 ac = params->ibp_pri & 3;
4773
4774 /* Choose a TX rate. */
4775 rate = params->ibp_rate0;
4776
4777 flags = 0;
4778 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4779 flags |= IWN_TX_NEED_ACK;
4780 if (params->ibp_flags & IEEE80211_BPF_RTS) {
4781 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4782 /* 5000 autoselects RTS/CTS or CTS-to-self. */
4783 flags &= ~IWN_TX_NEED_RTS;
4784 flags |= IWN_TX_NEED_PROTECTION;
4785 } else
4786 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4787 }
4788 if (params->ibp_flags & IEEE80211_BPF_CTS) {
4789 if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4790 /* 5000 autoselects RTS/CTS or CTS-to-self. */
4791 flags &= ~IWN_TX_NEED_CTS;
4792 flags |= IWN_TX_NEED_PROTECTION;
4793 } else
4794 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4795 }
4796
4797 if (ieee80211_radiotap_active_vap(vap)) {
4798 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4799
4800 tap->wt_flags = 0;
4801 tap->wt_rate = rate;
4802
4803 ieee80211_radiotap_tx(vap, m);
4804 }
4805
4806 ring = &sc->txq[ac];
4807 cmd = &ring->cmd[ring->cur];
4808
4809 tx = (struct iwn_cmd_data *)cmd->data;
4810 /* NB: No need to clear tx, all fields are reinitialized here. */
4811 tx->scratch = 0; /* clear "scratch" area */
4812
4813 if (type == IEEE80211_FC0_TYPE_MGT) {
4814 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4815
4816 /* Tell HW to set timestamp in probe responses. */
4817 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4818 flags |= IWN_TX_INSERT_TSTAMP;
4819
4820 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4821 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4822 tx->timeout = htole16(3);
4823 else
4824 tx->timeout = htole16(2);
4825 } else
4826 tx->timeout = htole16(0);
4827
4828 tx->tid = 0;
4829 tx->id = sc->broadcast_id;
4830 tx->rts_ntries = params->ibp_try1;
4831 tx->data_ntries = params->ibp_try0;
4832 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4833 tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4834 tx->security = 0;
4835 tx->flags = htole32(flags);
4836
4837 /* Group or management frame. */
4838 tx->linkq = 0;
4839
4840 return (iwn_tx_cmd(sc, m, ni, ring));
4841 }
4842
4843 static int
4844 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4845 struct iwn_tx_ring *ring)
4846 {
4847 struct iwn_ops *ops = &sc->ops;
4848 struct iwn_tx_cmd *cmd;
4849 struct iwn_cmd_data *tx;
4850 struct ieee80211_frame *wh;
4851 struct iwn_tx_desc *desc;
4852 struct iwn_tx_data *data;
4853 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4854 struct mbuf *m1;
4855 u_int hdrlen;
4856 int totlen, error, pad, nsegs = 0, i;
4857
4858 wh = mtod(m, struct ieee80211_frame *);
4859 hdrlen = ieee80211_anyhdrsize(wh);
4860 totlen = m->m_pkthdr.len;
4861
4862 desc = &ring->desc[ring->cur];
4863 data = &ring->data[ring->cur];
4864
4865 if (__predict_false(data->m != NULL || data->ni != NULL)) {
4866 device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d "
4867 "in queue %d is not NULL!\n", __func__, data->ni, data->m,
4868 ring->cur, ring->qid);
4869 return EIO;
4870 }
4871
4872 /* Prepare TX firmware command. */
4873 cmd = &ring->cmd[ring->cur];
4874 cmd->code = IWN_CMD_TX_DATA;
4875 cmd->flags = 0;
4876 cmd->qid = ring->qid;
4877 cmd->idx = ring->cur;
4878
4879 tx = (struct iwn_cmd_data *)cmd->data;
4880 tx->len = htole16(totlen);
4881
4882 /* Set physical address of "scratch area". */
4883 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4884 tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4885 if (hdrlen & 3) {
4886 /* First segment length must be a multiple of 4. */
4887 tx->flags |= htole32(IWN_TX_NEED_PADDING);
4888 pad = 4 - (hdrlen & 3);
4889 } else
4890 pad = 0;
4891
4892 /* Copy 802.11 header in TX command. */
4893 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4894
4895 /* Trim 802.11 header. */
4896 m_adj(m, hdrlen);
4897
4898 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4899 &nsegs, BUS_DMA_NOWAIT);
4900 if (error != 0) {
4901 if (error != EFBIG) {
4902 device_printf(sc->sc_dev,
4903 "%s: can't map mbuf (error %d)\n", __func__, error);
4904 return error;
4905 }
4906 /* Too many DMA segments, linearize mbuf. */
4907 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4908 if (m1 == NULL) {
4909 device_printf(sc->sc_dev,
4910 "%s: could not defrag mbuf\n", __func__);
4911 return ENOBUFS;
4912 }
4913 m = m1;
4914
4915 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4916 segs, &nsegs, BUS_DMA_NOWAIT);
4917 if (error != 0) {
4918 /* XXX fix this */
4919 /*
4920 * NB: Do not return error;
4921 * original mbuf does not exist anymore.
4922 */
4923 device_printf(sc->sc_dev,
4924 "%s: can't map mbuf (error %d)\n",
4925 __func__, error);
4926 if_inc_counter(ni->ni_vap->iv_ifp,
4927 IFCOUNTER_OERRORS, 1);
4928 ieee80211_free_node(ni);
4929 m_freem(m);
4930 return 0;
4931 }
4932 }
4933
4934 data->m = m;
4935 data->ni = ni;
4936
4937 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4938 "plcp 0x%x\n",
4939 __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4940
4941 /* Fill TX descriptor. */
4942 desc->nsegs = 1;
4943 if (m->m_len != 0)
4944 desc->nsegs += nsegs;
4945 /* First DMA segment is used by the TX command. */
4946 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4947 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
4948 (4 + sizeof (*tx) + hdrlen + pad) << 4);
4949 /* Other DMA segments are for data payload. */
4950 seg = &segs[0];
4951 for (i = 1; i <= nsegs; i++) {
4952 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4953 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
4954 seg->ds_len << 4);
4955 seg++;
4956 }
4957
4958 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4959 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4960 BUS_DMASYNC_PREWRITE);
4961 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4962 BUS_DMASYNC_PREWRITE);
4963
4964 /* Update TX scheduler. */
4965 if (ring->qid >= sc->firstaggqueue)
4966 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4967
4968 /* Kick TX ring. */
4969 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4970 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4971
4972 /* Mark TX ring as full if we reach a certain threshold. */
4973 if (++ring->queued > IWN_TX_RING_HIMARK)
4974 sc->qfullmsk |= 1 << ring->qid;
4975
4976 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4977
4978 return 0;
4979 }
4980
4981 static void
4982 iwn_xmit_task(void *arg0, int pending)
4983 {
4984 struct iwn_softc *sc = arg0;
4985 struct ieee80211_node *ni;
4986 struct mbuf *m;
4987 int error;
4988 struct ieee80211_bpf_params p;
4989 int have_p;
4990
4991 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4992
4993 IWN_LOCK(sc);
4994 /*
4995 * Dequeue frames, attempt to transmit,
4996 * then disable beaconwait when we're done.
4997 */
4998 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4999 have_p = 0;
5000 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5001
5002 /* Get xmit params if appropriate */
5003 if (ieee80211_get_xmit_params(m, &p) == 0)
5004 have_p = 1;
5005
5006 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
5007 __func__, m, have_p);
5008
5009 /* If we have xmit params, use them */
5010 if (have_p)
5011 error = iwn_tx_data_raw(sc, m, ni, &p);
5012 else
5013 error = iwn_tx_data(sc, m, ni);
5014
5015 if (error != 0) {
5016 if_inc_counter(ni->ni_vap->iv_ifp,
5017 IFCOUNTER_OERRORS, 1);
5018 ieee80211_free_node(ni);
5019 m_freem(m);
5020 }
5021 }
5022
5023 sc->sc_beacon_wait = 0;
5024 IWN_UNLOCK(sc);
5025 }
5026
5027 /*
5028 * raw frame xmit - free node/reference if failed.
5029 */
5030 static int
5031 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5032 const struct ieee80211_bpf_params *params)
5033 {
5034 struct ieee80211com *ic = ni->ni_ic;
5035 struct iwn_softc *sc = ic->ic_softc;
5036 int error = 0;
5037
5038 DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5039
5040 IWN_LOCK(sc);
5041 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5042 m_freem(m);
5043 IWN_UNLOCK(sc);
5044 return (ENETDOWN);
5045 }
5046
5047 /* queue frame if we have to */
5048 if (sc->sc_beacon_wait) {
5049 if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5050 m_freem(m);
5051 IWN_UNLOCK(sc);
5052 return (ENOBUFS);
5053 }
5054 /* Queued, so just return OK */
5055 IWN_UNLOCK(sc);
5056 return (0);
5057 }
5058
5059 if (params == NULL) {
5060 /*
5061 * Legacy path; interpret frame contents to decide
5062 * precisely how to send the frame.
5063 */
5064 error = iwn_tx_data(sc, m, ni);
5065 } else {
5066 /*
5067 * Caller supplied explicit parameters to use in
5068 * sending the frame.
5069 */
5070 error = iwn_tx_data_raw(sc, m, ni, params);
5071 }
5072 if (error == 0)
5073 sc->sc_tx_timer = 5;
5074 else
5075 m_freem(m);
5076
5077 IWN_UNLOCK(sc);
5078
5079 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5080
5081 return (error);
5082 }
5083
5084 /*
5085 * transmit - don't free mbuf if failed; don't free node ref if failed.
5086 */
5087 static int
5088 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5089 {
5090 struct iwn_softc *sc = ic->ic_softc;
5091 struct ieee80211_node *ni;
5092 int error;
5093
5094 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5095
5096 IWN_LOCK(sc);
5097 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5098 IWN_UNLOCK(sc);
5099 return (ENXIO);
5100 }
5101
5102 if (sc->qfullmsk) {
5103 IWN_UNLOCK(sc);
5104 return (ENOBUFS);
5105 }
5106
5107 error = iwn_tx_data(sc, m, ni);
5108 if (!error)
5109 sc->sc_tx_timer = 5;
5110 IWN_UNLOCK(sc);
5111 return (error);
5112 }
5113
5114 static void
5115 iwn_scan_timeout(void *arg)
5116 {
5117 struct iwn_softc *sc = arg;
5118 struct ieee80211com *ic = &sc->sc_ic;
5119
5120 ic_printf(ic, "scan timeout\n");
5121 ieee80211_restart_all(ic);
5122 }
5123
5124 static void
5125 iwn_watchdog(void *arg)
5126 {
5127 struct iwn_softc *sc = arg;
5128 struct ieee80211com *ic = &sc->sc_ic;
5129
5130 IWN_LOCK_ASSERT(sc);
5131
5132 KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5133
5134 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5135
5136 if (sc->sc_tx_timer > 0) {
5137 if (--sc->sc_tx_timer == 0) {
5138 ic_printf(ic, "device timeout\n");
5139 ieee80211_restart_all(ic);
5140 return;
5141 }
5142 }
5143 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5144 }
5145
5146 static int
5147 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5148 {
5149
5150 return (0);
5151 }
5152
5153 static int
5154 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5155 {
5156
5157 return (0);
5158 }
5159
5160 static int
5161 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5162 struct thread *td)
5163 {
5164 int rc;
5165 struct iwn_softc *sc = dev->si_drv1;
5166 struct iwn_ioctl_data *d;
5167
5168 rc = priv_check(td, PRIV_DRIVER);
5169 if (rc != 0)
5170 return (0);
5171
5172 switch (cmd) {
5173 case SIOCGIWNSTATS:
5174 d = (struct iwn_ioctl_data *) data;
5175 IWN_LOCK(sc);
5176 /* XXX validate permissions/memory/etc? */
5177 rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5178 IWN_UNLOCK(sc);
5179 break;
5180 case SIOCZIWNSTATS:
5181 IWN_LOCK(sc);
5182 memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5183 IWN_UNLOCK(sc);
5184 break;
5185 default:
5186 rc = EINVAL;
5187 break;
5188 }
5189 return (rc);
5190 }
5191
5192 static int
5193 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5194 {
5195
5196 return (ENOTTY);
5197 }
5198
5199 static void
5200 iwn_parent(struct ieee80211com *ic)
5201 {
5202 struct iwn_softc *sc = ic->ic_softc;
5203 struct ieee80211vap *vap;
5204 int error;
5205
5206 if (ic->ic_nrunning > 0) {
5207 error = iwn_init(sc);
5208
5209 switch (error) {
5210 case 0:
5211 ieee80211_start_all(ic);
5212 break;
5213 case 1:
5214 /* radio is disabled via RFkill switch */
5215 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5216 break;
5217 default:
5218 vap = TAILQ_FIRST(&ic->ic_vaps);
5219 if (vap != NULL)
5220 ieee80211_stop(vap);
5221 break;
5222 }
5223 } else
5224 iwn_stop(sc);
5225 }
5226
5227 /*
5228 * Send a command to the firmware.
5229 */
5230 static int
5231 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5232 {
5233 struct iwn_tx_ring *ring;
5234 struct iwn_tx_desc *desc;
5235 struct iwn_tx_data *data;
5236 struct iwn_tx_cmd *cmd;
5237 struct mbuf *m;
5238 bus_addr_t paddr;
5239 int totlen, error;
5240 int cmd_queue_num;
5241
5242 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5243
5244 if (async == 0)
5245 IWN_LOCK_ASSERT(sc);
5246
5247 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5248 cmd_queue_num = IWN_PAN_CMD_QUEUE;
5249 else
5250 cmd_queue_num = IWN_CMD_QUEUE_NUM;
5251
5252 ring = &sc->txq[cmd_queue_num];
5253 desc = &ring->desc[ring->cur];
5254 data = &ring->data[ring->cur];
5255 totlen = 4 + size;
5256
5257 if (size > sizeof cmd->data) {
5258 /* Command is too large to fit in a descriptor. */
5259 if (totlen > MCLBYTES)
5260 return EINVAL;
5261 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5262 if (m == NULL)
5263 return ENOMEM;
5264 cmd = mtod(m, struct iwn_tx_cmd *);
5265 error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5266 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5267 if (error != 0) {
5268 m_freem(m);
5269 return error;
5270 }
5271 data->m = m;
5272 } else {
5273 cmd = &ring->cmd[ring->cur];
5274 paddr = data->cmd_paddr;
5275 }
5276
5277 cmd->code = code;
5278 cmd->flags = 0;
5279 cmd->qid = ring->qid;
5280 cmd->idx = ring->cur;
5281 memcpy(cmd->data, buf, size);
5282
5283 desc->nsegs = 1;
5284 desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5285 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
5286
5287 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5288 __func__, iwn_intr_str(cmd->code), cmd->code,
5289 cmd->flags, cmd->qid, cmd->idx);
5290
5291 if (size > sizeof cmd->data) {
5292 bus_dmamap_sync(ring->data_dmat, data->map,
5293 BUS_DMASYNC_PREWRITE);
5294 } else {
5295 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5296 BUS_DMASYNC_PREWRITE);
5297 }
5298 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5299 BUS_DMASYNC_PREWRITE);
5300
5301 /* Kick command ring. */
5302 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5303 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5304
5305 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5306
5307 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5308 }
5309
5310 static int
5311 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5312 {
5313 struct iwn4965_node_info hnode;
5314 caddr_t src, dst;
5315
5316 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5317
5318 /*
5319 * We use the node structure for 5000 Series internally (it is
5320 * a superset of the one for 4965AGN). We thus copy the common
5321 * fields before sending the command.
5322 */
5323 src = (caddr_t)node;
5324 dst = (caddr_t)&hnode;
5325 memcpy(dst, src, 48);
5326 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5327 memcpy(dst + 48, src + 72, 20);
5328 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5329 }
5330
5331 static int
5332 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5333 {
5334
5335 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5336
5337 /* Direct mapping. */
5338 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5339 }
5340
5341 static int
5342 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5343 {
5344 struct iwn_node *wn = (void *)ni;
5345 struct ieee80211_rateset *rs;
5346 struct iwn_cmd_link_quality linkq;
5347 int i, rate, txrate;
5348 int is_11n;
5349
5350 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5351
5352 memset(&linkq, 0, sizeof linkq);
5353 linkq.id = wn->id;
5354 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5355 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5356
5357 linkq.ampdu_max = 32; /* XXX negotiated? */
5358 linkq.ampdu_threshold = 3;
5359 linkq.ampdu_limit = htole16(4000); /* 4ms */
5360
5361 DPRINTF(sc, IWN_DEBUG_XMIT,
5362 "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5363 __func__,
5364 linkq.antmsk_1stream,
5365 linkq.antmsk_2stream,
5366 sc->ntxchains);
5367
5368 /*
5369 * Are we using 11n rates? Ensure the channel is
5370 * 11n _and_ we have some 11n rates, or don't
5371 * try.
5372 */
5373 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5374 rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5375 is_11n = 1;
5376 } else {
5377 rs = &ni->ni_rates;
5378 is_11n = 0;
5379 }
5380
5381 /* Start at highest available bit-rate. */
5382 /*
5383 * XXX this is all very dirty!
5384 */
5385 if (is_11n)
5386 txrate = ni->ni_htrates.rs_nrates - 1;
5387 else
5388 txrate = rs->rs_nrates - 1;
5389 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5390 uint32_t plcp;
5391
5392 /*
5393 * XXX TODO: ensure the last two slots are the two lowest
5394 * rate entries, just for now.
5395 */
5396 if (i == 14 || i == 15)
5397 txrate = 0;
5398
5399 if (is_11n)
5400 rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5401 else
5402 rate = IEEE80211_RV(rs->rs_rates[txrate]);
5403
5404 /* Do rate -> PLCP config mapping */
5405 plcp = iwn_rate_to_plcp(sc, ni, rate);
5406 linkq.retry[i] = plcp;
5407 DPRINTF(sc, IWN_DEBUG_XMIT,
5408 "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5409 __func__,
5410 i,
5411 txrate,
5412 rate,
5413 le32toh(plcp));
5414
5415 /*
5416 * The mimo field is an index into the table which
5417 * indicates the first index where it and subsequent entries
5418 * will not be using MIMO.
5419 *
5420 * Since we're filling linkq from 0..15 and we're filling
5421 * from the highest MCS rates to the lowest rates, if we
5422 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5423 * the next entry.) That way if the next entry is a non-MIMO
5424 * entry, we're already pointing at it.
5425 */
5426 if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5427 IEEE80211_RV(le32toh(plcp)) > 7)
5428 linkq.mimo = i + 1;
5429
5430 /* Next retry at immediate lower bit-rate. */
5431 if (txrate > 0)
5432 txrate--;
5433 }
5434 /*
5435 * If we reached the end of the list and indeed we hit
5436 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5437 * set mimo to 15. Setting it to 16 panics the firmware.
5438 */
5439 if (linkq.mimo > 15)
5440 linkq.mimo = 15;
5441
5442 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5443
5444 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5445
5446 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5447 }
5448
5449 /*
5450 * Broadcast node is used to send group-addressed and management frames.
5451 */
5452 static int
5453 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5454 {
5455 struct iwn_ops *ops = &sc->ops;
5456 struct ieee80211com *ic = &sc->sc_ic;
5457 struct iwn_node_info node;
5458 struct iwn_cmd_link_quality linkq;
5459 uint8_t txant;
5460 int i, error;
5461
5462 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5463
5464 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5465
5466 memset(&node, 0, sizeof node);
5467 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5468 node.id = sc->broadcast_id;
5469 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5470 if ((error = ops->add_node(sc, &node, async)) != 0)
5471 return error;
5472
5473 /* Use the first valid TX antenna. */
5474 txant = IWN_LSB(sc->txchainmask);
5475
5476 memset(&linkq, 0, sizeof linkq);
5477 linkq.id = sc->broadcast_id;
5478 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5479 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5480 linkq.ampdu_max = 64;
5481 linkq.ampdu_threshold = 3;
5482 linkq.ampdu_limit = htole16(4000); /* 4ms */
5483
5484 /* Use lowest mandatory bit-rate. */
5485 /* XXX rate table lookup? */
5486 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5487 linkq.retry[0] = htole32(0xd);
5488 else
5489 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5490 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5491 /* Use same bit-rate for all TX retries. */
5492 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5493 linkq.retry[i] = linkq.retry[0];
5494 }
5495
5496 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5497
5498 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5499 }
5500
5501 static int
5502 iwn_updateedca(struct ieee80211com *ic)
5503 {
5504 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
5505 struct iwn_softc *sc = ic->ic_softc;
5506 struct iwn_edca_params cmd;
5507 struct chanAccParams chp;
5508 int aci;
5509
5510 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5511
5512 ieee80211_wme_ic_getparams(ic, &chp);
5513
5514 memset(&cmd, 0, sizeof cmd);
5515 cmd.flags = htole32(IWN_EDCA_UPDATE);
5516
5517 IEEE80211_LOCK(ic);
5518 for (aci = 0; aci < WME_NUM_AC; aci++) {
5519 const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5520 cmd.ac[aci].aifsn = ac->wmep_aifsn;
5521 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5522 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5523 cmd.ac[aci].txoplimit =
5524 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5525 }
5526 IEEE80211_UNLOCK(ic);
5527
5528 IWN_LOCK(sc);
5529 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5530 IWN_UNLOCK(sc);
5531
5532 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5533
5534 return 0;
5535 #undef IWN_EXP2
5536 }
5537
5538 static void
5539 iwn_set_promisc(struct iwn_softc *sc)
5540 {
5541 struct ieee80211com *ic = &sc->sc_ic;
5542 uint32_t promisc_filter;
5543
5544 promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5545 if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5546 sc->rxon->filter |= htole32(promisc_filter);
5547 else
5548 sc->rxon->filter &= ~htole32(promisc_filter);
5549 }
5550
5551 static void
5552 iwn_update_promisc(struct ieee80211com *ic)
5553 {
5554 struct iwn_softc *sc = ic->ic_softc;
5555 int error;
5556
5557 if (ic->ic_opmode == IEEE80211_M_MONITOR)
5558 return; /* nothing to do */
5559
5560 IWN_LOCK(sc);
5561 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5562 IWN_UNLOCK(sc);
5563 return;
5564 }
5565
5566 iwn_set_promisc(sc);
5567 if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5568 device_printf(sc->sc_dev,
5569 "%s: could not send RXON, error %d\n",
5570 __func__, error);
5571 }
5572 IWN_UNLOCK(sc);
5573 }
5574
5575 static void
5576 iwn_update_mcast(struct ieee80211com *ic)
5577 {
5578 /* Ignore */
5579 }
5580
5581 static void
5582 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5583 {
5584 struct iwn_cmd_led led;
5585
5586 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5587
5588 #if 0
5589 /* XXX don't set LEDs during scan? */
5590 if (sc->sc_is_scanning)
5591 return;
5592 #endif
5593
5594 /* Clear microcode LED ownership. */
5595 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5596
5597 led.which = which;
5598 led.unit = htole32(10000); /* on/off in unit of 100ms */
5599 led.off = off;
5600 led.on = on;
5601 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5602 }
5603
5604 /*
5605 * Set the critical temperature at which the firmware will stop the radio
5606 * and notify us.
5607 */
5608 static int
5609 iwn_set_critical_temp(struct iwn_softc *sc)
5610 {
5611 struct iwn_critical_temp crit;
5612 int32_t temp;
5613
5614 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5615
5616 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5617
5618 if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5619 temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5620 else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5621 temp = IWN_CTOK(110);
5622 else
5623 temp = 110;
5624 memset(&crit, 0, sizeof crit);
5625 crit.tempR = htole32(temp);
5626 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5627 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5628 }
5629
5630 static int
5631 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5632 {
5633 struct iwn_cmd_timing cmd;
5634 uint64_t val, mod;
5635
5636 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5637
5638 memset(&cmd, 0, sizeof cmd);
5639 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5640 cmd.bintval = htole16(ni->ni_intval);
5641 cmd.lintval = htole16(10);
5642
5643 /* Compute remaining time until next beacon. */
5644 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5645 mod = le64toh(cmd.tstamp) % val;
5646 cmd.binitval = htole32((uint32_t)(val - mod));
5647
5648 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5649 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5650
5651 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5652 }
5653
5654 static void
5655 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5656 {
5657
5658 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5659
5660 /* Adjust TX power if need be (delta >= 3 degC). */
5661 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5662 __func__, sc->temp, temp);
5663 if (abs(temp - sc->temp) >= 3) {
5664 /* Record temperature of last calibration. */
5665 sc->temp = temp;
5666 (void)iwn4965_set_txpower(sc, 1);
5667 }
5668 }
5669
5670 /*
5671 * Set TX power for current channel (each rate has its own power settings).
5672 * This function takes into account the regulatory information from EEPROM,
5673 * the current temperature and the current voltage.
5674 */
5675 static int
5676 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5677 {
5678 /* Fixed-point arithmetic division using a n-bit fractional part. */
5679 #define fdivround(a, b, n) \
5680 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5681 /* Linear interpolation. */
5682 #define interpolate(x, x1, y1, x2, y2, n) \
5683 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5684
5685 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5686 struct iwn_ucode_info *uc = &sc->ucode_info;
5687 struct iwn4965_cmd_txpower cmd;
5688 struct iwn4965_eeprom_chan_samples *chans;
5689 const uint8_t *rf_gain, *dsp_gain;
5690 int32_t vdiff, tdiff;
5691 int i, is_chan_5ghz, c, grp, maxpwr;
5692 uint8_t chan;
5693
5694 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5695 /* Retrieve current channel from last RXON. */
5696 chan = sc->rxon->chan;
5697 is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5698 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5699 chan);
5700
5701 memset(&cmd, 0, sizeof cmd);
5702 cmd.band = is_chan_5ghz ? 0 : 1;
5703 cmd.chan = chan;
5704
5705 if (is_chan_5ghz) {
5706 maxpwr = sc->maxpwr5GHz;
5707 rf_gain = iwn4965_rf_gain_5ghz;
5708 dsp_gain = iwn4965_dsp_gain_5ghz;
5709 } else {
5710 maxpwr = sc->maxpwr2GHz;
5711 rf_gain = iwn4965_rf_gain_2ghz;
5712 dsp_gain = iwn4965_dsp_gain_2ghz;
5713 }
5714
5715 /* Compute voltage compensation. */
5716 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5717 if (vdiff > 0)
5718 vdiff *= 2;
5719 if (abs(vdiff) > 2)
5720 vdiff = 0;
5721 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5722 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5723 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5724
5725 /* Get channel attenuation group. */
5726 if (chan <= 20) /* 1-20 */
5727 grp = 4;
5728 else if (chan <= 43) /* 34-43 */
5729 grp = 0;
5730 else if (chan <= 70) /* 44-70 */
5731 grp = 1;
5732 else if (chan <= 124) /* 71-124 */
5733 grp = 2;
5734 else /* 125-200 */
5735 grp = 3;
5736 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5737 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5738
5739 /* Get channel sub-band. */
5740 for (i = 0; i < IWN_NBANDS; i++)
5741 if (sc->bands[i].lo != 0 &&
5742 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5743 break;
5744 if (i == IWN_NBANDS) /* Can't happen in real-life. */
5745 return EINVAL;
5746 chans = sc->bands[i].chans;
5747 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5748 "%s: chan %d sub-band=%d\n", __func__, chan, i);
5749
5750 for (c = 0; c < 2; c++) {
5751 uint8_t power, gain, temp;
5752 int maxchpwr, pwr, ridx, idx;
5753
5754 power = interpolate(chan,
5755 chans[0].num, chans[0].samples[c][1].power,
5756 chans[1].num, chans[1].samples[c][1].power, 1);
5757 gain = interpolate(chan,
5758 chans[0].num, chans[0].samples[c][1].gain,
5759 chans[1].num, chans[1].samples[c][1].gain, 1);
5760 temp = interpolate(chan,
5761 chans[0].num, chans[0].samples[c][1].temp,
5762 chans[1].num, chans[1].samples[c][1].temp, 1);
5763 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5764 "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5765 __func__, c, power, gain, temp);
5766
5767 /* Compute temperature compensation. */
5768 tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5769 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5770 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5771 __func__, tdiff, sc->temp, temp);
5772
5773 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5774 /* Convert dBm to half-dBm. */
5775 maxchpwr = sc->maxpwr[chan] * 2;
5776 if ((ridx / 8) & 1)
5777 maxchpwr -= 6; /* MIMO 2T: -3dB */
5778
5779 pwr = maxpwr;
5780
5781 /* Adjust TX power based on rate. */
5782 if ((ridx % 8) == 5)
5783 pwr -= 15; /* OFDM48: -7.5dB */
5784 else if ((ridx % 8) == 6)
5785 pwr -= 17; /* OFDM54: -8.5dB */
5786 else if ((ridx % 8) == 7)
5787 pwr -= 20; /* OFDM60: -10dB */
5788 else
5789 pwr -= 10; /* Others: -5dB */
5790
5791 /* Do not exceed channel max TX power. */
5792 if (pwr > maxchpwr)
5793 pwr = maxchpwr;
5794
5795 idx = gain - (pwr - power) - tdiff - vdiff;
5796 if ((ridx / 8) & 1) /* MIMO */
5797 idx += (int32_t)le32toh(uc->atten[grp][c]);
5798
5799 if (cmd.band == 0)
5800 idx += 9; /* 5GHz */
5801 if (ridx == IWN_RIDX_MAX)
5802 idx += 5; /* CCK */
5803
5804 /* Make sure idx stays in a valid range. */
5805 if (idx < 0)
5806 idx = 0;
5807 else if (idx > IWN4965_MAX_PWR_INDEX)
5808 idx = IWN4965_MAX_PWR_INDEX;
5809
5810 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5811 "%s: Tx chain %d, rate idx %d: power=%d\n",
5812 __func__, c, ridx, idx);
5813 cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5814 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5815 }
5816 }
5817
5818 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5819 "%s: set tx power for chan %d\n", __func__, chan);
5820 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5821
5822 #undef interpolate
5823 #undef fdivround
5824 }
5825
5826 static int
5827 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5828 {
5829 struct iwn5000_cmd_txpower cmd;
5830 int cmdid;
5831
5832 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5833
5834 /*
5835 * TX power calibration is handled automatically by the firmware
5836 * for 5000 Series.
5837 */
5838 memset(&cmd, 0, sizeof cmd);
5839 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
5840 cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5841 cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5842 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5843 "%s: setting TX power; rev=%d\n",
5844 __func__,
5845 IWN_UCODE_API(sc->ucode_rev));
5846 if (IWN_UCODE_API(sc->ucode_rev) == 1)
5847 cmdid = IWN_CMD_TXPOWER_DBM_V1;
5848 else
5849 cmdid = IWN_CMD_TXPOWER_DBM;
5850 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5851 }
5852
5853 /*
5854 * Retrieve the maximum RSSI (in dBm) among receivers.
5855 */
5856 static int
5857 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5858 {
5859 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5860 uint8_t mask, agc;
5861 int rssi;
5862
5863 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5864
5865 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5866 agc = (le16toh(phy->agc) >> 7) & 0x7f;
5867
5868 rssi = 0;
5869 if (mask & IWN_ANT_A)
5870 rssi = MAX(rssi, phy->rssi[0]);
5871 if (mask & IWN_ANT_B)
5872 rssi = MAX(rssi, phy->rssi[2]);
5873 if (mask & IWN_ANT_C)
5874 rssi = MAX(rssi, phy->rssi[4]);
5875
5876 DPRINTF(sc, IWN_DEBUG_RECV,
5877 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5878 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5879 rssi - agc - IWN_RSSI_TO_DBM);
5880 return rssi - agc - IWN_RSSI_TO_DBM;
5881 }
5882
5883 static int
5884 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5885 {
5886 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5887 uint8_t agc;
5888 int rssi;
5889
5890 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5891
5892 agc = (le32toh(phy->agc) >> 9) & 0x7f;
5893
5894 rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5895 le16toh(phy->rssi[1]) & 0xff);
5896 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5897
5898 DPRINTF(sc, IWN_DEBUG_RECV,
5899 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5900 phy->rssi[0], phy->rssi[1], phy->rssi[2],
5901 rssi - agc - IWN_RSSI_TO_DBM);
5902 return rssi - agc - IWN_RSSI_TO_DBM;
5903 }
5904
5905 /*
5906 * Retrieve the average noise (in dBm) among receivers.
5907 */
5908 static int
5909 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5910 {
5911 int i, total, nbant, noise;
5912
5913 total = nbant = 0;
5914 for (i = 0; i < 3; i++) {
5915 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5916 continue;
5917 total += noise;
5918 nbant++;
5919 }
5920 /* There should be at least one antenna but check anyway. */
5921 return (nbant == 0) ? -127 : (total / nbant) - 107;
5922 }
5923
5924 /*
5925 * Compute temperature (in degC) from last received statistics.
5926 */
5927 static int
5928 iwn4965_get_temperature(struct iwn_softc *sc)
5929 {
5930 struct iwn_ucode_info *uc = &sc->ucode_info;
5931 int32_t r1, r2, r3, r4, temp;
5932
5933 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5934
5935 r1 = le32toh(uc->temp[0].chan20MHz);
5936 r2 = le32toh(uc->temp[1].chan20MHz);
5937 r3 = le32toh(uc->temp[2].chan20MHz);
5938 r4 = le32toh(sc->rawtemp);
5939
5940 if (r1 == r3) /* Prevents division by 0 (should not happen). */
5941 return 0;
5942
5943 /* Sign-extend 23-bit R4 value to 32-bit. */
5944 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5945 /* Compute temperature in Kelvin. */
5946 temp = (259 * (r4 - r2)) / (r3 - r1);
5947 temp = (temp * 97) / 100 + 8;
5948
5949 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5950 IWN_KTOC(temp));
5951 return IWN_KTOC(temp);
5952 }
5953
5954 static int
5955 iwn5000_get_temperature(struct iwn_softc *sc)
5956 {
5957 int32_t temp;
5958
5959 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5960
5961 /*
5962 * Temperature is not used by the driver for 5000 Series because
5963 * TX power calibration is handled by firmware.
5964 */
5965 temp = le32toh(sc->rawtemp);
5966 if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5967 temp = (temp / -5) + sc->temp_off;
5968 temp = IWN_KTOC(temp);
5969 }
5970 return temp;
5971 }
5972
5973 /*
5974 * Initialize sensitivity calibration state machine.
5975 */
5976 static int
5977 iwn_init_sensitivity(struct iwn_softc *sc)
5978 {
5979 struct iwn_ops *ops = &sc->ops;
5980 struct iwn_calib_state *calib = &sc->calib;
5981 uint32_t flags;
5982 int error;
5983
5984 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5985
5986 /* Reset calibration state machine. */
5987 memset(calib, 0, sizeof (*calib));
5988 calib->state = IWN_CALIB_STATE_INIT;
5989 calib->cck_state = IWN_CCK_STATE_HIFA;
5990 /* Set initial correlation values. */
5991 calib->ofdm_x1 = sc->limits->min_ofdm_x1;
5992 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5993 calib->ofdm_x4 = sc->limits->min_ofdm_x4;
5994 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5995 calib->cck_x4 = 125;
5996 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
5997 calib->energy_cck = sc->limits->energy_cck;
5998
5999 /* Write initial sensitivity. */
6000 if ((error = iwn_send_sensitivity(sc)) != 0)
6001 return error;
6002
6003 /* Write initial gains. */
6004 if ((error = ops->init_gains(sc)) != 0)
6005 return error;
6006
6007 /* Request statistics at each beacon interval. */
6008 flags = 0;
6009 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
6010 __func__);
6011 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
6012 }
6013
6014 /*
6015 * Collect noise and RSSI statistics for the first 20 beacons received
6016 * after association and use them to determine connected antennas and
6017 * to set differential gains.
6018 */
6019 static void
6020 iwn_collect_noise(struct iwn_softc *sc,
6021 const struct iwn_rx_general_stats *stats)
6022 {
6023 struct iwn_ops *ops = &sc->ops;
6024 struct iwn_calib_state *calib = &sc->calib;
6025 struct ieee80211com *ic = &sc->sc_ic;
6026 uint32_t val;
6027 int i;
6028
6029 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6030
6031 /* Accumulate RSSI and noise for all 3 antennas. */
6032 for (i = 0; i < 3; i++) {
6033 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
6034 calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
6035 }
6036 /* NB: We update differential gains only once after 20 beacons. */
6037 if (++calib->nbeacons < 20)
6038 return;
6039
6040 /* Determine highest average RSSI. */
6041 val = MAX(calib->rssi[0], calib->rssi[1]);
6042 val = MAX(calib->rssi[2], val);
6043
6044 /* Determine which antennas are connected. */
6045 sc->chainmask = sc->rxchainmask;
6046 for (i = 0; i < 3; i++)
6047 if (val - calib->rssi[i] > 15 * 20)
6048 sc->chainmask &= ~(1 << i);
6049 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6050 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6051 __func__, sc->rxchainmask, sc->chainmask);
6052
6053 /* If none of the TX antennas are connected, keep at least one. */
6054 if ((sc->chainmask & sc->txchainmask) == 0)
6055 sc->chainmask |= IWN_LSB(sc->txchainmask);
6056
6057 (void)ops->set_gains(sc);
6058 calib->state = IWN_CALIB_STATE_RUN;
6059
6060 #ifdef notyet
6061 /* XXX Disable RX chains with no antennas connected. */
6062 sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6063 if (sc->sc_is_scanning)
6064 device_printf(sc->sc_dev,
6065 "%s: is_scanning set, before RXON\n",
6066 __func__);
6067 (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6068 #endif
6069
6070 /* Enable power-saving mode if requested by user. */
6071 if (ic->ic_flags & IEEE80211_F_PMGTON)
6072 (void)iwn_set_pslevel(sc, 0, 3, 1);
6073
6074 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6075
6076 }
6077
6078 static int
6079 iwn4965_init_gains(struct iwn_softc *sc)
6080 {
6081 struct iwn_phy_calib_gain cmd;
6082
6083 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6084
6085 memset(&cmd, 0, sizeof cmd);
6086 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6087 /* Differential gains initially set to 0 for all 3 antennas. */
6088 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6089 "%s: setting initial differential gains\n", __func__);
6090 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6091 }
6092
6093 static int
6094 iwn5000_init_gains(struct iwn_softc *sc)
6095 {
6096 struct iwn_phy_calib cmd;
6097
6098 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6099
6100 memset(&cmd, 0, sizeof cmd);
6101 cmd.code = sc->reset_noise_gain;
6102 cmd.ngroups = 1;
6103 cmd.isvalid = 1;
6104 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6105 "%s: setting initial differential gains\n", __func__);
6106 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6107 }
6108
6109 static int
6110 iwn4965_set_gains(struct iwn_softc *sc)
6111 {
6112 struct iwn_calib_state *calib = &sc->calib;
6113 struct iwn_phy_calib_gain cmd;
6114 int i, delta, noise;
6115
6116 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6117
6118 /* Get minimal noise among connected antennas. */
6119 noise = INT_MAX; /* NB: There's at least one antenna. */
6120 for (i = 0; i < 3; i++)
6121 if (sc->chainmask & (1 << i))
6122 noise = MIN(calib->noise[i], noise);
6123
6124 memset(&cmd, 0, sizeof cmd);
6125 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6126 /* Set differential gains for connected antennas. */
6127 for (i = 0; i < 3; i++) {
6128 if (sc->chainmask & (1 << i)) {
6129 /* Compute attenuation (in unit of 1.5dB). */
6130 delta = (noise - (int32_t)calib->noise[i]) / 30;
6131 /* NB: delta <= 0 */
6132 /* Limit to [-4.5dB,0]. */
6133 cmd.gain[i] = MIN(abs(delta), 3);
6134 if (delta < 0)
6135 cmd.gain[i] |= 1 << 2; /* sign bit */
6136 }
6137 }
6138 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6139 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6140 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6141 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6142 }
6143
6144 static int
6145 iwn5000_set_gains(struct iwn_softc *sc)
6146 {
6147 struct iwn_calib_state *calib = &sc->calib;
6148 struct iwn_phy_calib_gain cmd;
6149 int i, ant, div, delta;
6150
6151 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6152
6153 /* We collected 20 beacons and !=6050 need a 1.5 factor. */
6154 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6155
6156 memset(&cmd, 0, sizeof cmd);
6157 cmd.code = sc->noise_gain;
6158 cmd.ngroups = 1;
6159 cmd.isvalid = 1;
6160 /* Get first available RX antenna as referential. */
6161 ant = IWN_LSB(sc->rxchainmask);
6162 /* Set differential gains for other antennas. */
6163 for (i = ant + 1; i < 3; i++) {
6164 if (sc->chainmask & (1 << i)) {
6165 /* The delta is relative to antenna "ant". */
6166 delta = ((int32_t)calib->noise[ant] -
6167 (int32_t)calib->noise[i]) / div;
6168 /* Limit to [-4.5dB,+4.5dB]. */
6169 cmd.gain[i - 1] = MIN(abs(delta), 3);
6170 if (delta < 0)
6171 cmd.gain[i - 1] |= 1 << 2; /* sign bit */
6172 }
6173 }
6174 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6175 "setting differential gains Ant B/C: %x/%x (%x)\n",
6176 cmd.gain[0], cmd.gain[1], sc->chainmask);
6177 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6178 }
6179
6180 /*
6181 * Tune RF RX sensitivity based on the number of false alarms detected
6182 * during the last beacon period.
6183 */
6184 static void
6185 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6186 {
6187 #define inc(val, inc, max) \
6188 if ((val) < (max)) { \
6189 if ((val) < (max) - (inc)) \
6190 (val) += (inc); \
6191 else \
6192 (val) = (max); \
6193 needs_update = 1; \
6194 }
6195 #define dec(val, dec, min) \
6196 if ((val) > (min)) { \
6197 if ((val) > (min) + (dec)) \
6198 (val) -= (dec); \
6199 else \
6200 (val) = (min); \
6201 needs_update = 1; \
6202 }
6203
6204 const struct iwn_sensitivity_limits *limits = sc->limits;
6205 struct iwn_calib_state *calib = &sc->calib;
6206 uint32_t val, rxena, fa;
6207 uint32_t energy[3], energy_min;
6208 uint8_t noise[3], noise_ref;
6209 int i, needs_update = 0;
6210
6211 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6212
6213 /* Check that we've been enabled long enough. */
6214 if ((rxena = le32toh(stats->general.load)) == 0){
6215 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6216 return;
6217 }
6218
6219 /* Compute number of false alarms since last call for OFDM. */
6220 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6221 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6222 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */
6223
6224 if (fa > 50 * rxena) {
6225 /* High false alarm count, decrease sensitivity. */
6226 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6227 "%s: OFDM high false alarm count: %u\n", __func__, fa);
6228 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
6229 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6230 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
6231 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6232
6233 } else if (fa < 5 * rxena) {
6234 /* Low false alarm count, increase sensitivity. */
6235 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6236 "%s: OFDM low false alarm count: %u\n", __func__, fa);
6237 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
6238 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6239 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
6240 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6241 }
6242
6243 /* Compute maximum noise among 3 receivers. */
6244 for (i = 0; i < 3; i++)
6245 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6246 val = MAX(noise[0], noise[1]);
6247 val = MAX(noise[2], val);
6248 /* Insert it into our samples table. */
6249 calib->noise_samples[calib->cur_noise_sample] = val;
6250 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6251
6252 /* Compute maximum noise among last 20 samples. */
6253 noise_ref = calib->noise_samples[0];
6254 for (i = 1; i < 20; i++)
6255 noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6256
6257 /* Compute maximum energy among 3 receivers. */
6258 for (i = 0; i < 3; i++)
6259 energy[i] = le32toh(stats->general.energy[i]);
6260 val = MIN(energy[0], energy[1]);
6261 val = MIN(energy[2], val);
6262 /* Insert it into our samples table. */
6263 calib->energy_samples[calib->cur_energy_sample] = val;
6264 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6265
6266 /* Compute minimum energy among last 10 samples. */
6267 energy_min = calib->energy_samples[0];
6268 for (i = 1; i < 10; i++)
6269 energy_min = MAX(energy_min, calib->energy_samples[i]);
6270 energy_min += 6;
6271
6272 /* Compute number of false alarms since last call for CCK. */
6273 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6274 fa += le32toh(stats->cck.fa) - calib->fa_cck;
6275 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */
6276
6277 if (fa > 50 * rxena) {
6278 /* High false alarm count, decrease sensitivity. */
6279 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6280 "%s: CCK high false alarm count: %u\n", __func__, fa);
6281 calib->cck_state = IWN_CCK_STATE_HIFA;
6282 calib->low_fa = 0;
6283
6284 if (calib->cck_x4 > 160) {
6285 calib->noise_ref = noise_ref;
6286 if (calib->energy_cck > 2)
6287 dec(calib->energy_cck, 2, energy_min);
6288 }
6289 if (calib->cck_x4 < 160) {
6290 calib->cck_x4 = 161;
6291 needs_update = 1;
6292 } else
6293 inc(calib->cck_x4, 3, limits->max_cck_x4);
6294
6295 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6296
6297 } else if (fa < 5 * rxena) {
6298 /* Low false alarm count, increase sensitivity. */
6299 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6300 "%s: CCK low false alarm count: %u\n", __func__, fa);
6301 calib->cck_state = IWN_CCK_STATE_LOFA;
6302 calib->low_fa++;
6303
6304 if (calib->cck_state != IWN_CCK_STATE_INIT &&
6305 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6306 calib->low_fa > 100)) {
6307 inc(calib->energy_cck, 2, limits->min_energy_cck);
6308 dec(calib->cck_x4, 3, limits->min_cck_x4);
6309 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6310 }
6311 } else {
6312 /* Not worth to increase or decrease sensitivity. */
6313 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6314 "%s: CCK normal false alarm count: %u\n", __func__, fa);
6315 calib->low_fa = 0;
6316 calib->noise_ref = noise_ref;
6317
6318 if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6319 /* Previous interval had many false alarms. */
6320 dec(calib->energy_cck, 8, energy_min);
6321 }
6322 calib->cck_state = IWN_CCK_STATE_INIT;
6323 }
6324
6325 if (needs_update)
6326 (void)iwn_send_sensitivity(sc);
6327
6328 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6329
6330 #undef dec
6331 #undef inc
6332 }
6333
6334 static int
6335 iwn_send_sensitivity(struct iwn_softc *sc)
6336 {
6337 struct iwn_calib_state *calib = &sc->calib;
6338 struct iwn_enhanced_sensitivity_cmd cmd;
6339 int len;
6340
6341 memset(&cmd, 0, sizeof cmd);
6342 len = sizeof (struct iwn_sensitivity_cmd);
6343 cmd.which = IWN_SENSITIVITY_WORKTBL;
6344 /* OFDM modulation. */
6345 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
6346 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
6347 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
6348 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
6349 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
6350 cmd.energy_ofdm_th = htole16(62);
6351 /* CCK modulation. */
6352 cmd.corr_cck_x4 = htole16(calib->cck_x4);
6353 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
6354 cmd.energy_cck = htole16(calib->energy_cck);
6355 /* Barker modulation: use default values. */
6356 cmd.corr_barker = htole16(190);
6357 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc);
6358
6359 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6360 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6361 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6362 calib->ofdm_mrc_x4, calib->cck_x4,
6363 calib->cck_mrc_x4, calib->energy_cck);
6364
6365 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6366 goto send;
6367 /* Enhanced sensitivity settings. */
6368 len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6369 cmd.ofdm_det_slope_mrc = htole16(668);
6370 cmd.ofdm_det_icept_mrc = htole16(4);
6371 cmd.ofdm_det_slope = htole16(486);
6372 cmd.ofdm_det_icept = htole16(37);
6373 cmd.cck_det_slope_mrc = htole16(853);
6374 cmd.cck_det_icept_mrc = htole16(4);
6375 cmd.cck_det_slope = htole16(476);
6376 cmd.cck_det_icept = htole16(99);
6377 send:
6378 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6379 }
6380
6381 /*
6382 * Look at the increase of PLCP errors over time; if it exceeds
6383 * a programmed threshold then trigger an RF retune.
6384 */
6385 static void
6386 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6387 {
6388 int32_t delta_ofdm, delta_ht, delta_cck;
6389 struct iwn_calib_state *calib = &sc->calib;
6390 int delta_ticks, cur_ticks;
6391 int delta_msec;
6392 int thresh;
6393
6394 /*
6395 * Calculate the difference between the current and
6396 * previous statistics.
6397 */
6398 delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6399 delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6400 delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6401
6402 /*
6403 * Calculate the delta in time between successive statistics
6404 * messages. Yes, it can roll over; so we make sure that
6405 * this doesn't happen.
6406 *
6407 * XXX go figure out what to do about rollover
6408 * XXX go figure out what to do if ticks rolls over to -ve instead!
6409 * XXX go stab signed integer overflow undefined-ness in the face.
6410 */
6411 cur_ticks = ticks;
6412 delta_ticks = cur_ticks - sc->last_calib_ticks;
6413
6414 /*
6415 * If any are negative, then the firmware likely reset; so just
6416 * bail. We'll pick this up next time.
6417 */
6418 if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6419 return;
6420
6421 /*
6422 * delta_ticks is in ticks; we need to convert it up to milliseconds
6423 * so we can do some useful math with it.
6424 */
6425 delta_msec = ticks_to_msecs(delta_ticks);
6426
6427 /*
6428 * Calculate what our threshold is given the current delta_msec.
6429 */
6430 thresh = sc->base_params->plcp_err_threshold * delta_msec;
6431
6432 DPRINTF(sc, IWN_DEBUG_STATE,
6433 "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6434 __func__,
6435 delta_msec,
6436 delta_cck,
6437 delta_ofdm,
6438 delta_ht,
6439 (delta_msec + delta_cck + delta_ofdm + delta_ht),
6440 thresh);
6441
6442 /*
6443 * If we need a retune, then schedule a single channel scan
6444 * to a channel that isn't the currently active one!
6445 *
6446 * The math from linux iwlwifi:
6447 *
6448 * if ((delta * 100 / msecs) > threshold)
6449 */
6450 if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6451 DPRINTF(sc, IWN_DEBUG_ANY,
6452 "%s: PLCP error threshold raw (%d) comparison (%d) "
6453 "over limit (%d); retune!\n",
6454 __func__,
6455 (delta_cck + delta_ofdm + delta_ht),
6456 (delta_cck + delta_ofdm + delta_ht) * 100,
6457 thresh);
6458 }
6459 }
6460
6461 /*
6462 * Set STA mode power saving level (between 0 and 5).
6463 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6464 */
6465 static int
6466 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6467 {
6468 struct iwn_pmgt_cmd cmd;
6469 const struct iwn_pmgt *pmgt;
6470 uint32_t max, skip_dtim;
6471 uint32_t reg;
6472 int i;
6473
6474 DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6475 "%s: dtim=%d, level=%d, async=%d\n",
6476 __func__,
6477 dtim,
6478 level,
6479 async);
6480
6481 /* Select which PS parameters to use. */
6482 if (dtim <= 2)
6483 pmgt = &iwn_pmgt[0][level];
6484 else if (dtim <= 10)
6485 pmgt = &iwn_pmgt[1][level];
6486 else
6487 pmgt = &iwn_pmgt[2][level];
6488
6489 memset(&cmd, 0, sizeof cmd);
6490 if (level != 0) /* not CAM */
6491 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6492 if (level == 5)
6493 cmd.flags |= htole16(IWN_PS_FAST_PD);
6494 /* Retrieve PCIe Active State Power Management (ASPM). */
6495 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6496 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */
6497 cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6498 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6499 cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6500
6501 if (dtim == 0) {
6502 dtim = 1;
6503 skip_dtim = 0;
6504 } else
6505 skip_dtim = pmgt->skip_dtim;
6506 if (skip_dtim != 0) {
6507 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6508 max = pmgt->intval[4];
6509 if (max == (uint32_t)-1)
6510 max = dtim * (skip_dtim + 1);
6511 else if (max > dtim)
6512 max = rounddown(max, dtim);
6513 } else
6514 max = dtim;
6515 for (i = 0; i < 5; i++)
6516 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6517
6518 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6519 level);
6520 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6521 }
6522
6523 static int
6524 iwn_send_btcoex(struct iwn_softc *sc)
6525 {
6526 struct iwn_bluetooth cmd;
6527
6528 memset(&cmd, 0, sizeof cmd);
6529 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6530 cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6531 cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6532 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6533 __func__);
6534 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6535 }
6536
6537 static int
6538 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6539 {
6540 static const uint32_t btcoex_3wire[12] = {
6541 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6542 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6543 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6544 };
6545 struct iwn6000_btcoex_config btconfig;
6546 struct iwn2000_btcoex_config btconfig2k;
6547 struct iwn_btcoex_priotable btprio;
6548 struct iwn_btcoex_prot btprot;
6549 int error, i;
6550 uint8_t flags;
6551
6552 memset(&btconfig, 0, sizeof btconfig);
6553 memset(&btconfig2k, 0, sizeof btconfig2k);
6554
6555 flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6556 IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6557
6558 if (sc->base_params->bt_sco_disable)
6559 flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6560 else
6561 flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6562
6563 flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6564
6565 /* Default flags result is 145 as old value */
6566
6567 /*
6568 * Flags value has to be review. Values must change if we
6569 * which to disable it
6570 */
6571 if (sc->base_params->bt_session_2) {
6572 btconfig2k.flags = flags;
6573 btconfig2k.max_kill = 5;
6574 btconfig2k.bt3_t7_timer = 1;
6575 btconfig2k.kill_ack = htole32(0xffff0000);
6576 btconfig2k.kill_cts = htole32(0xffff0000);
6577 btconfig2k.sample_time = 2;
6578 btconfig2k.bt3_t2_timer = 0xc;
6579
6580 for (i = 0; i < 12; i++)
6581 btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6582 btconfig2k.valid = htole16(0xff);
6583 btconfig2k.prio_boost = htole32(0xf0);
6584 DPRINTF(sc, IWN_DEBUG_RESET,
6585 "%s: configuring advanced bluetooth coexistence"
6586 " session 2, flags : 0x%x\n",
6587 __func__,
6588 flags);
6589 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6590 sizeof(btconfig2k), 1);
6591 } else {
6592 btconfig.flags = flags;
6593 btconfig.max_kill = 5;
6594 btconfig.bt3_t7_timer = 1;
6595 btconfig.kill_ack = htole32(0xffff0000);
6596 btconfig.kill_cts = htole32(0xffff0000);
6597 btconfig.sample_time = 2;
6598 btconfig.bt3_t2_timer = 0xc;
6599
6600 for (i = 0; i < 12; i++)
6601 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6602 btconfig.valid = htole16(0xff);
6603 btconfig.prio_boost = 0xf0;
6604 DPRINTF(sc, IWN_DEBUG_RESET,
6605 "%s: configuring advanced bluetooth coexistence,"
6606 " flags : 0x%x\n",
6607 __func__,
6608 flags);
6609 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6610 sizeof(btconfig), 1);
6611 }
6612
6613 if (error != 0)
6614 return error;
6615
6616 memset(&btprio, 0, sizeof btprio);
6617 btprio.calib_init1 = 0x6;
6618 btprio.calib_init2 = 0x7;
6619 btprio.calib_periodic_low1 = 0x2;
6620 btprio.calib_periodic_low2 = 0x3;
6621 btprio.calib_periodic_high1 = 0x4;
6622 btprio.calib_periodic_high2 = 0x5;
6623 btprio.dtim = 0x6;
6624 btprio.scan52 = 0x8;
6625 btprio.scan24 = 0xa;
6626 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6627 1);
6628 if (error != 0)
6629 return error;
6630
6631 /* Force BT state machine change. */
6632 memset(&btprot, 0, sizeof btprot);
6633 btprot.open = 1;
6634 btprot.type = 1;
6635 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6636 if (error != 0)
6637 return error;
6638 btprot.open = 0;
6639 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6640 }
6641
6642 static int
6643 iwn5000_runtime_calib(struct iwn_softc *sc)
6644 {
6645 struct iwn5000_calib_config cmd;
6646
6647 memset(&cmd, 0, sizeof cmd);
6648 cmd.ucode.once.enable = 0xffffffff;
6649 cmd.ucode.once.start = IWN5000_CALIB_DC;
6650 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6651 "%s: configuring runtime calibration\n", __func__);
6652 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6653 }
6654
6655 static uint32_t
6656 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211vap *vap,
6657 struct ieee80211_channel *c)
6658 {
6659 uint32_t htflags = 0;
6660
6661 if (! IEEE80211_IS_CHAN_HT(c))
6662 return (0);
6663
6664 htflags |= IWN_RXON_HT_PROTMODE(vap->iv_curhtprotmode);
6665
6666 if (IEEE80211_IS_CHAN_HT40(c)) {
6667 switch (vap->iv_curhtprotmode) {
6668 case IEEE80211_HTINFO_OPMODE_HT20PR:
6669 htflags |= IWN_RXON_HT_MODEPURE40;
6670 break;
6671 default:
6672 htflags |= IWN_RXON_HT_MODEMIXED;
6673 break;
6674 }
6675 }
6676 if (IEEE80211_IS_CHAN_HT40D(c))
6677 htflags |= IWN_RXON_HT_HT40MINUS;
6678
6679 return (htflags);
6680 }
6681
6682 static int
6683 iwn_check_bss_filter(struct iwn_softc *sc)
6684 {
6685 return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6686 }
6687
6688 static int
6689 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6690 {
6691 struct iwn4965_rxon_assoc cmd;
6692 struct iwn_rxon *rxon = sc->rxon;
6693
6694 cmd.flags = rxon->flags;
6695 cmd.filter = rxon->filter;
6696 cmd.ofdm_mask = rxon->ofdm_mask;
6697 cmd.cck_mask = rxon->cck_mask;
6698 cmd.ht_single_mask = rxon->ht_single_mask;
6699 cmd.ht_dual_mask = rxon->ht_dual_mask;
6700 cmd.rxchain = rxon->rxchain;
6701 cmd.reserved = 0;
6702
6703 return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6704 }
6705
6706 static int
6707 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6708 {
6709 struct iwn5000_rxon_assoc cmd;
6710 struct iwn_rxon *rxon = sc->rxon;
6711
6712 cmd.flags = rxon->flags;
6713 cmd.filter = rxon->filter;
6714 cmd.ofdm_mask = rxon->ofdm_mask;
6715 cmd.cck_mask = rxon->cck_mask;
6716 cmd.reserved1 = 0;
6717 cmd.ht_single_mask = rxon->ht_single_mask;
6718 cmd.ht_dual_mask = rxon->ht_dual_mask;
6719 cmd.ht_triple_mask = rxon->ht_triple_mask;
6720 cmd.reserved2 = 0;
6721 cmd.rxchain = rxon->rxchain;
6722 cmd.acquisition = rxon->acquisition;
6723 cmd.reserved3 = 0;
6724
6725 return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6726 }
6727
6728 static int
6729 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6730 {
6731 struct iwn_ops *ops = &sc->ops;
6732 int error;
6733
6734 IWN_LOCK_ASSERT(sc);
6735
6736 if (assoc && iwn_check_bss_filter(sc) != 0) {
6737 error = ops->rxon_assoc(sc, async);
6738 if (error != 0) {
6739 device_printf(sc->sc_dev,
6740 "%s: RXON_ASSOC command failed, error %d\n",
6741 __func__, error);
6742 return (error);
6743 }
6744 } else {
6745 if (sc->sc_is_scanning)
6746 device_printf(sc->sc_dev,
6747 "%s: is_scanning set, before RXON\n",
6748 __func__);
6749
6750 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6751 if (error != 0) {
6752 device_printf(sc->sc_dev,
6753 "%s: RXON command failed, error %d\n",
6754 __func__, error);
6755 return (error);
6756 }
6757
6758 /*
6759 * Reconfiguring RXON clears the firmware nodes table so
6760 * we must add the broadcast node again.
6761 */
6762 if (iwn_check_bss_filter(sc) == 0 &&
6763 (error = iwn_add_broadcast_node(sc, async)) != 0) {
6764 device_printf(sc->sc_dev,
6765 "%s: could not add broadcast node, error %d\n",
6766 __func__, error);
6767 return (error);
6768 }
6769 }
6770
6771 /* Configuration has changed, set TX power accordingly. */
6772 if ((error = ops->set_txpower(sc, async)) != 0) {
6773 device_printf(sc->sc_dev,
6774 "%s: could not set TX power, error %d\n",
6775 __func__, error);
6776 return (error);
6777 }
6778
6779 return (0);
6780 }
6781
6782 static int
6783 iwn_config(struct iwn_softc *sc)
6784 {
6785 struct ieee80211com *ic = &sc->sc_ic;
6786 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6787 const uint8_t *macaddr;
6788 uint32_t txmask;
6789 uint16_t rxchain;
6790 int error;
6791
6792 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6793
6794 if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6795 && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6796 device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6797 " exclusive each together. Review NIC config file. Conf"
6798 " : 0x%08x Flags : 0x%08x \n", __func__,
6799 sc->base_params->calib_need,
6800 (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6801 IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6802 return (EINVAL);
6803 }
6804
6805 /* Compute temperature calib if needed. Will be send by send calib */
6806 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6807 error = iwn5000_temp_offset_calib(sc);
6808 if (error != 0) {
6809 device_printf(sc->sc_dev,
6810 "%s: could not set temperature offset\n", __func__);
6811 return (error);
6812 }
6813 } else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6814 error = iwn5000_temp_offset_calibv2(sc);
6815 if (error != 0) {
6816 device_printf(sc->sc_dev,
6817 "%s: could not compute temperature offset v2\n",
6818 __func__);
6819 return (error);
6820 }
6821 }
6822
6823 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6824 /* Configure runtime DC calibration. */
6825 error = iwn5000_runtime_calib(sc);
6826 if (error != 0) {
6827 device_printf(sc->sc_dev,
6828 "%s: could not configure runtime calibration\n",
6829 __func__);
6830 return error;
6831 }
6832 }
6833
6834 /* Configure valid TX chains for >=5000 Series. */
6835 if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6836 IWN_UCODE_API(sc->ucode_rev) > 1) {
6837 txmask = htole32(sc->txchainmask);
6838 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6839 "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6840 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6841 sizeof txmask, 0);
6842 if (error != 0) {
6843 device_printf(sc->sc_dev,
6844 "%s: could not configure valid TX chains, "
6845 "error %d\n", __func__, error);
6846 return error;
6847 }
6848 }
6849
6850 /* Configure bluetooth coexistence. */
6851 error = 0;
6852
6853 /* Configure bluetooth coexistence if needed. */
6854 if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6855 error = iwn_send_advanced_btcoex(sc);
6856 if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6857 error = iwn_send_btcoex(sc);
6858
6859 if (error != 0) {
6860 device_printf(sc->sc_dev,
6861 "%s: could not configure bluetooth coexistence, error %d\n",
6862 __func__, error);
6863 return error;
6864 }
6865
6866 /* Set mode, channel, RX filter and enable RX. */
6867 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6868 memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6869 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6870 IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6871 IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6872 sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6873 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6874 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6875 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6876
6877 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6878 switch (ic->ic_opmode) {
6879 case IEEE80211_M_STA:
6880 sc->rxon->mode = IWN_MODE_STA;
6881 break;
6882 case IEEE80211_M_MONITOR:
6883 sc->rxon->mode = IWN_MODE_MONITOR;
6884 break;
6885 default:
6886 /* Should not get there. */
6887 break;
6888 }
6889 iwn_set_promisc(sc);
6890 sc->rxon->cck_mask = 0x0f; /* not yet negotiated */
6891 sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */
6892 sc->rxon->ht_single_mask = 0xff;
6893 sc->rxon->ht_dual_mask = 0xff;
6894 sc->rxon->ht_triple_mask = 0xff;
6895 /*
6896 * In active association mode, ensure that
6897 * all the receive chains are enabled.
6898 *
6899 * Since we're not yet doing SMPS, don't allow the
6900 * number of idle RX chains to be less than the active
6901 * number.
6902 */
6903 rxchain =
6904 IWN_RXCHAIN_VALID(sc->rxchainmask) |
6905 IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6906 IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6907 sc->rxon->rxchain = htole16(rxchain);
6908 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6909 "%s: rxchainmask=0x%x, nrxchains=%d\n",
6910 __func__,
6911 sc->rxchainmask,
6912 sc->nrxchains);
6913
6914 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan));
6915
6916 DPRINTF(sc, IWN_DEBUG_RESET,
6917 "%s: setting configuration; flags=0x%08x\n",
6918 __func__, le32toh(sc->rxon->flags));
6919 if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6920 device_printf(sc->sc_dev, "%s: could not send RXON\n",
6921 __func__);
6922 return error;
6923 }
6924
6925 if ((error = iwn_set_critical_temp(sc)) != 0) {
6926 device_printf(sc->sc_dev,
6927 "%s: could not set critical temperature\n", __func__);
6928 return error;
6929 }
6930
6931 /* Set power saving level to CAM during initialization. */
6932 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6933 device_printf(sc->sc_dev,
6934 "%s: could not set power saving level\n", __func__);
6935 return error;
6936 }
6937
6938 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6939
6940 return 0;
6941 }
6942
6943 static uint16_t
6944 iwn_get_active_dwell_time(struct iwn_softc *sc,
6945 struct ieee80211_channel *c, uint8_t n_probes)
6946 {
6947 /* No channel? Default to 2GHz settings */
6948 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6949 return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6950 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6951 }
6952
6953 /* 5GHz dwell time */
6954 return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6955 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6956 }
6957
6958 /*
6959 * Limit the total dwell time to 85% of the beacon interval.
6960 *
6961 * Returns the dwell time in milliseconds.
6962 */
6963 static uint16_t
6964 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6965 {
6966 struct ieee80211com *ic = &sc->sc_ic;
6967 struct ieee80211vap *vap = NULL;
6968 int bintval = 0;
6969
6970 /* bintval is in TU (1.024mS) */
6971 if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6972 vap = TAILQ_FIRST(&ic->ic_vaps);
6973 bintval = vap->iv_bss->ni_intval;
6974 }
6975
6976 /*
6977 * If it's non-zero, we should calculate the minimum of
6978 * it and the DWELL_BASE.
6979 *
6980 * XXX Yes, the math should take into account that bintval
6981 * is 1.024mS, not 1mS..
6982 */
6983 if (bintval > 0) {
6984 DPRINTF(sc, IWN_DEBUG_SCAN,
6985 "%s: bintval=%d\n",
6986 __func__,
6987 bintval);
6988 return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6989 }
6990
6991 /* No association context? Default */
6992 return (IWN_PASSIVE_DWELL_BASE);
6993 }
6994
6995 static uint16_t
6996 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6997 {
6998 uint16_t passive;
6999
7000 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
7001 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
7002 } else {
7003 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
7004 }
7005
7006 /* Clamp to the beacon interval if we're associated */
7007 return (iwn_limit_dwell(sc, passive));
7008 }
7009
7010 static int
7011 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
7012 struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
7013 {
7014 struct ieee80211com *ic = &sc->sc_ic;
7015 struct ieee80211_node *ni = vap->iv_bss;
7016 struct iwn_scan_hdr *hdr;
7017 struct iwn_cmd_data *tx;
7018 struct iwn_scan_essid *essid;
7019 struct iwn_scan_chan *chan;
7020 struct ieee80211_frame *wh;
7021 struct ieee80211_rateset *rs;
7022 uint8_t *buf, *frm;
7023 uint16_t rxchain;
7024 uint8_t txant;
7025 int buflen, error;
7026 int is_active;
7027 uint16_t dwell_active, dwell_passive;
7028 uint32_t scan_service_time;
7029
7030 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7031
7032 /*
7033 * We are absolutely not allowed to send a scan command when another
7034 * scan command is pending.
7035 */
7036 if (sc->sc_is_scanning) {
7037 device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
7038 __func__);
7039 return (EAGAIN);
7040 }
7041
7042 /* Assign the scan channel */
7043 c = ic->ic_curchan;
7044
7045 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7046 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
7047 if (buf == NULL) {
7048 device_printf(sc->sc_dev,
7049 "%s: could not allocate buffer for scan command\n",
7050 __func__);
7051 return ENOMEM;
7052 }
7053 hdr = (struct iwn_scan_hdr *)buf;
7054 /*
7055 * Move to the next channel if no frames are received within 10ms
7056 * after sending the probe request.
7057 */
7058 hdr->quiet_time = htole16(10); /* timeout in milliseconds */
7059 hdr->quiet_threshold = htole16(1); /* min # of packets */
7060 /*
7061 * Max needs to be greater than active and passive and quiet!
7062 * It's also in microseconds!
7063 */
7064 hdr->max_svc = htole32(250 * 1024);
7065
7066 /*
7067 * Reset scan: interval=100
7068 * Normal scan: interval=becaon interval
7069 * suspend_time: 100 (TU)
7070 *
7071 */
7072 #if 0
7073 extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
7074 scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
7075 #else
7076 scan_service_time = (4 << 22) | (100 * 1024); /* Hardcode for now! */
7077 #endif
7078 hdr->pause_svc = htole32(scan_service_time);
7079
7080 /* Select antennas for scanning. */
7081 rxchain =
7082 IWN_RXCHAIN_VALID(sc->rxchainmask) |
7083 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
7084 IWN_RXCHAIN_DRIVER_FORCE;
7085 if (IEEE80211_IS_CHAN_A(c) &&
7086 sc->hw_type == IWN_HW_REV_TYPE_4965) {
7087 /* Ant A must be avoided in 5GHz because of an HW bug. */
7088 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
7089 } else /* Use all available RX antennas. */
7090 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
7091 hdr->rxchain = htole16(rxchain);
7092 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
7093
7094 tx = (struct iwn_cmd_data *)(hdr + 1);
7095 tx->flags = htole32(IWN_TX_AUTO_SEQ);
7096 tx->id = sc->broadcast_id;
7097 tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
7098
7099 if (IEEE80211_IS_CHAN_5GHZ(c)) {
7100 /* Send probe requests at 6Mbps. */
7101 tx->rate = htole32(0xd);
7102 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7103 } else {
7104 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7105 if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7106 sc->rxon->associd && sc->rxon->chan > 14)
7107 tx->rate = htole32(0xd);
7108 else {
7109 /* Send probe requests at 1Mbps. */
7110 tx->rate = htole32(10 | IWN_RFLAG_CCK);
7111 }
7112 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7113 }
7114 /* Use the first valid TX antenna. */
7115 txant = IWN_LSB(sc->txchainmask);
7116 tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7117
7118 /*
7119 * Only do active scanning if we're announcing a probe request
7120 * for a given SSID (or more, if we ever add it to the driver.)
7121 */
7122 is_active = 0;
7123
7124 /*
7125 * If we're scanning for a specific SSID, add it to the command.
7126 *
7127 * XXX maybe look at adding support for scanning multiple SSIDs?
7128 */
7129 essid = (struct iwn_scan_essid *)(tx + 1);
7130 if (ss != NULL) {
7131 if (ss->ss_ssid[0].len != 0) {
7132 essid[0].id = IEEE80211_ELEMID_SSID;
7133 essid[0].len = ss->ss_ssid[0].len;
7134 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7135 }
7136
7137 DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7138 __func__,
7139 ss->ss_ssid[0].len,
7140 ss->ss_ssid[0].len,
7141 ss->ss_ssid[0].ssid);
7142
7143 if (ss->ss_nssid > 0)
7144 is_active = 1;
7145 }
7146
7147 /*
7148 * Build a probe request frame. Most of the following code is a
7149 * copy & paste of what is done in net80211.
7150 */
7151 wh = (struct ieee80211_frame *)(essid + 20);
7152 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7153 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7154 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7155 IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
7156 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
7157 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
7158 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
7159 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
7160
7161 frm = (uint8_t *)(wh + 1);
7162 frm = ieee80211_add_ssid(frm, NULL, 0);
7163 frm = ieee80211_add_rates(frm, rs);
7164 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7165 frm = ieee80211_add_xrates(frm, rs);
7166 if (ic->ic_htcaps & IEEE80211_HTC_HT)
7167 frm = ieee80211_add_htcap(frm, ni);
7168
7169 /* Set length of probe request. */
7170 tx->len = htole16(frm - (uint8_t *)wh);
7171
7172 /*
7173 * If active scanning is requested but a certain channel is
7174 * marked passive, we can do active scanning if we detect
7175 * transmissions.
7176 *
7177 * There is an issue with some firmware versions that triggers
7178 * a sysassert on a "good CRC threshold" of zero (== disabled),
7179 * on a radar channel even though this means that we should NOT
7180 * send probes.
7181 *
7182 * The "good CRC threshold" is the number of frames that we
7183 * need to receive during our dwell time on a channel before
7184 * sending out probes -- setting this to a huge value will
7185 * mean we never reach it, but at the same time work around
7186 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7187 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7188 *
7189 * This was fixed in later versions along with some other
7190 * scan changes, and the threshold behaves as a flag in those
7191 * versions.
7192 */
7193
7194 /*
7195 * If we're doing active scanning, set the crc_threshold
7196 * to a suitable value. This is different to active veruss
7197 * passive scanning depending upon the channel flags; the
7198 * firmware will obey that particular check for us.
7199 */
7200 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7201 hdr->crc_threshold = is_active ?
7202 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7203 else
7204 hdr->crc_threshold = is_active ?
7205 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7206
7207 chan = (struct iwn_scan_chan *)frm;
7208 chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7209 chan->flags = 0;
7210 if (ss->ss_nssid > 0)
7211 chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7212 chan->dsp_gain = 0x6e;
7213
7214 /*
7215 * Set the passive/active flag depending upon the channel mode.
7216 * XXX TODO: take the is_active flag into account as well?
7217 */
7218 if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7219 chan->flags |= htole32(IWN_CHAN_PASSIVE);
7220 else
7221 chan->flags |= htole32(IWN_CHAN_ACTIVE);
7222
7223 /*
7224 * Calculate the active/passive dwell times.
7225 */
7226
7227 dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7228 dwell_passive = iwn_get_passive_dwell_time(sc, c);
7229
7230 /* Make sure they're valid */
7231 if (dwell_passive <= dwell_active)
7232 dwell_passive = dwell_active + 1;
7233
7234 chan->active = htole16(dwell_active);
7235 chan->passive = htole16(dwell_passive);
7236
7237 if (IEEE80211_IS_CHAN_5GHZ(c))
7238 chan->rf_gain = 0x3b;
7239 else
7240 chan->rf_gain = 0x28;
7241
7242 DPRINTF(sc, IWN_DEBUG_STATE,
7243 "%s: chan %u flags 0x%x rf_gain 0x%x "
7244 "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7245 "isactive=%d numssid=%d\n", __func__,
7246 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7247 dwell_active, dwell_passive, scan_service_time,
7248 hdr->crc_threshold, is_active, ss->ss_nssid);
7249
7250 hdr->nchan++;
7251 chan++;
7252 buflen = (uint8_t *)chan - buf;
7253 hdr->len = htole16(buflen);
7254
7255 if (sc->sc_is_scanning) {
7256 device_printf(sc->sc_dev,
7257 "%s: called with is_scanning set!\n",
7258 __func__);
7259 }
7260 sc->sc_is_scanning = 1;
7261
7262 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7263 hdr->nchan);
7264 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7265 free(buf, M_DEVBUF);
7266 if (error == 0)
7267 callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7268
7269 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7270
7271 return error;
7272 }
7273
7274 static int
7275 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7276 {
7277 struct ieee80211com *ic = &sc->sc_ic;
7278 struct ieee80211_node *ni = vap->iv_bss;
7279 int error;
7280
7281 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7282
7283 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7284 /* Update adapter configuration. */
7285 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7286 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7287 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7288 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7289 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7290
7291 /*
7292 * We always set short slot on 5GHz channels.
7293 * We optionally set it for 2.4GHz channels.
7294 */
7295 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
7296 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7297 else if (vap->iv_flags & IEEE80211_F_SHSLOT)
7298 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7299
7300 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
7301 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7302 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7303 sc->rxon->cck_mask = 0;
7304 sc->rxon->ofdm_mask = 0x15;
7305 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7306 sc->rxon->cck_mask = 0x03;
7307 sc->rxon->ofdm_mask = 0;
7308 } else {
7309 /* Assume 802.11b/g. */
7310 sc->rxon->cck_mask = 0x03;
7311 sc->rxon->ofdm_mask = 0x15;
7312 }
7313
7314 /* try HT */
7315 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan));
7316
7317 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7318 sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7319 sc->rxon->ofdm_mask);
7320
7321 if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7322 device_printf(sc->sc_dev, "%s: could not send RXON\n",
7323 __func__);
7324 return (error);
7325 }
7326
7327 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7328
7329 return (0);
7330 }
7331
7332 static int
7333 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7334 {
7335 struct iwn_ops *ops = &sc->ops;
7336 struct ieee80211com *ic = &sc->sc_ic;
7337 struct ieee80211_node *ni = vap->iv_bss;
7338 struct iwn_node_info node;
7339 int error;
7340
7341 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7342
7343 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7344 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7345 /* Link LED blinks while monitoring. */
7346 iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7347 return 0;
7348 }
7349 if ((error = iwn_set_timing(sc, ni)) != 0) {
7350 device_printf(sc->sc_dev,
7351 "%s: could not set timing, error %d\n", __func__, error);
7352 return error;
7353 }
7354
7355 /* Update adapter configuration. */
7356 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7357 sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7358 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7359 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7360 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7361 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7362
7363 /* As previously - short slot only on 5GHz */
7364 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
7365 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7366 else if (vap->iv_flags & IEEE80211_F_SHSLOT)
7367 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7368
7369 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
7370 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7371 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7372 sc->rxon->cck_mask = 0;
7373 sc->rxon->ofdm_mask = 0x15;
7374 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7375 sc->rxon->cck_mask = 0x03;
7376 sc->rxon->ofdm_mask = 0;
7377 } else {
7378 /* Assume 802.11b/g. */
7379 sc->rxon->cck_mask = 0x0f;
7380 sc->rxon->ofdm_mask = 0x15;
7381 }
7382 /* try HT */
7383 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ni->ni_chan));
7384 sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7385 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7386 sc->rxon->chan, le32toh(sc->rxon->flags), vap->iv_curhtprotmode);
7387
7388 if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7389 device_printf(sc->sc_dev, "%s: could not send RXON\n",
7390 __func__);
7391 return error;
7392 }
7393
7394 /* Fake a join to initialize the TX rate. */
7395 ((struct iwn_node *)ni)->id = IWN_ID_BSS;
7396 iwn_newassoc(ni, 1);
7397
7398 /* Add BSS node. */
7399 memset(&node, 0, sizeof node);
7400 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7401 node.id = IWN_ID_BSS;
7402 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7403 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7404 case IEEE80211_HTCAP_SMPS_ENA:
7405 node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7406 break;
7407 case IEEE80211_HTCAP_SMPS_DYNAMIC:
7408 node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7409 break;
7410 }
7411 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7412 IWN_AMDPU_DENSITY(5)); /* 4us */
7413 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7414 node.htflags |= htole32(IWN_NODE_HT40);
7415 }
7416 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7417 error = ops->add_node(sc, &node, 1);
7418 if (error != 0) {
7419 device_printf(sc->sc_dev,
7420 "%s: could not add BSS node, error %d\n", __func__, error);
7421 return error;
7422 }
7423 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7424 __func__, node.id);
7425 if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7426 device_printf(sc->sc_dev,
7427 "%s: could not setup link quality for node %d, error %d\n",
7428 __func__, node.id, error);
7429 return error;
7430 }
7431
7432 if ((error = iwn_init_sensitivity(sc)) != 0) {
7433 device_printf(sc->sc_dev,
7434 "%s: could not set sensitivity, error %d\n", __func__,
7435 error);
7436 return error;
7437 }
7438 /* Start periodic calibration timer. */
7439 sc->calib.state = IWN_CALIB_STATE_ASSOC;
7440 sc->calib_cnt = 0;
7441 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7442 sc);
7443
7444 /* Link LED always on while associated. */
7445 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7446
7447 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7448
7449 return 0;
7450 }
7451
7452 /*
7453 * This function is called by upper layer when an ADDBA request is received
7454 * from another STA and before the ADDBA response is sent.
7455 */
7456 static int
7457 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7458 int baparamset, int batimeout, int baseqctl)
7459 {
7460 struct iwn_softc *sc = ni->ni_ic->ic_softc;
7461 struct iwn_ops *ops = &sc->ops;
7462 struct iwn_node *wn = (void *)ni;
7463 struct iwn_node_info node;
7464 uint16_t ssn;
7465 uint8_t tid;
7466 int error;
7467
7468 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7469
7470 tid = _IEEE80211_MASKSHIFT(le16toh(baparamset), IEEE80211_BAPS_TID);
7471 ssn = _IEEE80211_MASKSHIFT(le16toh(baseqctl), IEEE80211_BASEQ_START);
7472
7473 if (wn->id == IWN_ID_UNDEFINED)
7474 return (ENOENT);
7475
7476 memset(&node, 0, sizeof node);
7477 node.id = wn->id;
7478 node.control = IWN_NODE_UPDATE;
7479 node.flags = IWN_FLAG_SET_ADDBA;
7480 node.addba_tid = tid;
7481 node.addba_ssn = htole16(ssn);
7482 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7483 wn->id, tid, ssn);
7484 error = ops->add_node(sc, &node, 1);
7485 if (error != 0)
7486 return error;
7487 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7488 }
7489
7490 /*
7491 * This function is called by upper layer on teardown of an HT-immediate
7492 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7493 */
7494 static void
7495 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7496 {
7497 struct ieee80211com *ic = ni->ni_ic;
7498 struct iwn_softc *sc = ic->ic_softc;
7499 struct iwn_ops *ops = &sc->ops;
7500 struct iwn_node *wn = (void *)ni;
7501 struct iwn_node_info node;
7502 uint8_t tid;
7503
7504 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7505
7506 if (wn->id == IWN_ID_UNDEFINED)
7507 goto end;
7508
7509 /* XXX: tid as an argument */
7510 for (tid = 0; tid < WME_NUM_TID; tid++) {
7511 if (&ni->ni_rx_ampdu[tid] == rap)
7512 break;
7513 }
7514
7515 memset(&node, 0, sizeof node);
7516 node.id = wn->id;
7517 node.control = IWN_NODE_UPDATE;
7518 node.flags = IWN_FLAG_SET_DELBA;
7519 node.delba_tid = tid;
7520 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7521 (void)ops->add_node(sc, &node, 1);
7522 end:
7523 sc->sc_ampdu_rx_stop(ni, rap);
7524 }
7525
7526 static int
7527 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7528 int dialogtoken, int baparamset, int batimeout)
7529 {
7530 struct iwn_softc *sc = ni->ni_ic->ic_softc;
7531 int qid;
7532
7533 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7534
7535 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7536 if (sc->qid2tap[qid] == NULL)
7537 break;
7538 }
7539 if (qid == sc->ntxqs) {
7540 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7541 __func__);
7542 return 0;
7543 }
7544 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7545 if (tap->txa_private == NULL) {
7546 device_printf(sc->sc_dev,
7547 "%s: failed to alloc TX aggregation structure\n", __func__);
7548 return 0;
7549 }
7550 sc->qid2tap[qid] = tap;
7551 *(int *)tap->txa_private = qid;
7552 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7553 batimeout);
7554 }
7555
7556 static int
7557 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7558 int code, int baparamset, int batimeout)
7559 {
7560 struct iwn_softc *sc = ni->ni_ic->ic_softc;
7561 int qid = *(int *)tap->txa_private;
7562 uint8_t tid = tap->txa_tid;
7563 int ret;
7564
7565 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7566
7567 if (code == IEEE80211_STATUS_SUCCESS) {
7568 ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7569 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7570 if (ret != 1)
7571 return ret;
7572 } else {
7573 sc->qid2tap[qid] = NULL;
7574 free(tap->txa_private, M_DEVBUF);
7575 tap->txa_private = NULL;
7576 }
7577 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7578 }
7579
7580 /*
7581 * This function is called by upper layer when an ADDBA response is received
7582 * from another STA.
7583 */
7584 static int
7585 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7586 uint8_t tid)
7587 {
7588 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7589 struct iwn_softc *sc = ni->ni_ic->ic_softc;
7590 struct iwn_ops *ops = &sc->ops;
7591 struct iwn_node *wn = (void *)ni;
7592 struct iwn_node_info node;
7593 int error, qid;
7594
7595 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7596
7597 if (wn->id == IWN_ID_UNDEFINED)
7598 return (0);
7599
7600 /* Enable TX for the specified RA/TID. */
7601 wn->disable_tid &= ~(1 << tid);
7602 memset(&node, 0, sizeof node);
7603 node.id = wn->id;
7604 node.control = IWN_NODE_UPDATE;
7605 node.flags = IWN_FLAG_SET_DISABLE_TID;
7606 node.disable_tid = htole16(wn->disable_tid);
7607 error = ops->add_node(sc, &node, 1);
7608 if (error != 0)
7609 return 0;
7610
7611 if ((error = iwn_nic_lock(sc)) != 0)
7612 return 0;
7613 qid = *(int *)tap->txa_private;
7614 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7615 __func__, wn->id, tid, tap->txa_start, qid);
7616 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7617 iwn_nic_unlock(sc);
7618
7619 iwn_set_link_quality(sc, ni);
7620 return 1;
7621 }
7622
7623 static void
7624 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7625 {
7626 struct iwn_softc *sc = ni->ni_ic->ic_softc;
7627 struct iwn_ops *ops = &sc->ops;
7628 uint8_t tid = tap->txa_tid;
7629 int qid;
7630
7631 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7632
7633 sc->sc_addba_stop(ni, tap);
7634
7635 if (tap->txa_private == NULL)
7636 return;
7637
7638 qid = *(int *)tap->txa_private;
7639 if (sc->txq[qid].queued != 0)
7640 return;
7641 if (iwn_nic_lock(sc) != 0)
7642 return;
7643 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7644 iwn_nic_unlock(sc);
7645 sc->qid2tap[qid] = NULL;
7646 free(tap->txa_private, M_DEVBUF);
7647 tap->txa_private = NULL;
7648 }
7649
7650 static void
7651 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7652 int qid, uint8_t tid, uint16_t ssn)
7653 {
7654 struct iwn_node *wn = (void *)ni;
7655
7656 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7657
7658 /* Stop TX scheduler while we're changing its configuration. */
7659 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7660 IWN4965_TXQ_STATUS_CHGACT);
7661
7662 /* Assign RA/TID translation to the queue. */
7663 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7664 wn->id << 4 | tid);
7665
7666 /* Enable chain-building mode for the queue. */
7667 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7668
7669 /* Set starting sequence number from the ADDBA request. */
7670 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7671 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7672 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7673
7674 /* Set scheduler window size. */
7675 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7676 IWN_SCHED_WINSZ);
7677 /* Set scheduler frame limit. */
7678 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7679 IWN_SCHED_LIMIT << 16);
7680
7681 /* Enable interrupts for the queue. */
7682 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7683
7684 /* Mark the queue as active. */
7685 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7686 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7687 iwn_tid2fifo[tid] << 1);
7688 }
7689
7690 static void
7691 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7692 {
7693 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7694
7695 /* Stop TX scheduler while we're changing its configuration. */
7696 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7697 IWN4965_TXQ_STATUS_CHGACT);
7698
7699 /* Set starting sequence number from the ADDBA request. */
7700 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7701 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7702
7703 /* Disable interrupts for the queue. */
7704 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7705
7706 /* Mark the queue as inactive. */
7707 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7708 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7709 }
7710
7711 static void
7712 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7713 int qid, uint8_t tid, uint16_t ssn)
7714 {
7715 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7716
7717 struct iwn_node *wn = (void *)ni;
7718
7719 /* Stop TX scheduler while we're changing its configuration. */
7720 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7721 IWN5000_TXQ_STATUS_CHGACT);
7722
7723 /* Assign RA/TID translation to the queue. */
7724 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7725 wn->id << 4 | tid);
7726
7727 /* Enable chain-building mode for the queue. */
7728 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7729
7730 /* Enable aggregation for the queue. */
7731 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7732
7733 /* Set starting sequence number from the ADDBA request. */
7734 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7735 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7736 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7737
7738 /* Set scheduler window size and frame limit. */
7739 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7740 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7741
7742 /* Enable interrupts for the queue. */
7743 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7744
7745 /* Mark the queue as active. */
7746 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7747 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7748 }
7749
7750 static void
7751 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7752 {
7753 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7754
7755 /* Stop TX scheduler while we're changing its configuration. */
7756 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7757 IWN5000_TXQ_STATUS_CHGACT);
7758
7759 /* Disable aggregation for the queue. */
7760 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7761
7762 /* Set starting sequence number from the ADDBA request. */
7763 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7764 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7765
7766 /* Disable interrupts for the queue. */
7767 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7768
7769 /* Mark the queue as inactive. */
7770 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7771 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7772 }
7773
7774 /*
7775 * Query calibration tables from the initialization firmware. We do this
7776 * only once at first boot. Called from a process context.
7777 */
7778 static int
7779 iwn5000_query_calibration(struct iwn_softc *sc)
7780 {
7781 struct iwn5000_calib_config cmd;
7782 int error;
7783
7784 memset(&cmd, 0, sizeof cmd);
7785 cmd.ucode.once.enable = htole32(0xffffffff);
7786 cmd.ucode.once.start = htole32(0xffffffff);
7787 cmd.ucode.once.send = htole32(0xffffffff);
7788 cmd.ucode.flags = htole32(0xffffffff);
7789 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7790 __func__);
7791 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7792 if (error != 0)
7793 return error;
7794
7795 /* Wait at most two seconds for calibration to complete. */
7796 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7797 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7798 return error;
7799 }
7800
7801 /*
7802 * Send calibration results to the runtime firmware. These results were
7803 * obtained on first boot from the initialization firmware.
7804 */
7805 static int
7806 iwn5000_send_calibration(struct iwn_softc *sc)
7807 {
7808 int idx, error;
7809
7810 for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7811 if (!(sc->base_params->calib_need & (1<<idx))) {
7812 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7813 "No need of calib %d\n",
7814 idx);
7815 continue; /* no need for this calib */
7816 }
7817 if (sc->calibcmd[idx].buf == NULL) {
7818 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7819 "Need calib idx : %d but no available data\n",
7820 idx);
7821 continue;
7822 }
7823
7824 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7825 "send calibration result idx=%d len=%d\n", idx,
7826 sc->calibcmd[idx].len);
7827 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7828 sc->calibcmd[idx].len, 0);
7829 if (error != 0) {
7830 device_printf(sc->sc_dev,
7831 "%s: could not send calibration result, error %d\n",
7832 __func__, error);
7833 return error;
7834 }
7835 }
7836 return 0;
7837 }
7838
7839 static int
7840 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7841 {
7842 struct iwn5000_wimax_coex wimax;
7843
7844 #if 0
7845 if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7846 /* Enable WiMAX coexistence for combo adapters. */
7847 wimax.flags =
7848 IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7849 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7850 IWN_WIMAX_COEX_STA_TABLE_VALID |
7851 IWN_WIMAX_COEX_ENABLE;
7852 memcpy(wimax.events, iwn6050_wimax_events,
7853 sizeof iwn6050_wimax_events);
7854 } else
7855 #endif
7856 {
7857 /* Disable WiMAX coexistence. */
7858 wimax.flags = 0;
7859 memset(wimax.events, 0, sizeof wimax.events);
7860 }
7861 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7862 __func__);
7863 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7864 }
7865
7866 static int
7867 iwn5000_crystal_calib(struct iwn_softc *sc)
7868 {
7869 struct iwn5000_phy_calib_crystal cmd;
7870
7871 memset(&cmd, 0, sizeof cmd);
7872 cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7873 cmd.ngroups = 1;
7874 cmd.isvalid = 1;
7875 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7876 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7877 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7878 cmd.cap_pin[0], cmd.cap_pin[1]);
7879 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7880 }
7881
7882 static int
7883 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7884 {
7885 struct iwn5000_phy_calib_temp_offset cmd;
7886
7887 memset(&cmd, 0, sizeof cmd);
7888 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7889 cmd.ngroups = 1;
7890 cmd.isvalid = 1;
7891 if (sc->eeprom_temp != 0)
7892 cmd.offset = htole16(sc->eeprom_temp);
7893 else
7894 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7895 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7896 le16toh(cmd.offset));
7897 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7898 }
7899
7900 static int
7901 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7902 {
7903 struct iwn5000_phy_calib_temp_offsetv2 cmd;
7904
7905 memset(&cmd, 0, sizeof cmd);
7906 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7907 cmd.ngroups = 1;
7908 cmd.isvalid = 1;
7909 if (sc->eeprom_temp != 0) {
7910 cmd.offset_low = htole16(sc->eeprom_temp);
7911 cmd.offset_high = htole16(sc->eeprom_temp_high);
7912 } else {
7913 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7914 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7915 }
7916 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7917
7918 DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7919 "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7920 le16toh(cmd.offset_low),
7921 le16toh(cmd.offset_high),
7922 le16toh(cmd.burnt_voltage_ref));
7923
7924 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7925 }
7926
7927 /*
7928 * This function is called after the runtime firmware notifies us of its
7929 * readiness (called in a process context).
7930 */
7931 static int
7932 iwn4965_post_alive(struct iwn_softc *sc)
7933 {
7934 int error, qid;
7935
7936 if ((error = iwn_nic_lock(sc)) != 0)
7937 return error;
7938
7939 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7940
7941 /* Clear TX scheduler state in SRAM. */
7942 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7943 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7944 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7945
7946 /* Set physical address of TX scheduler rings (1KB aligned). */
7947 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7948
7949 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7950
7951 /* Disable chain mode for all our 16 queues. */
7952 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7953
7954 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7955 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7956 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7957
7958 /* Set scheduler window size. */
7959 iwn_mem_write(sc, sc->sched_base +
7960 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7961 /* Set scheduler frame limit. */
7962 iwn_mem_write(sc, sc->sched_base +
7963 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7964 IWN_SCHED_LIMIT << 16);
7965 }
7966
7967 /* Enable interrupts for all our 16 queues. */
7968 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7969 /* Identify TX FIFO rings (0-7). */
7970 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7971
7972 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7973 for (qid = 0; qid < 7; qid++) {
7974 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7975 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7976 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7977 }
7978 iwn_nic_unlock(sc);
7979 return 0;
7980 }
7981
7982 /*
7983 * This function is called after the initialization or runtime firmware
7984 * notifies us of its readiness (called in a process context).
7985 */
7986 static int
7987 iwn5000_post_alive(struct iwn_softc *sc)
7988 {
7989 int error, qid;
7990
7991 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7992
7993 /* Switch to using ICT interrupt mode. */
7994 iwn5000_ict_reset(sc);
7995
7996 if ((error = iwn_nic_lock(sc)) != 0){
7997 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7998 return error;
7999 }
8000
8001 /* Clear TX scheduler state in SRAM. */
8002 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
8003 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
8004 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
8005
8006 /* Set physical address of TX scheduler rings (1KB aligned). */
8007 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
8008
8009 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
8010
8011 /* Enable chain mode for all queues, except command queue. */
8012 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
8013 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
8014 else
8015 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
8016 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
8017
8018 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
8019 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
8020 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
8021
8022 iwn_mem_write(sc, sc->sched_base +
8023 IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
8024 /* Set scheduler window size and frame limit. */
8025 iwn_mem_write(sc, sc->sched_base +
8026 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
8027 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
8028 }
8029
8030 /* Enable interrupts for all our 20 queues. */
8031 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
8032 /* Identify TX FIFO rings (0-7). */
8033 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
8034
8035 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8036 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
8037 /* Mark TX rings as active. */
8038 for (qid = 0; qid < 11; qid++) {
8039 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
8040 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8041 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8042 }
8043 } else {
8044 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8045 for (qid = 0; qid < 7; qid++) {
8046 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
8047 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8048 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8049 }
8050 }
8051 iwn_nic_unlock(sc);
8052
8053 /* Configure WiMAX coexistence for combo adapters. */
8054 error = iwn5000_send_wimax_coex(sc);
8055 if (error != 0) {
8056 device_printf(sc->sc_dev,
8057 "%s: could not configure WiMAX coexistence, error %d\n",
8058 __func__, error);
8059 return error;
8060 }
8061 if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
8062 /* Perform crystal calibration. */
8063 error = iwn5000_crystal_calib(sc);
8064 if (error != 0) {
8065 device_printf(sc->sc_dev,
8066 "%s: crystal calibration failed, error %d\n",
8067 __func__, error);
8068 return error;
8069 }
8070 }
8071 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
8072 /* Query calibration from the initialization firmware. */
8073 if ((error = iwn5000_query_calibration(sc)) != 0) {
8074 device_printf(sc->sc_dev,
8075 "%s: could not query calibration, error %d\n",
8076 __func__, error);
8077 return error;
8078 }
8079 /*
8080 * We have the calibration results now, reboot with the
8081 * runtime firmware (call ourselves recursively!)
8082 */
8083 iwn_hw_stop(sc);
8084 error = iwn_hw_init(sc);
8085 } else {
8086 /* Send calibration results to runtime firmware. */
8087 error = iwn5000_send_calibration(sc);
8088 }
8089
8090 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8091
8092 return error;
8093 }
8094
8095 /*
8096 * The firmware boot code is small and is intended to be copied directly into
8097 * the NIC internal memory (no DMA transfer).
8098 */
8099 static int
8100 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
8101 {
8102 int error, ntries;
8103
8104 size /= sizeof (uint32_t);
8105
8106 if ((error = iwn_nic_lock(sc)) != 0)
8107 return error;
8108
8109 /* Copy microcode image into NIC memory. */
8110 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8111 (const uint32_t *)ucode, size);
8112
8113 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8114 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8115 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8116
8117 /* Start boot load now. */
8118 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8119
8120 /* Wait for transfer to complete. */
8121 for (ntries = 0; ntries < 1000; ntries++) {
8122 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8123 IWN_BSM_WR_CTRL_START))
8124 break;
8125 DELAY(10);
8126 }
8127 if (ntries == 1000) {
8128 device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8129 __func__);
8130 iwn_nic_unlock(sc);
8131 return ETIMEDOUT;
8132 }
8133
8134 /* Enable boot after power up. */
8135 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8136
8137 iwn_nic_unlock(sc);
8138 return 0;
8139 }
8140
8141 static int
8142 iwn4965_load_firmware(struct iwn_softc *sc)
8143 {
8144 struct iwn_fw_info *fw = &sc->fw;
8145 struct iwn_dma_info *dma = &sc->fw_dma;
8146 int error;
8147
8148 /* Copy initialization sections into pre-allocated DMA-safe memory. */
8149 memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8150 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8151 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8152 fw->init.text, fw->init.textsz);
8153 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8154
8155 /* Tell adapter where to find initialization sections. */
8156 if ((error = iwn_nic_lock(sc)) != 0)
8157 return error;
8158 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8159 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8160 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8161 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8162 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8163 iwn_nic_unlock(sc);
8164
8165 /* Load firmware boot code. */
8166 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8167 if (error != 0) {
8168 device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8169 __func__);
8170 return error;
8171 }
8172 /* Now press "execute". */
8173 IWN_WRITE(sc, IWN_RESET, 0);
8174
8175 /* Wait at most one second for first alive notification. */
8176 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8177 device_printf(sc->sc_dev,
8178 "%s: timeout waiting for adapter to initialize, error %d\n",
8179 __func__, error);
8180 return error;
8181 }
8182
8183 /* Retrieve current temperature for initial TX power calibration. */
8184 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8185 sc->temp = iwn4965_get_temperature(sc);
8186
8187 /* Copy runtime sections into pre-allocated DMA-safe memory. */
8188 memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8189 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8190 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8191 fw->main.text, fw->main.textsz);
8192 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8193
8194 /* Tell adapter where to find runtime sections. */
8195 if ((error = iwn_nic_lock(sc)) != 0)
8196 return error;
8197 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8198 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8199 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8200 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8201 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8202 IWN_FW_UPDATED | fw->main.textsz);
8203 iwn_nic_unlock(sc);
8204
8205 return 0;
8206 }
8207
8208 static int
8209 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8210 const uint8_t *section, int size)
8211 {
8212 struct iwn_dma_info *dma = &sc->fw_dma;
8213 int error;
8214
8215 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8216
8217 /* Copy firmware section into pre-allocated DMA-safe memory. */
8218 memcpy(dma->vaddr, section, size);
8219 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8220
8221 if ((error = iwn_nic_lock(sc)) != 0)
8222 return error;
8223
8224 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8225 IWN_FH_TX_CONFIG_DMA_PAUSE);
8226
8227 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8228 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8229 IWN_LOADDR(dma->paddr));
8230 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8231 IWN_HIADDR(dma->paddr) << 28 | size);
8232 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8233 IWN_FH_TXBUF_STATUS_TBNUM(1) |
8234 IWN_FH_TXBUF_STATUS_TBIDX(1) |
8235 IWN_FH_TXBUF_STATUS_TFBD_VALID);
8236
8237 /* Kick Flow Handler to start DMA transfer. */
8238 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8239 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8240
8241 iwn_nic_unlock(sc);
8242
8243 /* Wait at most five seconds for FH DMA transfer to complete. */
8244 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8245 }
8246
8247 static int
8248 iwn5000_load_firmware(struct iwn_softc *sc)
8249 {
8250 struct iwn_fw_part *fw;
8251 int error;
8252
8253 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8254
8255 /* Load the initialization firmware on first boot only. */
8256 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8257 &sc->fw.main : &sc->fw.init;
8258
8259 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8260 fw->text, fw->textsz);
8261 if (error != 0) {
8262 device_printf(sc->sc_dev,
8263 "%s: could not load firmware %s section, error %d\n",
8264 __func__, ".text", error);
8265 return error;
8266 }
8267 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8268 fw->data, fw->datasz);
8269 if (error != 0) {
8270 device_printf(sc->sc_dev,
8271 "%s: could not load firmware %s section, error %d\n",
8272 __func__, ".data", error);
8273 return error;
8274 }
8275
8276 /* Now press "execute". */
8277 IWN_WRITE(sc, IWN_RESET, 0);
8278 return 0;
8279 }
8280
8281 /*
8282 * Extract text and data sections from a legacy firmware image.
8283 */
8284 static int
8285 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8286 {
8287 const uint32_t *ptr;
8288 size_t hdrlen = 24;
8289 uint32_t rev;
8290
8291 ptr = (const uint32_t *)fw->data;
8292 rev = le32toh(*ptr++);
8293
8294 sc->ucode_rev = rev;
8295
8296 /* Check firmware API version. */
8297 if (IWN_FW_API(rev) <= 1) {
8298 device_printf(sc->sc_dev,
8299 "%s: bad firmware, need API version >=2\n", __func__);
8300 return EINVAL;
8301 }
8302 if (IWN_FW_API(rev) >= 3) {
8303 /* Skip build number (version 2 header). */
8304 hdrlen += 4;
8305 ptr++;
8306 }
8307 if (fw->size < hdrlen) {
8308 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8309 __func__, fw->size);
8310 return EINVAL;
8311 }
8312 fw->main.textsz = le32toh(*ptr++);
8313 fw->main.datasz = le32toh(*ptr++);
8314 fw->init.textsz = le32toh(*ptr++);
8315 fw->init.datasz = le32toh(*ptr++);
8316 fw->boot.textsz = le32toh(*ptr++);
8317
8318 /* Check that all firmware sections fit. */
8319 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8320 fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8321 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8322 __func__, fw->size);
8323 return EINVAL;
8324 }
8325
8326 /* Get pointers to firmware sections. */
8327 fw->main.text = (const uint8_t *)ptr;
8328 fw->main.data = fw->main.text + fw->main.textsz;
8329 fw->init.text = fw->main.data + fw->main.datasz;
8330 fw->init.data = fw->init.text + fw->init.textsz;
8331 fw->boot.text = fw->init.data + fw->init.datasz;
8332 return 0;
8333 }
8334
8335 /*
8336 * Extract text and data sections from a TLV firmware image.
8337 */
8338 static int
8339 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8340 uint16_t alt)
8341 {
8342 const struct iwn_fw_tlv_hdr *hdr;
8343 const struct iwn_fw_tlv *tlv;
8344 const uint8_t *ptr, *end;
8345 uint64_t altmask;
8346 uint32_t len, tmp;
8347
8348 if (fw->size < sizeof (*hdr)) {
8349 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8350 __func__, fw->size);
8351 return EINVAL;
8352 }
8353 hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8354 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8355 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8356 __func__, le32toh(hdr->signature));
8357 return EINVAL;
8358 }
8359 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8360 le32toh(hdr->build));
8361 sc->ucode_rev = le32toh(hdr->rev);
8362
8363 /*
8364 * Select the closest supported alternative that is less than
8365 * or equal to the specified one.
8366 */
8367 altmask = le64toh(hdr->altmask);
8368 while (alt > 0 && !(altmask & (1ULL << alt)))
8369 alt--; /* Downgrade. */
8370 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8371
8372 ptr = (const uint8_t *)(hdr + 1);
8373 end = (const uint8_t *)(fw->data + fw->size);
8374
8375 /* Parse type-length-value fields. */
8376 while (ptr + sizeof (*tlv) <= end) {
8377 tlv = (const struct iwn_fw_tlv *)ptr;
8378 len = le32toh(tlv->len);
8379
8380 ptr += sizeof (*tlv);
8381 if (ptr + len > end) {
8382 device_printf(sc->sc_dev,
8383 "%s: firmware too short: %zu bytes\n", __func__,
8384 fw->size);
8385 return EINVAL;
8386 }
8387 /* Skip other alternatives. */
8388 if (tlv->alt != 0 && tlv->alt != htole16(alt))
8389 goto next;
8390
8391 switch (le16toh(tlv->type)) {
8392 case IWN_FW_TLV_MAIN_TEXT:
8393 fw->main.text = ptr;
8394 fw->main.textsz = len;
8395 break;
8396 case IWN_FW_TLV_MAIN_DATA:
8397 fw->main.data = ptr;
8398 fw->main.datasz = len;
8399 break;
8400 case IWN_FW_TLV_INIT_TEXT:
8401 fw->init.text = ptr;
8402 fw->init.textsz = len;
8403 break;
8404 case IWN_FW_TLV_INIT_DATA:
8405 fw->init.data = ptr;
8406 fw->init.datasz = len;
8407 break;
8408 case IWN_FW_TLV_BOOT_TEXT:
8409 fw->boot.text = ptr;
8410 fw->boot.textsz = len;
8411 break;
8412 case IWN_FW_TLV_ENH_SENS:
8413 if (!len)
8414 sc->sc_flags |= IWN_FLAG_ENH_SENS;
8415 break;
8416 case IWN_FW_TLV_PHY_CALIB:
8417 tmp = le32toh(*ptr);
8418 if (tmp < 253) {
8419 sc->reset_noise_gain = tmp;
8420 sc->noise_gain = tmp + 1;
8421 }
8422 break;
8423 case IWN_FW_TLV_PAN:
8424 sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8425 DPRINTF(sc, IWN_DEBUG_RESET,
8426 "PAN Support found: %d\n", 1);
8427 break;
8428 case IWN_FW_TLV_FLAGS:
8429 if (len < sizeof(uint32_t))
8430 break;
8431 if (len % sizeof(uint32_t))
8432 break;
8433 sc->tlv_feature_flags = le32toh(*ptr);
8434 DPRINTF(sc, IWN_DEBUG_RESET,
8435 "%s: feature: 0x%08x\n",
8436 __func__,
8437 sc->tlv_feature_flags);
8438 break;
8439 case IWN_FW_TLV_PBREQ_MAXLEN:
8440 case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8441 case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8442 case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8443 case IWN_FW_TLV_INIT_EVTLOG_PTR:
8444 case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8445 case IWN_FW_TLV_INIT_ERRLOG_PTR:
8446 case IWN_FW_TLV_WOWLAN_INST:
8447 case IWN_FW_TLV_WOWLAN_DATA:
8448 DPRINTF(sc, IWN_DEBUG_RESET,
8449 "TLV type %d recognized but not handled\n",
8450 le16toh(tlv->type));
8451 break;
8452 default:
8453 DPRINTF(sc, IWN_DEBUG_RESET,
8454 "TLV type %d not handled\n", le16toh(tlv->type));
8455 break;
8456 }
8457 next: /* TLV fields are 32-bit aligned. */
8458 ptr += (len + 3) & ~3;
8459 }
8460 return 0;
8461 }
8462
8463 static int
8464 iwn_read_firmware(struct iwn_softc *sc)
8465 {
8466 struct iwn_fw_info *fw = &sc->fw;
8467 int error;
8468
8469 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8470
8471 IWN_UNLOCK(sc);
8472
8473 memset(fw, 0, sizeof (*fw));
8474
8475 /* Read firmware image from filesystem. */
8476 sc->fw_fp = firmware_get(sc->fwname);
8477 if (sc->fw_fp == NULL) {
8478 device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8479 __func__, sc->fwname);
8480 IWN_LOCK(sc);
8481 return EINVAL;
8482 }
8483 IWN_LOCK(sc);
8484
8485 fw->size = sc->fw_fp->datasize;
8486 fw->data = (const uint8_t *)sc->fw_fp->data;
8487 if (fw->size < sizeof (uint32_t)) {
8488 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8489 __func__, fw->size);
8490 error = EINVAL;
8491 goto fail;
8492 }
8493
8494 /* Retrieve text and data sections. */
8495 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
8496 error = iwn_read_firmware_leg(sc, fw);
8497 else
8498 error = iwn_read_firmware_tlv(sc, fw, 1);
8499 if (error != 0) {
8500 device_printf(sc->sc_dev,
8501 "%s: could not read firmware sections, error %d\n",
8502 __func__, error);
8503 goto fail;
8504 }
8505
8506 device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8507
8508 /* Make sure text and data sections fit in hardware memory. */
8509 if (fw->main.textsz > sc->fw_text_maxsz ||
8510 fw->main.datasz > sc->fw_data_maxsz ||
8511 fw->init.textsz > sc->fw_text_maxsz ||
8512 fw->init.datasz > sc->fw_data_maxsz ||
8513 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8514 (fw->boot.textsz & 3) != 0) {
8515 device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8516 __func__);
8517 error = EINVAL;
8518 goto fail;
8519 }
8520
8521 /* We can proceed with loading the firmware. */
8522 return 0;
8523
8524 fail: iwn_unload_firmware(sc);
8525 return error;
8526 }
8527
8528 static void
8529 iwn_unload_firmware(struct iwn_softc *sc)
8530 {
8531 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8532 sc->fw_fp = NULL;
8533 }
8534
8535 static int
8536 iwn_clock_wait(struct iwn_softc *sc)
8537 {
8538 int ntries;
8539
8540 /* Set "initialization complete" bit. */
8541 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8542
8543 /* Wait for clock stabilization. */
8544 for (ntries = 0; ntries < 2500; ntries++) {
8545 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8546 return 0;
8547 DELAY(10);
8548 }
8549 device_printf(sc->sc_dev,
8550 "%s: timeout waiting for clock stabilization\n", __func__);
8551 return ETIMEDOUT;
8552 }
8553
8554 static int
8555 iwn_apm_init(struct iwn_softc *sc)
8556 {
8557 uint32_t reg;
8558 int error;
8559
8560 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8561
8562 /* Disable L0s exit timer (NMI bug workaround). */
8563 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8564 /* Don't wait for ICH L0s (ICH bug workaround). */
8565 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8566
8567 /* Set FH wait threshold to max (HW bug under stress workaround). */
8568 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8569
8570 /* Enable HAP INTA to move adapter from L1a to L0s. */
8571 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8572
8573 /* Retrieve PCIe Active State Power Management (ASPM). */
8574 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8575 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8576 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */
8577 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8578 else
8579 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8580
8581 if (sc->base_params->pll_cfg_val)
8582 IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8583
8584 /* Wait for clock stabilization before accessing prph. */
8585 if ((error = iwn_clock_wait(sc)) != 0)
8586 return error;
8587
8588 if ((error = iwn_nic_lock(sc)) != 0)
8589 return error;
8590 if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8591 /* Enable DMA and BSM (Bootstrap State Machine). */
8592 iwn_prph_write(sc, IWN_APMG_CLK_EN,
8593 IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8594 IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8595 } else {
8596 /* Enable DMA. */
8597 iwn_prph_write(sc, IWN_APMG_CLK_EN,
8598 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8599 }
8600 DELAY(20);
8601 /* Disable L1-Active. */
8602 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8603 iwn_nic_unlock(sc);
8604
8605 return 0;
8606 }
8607
8608 static void
8609 iwn_apm_stop_master(struct iwn_softc *sc)
8610 {
8611 int ntries;
8612
8613 /* Stop busmaster DMA activity. */
8614 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8615 for (ntries = 0; ntries < 100; ntries++) {
8616 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8617 return;
8618 DELAY(10);
8619 }
8620 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8621 }
8622
8623 static void
8624 iwn_apm_stop(struct iwn_softc *sc)
8625 {
8626 iwn_apm_stop_master(sc);
8627
8628 /* Reset the entire device. */
8629 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8630 DELAY(10);
8631 /* Clear "initialization complete" bit. */
8632 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8633 }
8634
8635 static int
8636 iwn4965_nic_config(struct iwn_softc *sc)
8637 {
8638 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8639
8640 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8641 /*
8642 * I don't believe this to be correct but this is what the
8643 * vendor driver is doing. Probably the bits should not be
8644 * shifted in IWN_RFCFG_*.
8645 */
8646 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8647 IWN_RFCFG_TYPE(sc->rfcfg) |
8648 IWN_RFCFG_STEP(sc->rfcfg) |
8649 IWN_RFCFG_DASH(sc->rfcfg));
8650 }
8651 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8652 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8653 return 0;
8654 }
8655
8656 static int
8657 iwn5000_nic_config(struct iwn_softc *sc)
8658 {
8659 uint32_t tmp;
8660 int error;
8661
8662 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8663
8664 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8665 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8666 IWN_RFCFG_TYPE(sc->rfcfg) |
8667 IWN_RFCFG_STEP(sc->rfcfg) |
8668 IWN_RFCFG_DASH(sc->rfcfg));
8669 }
8670 IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8671 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8672
8673 if ((error = iwn_nic_lock(sc)) != 0)
8674 return error;
8675 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8676
8677 if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8678 /*
8679 * Select first Switching Voltage Regulator (1.32V) to
8680 * solve a stability issue related to noisy DC2DC line
8681 * in the silicon of 1000 Series.
8682 */
8683 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8684 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8685 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8686 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8687 }
8688 iwn_nic_unlock(sc);
8689
8690 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8691 /* Use internal power amplifier only. */
8692 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8693 }
8694 if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8695 /* Indicate that ROM calibration version is >=6. */
8696 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8697 }
8698 if (sc->base_params->additional_gp_drv_bit)
8699 IWN_SETBITS(sc, IWN_GP_DRIVER,
8700 sc->base_params->additional_gp_drv_bit);
8701 return 0;
8702 }
8703
8704 /*
8705 * Take NIC ownership over Intel Active Management Technology (AMT).
8706 */
8707 static int
8708 iwn_hw_prepare(struct iwn_softc *sc)
8709 {
8710 int ntries;
8711
8712 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8713
8714 /* Check if hardware is ready. */
8715 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8716 for (ntries = 0; ntries < 5; ntries++) {
8717 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8718 IWN_HW_IF_CONFIG_NIC_READY)
8719 return 0;
8720 DELAY(10);
8721 }
8722
8723 /* Hardware not ready, force into ready state. */
8724 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8725 for (ntries = 0; ntries < 15000; ntries++) {
8726 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8727 IWN_HW_IF_CONFIG_PREPARE_DONE))
8728 break;
8729 DELAY(10);
8730 }
8731 if (ntries == 15000)
8732 return ETIMEDOUT;
8733
8734 /* Hardware should be ready now. */
8735 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8736 for (ntries = 0; ntries < 5; ntries++) {
8737 if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8738 IWN_HW_IF_CONFIG_NIC_READY)
8739 return 0;
8740 DELAY(10);
8741 }
8742 return ETIMEDOUT;
8743 }
8744
8745 static int
8746 iwn_hw_init(struct iwn_softc *sc)
8747 {
8748 struct iwn_ops *ops = &sc->ops;
8749 int error, chnl, qid;
8750
8751 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8752
8753 /* Clear pending interrupts. */
8754 IWN_WRITE(sc, IWN_INT, 0xffffffff);
8755
8756 if ((error = iwn_apm_init(sc)) != 0) {
8757 device_printf(sc->sc_dev,
8758 "%s: could not power ON adapter, error %d\n", __func__,
8759 error);
8760 return error;
8761 }
8762
8763 /* Select VMAIN power source. */
8764 if ((error = iwn_nic_lock(sc)) != 0)
8765 return error;
8766 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8767 iwn_nic_unlock(sc);
8768
8769 /* Perform adapter-specific initialization. */
8770 if ((error = ops->nic_config(sc)) != 0)
8771 return error;
8772
8773 /* Initialize RX ring. */
8774 if ((error = iwn_nic_lock(sc)) != 0)
8775 return error;
8776 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8777 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8778 /* Set physical address of RX ring (256-byte aligned). */
8779 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8780 /* Set physical address of RX status (16-byte aligned). */
8781 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8782 /* Enable RX. */
8783 IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8784 IWN_FH_RX_CONFIG_ENA |
8785 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
8786 IWN_FH_RX_CONFIG_IRQ_DST_HOST |
8787 IWN_FH_RX_CONFIG_SINGLE_FRAME |
8788 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8789 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8790 iwn_nic_unlock(sc);
8791 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8792
8793 if ((error = iwn_nic_lock(sc)) != 0)
8794 return error;
8795
8796 /* Initialize TX scheduler. */
8797 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8798
8799 /* Set physical address of "keep warm" page (16-byte aligned). */
8800 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8801
8802 /* Initialize TX rings. */
8803 for (qid = 0; qid < sc->ntxqs; qid++) {
8804 struct iwn_tx_ring *txq = &sc->txq[qid];
8805
8806 /* Set physical address of TX ring (256-byte aligned). */
8807 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8808 txq->desc_dma.paddr >> 8);
8809 }
8810 iwn_nic_unlock(sc);
8811
8812 /* Enable DMA channels. */
8813 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8814 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8815 IWN_FH_TX_CONFIG_DMA_ENA |
8816 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8817 }
8818
8819 /* Clear "radio off" and "commands blocked" bits. */
8820 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8821 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8822
8823 /* Clear pending interrupts. */
8824 IWN_WRITE(sc, IWN_INT, 0xffffffff);
8825 /* Enable interrupt coalescing. */
8826 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8827 /* Enable interrupts. */
8828 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8829
8830 /* _Really_ make sure "radio off" bit is cleared! */
8831 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8832 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8833
8834 /* Enable shadow registers. */
8835 if (sc->base_params->shadow_reg_enable)
8836 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8837
8838 if ((error = ops->load_firmware(sc)) != 0) {
8839 device_printf(sc->sc_dev,
8840 "%s: could not load firmware, error %d\n", __func__,
8841 error);
8842 return error;
8843 }
8844 /* Wait at most one second for firmware alive notification. */
8845 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8846 device_printf(sc->sc_dev,
8847 "%s: timeout waiting for adapter to initialize, error %d\n",
8848 __func__, error);
8849 return error;
8850 }
8851 /* Do post-firmware initialization. */
8852
8853 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8854
8855 return ops->post_alive(sc);
8856 }
8857
8858 static void
8859 iwn_hw_stop(struct iwn_softc *sc)
8860 {
8861 int chnl, qid, ntries;
8862
8863 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8864
8865 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8866
8867 /* Disable interrupts. */
8868 IWN_WRITE(sc, IWN_INT_MASK, 0);
8869 IWN_WRITE(sc, IWN_INT, 0xffffffff);
8870 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8871 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8872
8873 /* Make sure we no longer hold the NIC lock. */
8874 iwn_nic_unlock(sc);
8875
8876 /* Stop TX scheduler. */
8877 iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8878
8879 /* Stop all DMA channels. */
8880 if (iwn_nic_lock(sc) == 0) {
8881 for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8882 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8883 for (ntries = 0; ntries < 200; ntries++) {
8884 if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8885 IWN_FH_TX_STATUS_IDLE(chnl))
8886 break;
8887 DELAY(10);
8888 }
8889 }
8890 iwn_nic_unlock(sc);
8891 }
8892
8893 /* Stop RX ring. */
8894 iwn_reset_rx_ring(sc, &sc->rxq);
8895
8896 /* Reset all TX rings. */
8897 for (qid = 0; qid < sc->ntxqs; qid++)
8898 iwn_reset_tx_ring(sc, &sc->txq[qid]);
8899
8900 if (iwn_nic_lock(sc) == 0) {
8901 iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8902 IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8903 iwn_nic_unlock(sc);
8904 }
8905 DELAY(5);
8906 /* Power OFF adapter. */
8907 iwn_apm_stop(sc);
8908 }
8909
8910 static void
8911 iwn_panicked(void *arg0, int pending)
8912 {
8913 struct iwn_softc *sc = arg0;
8914 struct ieee80211com *ic = &sc->sc_ic;
8915 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8916 #if 0
8917 int error;
8918 #endif
8919
8920 if (vap == NULL) {
8921 printf("%s: null vap\n", __func__);
8922 return;
8923 }
8924
8925 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8926 "restarting\n", __func__, vap->iv_state);
8927
8928 /*
8929 * This is not enough work. We need to also reinitialise
8930 * the correct transmit state for aggregation enabled queues,
8931 * which has a very specific requirement of
8932 * ring index = 802.11 seqno % 256. If we don't do this (which
8933 * we definitely don't!) then the firmware will just panic again.
8934 */
8935 #if 1
8936 ieee80211_restart_all(ic);
8937 #else
8938 IWN_LOCK(sc);
8939
8940 iwn_stop_locked(sc);
8941 if ((error = iwn_init_locked(sc)) != 0) {
8942 device_printf(sc->sc_dev,
8943 "%s: could not init hardware\n", __func__);
8944 goto unlock;
8945 }
8946 if (vap->iv_state >= IEEE80211_S_AUTH &&
8947 (error = iwn_auth(sc, vap)) != 0) {
8948 device_printf(sc->sc_dev,
8949 "%s: could not move to auth state\n", __func__);
8950 }
8951 if (vap->iv_state >= IEEE80211_S_RUN &&
8952 (error = iwn_run(sc, vap)) != 0) {
8953 device_printf(sc->sc_dev,
8954 "%s: could not move to run state\n", __func__);
8955 }
8956
8957 unlock:
8958 IWN_UNLOCK(sc);
8959 #endif
8960 }
8961
8962 static int
8963 iwn_init_locked(struct iwn_softc *sc)
8964 {
8965 int error;
8966
8967 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8968
8969 IWN_LOCK_ASSERT(sc);
8970
8971 if (sc->sc_flags & IWN_FLAG_RUNNING)
8972 goto end;
8973
8974 sc->sc_flags |= IWN_FLAG_RUNNING;
8975
8976 if ((error = iwn_hw_prepare(sc)) != 0) {
8977 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8978 __func__, error);
8979 goto fail;
8980 }
8981
8982 /* Initialize interrupt mask to default value. */
8983 sc->int_mask = IWN_INT_MASK_DEF;
8984 sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8985
8986 /* Check that the radio is not disabled by hardware switch. */
8987 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8988 iwn_stop_locked(sc);
8989 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8990
8991 return (1);
8992 }
8993
8994 /* Read firmware images from the filesystem. */
8995 if ((error = iwn_read_firmware(sc)) != 0) {
8996 device_printf(sc->sc_dev,
8997 "%s: could not read firmware, error %d\n", __func__,
8998 error);
8999 goto fail;
9000 }
9001
9002 /* Initialize hardware and upload firmware. */
9003 error = iwn_hw_init(sc);
9004 iwn_unload_firmware(sc);
9005 if (error != 0) {
9006 device_printf(sc->sc_dev,
9007 "%s: could not initialize hardware, error %d\n", __func__,
9008 error);
9009 goto fail;
9010 }
9011
9012 /* Configure adapter now that it is ready. */
9013 if ((error = iwn_config(sc)) != 0) {
9014 device_printf(sc->sc_dev,
9015 "%s: could not configure device, error %d\n", __func__,
9016 error);
9017 goto fail;
9018 }
9019
9020 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
9021
9022 end:
9023 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
9024
9025 return (0);
9026
9027 fail:
9028 iwn_stop_locked(sc);
9029
9030 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
9031
9032 return (-1);
9033 }
9034
9035 static int
9036 iwn_init(struct iwn_softc *sc)
9037 {
9038 int error;
9039
9040 IWN_LOCK(sc);
9041 error = iwn_init_locked(sc);
9042 IWN_UNLOCK(sc);
9043
9044 return (error);
9045 }
9046
9047 static void
9048 iwn_stop_locked(struct iwn_softc *sc)
9049 {
9050
9051 IWN_LOCK_ASSERT(sc);
9052
9053 if (!(sc->sc_flags & IWN_FLAG_RUNNING))
9054 return;
9055
9056 sc->sc_is_scanning = 0;
9057 sc->sc_tx_timer = 0;
9058 callout_stop(&sc->watchdog_to);
9059 callout_stop(&sc->scan_timeout);
9060 callout_stop(&sc->calib_to);
9061 sc->sc_flags &= ~IWN_FLAG_RUNNING;
9062
9063 /* Power OFF hardware. */
9064 iwn_hw_stop(sc);
9065 }
9066
9067 static void
9068 iwn_stop(struct iwn_softc *sc)
9069 {
9070 IWN_LOCK(sc);
9071 iwn_stop_locked(sc);
9072 IWN_UNLOCK(sc);
9073 }
9074
9075 /*
9076 * Callback from net80211 to start a scan.
9077 */
9078 static void
9079 iwn_scan_start(struct ieee80211com *ic)
9080 {
9081 struct iwn_softc *sc = ic->ic_softc;
9082
9083 IWN_LOCK(sc);
9084 /* make the link LED blink while we're scanning */
9085 iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9086 IWN_UNLOCK(sc);
9087 }
9088
9089 /*
9090 * Callback from net80211 to terminate a scan.
9091 */
9092 static void
9093 iwn_scan_end(struct ieee80211com *ic)
9094 {
9095 struct iwn_softc *sc = ic->ic_softc;
9096 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9097
9098 IWN_LOCK(sc);
9099 if (vap->iv_state == IEEE80211_S_RUN) {
9100 /* Set link LED to ON status if we are associated */
9101 iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9102 }
9103 IWN_UNLOCK(sc);
9104 }
9105
9106 /*
9107 * Callback from net80211 to force a channel change.
9108 */
9109 static void
9110 iwn_set_channel(struct ieee80211com *ic)
9111 {
9112 struct iwn_softc *sc = ic->ic_softc;
9113 int error;
9114
9115 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9116
9117 IWN_LOCK(sc);
9118 /*
9119 * Only need to set the channel in Monitor mode. AP scanning and auth
9120 * are already taken care of by their respective firmware commands.
9121 */
9122 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9123 error = iwn_config(sc);
9124 if (error != 0)
9125 device_printf(sc->sc_dev,
9126 "%s: error %d setting channel\n", __func__, error);
9127 }
9128 IWN_UNLOCK(sc);
9129 }
9130
9131 /*
9132 * Callback from net80211 to start scanning of the current channel.
9133 */
9134 static void
9135 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9136 {
9137 struct ieee80211vap *vap = ss->ss_vap;
9138 struct ieee80211com *ic = vap->iv_ic;
9139 struct iwn_softc *sc = ic->ic_softc;
9140 int error;
9141
9142 IWN_LOCK(sc);
9143 error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9144 IWN_UNLOCK(sc);
9145 if (error != 0)
9146 ieee80211_cancel_scan(vap);
9147 }
9148
9149 /*
9150 * Callback from net80211 to handle the minimum dwell time being met.
9151 * The intent is to terminate the scan but we just let the firmware
9152 * notify us when it's finished as we have no safe way to abort it.
9153 */
9154 static void
9155 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9156 {
9157 /* NB: don't try to abort scan; wait for firmware to finish */
9158 }
9159 #ifdef IWN_DEBUG
9160 #define IWN_DESC(x) case x: return #x
9161
9162 /*
9163 * Translate CSR code to string
9164 */
9165 static char *iwn_get_csr_string(int csr)
9166 {
9167 switch (csr) {
9168 IWN_DESC(IWN_HW_IF_CONFIG);
9169 IWN_DESC(IWN_INT_COALESCING);
9170 IWN_DESC(IWN_INT);
9171 IWN_DESC(IWN_INT_MASK);
9172 IWN_DESC(IWN_FH_INT);
9173 IWN_DESC(IWN_GPIO_IN);
9174 IWN_DESC(IWN_RESET);
9175 IWN_DESC(IWN_GP_CNTRL);
9176 IWN_DESC(IWN_HW_REV);
9177 IWN_DESC(IWN_EEPROM);
9178 IWN_DESC(IWN_EEPROM_GP);
9179 IWN_DESC(IWN_OTP_GP);
9180 IWN_DESC(IWN_GIO);
9181 IWN_DESC(IWN_GP_UCODE);
9182 IWN_DESC(IWN_GP_DRIVER);
9183 IWN_DESC(IWN_UCODE_GP1);
9184 IWN_DESC(IWN_UCODE_GP2);
9185 IWN_DESC(IWN_LED);
9186 IWN_DESC(IWN_DRAM_INT_TBL);
9187 IWN_DESC(IWN_GIO_CHICKEN);
9188 IWN_DESC(IWN_ANA_PLL);
9189 IWN_DESC(IWN_HW_REV_WA);
9190 IWN_DESC(IWN_DBG_HPET_MEM);
9191 default:
9192 return "UNKNOWN CSR";
9193 }
9194 }
9195
9196 /*
9197 * This function print firmware register
9198 */
9199 static void
9200 iwn_debug_register(struct iwn_softc *sc)
9201 {
9202 int i;
9203 static const uint32_t csr_tbl[] = {
9204 IWN_HW_IF_CONFIG,
9205 IWN_INT_COALESCING,
9206 IWN_INT,
9207 IWN_INT_MASK,
9208 IWN_FH_INT,
9209 IWN_GPIO_IN,
9210 IWN_RESET,
9211 IWN_GP_CNTRL,
9212 IWN_HW_REV,
9213 IWN_EEPROM,
9214 IWN_EEPROM_GP,
9215 IWN_OTP_GP,
9216 IWN_GIO,
9217 IWN_GP_UCODE,
9218 IWN_GP_DRIVER,
9219 IWN_UCODE_GP1,
9220 IWN_UCODE_GP2,
9221 IWN_LED,
9222 IWN_DRAM_INT_TBL,
9223 IWN_GIO_CHICKEN,
9224 IWN_ANA_PLL,
9225 IWN_HW_REV_WA,
9226 IWN_DBG_HPET_MEM,
9227 };
9228 DPRINTF(sc, IWN_DEBUG_REGISTER,
9229 "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9230 "\n");
9231 for (i = 0; i < nitems(csr_tbl); i++){
9232 DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ",
9233 iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9234 if ((i+1) % 3 == 0)
9235 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9236 }
9237 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9238 }
9239 #endif
9240
9241
Cache object: 648b63969bdf226757c6596d3fa9b08d
|