The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/jme/if_jme.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/bus.h>
   36 #include <sys/endian.h>
   37 #include <sys/kernel.h>
   38 #include <sys/malloc.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/rman.h>
   41 #include <sys/module.h>
   42 #include <sys/proc.h>
   43 #include <sys/queue.h>
   44 #include <sys/socket.h>
   45 #include <sys/sockio.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/taskqueue.h>
   48 
   49 #include <net/bpf.h>
   50 #include <net/if.h>
   51 #include <net/if_var.h>
   52 #include <net/if_arp.h>
   53 #include <net/ethernet.h>
   54 #include <net/if_dl.h>
   55 #include <net/if_media.h>
   56 #include <net/if_types.h>
   57 #include <net/if_vlan_var.h>
   58 
   59 #include <netinet/in.h>
   60 #include <netinet/in_systm.h>
   61 #include <netinet/ip.h>
   62 #include <netinet/tcp.h>
   63 
   64 #include <dev/mii/mii.h>
   65 #include <dev/mii/miivar.h>
   66 
   67 #include <dev/pci/pcireg.h>
   68 #include <dev/pci/pcivar.h>
   69 
   70 #include <machine/bus.h>
   71 #include <machine/in_cksum.h>
   72 
   73 #include <dev/jme/if_jmereg.h>
   74 #include <dev/jme/if_jmevar.h>
   75 
   76 /* "device miibus" required.  See GENERIC if you get errors here. */
   77 #include "miibus_if.h"
   78 
   79 /* Define the following to disable printing Rx errors. */
   80 #undef  JME_SHOW_ERRORS
   81 
   82 #define JME_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
   83 
   84 MODULE_DEPEND(jme, pci, 1, 1, 1);
   85 MODULE_DEPEND(jme, ether, 1, 1, 1);
   86 MODULE_DEPEND(jme, miibus, 1, 1, 1);
   87 
   88 /* Tunables. */
   89 static int msi_disable = 0;
   90 static int msix_disable = 0;
   91 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
   92 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
   93 
   94 /*
   95  * Devices supported by this driver.
   96  */
   97 static struct jme_dev {
   98         uint16_t        jme_vendorid;
   99         uint16_t        jme_deviceid;
  100         const char      *jme_name;
  101 } jme_devs[] = {
  102         { VENDORID_JMICRON, DEVICEID_JMC250,
  103             "JMicron Inc, JMC25x Gigabit Ethernet" },
  104         { VENDORID_JMICRON, DEVICEID_JMC260,
  105             "JMicron Inc, JMC26x Fast Ethernet" },
  106 };
  107 
  108 static int jme_miibus_readreg(device_t, int, int);
  109 static int jme_miibus_writereg(device_t, int, int, int);
  110 static void jme_miibus_statchg(device_t);
  111 static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
  112 static int jme_mediachange(struct ifnet *);
  113 static int jme_probe(device_t);
  114 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
  115 static int jme_eeprom_macaddr(struct jme_softc *);
  116 static int jme_efuse_macaddr(struct jme_softc *);
  117 static void jme_reg_macaddr(struct jme_softc *);
  118 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
  119 static void jme_map_intr_vector(struct jme_softc *);
  120 static int jme_attach(device_t);
  121 static int jme_detach(device_t);
  122 static void jme_sysctl_node(struct jme_softc *);
  123 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  124 static int jme_dma_alloc(struct jme_softc *);
  125 static void jme_dma_free(struct jme_softc *);
  126 static int jme_shutdown(device_t);
  127 static void jme_setlinkspeed(struct jme_softc *);
  128 static void jme_setwol(struct jme_softc *);
  129 static int jme_suspend(device_t);
  130 static int jme_resume(device_t);
  131 static int jme_encap(struct jme_softc *, struct mbuf **);
  132 static void jme_start(struct ifnet *);
  133 static void jme_start_locked(struct ifnet *);
  134 static void jme_watchdog(struct jme_softc *);
  135 static int jme_ioctl(struct ifnet *, u_long, caddr_t);
  136 static void jme_mac_config(struct jme_softc *);
  137 static void jme_link_task(void *, int);
  138 static int jme_intr(void *);
  139 static void jme_int_task(void *, int);
  140 static void jme_txeof(struct jme_softc *);
  141 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
  142 static void jme_rxeof(struct jme_softc *);
  143 static int jme_rxintr(struct jme_softc *, int);
  144 static void jme_tick(void *);
  145 static void jme_reset(struct jme_softc *);
  146 static void jme_init(void *);
  147 static void jme_init_locked(struct jme_softc *);
  148 static void jme_stop(struct jme_softc *);
  149 static void jme_stop_tx(struct jme_softc *);
  150 static void jme_stop_rx(struct jme_softc *);
  151 static int jme_init_rx_ring(struct jme_softc *);
  152 static void jme_init_tx_ring(struct jme_softc *);
  153 static void jme_init_ssb(struct jme_softc *);
  154 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
  155 static void jme_set_vlan(struct jme_softc *);
  156 static void jme_set_filter(struct jme_softc *);
  157 static void jme_stats_clear(struct jme_softc *);
  158 static void jme_stats_save(struct jme_softc *);
  159 static void jme_stats_update(struct jme_softc *);
  160 static void jme_phy_down(struct jme_softc *);
  161 static void jme_phy_up(struct jme_softc *);
  162 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  163 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
  164 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
  165 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
  166 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
  167 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
  168 
  169 
  170 static device_method_t jme_methods[] = {
  171         /* Device interface. */
  172         DEVMETHOD(device_probe,         jme_probe),
  173         DEVMETHOD(device_attach,        jme_attach),
  174         DEVMETHOD(device_detach,        jme_detach),
  175         DEVMETHOD(device_shutdown,      jme_shutdown),
  176         DEVMETHOD(device_suspend,       jme_suspend),
  177         DEVMETHOD(device_resume,        jme_resume),
  178 
  179         /* MII interface. */
  180         DEVMETHOD(miibus_readreg,       jme_miibus_readreg),
  181         DEVMETHOD(miibus_writereg,      jme_miibus_writereg),
  182         DEVMETHOD(miibus_statchg,       jme_miibus_statchg),
  183 
  184         { NULL, NULL }
  185 };
  186 
  187 static driver_t jme_driver = {
  188         "jme",
  189         jme_methods,
  190         sizeof(struct jme_softc)
  191 };
  192 
  193 DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
  194 DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
  195 
  196 static struct resource_spec jme_res_spec_mem[] = {
  197         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
  198         { -1,                   0,              0 }
  199 };
  200 
  201 static struct resource_spec jme_irq_spec_legacy[] = {
  202         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
  203         { -1,                   0,              0 }
  204 };
  205 
  206 static struct resource_spec jme_irq_spec_msi[] = {
  207         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  208         { -1,                   0,              0 }
  209 };
  210 
  211 /*
  212  *      Read a PHY register on the MII of the JMC250.
  213  */
  214 static int
  215 jme_miibus_readreg(device_t dev, int phy, int reg)
  216 {
  217         struct jme_softc *sc;
  218         uint32_t val;
  219         int i;
  220 
  221         sc = device_get_softc(dev);
  222 
  223         /* For FPGA version, PHY address 0 should be ignored. */
  224         if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
  225                 return (0);
  226 
  227         CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
  228             SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
  229         for (i = JME_PHY_TIMEOUT; i > 0; i--) {
  230                 DELAY(1);
  231                 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
  232                         break;
  233         }
  234 
  235         if (i == 0) {
  236                 device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
  237                 return (0);
  238         }
  239 
  240         return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
  241 }
  242 
  243 /*
  244  *      Write a PHY register on the MII of the JMC250.
  245  */
  246 static int
  247 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
  248 {
  249         struct jme_softc *sc;
  250         int i;
  251 
  252         sc = device_get_softc(dev);
  253 
  254         /* For FPGA version, PHY address 0 should be ignored. */
  255         if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
  256                 return (0);
  257 
  258         CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
  259             ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
  260             SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
  261         for (i = JME_PHY_TIMEOUT; i > 0; i--) {
  262                 DELAY(1);
  263                 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
  264                         break;
  265         }
  266 
  267         if (i == 0)
  268                 device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
  269 
  270         return (0);
  271 }
  272 
  273 /*
  274  *      Callback from MII layer when media changes.
  275  */
  276 static void
  277 jme_miibus_statchg(device_t dev)
  278 {
  279         struct jme_softc *sc;
  280 
  281         sc = device_get_softc(dev);
  282         taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
  283 }
  284 
  285 /*
  286  *      Get the current interface media status.
  287  */
  288 static void
  289 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
  290 {
  291         struct jme_softc *sc;
  292         struct mii_data *mii;
  293 
  294         sc = ifp->if_softc;
  295         JME_LOCK(sc);
  296         if ((ifp->if_flags & IFF_UP) == 0) {
  297                 JME_UNLOCK(sc);
  298                 return;
  299         }
  300         mii = device_get_softc(sc->jme_miibus);
  301 
  302         mii_pollstat(mii);
  303         ifmr->ifm_status = mii->mii_media_status;
  304         ifmr->ifm_active = mii->mii_media_active;
  305         JME_UNLOCK(sc);
  306 }
  307 
  308 /*
  309  *      Set hardware to newly-selected media.
  310  */
  311 static int
  312 jme_mediachange(struct ifnet *ifp)
  313 {
  314         struct jme_softc *sc;
  315         struct mii_data *mii;
  316         struct mii_softc *miisc;
  317         int error;
  318 
  319         sc = ifp->if_softc;
  320         JME_LOCK(sc);
  321         mii = device_get_softc(sc->jme_miibus);
  322         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  323                 PHY_RESET(miisc);
  324         error = mii_mediachg(mii);
  325         JME_UNLOCK(sc);
  326 
  327         return (error);
  328 }
  329 
  330 static int
  331 jme_probe(device_t dev)
  332 {
  333         struct jme_dev *sp;
  334         int i;
  335         uint16_t vendor, devid;
  336 
  337         vendor = pci_get_vendor(dev);
  338         devid = pci_get_device(dev);
  339         sp = jme_devs;
  340         for (i = 0; i < nitems(jme_devs); i++, sp++) {
  341                 if (vendor == sp->jme_vendorid &&
  342                     devid == sp->jme_deviceid) {
  343                         device_set_desc(dev, sp->jme_name);
  344                         return (BUS_PROBE_DEFAULT);
  345                 }
  346         }
  347 
  348         return (ENXIO);
  349 }
  350 
  351 static int
  352 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
  353 {
  354         uint32_t reg;
  355         int i;
  356 
  357         *val = 0;
  358         for (i = JME_TIMEOUT; i > 0; i--) {
  359                 reg = CSR_READ_4(sc, JME_SMBCSR);
  360                 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
  361                         break;
  362                 DELAY(1);
  363         }
  364 
  365         if (i == 0) {
  366                 device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
  367                 return (ETIMEDOUT);
  368         }
  369 
  370         reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
  371         CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
  372         for (i = JME_TIMEOUT; i > 0; i--) {
  373                 DELAY(1);
  374                 reg = CSR_READ_4(sc, JME_SMBINTF);
  375                 if ((reg & SMBINTF_CMD_TRIGGER) == 0)
  376                         break;
  377         }
  378 
  379         if (i == 0) {
  380                 device_printf(sc->jme_dev, "EEPROM read timeout!\n");
  381                 return (ETIMEDOUT);
  382         }
  383 
  384         reg = CSR_READ_4(sc, JME_SMBINTF);
  385         *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
  386 
  387         return (0);
  388 }
  389 
  390 static int
  391 jme_eeprom_macaddr(struct jme_softc *sc)
  392 {
  393         uint8_t eaddr[ETHER_ADDR_LEN];
  394         uint8_t fup, reg, val;
  395         uint32_t offset;
  396         int match;
  397 
  398         offset = 0;
  399         if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
  400             fup != JME_EEPROM_SIG0)
  401                 return (ENOENT);
  402         if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
  403             fup != JME_EEPROM_SIG1)
  404                 return (ENOENT);
  405         match = 0;
  406         do {
  407                 if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
  408                         break;
  409                 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
  410                     (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
  411                         if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
  412                                 break;
  413                         if (reg >= JME_PAR0 &&
  414                             reg < JME_PAR0 + ETHER_ADDR_LEN) {
  415                                 if (jme_eeprom_read_byte(sc, offset + 2,
  416                                     &val) != 0)
  417                                         break;
  418                                 eaddr[reg - JME_PAR0] = val;
  419                                 match++;
  420                         }
  421                 }
  422                 /* Check for the end of EEPROM descriptor. */
  423                 if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
  424                         break;
  425                 /* Try next eeprom descriptor. */
  426                 offset += JME_EEPROM_DESC_BYTES;
  427         } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
  428 
  429         if (match == ETHER_ADDR_LEN) {
  430                 bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
  431                 return (0);
  432         }
  433 
  434         return (ENOENT);
  435 }
  436 
  437 static int
  438 jme_efuse_macaddr(struct jme_softc *sc)
  439 {
  440         uint32_t reg;
  441         int i;
  442 
  443         reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
  444         if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
  445             EFUSE_CTL1_AUTOLAOD_DONE)
  446                 return (ENOENT);
  447         /* Reset eFuse controller. */
  448         reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
  449         reg |= EFUSE_CTL2_RESET;
  450         pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
  451         reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
  452         reg &= ~EFUSE_CTL2_RESET;
  453         pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
  454 
  455         /* Have eFuse reload station address to MAC controller. */
  456         reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
  457         reg &= ~EFUSE_CTL1_CMD_MASK;
  458         reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
  459         pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
  460 
  461         /*
  462          * Verify completion of eFuse autload command.  It should be
  463          * completed within 108us.
  464          */
  465         DELAY(110);
  466         for (i = 10; i > 0; i--) {
  467                 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
  468                 if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
  469                     EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
  470                         DELAY(20);
  471                         continue;
  472                 }
  473                 if ((reg & EFUSE_CTL1_EXECUTE) == 0)
  474                         break;
  475                 /* Station address loading is still in progress. */
  476                 DELAY(20);
  477         }
  478         if (i == 0) {
  479                 device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
  480                 return (ETIMEDOUT);
  481         }
  482 
  483         return (0);
  484 }
  485 
  486 static void
  487 jme_reg_macaddr(struct jme_softc *sc)
  488 {
  489         uint32_t par0, par1;
  490 
  491         /* Read station address. */
  492         par0 = CSR_READ_4(sc, JME_PAR0);
  493         par1 = CSR_READ_4(sc, JME_PAR1);
  494         par1 &= 0xFFFF;
  495         if ((par0 == 0 && par1 == 0) ||
  496             (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
  497                 device_printf(sc->jme_dev,
  498                     "Failed to retrieve Ethernet address.\n");
  499         } else {
  500                 /*
  501                  * For controllers that use eFuse, the station address
  502                  * could also be extracted from JME_PCI_PAR0 and
  503                  * JME_PCI_PAR1 registers in PCI configuration space.
  504                  * Each register holds exactly half of station address(24bits)
  505                  * so use JME_PAR0, JME_PAR1 registers instead.
  506                  */
  507                 sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
  508                 sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
  509                 sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
  510                 sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
  511                 sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
  512                 sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
  513         }
  514 }
  515 
  516 static void
  517 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
  518 {
  519         uint32_t val;
  520         int i;
  521 
  522         if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
  523                 /*
  524                  * Avoid reprogramming station address if the address
  525                  * is the same as previous one.  Note, reprogrammed
  526                  * station address is permanent as if it was written
  527                  * to EEPROM. So if station address was changed by
  528                  * admistrator it's possible to lose factory configured
  529                  * address when driver fails to restore its address.
  530                  * (e.g. reboot or system crash)
  531                  */
  532                 if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
  533                         for (i = 0; i < ETHER_ADDR_LEN; i++) {
  534                                 val = JME_EFUSE_EEPROM_FUNC0 <<
  535                                     JME_EFUSE_EEPROM_FUNC_SHIFT;
  536                                 val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
  537                                     JME_EFUSE_EEPROM_PAGE_SHIFT;
  538                                 val |= (JME_PAR0 + i) <<
  539                                     JME_EFUSE_EEPROM_ADDR_SHIFT;
  540                                 val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
  541                                 pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
  542                                     val | JME_EFUSE_EEPROM_WRITE, 4);
  543                         }
  544                 }
  545         } else {
  546                 CSR_WRITE_4(sc, JME_PAR0,
  547                     eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
  548                 CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
  549         }
  550 }
  551 
  552 static void
  553 jme_map_intr_vector(struct jme_softc *sc)
  554 {
  555         uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
  556 
  557         bzero(map, sizeof(map));
  558 
  559         /* Map Tx interrupts source to MSI/MSIX vector 2. */
  560         map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
  561             MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
  562         map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
  563             MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
  564         map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
  565             MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
  566         map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
  567             MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
  568         map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
  569             MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
  570         map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
  571             MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
  572         map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
  573             MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
  574         map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
  575             MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
  576         map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
  577             MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
  578         map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
  579             MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
  580 
  581         /* Map Rx interrupts source to MSI/MSIX vector 1. */
  582         map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
  583             MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
  584         map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
  585             MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
  586         map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
  587             MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
  588         map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
  589             MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
  590         map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
  591             MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
  592         map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
  593             MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
  594         map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
  595             MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
  596         map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
  597             MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
  598         map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
  599             MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
  600         map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
  601             MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
  602         map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
  603             MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
  604         map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
  605             MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
  606         map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
  607             MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
  608         map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
  609             MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
  610         map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
  611             MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
  612         map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
  613             MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
  614 
  615         /* Map all other interrupts source to MSI/MSIX vector 0. */
  616         CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
  617         CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
  618         CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
  619         CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
  620 }
  621 
  622 static int
  623 jme_attach(device_t dev)
  624 {
  625         struct jme_softc *sc;
  626         struct ifnet *ifp;
  627         struct mii_softc *miisc;
  628         struct mii_data *mii;
  629         uint32_t reg;
  630         uint16_t burst;
  631         int error, i, mii_flags, msic, msixc, pmc;
  632 
  633         error = 0;
  634         sc = device_get_softc(dev);
  635         sc->jme_dev = dev;
  636 
  637         mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  638             MTX_DEF);
  639         callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
  640         TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
  641         TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
  642 
  643         /*
  644          * Map the device. JMC250 supports both memory mapped and I/O
  645          * register space access. Because I/O register access should
  646          * use different BARs to access registers it's waste of time
  647          * to use I/O register spce access. JMC250 uses 16K to map
  648          * entire memory space.
  649          */
  650         pci_enable_busmaster(dev);
  651         sc->jme_res_spec = jme_res_spec_mem;
  652         sc->jme_irq_spec = jme_irq_spec_legacy;
  653         error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
  654         if (error != 0) {
  655                 device_printf(dev, "cannot allocate memory resources.\n");
  656                 goto fail;
  657         }
  658 
  659         /* Allocate IRQ resources. */
  660         msixc = pci_msix_count(dev);
  661         msic = pci_msi_count(dev);
  662         if (bootverbose) {
  663                 device_printf(dev, "MSIX count : %d\n", msixc);
  664                 device_printf(dev, "MSI count : %d\n", msic);
  665         }
  666 
  667         /* Use 1 MSI/MSI-X. */
  668         if (msixc > 1)
  669                 msixc = 1;
  670         if (msic > 1)
  671                 msic = 1;
  672         /* Prefer MSIX over MSI. */
  673         if (msix_disable == 0 || msi_disable == 0) {
  674                 if (msix_disable == 0 && msixc > 0 &&
  675                     pci_alloc_msix(dev, &msixc) == 0) {
  676                         if (msixc == 1) {
  677                                 device_printf(dev, "Using %d MSIX messages.\n",
  678                                     msixc);
  679                                 sc->jme_flags |= JME_FLAG_MSIX;
  680                                 sc->jme_irq_spec = jme_irq_spec_msi;
  681                         } else
  682                                 pci_release_msi(dev);
  683                 }
  684                 if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
  685                     msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
  686                         if (msic == 1) {
  687                                 device_printf(dev, "Using %d MSI messages.\n",
  688                                     msic);
  689                                 sc->jme_flags |= JME_FLAG_MSI;
  690                                 sc->jme_irq_spec = jme_irq_spec_msi;
  691                         } else
  692                                 pci_release_msi(dev);
  693                 }
  694                 /* Map interrupt vector 0, 1 and 2. */
  695                 if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
  696                     (sc->jme_flags & JME_FLAG_MSIX) != 0)
  697                         jme_map_intr_vector(sc);
  698         }
  699 
  700         error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
  701         if (error != 0) {
  702                 device_printf(dev, "cannot allocate IRQ resources.\n");
  703                 goto fail;
  704         }
  705 
  706         sc->jme_rev = pci_get_device(dev);
  707         if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
  708                 sc->jme_flags |= JME_FLAG_FASTETH;
  709                 sc->jme_flags |= JME_FLAG_NOJUMBO;
  710         }
  711         reg = CSR_READ_4(sc, JME_CHIPMODE);
  712         sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
  713         if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
  714             CHIPMODE_NOT_FPGA)
  715                 sc->jme_flags |= JME_FLAG_FPGA;
  716         if (bootverbose) {
  717                 device_printf(dev, "PCI device revision : 0x%04x\n",
  718                     sc->jme_rev);
  719                 device_printf(dev, "Chip revision : 0x%02x\n",
  720                     sc->jme_chip_rev);
  721                 if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
  722                         device_printf(dev, "FPGA revision : 0x%04x\n",
  723                             (reg & CHIPMODE_FPGA_REV_MASK) >>
  724                             CHIPMODE_FPGA_REV_SHIFT);
  725         }
  726         if (sc->jme_chip_rev == 0xFF) {
  727                 device_printf(dev, "Unknown chip revision : 0x%02x\n",
  728                     sc->jme_rev);
  729                 error = ENXIO;
  730                 goto fail;
  731         }
  732 
  733         /* Identify controller features and bugs. */
  734         if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
  735                 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
  736                     CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
  737                         sc->jme_flags |= JME_FLAG_DMA32BIT;
  738                 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
  739                         sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
  740                 sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
  741                 sc->jme_flags |= JME_FLAG_HWMIB;
  742         }
  743 
  744         /* Reset the ethernet controller. */
  745         jme_reset(sc);
  746 
  747         /* Get station address. */
  748         if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
  749                 error = jme_efuse_macaddr(sc);
  750                 if (error == 0)
  751                         jme_reg_macaddr(sc);
  752         } else {
  753                 error = ENOENT;
  754                 reg = CSR_READ_4(sc, JME_SMBCSR);
  755                 if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
  756                         error = jme_eeprom_macaddr(sc);
  757                 if (error != 0 && bootverbose)
  758                         device_printf(sc->jme_dev,
  759                             "ethernet hardware address not found in EEPROM.\n");
  760                 if (error != 0)
  761                         jme_reg_macaddr(sc);
  762         }
  763 
  764         /*
  765          * Save PHY address.
  766          * Integrated JR0211 has fixed PHY address whereas FPGA version
  767          * requires PHY probing to get correct PHY address.
  768          */
  769         if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
  770                 sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
  771                     GPREG0_PHY_ADDR_MASK;
  772                 if (bootverbose)
  773                         device_printf(dev, "PHY is at address %d.\n",
  774                             sc->jme_phyaddr);
  775         } else
  776                 sc->jme_phyaddr = 0;
  777 
  778         /* Set max allowable DMA size. */
  779         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
  780                 sc->jme_flags |= JME_FLAG_PCIE;
  781                 burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
  782                 if (bootverbose) {
  783                         device_printf(dev, "Read request size : %d bytes.\n",
  784                             128 << ((burst >> 12) & 0x07));
  785                         device_printf(dev, "TLP payload size : %d bytes.\n",
  786                             128 << ((burst >> 5) & 0x07));
  787                 }
  788                 switch ((burst >> 12) & 0x07) {
  789                 case 0:
  790                         sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
  791                         break;
  792                 case 1:
  793                         sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
  794                         break;
  795                 default:
  796                         sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
  797                         break;
  798                 }
  799                 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
  800         } else {
  801                 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
  802                 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
  803         }
  804         /* Create coalescing sysctl node. */
  805         jme_sysctl_node(sc);
  806         if ((error = jme_dma_alloc(sc)) != 0)
  807                 goto fail;
  808 
  809         ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
  810         if (ifp == NULL) {
  811                 device_printf(dev, "cannot allocate ifnet structure.\n");
  812                 error = ENXIO;
  813                 goto fail;
  814         }
  815 
  816         ifp->if_softc = sc;
  817         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  818         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  819         ifp->if_ioctl = jme_ioctl;
  820         ifp->if_start = jme_start;
  821         ifp->if_init = jme_init;
  822         ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
  823         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  824         IFQ_SET_READY(&ifp->if_snd);
  825         /* JMC250 supports Tx/Rx checksum offload as well as TSO. */
  826         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
  827         ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
  828         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
  829                 sc->jme_flags |= JME_FLAG_PMCAP;
  830                 ifp->if_capabilities |= IFCAP_WOL_MAGIC;
  831         }
  832         ifp->if_capenable = ifp->if_capabilities;
  833 
  834         /* Wakeup PHY. */
  835         jme_phy_up(sc);
  836         mii_flags = MIIF_DOPAUSE;
  837         /* Ask PHY calibration to PHY driver. */
  838         if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
  839                 mii_flags |= MIIF_MACPRIV0;
  840         /* Set up MII bus. */
  841         error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
  842             jme_mediastatus, BMSR_DEFCAPMASK,
  843             sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
  844             MII_OFFSET_ANY, mii_flags);
  845         if (error != 0) {
  846                 device_printf(dev, "attaching PHYs failed\n");
  847                 goto fail;
  848         }
  849 
  850         /*
  851          * Force PHY to FPGA mode.
  852          */
  853         if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
  854                 mii = device_get_softc(sc->jme_miibus);
  855                 if (mii->mii_instance != 0) {
  856                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
  857                                 if (miisc->mii_phy != 0) {
  858                                         sc->jme_phyaddr = miisc->mii_phy;
  859                                         break;
  860                                 }
  861                         }
  862                         if (sc->jme_phyaddr != 0) {
  863                                 device_printf(sc->jme_dev,
  864                                     "FPGA PHY is at %d\n", sc->jme_phyaddr);
  865                                 /* vendor magic. */
  866                                 jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
  867                                     0x0004);
  868                         }
  869                 }
  870         }
  871 
  872         ether_ifattach(ifp, sc->jme_eaddr);
  873 
  874         /* VLAN capability setup */
  875         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
  876             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
  877         ifp->if_capenable = ifp->if_capabilities;
  878 
  879         /* Tell the upper layer(s) we support long frames. */
  880         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
  881 
  882         /* Create local taskq. */
  883         sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
  884             taskqueue_thread_enqueue, &sc->jme_tq);
  885         if (sc->jme_tq == NULL) {
  886                 device_printf(dev, "could not create taskqueue.\n");
  887                 ether_ifdetach(ifp);
  888                 error = ENXIO;
  889                 goto fail;
  890         }
  891         taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
  892             device_get_nameunit(sc->jme_dev));
  893 
  894         for (i = 0; i < 1; i++) {
  895                 error = bus_setup_intr(dev, sc->jme_irq[i],
  896                     INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
  897                     &sc->jme_intrhand[i]);
  898                 if (error != 0)
  899                         break;
  900         }
  901 
  902         if (error != 0) {
  903                 device_printf(dev, "could not set up interrupt handler.\n");
  904                 taskqueue_free(sc->jme_tq);
  905                 sc->jme_tq = NULL;
  906                 ether_ifdetach(ifp);
  907                 goto fail;
  908         }
  909 
  910 fail:
  911         if (error != 0)
  912                 jme_detach(dev);
  913 
  914         return (error);
  915 }
  916 
  917 static int
  918 jme_detach(device_t dev)
  919 {
  920         struct jme_softc *sc;
  921         struct ifnet *ifp;
  922         int i;
  923 
  924         sc = device_get_softc(dev);
  925 
  926         ifp = sc->jme_ifp;
  927         if (device_is_attached(dev)) {
  928                 JME_LOCK(sc);
  929                 sc->jme_flags |= JME_FLAG_DETACH;
  930                 jme_stop(sc);
  931                 JME_UNLOCK(sc);
  932                 callout_drain(&sc->jme_tick_ch);
  933                 taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
  934                 taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
  935                 /* Restore possibly modified station address. */
  936                 if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
  937                         jme_set_macaddr(sc, sc->jme_eaddr);
  938                 ether_ifdetach(ifp);
  939         }
  940 
  941         if (sc->jme_tq != NULL) {
  942                 taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
  943                 taskqueue_free(sc->jme_tq);
  944                 sc->jme_tq = NULL;
  945         }
  946 
  947         if (sc->jme_miibus != NULL) {
  948                 device_delete_child(dev, sc->jme_miibus);
  949                 sc->jme_miibus = NULL;
  950         }
  951         bus_generic_detach(dev);
  952         jme_dma_free(sc);
  953 
  954         if (ifp != NULL) {
  955                 if_free(ifp);
  956                 sc->jme_ifp = NULL;
  957         }
  958 
  959         for (i = 0; i < 1; i++) {
  960                 if (sc->jme_intrhand[i] != NULL) {
  961                         bus_teardown_intr(dev, sc->jme_irq[i],
  962                             sc->jme_intrhand[i]);
  963                         sc->jme_intrhand[i] = NULL;
  964                 }
  965         }
  966 
  967         if (sc->jme_irq[0] != NULL)
  968                 bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
  969         if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
  970                 pci_release_msi(dev);
  971         if (sc->jme_res[0] != NULL)
  972                 bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
  973         mtx_destroy(&sc->jme_mtx);
  974 
  975         return (0);
  976 }
  977 
  978 #define JME_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
  979             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
  980 
  981 static void
  982 jme_sysctl_node(struct jme_softc *sc)
  983 {
  984         struct sysctl_ctx_list *ctx;
  985         struct sysctl_oid_list *child, *parent;
  986         struct sysctl_oid *tree;
  987         struct jme_hw_stats *stats;
  988         int error;
  989 
  990         stats = &sc->jme_stats;
  991         ctx = device_get_sysctl_ctx(sc->jme_dev);
  992         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
  993 
  994         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
  995             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
  996             0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
  997 
  998         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
  999             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
 1000             0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
 1001 
 1002         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
 1003             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
 1004             0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
 1005 
 1006         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
 1007             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
 1008             0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
 1009 
 1010         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
 1011             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 1012             &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
 1013             "max number of Rx events to process");
 1014 
 1015         /* Pull in device tunables. */
 1016         sc->jme_process_limit = JME_PROC_DEFAULT;
 1017         error = resource_int_value(device_get_name(sc->jme_dev),
 1018             device_get_unit(sc->jme_dev), "process_limit",
 1019             &sc->jme_process_limit);
 1020         if (error == 0) {
 1021                 if (sc->jme_process_limit < JME_PROC_MIN ||
 1022                     sc->jme_process_limit > JME_PROC_MAX) {
 1023                         device_printf(sc->jme_dev,
 1024                             "process_limit value out of range; "
 1025                             "using default: %d\n", JME_PROC_DEFAULT);
 1026                         sc->jme_process_limit = JME_PROC_DEFAULT;
 1027                 }
 1028         }
 1029 
 1030         sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
 1031         error = resource_int_value(device_get_name(sc->jme_dev),
 1032             device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
 1033         if (error == 0) {
 1034                 if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
 1035                     sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
 1036                         device_printf(sc->jme_dev,
 1037                             "tx_coal_to value out of range; "
 1038                             "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
 1039                         sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
 1040                 }
 1041         }
 1042 
 1043         sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
 1044         error = resource_int_value(device_get_name(sc->jme_dev),
 1045             device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
 1046         if (error == 0) {
 1047                 if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
 1048                     sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
 1049                         device_printf(sc->jme_dev,
 1050                             "tx_coal_pkt value out of range; "
 1051                             "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
 1052                         sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
 1053                 }
 1054         }
 1055 
 1056         sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
 1057         error = resource_int_value(device_get_name(sc->jme_dev),
 1058             device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
 1059         if (error == 0) {
 1060                 if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
 1061                     sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
 1062                         device_printf(sc->jme_dev,
 1063                             "rx_coal_to value out of range; "
 1064                             "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
 1065                         sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
 1066                 }
 1067         }
 1068 
 1069         sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
 1070         error = resource_int_value(device_get_name(sc->jme_dev),
 1071             device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
 1072         if (error == 0) {
 1073                 if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
 1074                     sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
 1075                         device_printf(sc->jme_dev,
 1076                             "tx_coal_pkt value out of range; "
 1077                             "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
 1078                         sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
 1079                 }
 1080         }
 1081 
 1082         if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
 1083                 return;
 1084 
 1085         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
 1086             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
 1087         parent = SYSCTL_CHILDREN(tree);
 1088 
 1089         /* Rx statistics. */
 1090         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
 1091             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
 1092         child = SYSCTL_CHILDREN(tree);
 1093         JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 1094             &stats->rx_good_frames, "Good frames");
 1095         JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
 1096             &stats->rx_crc_errs, "CRC errors");
 1097         JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
 1098             &stats->rx_mii_errs, "MII errors");
 1099         JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
 1100             &stats->rx_fifo_oflows, "FIFO overflows");
 1101         JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
 1102             &stats->rx_desc_empty, "Descriptor empty");
 1103         JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
 1104             &stats->rx_bad_frames, "Bad frames");
 1105 
 1106         /* Tx statistics. */
 1107         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
 1108             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
 1109         child = SYSCTL_CHILDREN(tree);
 1110         JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
 1111             &stats->tx_good_frames, "Good frames");
 1112         JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
 1113             &stats->tx_bad_frames, "Bad frames");
 1114 }
 1115 
 1116 #undef  JME_SYSCTL_STAT_ADD32
 1117 
 1118 struct jme_dmamap_arg {
 1119         bus_addr_t      jme_busaddr;
 1120 };
 1121 
 1122 static void
 1123 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1124 {
 1125         struct jme_dmamap_arg *ctx;
 1126 
 1127         if (error != 0)
 1128                 return;
 1129 
 1130         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 1131 
 1132         ctx = (struct jme_dmamap_arg *)arg;
 1133         ctx->jme_busaddr = segs[0].ds_addr;
 1134 }
 1135 
 1136 static int
 1137 jme_dma_alloc(struct jme_softc *sc)
 1138 {
 1139         struct jme_dmamap_arg ctx;
 1140         struct jme_txdesc *txd;
 1141         struct jme_rxdesc *rxd;
 1142         bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
 1143         int error, i;
 1144 
 1145         lowaddr = BUS_SPACE_MAXADDR;
 1146         if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
 1147                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1148 
 1149 again:
 1150         /* Create parent ring tag. */
 1151         error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
 1152             1, 0,                       /* algnmnt, boundary */
 1153             lowaddr,                    /* lowaddr */
 1154             BUS_SPACE_MAXADDR,          /* highaddr */
 1155             NULL, NULL,                 /* filter, filterarg */
 1156             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1157             0,                          /* nsegments */
 1158             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1159             0,                          /* flags */
 1160             NULL, NULL,                 /* lockfunc, lockarg */
 1161             &sc->jme_cdata.jme_ring_tag);
 1162         if (error != 0) {
 1163                 device_printf(sc->jme_dev,
 1164                     "could not create parent ring DMA tag.\n");
 1165                 goto fail;
 1166         }
 1167         /* Create tag for Tx ring. */
 1168         error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
 1169             JME_TX_RING_ALIGN, 0,       /* algnmnt, boundary */
 1170             BUS_SPACE_MAXADDR,          /* lowaddr */
 1171             BUS_SPACE_MAXADDR,          /* highaddr */
 1172             NULL, NULL,                 /* filter, filterarg */
 1173             JME_TX_RING_SIZE,           /* maxsize */
 1174             1,                          /* nsegments */
 1175             JME_TX_RING_SIZE,           /* maxsegsize */
 1176             0,                          /* flags */
 1177             NULL, NULL,                 /* lockfunc, lockarg */
 1178             &sc->jme_cdata.jme_tx_ring_tag);
 1179         if (error != 0) {
 1180                 device_printf(sc->jme_dev,
 1181                     "could not allocate Tx ring DMA tag.\n");
 1182                 goto fail;
 1183         }
 1184 
 1185         /* Create tag for Rx ring. */
 1186         error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
 1187             JME_RX_RING_ALIGN, 0,       /* algnmnt, boundary */
 1188             lowaddr,                    /* lowaddr */
 1189             BUS_SPACE_MAXADDR,          /* highaddr */
 1190             NULL, NULL,                 /* filter, filterarg */
 1191             JME_RX_RING_SIZE,           /* maxsize */
 1192             1,                          /* nsegments */
 1193             JME_RX_RING_SIZE,           /* maxsegsize */
 1194             0,                          /* flags */
 1195             NULL, NULL,                 /* lockfunc, lockarg */
 1196             &sc->jme_cdata.jme_rx_ring_tag);
 1197         if (error != 0) {
 1198                 device_printf(sc->jme_dev,
 1199                     "could not allocate Rx ring DMA tag.\n");
 1200                 goto fail;
 1201         }
 1202 
 1203         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
 1204         error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
 1205             (void **)&sc->jme_rdata.jme_tx_ring,
 1206             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1207             &sc->jme_cdata.jme_tx_ring_map);
 1208         if (error != 0) {
 1209                 device_printf(sc->jme_dev,
 1210                     "could not allocate DMA'able memory for Tx ring.\n");
 1211                 goto fail;
 1212         }
 1213 
 1214         ctx.jme_busaddr = 0;
 1215         error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
 1216             sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
 1217             JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
 1218         if (error != 0 || ctx.jme_busaddr == 0) {
 1219                 device_printf(sc->jme_dev,
 1220                     "could not load DMA'able memory for Tx ring.\n");
 1221                 goto fail;
 1222         }
 1223         sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
 1224 
 1225         /* Allocate DMA'able memory and load the DMA map for Rx ring. */
 1226         error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
 1227             (void **)&sc->jme_rdata.jme_rx_ring,
 1228             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1229             &sc->jme_cdata.jme_rx_ring_map);
 1230         if (error != 0) {
 1231                 device_printf(sc->jme_dev,
 1232                     "could not allocate DMA'able memory for Rx ring.\n");
 1233                 goto fail;
 1234         }
 1235 
 1236         ctx.jme_busaddr = 0;
 1237         error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
 1238             sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
 1239             JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
 1240         if (error != 0 || ctx.jme_busaddr == 0) {
 1241                 device_printf(sc->jme_dev,
 1242                     "could not load DMA'able memory for Rx ring.\n");
 1243                 goto fail;
 1244         }
 1245         sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
 1246 
 1247         if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
 1248                 /* Tx/Rx descriptor queue should reside within 4GB boundary. */
 1249                 tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
 1250                     JME_TX_RING_SIZE;
 1251                 rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
 1252                     JME_RX_RING_SIZE;
 1253                 if ((JME_ADDR_HI(tx_ring_end) !=
 1254                     JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
 1255                     (JME_ADDR_HI(rx_ring_end) !=
 1256                      JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
 1257                         device_printf(sc->jme_dev, "4GB boundary crossed, "
 1258                             "switching to 32bit DMA address mode.\n");
 1259                         jme_dma_free(sc);
 1260                         /* Limit DMA address space to 32bit and try again. */
 1261                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1262                         goto again;
 1263                 }
 1264         }
 1265 
 1266         lowaddr = BUS_SPACE_MAXADDR;
 1267         if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
 1268                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1269         /* Create parent buffer tag. */
 1270         error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
 1271             1, 0,                       /* algnmnt, boundary */
 1272             lowaddr,                    /* lowaddr */
 1273             BUS_SPACE_MAXADDR,          /* highaddr */
 1274             NULL, NULL,                 /* filter, filterarg */
 1275             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1276             0,                          /* nsegments */
 1277             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1278             0,                          /* flags */
 1279             NULL, NULL,                 /* lockfunc, lockarg */
 1280             &sc->jme_cdata.jme_buffer_tag);
 1281         if (error != 0) {
 1282                 device_printf(sc->jme_dev,
 1283                     "could not create parent buffer DMA tag.\n");
 1284                 goto fail;
 1285         }
 1286 
 1287         /* Create shadow status block tag. */
 1288         error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
 1289             JME_SSB_ALIGN, 0,           /* algnmnt, boundary */
 1290             BUS_SPACE_MAXADDR,          /* lowaddr */
 1291             BUS_SPACE_MAXADDR,          /* highaddr */
 1292             NULL, NULL,                 /* filter, filterarg */
 1293             JME_SSB_SIZE,               /* maxsize */
 1294             1,                          /* nsegments */
 1295             JME_SSB_SIZE,               /* maxsegsize */
 1296             0,                          /* flags */
 1297             NULL, NULL,                 /* lockfunc, lockarg */
 1298             &sc->jme_cdata.jme_ssb_tag);
 1299         if (error != 0) {
 1300                 device_printf(sc->jme_dev,
 1301                     "could not create shared status block DMA tag.\n");
 1302                 goto fail;
 1303         }
 1304 
 1305         /* Create tag for Tx buffers. */
 1306         error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
 1307             1, 0,                       /* algnmnt, boundary */
 1308             BUS_SPACE_MAXADDR,          /* lowaddr */
 1309             BUS_SPACE_MAXADDR,          /* highaddr */
 1310             NULL, NULL,                 /* filter, filterarg */
 1311             JME_TSO_MAXSIZE,            /* maxsize */
 1312             JME_MAXTXSEGS,              /* nsegments */
 1313             JME_TSO_MAXSEGSIZE,         /* maxsegsize */
 1314             0,                          /* flags */
 1315             NULL, NULL,                 /* lockfunc, lockarg */
 1316             &sc->jme_cdata.jme_tx_tag);
 1317         if (error != 0) {
 1318                 device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
 1319                 goto fail;
 1320         }
 1321 
 1322         /* Create tag for Rx buffers. */
 1323         error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
 1324             JME_RX_BUF_ALIGN, 0,        /* algnmnt, boundary */
 1325             BUS_SPACE_MAXADDR,          /* lowaddr */
 1326             BUS_SPACE_MAXADDR,          /* highaddr */
 1327             NULL, NULL,                 /* filter, filterarg */
 1328             MCLBYTES,                   /* maxsize */
 1329             1,                          /* nsegments */
 1330             MCLBYTES,                   /* maxsegsize */
 1331             0,                          /* flags */
 1332             NULL, NULL,                 /* lockfunc, lockarg */
 1333             &sc->jme_cdata.jme_rx_tag);
 1334         if (error != 0) {
 1335                 device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
 1336                 goto fail;
 1337         }
 1338 
 1339         /*
 1340          * Allocate DMA'able memory and load the DMA map for shared
 1341          * status block.
 1342          */
 1343         error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
 1344             (void **)&sc->jme_rdata.jme_ssb_block,
 1345             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1346             &sc->jme_cdata.jme_ssb_map);
 1347         if (error != 0) {
 1348                 device_printf(sc->jme_dev, "could not allocate DMA'able "
 1349                     "memory for shared status block.\n");
 1350                 goto fail;
 1351         }
 1352 
 1353         ctx.jme_busaddr = 0;
 1354         error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
 1355             sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
 1356             JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
 1357         if (error != 0 || ctx.jme_busaddr == 0) {
 1358                 device_printf(sc->jme_dev, "could not load DMA'able memory "
 1359                     "for shared status block.\n");
 1360                 goto fail;
 1361         }
 1362         sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
 1363 
 1364         /* Create DMA maps for Tx buffers. */
 1365         for (i = 0; i < JME_TX_RING_CNT; i++) {
 1366                 txd = &sc->jme_cdata.jme_txdesc[i];
 1367                 txd->tx_m = NULL;
 1368                 txd->tx_dmamap = NULL;
 1369                 error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
 1370                     &txd->tx_dmamap);
 1371                 if (error != 0) {
 1372                         device_printf(sc->jme_dev,
 1373                             "could not create Tx dmamap.\n");
 1374                         goto fail;
 1375                 }
 1376         }
 1377         /* Create DMA maps for Rx buffers. */
 1378         if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
 1379             &sc->jme_cdata.jme_rx_sparemap)) != 0) {
 1380                 device_printf(sc->jme_dev,
 1381                     "could not create spare Rx dmamap.\n");
 1382                 goto fail;
 1383         }
 1384         for (i = 0; i < JME_RX_RING_CNT; i++) {
 1385                 rxd = &sc->jme_cdata.jme_rxdesc[i];
 1386                 rxd->rx_m = NULL;
 1387                 rxd->rx_dmamap = NULL;
 1388                 error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
 1389                     &rxd->rx_dmamap);
 1390                 if (error != 0) {
 1391                         device_printf(sc->jme_dev,
 1392                             "could not create Rx dmamap.\n");
 1393                         goto fail;
 1394                 }
 1395         }
 1396 
 1397 fail:
 1398         return (error);
 1399 }
 1400 
 1401 static void
 1402 jme_dma_free(struct jme_softc *sc)
 1403 {
 1404         struct jme_txdesc *txd;
 1405         struct jme_rxdesc *rxd;
 1406         int i;
 1407 
 1408         /* Tx ring */
 1409         if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
 1410                 if (sc->jme_rdata.jme_tx_ring_paddr)
 1411                         bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
 1412                             sc->jme_cdata.jme_tx_ring_map);
 1413                 if (sc->jme_rdata.jme_tx_ring)
 1414                         bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
 1415                             sc->jme_rdata.jme_tx_ring,
 1416                             sc->jme_cdata.jme_tx_ring_map);
 1417                 sc->jme_rdata.jme_tx_ring = NULL;
 1418                 sc->jme_rdata.jme_tx_ring_paddr = 0;
 1419                 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
 1420                 sc->jme_cdata.jme_tx_ring_tag = NULL;
 1421         }
 1422         /* Rx ring */
 1423         if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
 1424                 if (sc->jme_rdata.jme_rx_ring_paddr)
 1425                         bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
 1426                             sc->jme_cdata.jme_rx_ring_map);
 1427                 if (sc->jme_rdata.jme_rx_ring)
 1428                         bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
 1429                             sc->jme_rdata.jme_rx_ring,
 1430                             sc->jme_cdata.jme_rx_ring_map);
 1431                 sc->jme_rdata.jme_rx_ring = NULL;
 1432                 sc->jme_rdata.jme_rx_ring_paddr = 0;
 1433                 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
 1434                 sc->jme_cdata.jme_rx_ring_tag = NULL;
 1435         }
 1436         /* Tx buffers */
 1437         if (sc->jme_cdata.jme_tx_tag != NULL) {
 1438                 for (i = 0; i < JME_TX_RING_CNT; i++) {
 1439                         txd = &sc->jme_cdata.jme_txdesc[i];
 1440                         if (txd->tx_dmamap != NULL) {
 1441                                 bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
 1442                                     txd->tx_dmamap);
 1443                                 txd->tx_dmamap = NULL;
 1444                         }
 1445                 }
 1446                 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
 1447                 sc->jme_cdata.jme_tx_tag = NULL;
 1448         }
 1449         /* Rx buffers */
 1450         if (sc->jme_cdata.jme_rx_tag != NULL) {
 1451                 for (i = 0; i < JME_RX_RING_CNT; i++) {
 1452                         rxd = &sc->jme_cdata.jme_rxdesc[i];
 1453                         if (rxd->rx_dmamap != NULL) {
 1454                                 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
 1455                                     rxd->rx_dmamap);
 1456                                 rxd->rx_dmamap = NULL;
 1457                         }
 1458                 }
 1459                 if (sc->jme_cdata.jme_rx_sparemap != NULL) {
 1460                         bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
 1461                             sc->jme_cdata.jme_rx_sparemap);
 1462                         sc->jme_cdata.jme_rx_sparemap = NULL;
 1463                 }
 1464                 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
 1465                 sc->jme_cdata.jme_rx_tag = NULL;
 1466         }
 1467 
 1468         /* Shared status block. */
 1469         if (sc->jme_cdata.jme_ssb_tag != NULL) {
 1470                 if (sc->jme_rdata.jme_ssb_block_paddr)
 1471                         bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
 1472                             sc->jme_cdata.jme_ssb_map);
 1473                 if (sc->jme_rdata.jme_ssb_block)
 1474                         bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
 1475                             sc->jme_rdata.jme_ssb_block,
 1476                             sc->jme_cdata.jme_ssb_map);
 1477                 sc->jme_rdata.jme_ssb_block = NULL;
 1478                 sc->jme_rdata.jme_ssb_block_paddr = 0;
 1479                 bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
 1480                 sc->jme_cdata.jme_ssb_tag = NULL;
 1481         }
 1482 
 1483         if (sc->jme_cdata.jme_buffer_tag != NULL) {
 1484                 bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
 1485                 sc->jme_cdata.jme_buffer_tag = NULL;
 1486         }
 1487         if (sc->jme_cdata.jme_ring_tag != NULL) {
 1488                 bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
 1489                 sc->jme_cdata.jme_ring_tag = NULL;
 1490         }
 1491 }
 1492 
 1493 /*
 1494  *      Make sure the interface is stopped at reboot time.
 1495  */
 1496 static int
 1497 jme_shutdown(device_t dev)
 1498 {
 1499 
 1500         return (jme_suspend(dev));
 1501 }
 1502 
 1503 /*
 1504  * Unlike other ethernet controllers, JMC250 requires
 1505  * explicit resetting link speed to 10/100Mbps as gigabit
 1506  * link will cunsume more power than 375mA.
 1507  * Note, we reset the link speed to 10/100Mbps with
 1508  * auto-negotiation but we don't know whether that operation
 1509  * would succeed or not as we have no control after powering
 1510  * off. If the renegotiation fail WOL may not work. Running
 1511  * at 1Gbps draws more power than 375mA at 3.3V which is
 1512  * specified in PCI specification and that would result in
 1513  * complete shutdowning power to ethernet controller.
 1514  *
 1515  * TODO
 1516  *  Save current negotiated media speed/duplex/flow-control
 1517  *  to softc and restore the same link again after resuming.
 1518  *  PHY handling such as power down/resetting to 100Mbps
 1519  *  may be better handled in suspend method in phy driver.
 1520  */
 1521 static void
 1522 jme_setlinkspeed(struct jme_softc *sc)
 1523 {
 1524         struct mii_data *mii;
 1525         int aneg, i;
 1526 
 1527         JME_LOCK_ASSERT(sc);
 1528 
 1529         mii = device_get_softc(sc->jme_miibus);
 1530         mii_pollstat(mii);
 1531         aneg = 0;
 1532         if ((mii->mii_media_status & IFM_AVALID) != 0) {
 1533                 switch IFM_SUBTYPE(mii->mii_media_active) {
 1534                 case IFM_10_T:
 1535                 case IFM_100_TX:
 1536                         return;
 1537                 case IFM_1000_T:
 1538                         aneg++;
 1539                 default:
 1540                         break;
 1541                 }
 1542         }
 1543         jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
 1544         jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
 1545             ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
 1546         jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
 1547             BMCR_AUTOEN | BMCR_STARTNEG);
 1548         DELAY(1000);
 1549         if (aneg != 0) {
 1550                 /* Poll link state until jme(4) get a 10/100 link. */
 1551                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 1552                         mii_pollstat(mii);
 1553                         if ((mii->mii_media_status & IFM_AVALID) != 0) {
 1554                                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1555                                 case IFM_10_T:
 1556                                 case IFM_100_TX:
 1557                                         jme_mac_config(sc);
 1558                                         return;
 1559                                 default:
 1560                                         break;
 1561                                 }
 1562                         }
 1563                         JME_UNLOCK(sc);
 1564                         pause("jmelnk", hz);
 1565                         JME_LOCK(sc);
 1566                 }
 1567                 if (i == MII_ANEGTICKS_GIGE)
 1568                         device_printf(sc->jme_dev, "establishing link failed, "
 1569                             "WOL may not work!");
 1570         }
 1571         /*
 1572          * No link, force MAC to have 100Mbps, full-duplex link.
 1573          * This is the last resort and may/may not work.
 1574          */
 1575         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 1576         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 1577         jme_mac_config(sc);
 1578 }
 1579 
 1580 static void
 1581 jme_setwol(struct jme_softc *sc)
 1582 {
 1583         struct ifnet *ifp;
 1584         uint32_t gpr, pmcs;
 1585         uint16_t pmstat;
 1586         int pmc;
 1587 
 1588         JME_LOCK_ASSERT(sc);
 1589 
 1590         if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
 1591                 /* Remove Tx MAC/offload clock to save more power. */
 1592                 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
 1593                         CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
 1594                             ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
 1595                             GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
 1596                 if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
 1597                         CSR_WRITE_4(sc, JME_GPREG1,
 1598                             CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
 1599                 /* No PME capability, PHY power down. */
 1600                 jme_phy_down(sc);
 1601                 return;
 1602         }
 1603 
 1604         ifp = sc->jme_ifp;
 1605         gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
 1606         pmcs = CSR_READ_4(sc, JME_PMCS);
 1607         pmcs &= ~PMCS_WOL_ENB_MASK;
 1608         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
 1609                 pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
 1610                 /* Enable PME message. */
 1611                 gpr |= GPREG0_PME_ENB;
 1612                 /* For gigabit controllers, reset link speed to 10/100. */
 1613                 if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
 1614                         jme_setlinkspeed(sc);
 1615         }
 1616 
 1617         CSR_WRITE_4(sc, JME_PMCS, pmcs);
 1618         CSR_WRITE_4(sc, JME_GPREG0, gpr);
 1619         /* Remove Tx MAC/offload clock to save more power. */
 1620         if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
 1621                 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
 1622                     ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
 1623                     GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
 1624         /* Request PME. */
 1625         pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
 1626         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 1627         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1628                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 1629         pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 1630         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
 1631                 /* No WOL, PHY power down. */
 1632                 jme_phy_down(sc);
 1633         }
 1634 }
 1635 
 1636 static int
 1637 jme_suspend(device_t dev)
 1638 {
 1639         struct jme_softc *sc;
 1640 
 1641         sc = device_get_softc(dev);
 1642 
 1643         JME_LOCK(sc);
 1644         jme_stop(sc);
 1645         jme_setwol(sc);
 1646         JME_UNLOCK(sc);
 1647 
 1648         return (0);
 1649 }
 1650 
 1651 static int
 1652 jme_resume(device_t dev)
 1653 {
 1654         struct jme_softc *sc;
 1655         struct ifnet *ifp;
 1656         uint16_t pmstat;
 1657         int pmc;
 1658 
 1659         sc = device_get_softc(dev);
 1660 
 1661         JME_LOCK(sc);
 1662         if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
 1663                 pmstat = pci_read_config(sc->jme_dev,
 1664                     pmc + PCIR_POWER_STATUS, 2);
 1665                 /* Disable PME clear PME status. */
 1666                 pmstat &= ~PCIM_PSTAT_PMEENABLE;
 1667                 pci_write_config(sc->jme_dev,
 1668                     pmc + PCIR_POWER_STATUS, pmstat, 2);
 1669         }
 1670         /* Wakeup PHY. */
 1671         jme_phy_up(sc);
 1672         ifp = sc->jme_ifp;
 1673         if ((ifp->if_flags & IFF_UP) != 0) {
 1674                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1675                 jme_init_locked(sc);
 1676         }
 1677 
 1678         JME_UNLOCK(sc);
 1679 
 1680         return (0);
 1681 }
 1682 
 1683 static int
 1684 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
 1685 {
 1686         struct jme_txdesc *txd;
 1687         struct jme_desc *desc;
 1688         struct mbuf *m;
 1689         bus_dma_segment_t txsegs[JME_MAXTXSEGS];
 1690         int error, i, nsegs, prod;
 1691         uint32_t cflags, tsosegsz;
 1692 
 1693         JME_LOCK_ASSERT(sc);
 1694 
 1695         M_ASSERTPKTHDR((*m_head));
 1696 
 1697         if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1698                 /*
 1699                  * Due to the adherence to NDIS specification JMC250
 1700                  * assumes upper stack computed TCP pseudo checksum
 1701                  * without including payload length. This breaks
 1702                  * checksum offload for TSO case so recompute TCP
 1703                  * pseudo checksum for JMC250. Hopefully this wouldn't
 1704                  * be much burden on modern CPUs.
 1705                  */
 1706                 struct ether_header *eh;
 1707                 struct ip *ip;
 1708                 struct tcphdr *tcp;
 1709                 uint32_t ip_off, poff;
 1710 
 1711                 if (M_WRITABLE(*m_head) == 0) {
 1712                         /* Get a writable copy. */
 1713                         m = m_dup(*m_head, M_NOWAIT);
 1714                         m_freem(*m_head);
 1715                         if (m == NULL) {
 1716                                 *m_head = NULL;
 1717                                 return (ENOBUFS);
 1718                         }
 1719                         *m_head = m;
 1720                 }
 1721                 ip_off = sizeof(struct ether_header);
 1722                 m = m_pullup(*m_head, ip_off);
 1723                 if (m == NULL) {
 1724                         *m_head = NULL;
 1725                         return (ENOBUFS);
 1726                 }
 1727                 eh = mtod(m, struct ether_header *);
 1728                 /* Check the existence of VLAN tag. */
 1729                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1730                         ip_off = sizeof(struct ether_vlan_header);
 1731                         m = m_pullup(m, ip_off);
 1732                         if (m == NULL) {
 1733                                 *m_head = NULL;
 1734                                 return (ENOBUFS);
 1735                         }
 1736                 }
 1737                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1738                 if (m == NULL) {
 1739                         *m_head = NULL;
 1740                         return (ENOBUFS);
 1741                 }
 1742                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1743                 poff = ip_off + (ip->ip_hl << 2);
 1744                 m = m_pullup(m, poff + sizeof(struct tcphdr));
 1745                 if (m == NULL) {
 1746                         *m_head = NULL;
 1747                         return (ENOBUFS);
 1748                 }
 1749                 /*
 1750                  * Reset IP checksum and recompute TCP pseudo
 1751                  * checksum that NDIS specification requires.
 1752                  */
 1753                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1754                 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1755                 ip->ip_sum = 0;
 1756                 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
 1757                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
 1758                             ip->ip_dst.s_addr,
 1759                             htons((tcp->th_off << 2) + IPPROTO_TCP));
 1760                         /* No need to TSO, force IP checksum offload. */
 1761                         (*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
 1762                         (*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
 1763                 } else
 1764                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
 1765                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
 1766                 *m_head = m;
 1767         }
 1768 
 1769         prod = sc->jme_cdata.jme_tx_prod;
 1770         txd = &sc->jme_cdata.jme_txdesc[prod];
 1771 
 1772         error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
 1773             txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
 1774         if (error == EFBIG) {
 1775                 m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
 1776                 if (m == NULL) {
 1777                         m_freem(*m_head);
 1778                         *m_head = NULL;
 1779                         return (ENOMEM);
 1780                 }
 1781                 *m_head = m;
 1782                 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
 1783                     txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
 1784                 if (error != 0) {
 1785                         m_freem(*m_head);
 1786                         *m_head = NULL;
 1787                         return (error);
 1788                 }
 1789         } else if (error != 0)
 1790                 return (error);
 1791         if (nsegs == 0) {
 1792                 m_freem(*m_head);
 1793                 *m_head = NULL;
 1794                 return (EIO);
 1795         }
 1796 
 1797         /*
 1798          * Check descriptor overrun. Leave one free descriptor.
 1799          * Since we always use 64bit address mode for transmitting,
 1800          * each Tx request requires one more dummy descriptor.
 1801          */
 1802         if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
 1803                 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
 1804                 return (ENOBUFS);
 1805         }
 1806 
 1807         m = *m_head;
 1808         cflags = 0;
 1809         tsosegsz = 0;
 1810         /* Configure checksum offload and TSO. */
 1811         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1812                 tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
 1813                     JME_TD_MSS_SHIFT;
 1814                 cflags |= JME_TD_TSO;
 1815         } else {
 1816                 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
 1817                         cflags |= JME_TD_IPCSUM;
 1818                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
 1819                         cflags |= JME_TD_TCPCSUM;
 1820                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
 1821                         cflags |= JME_TD_UDPCSUM;
 1822         }
 1823         /* Configure VLAN. */
 1824         if ((m->m_flags & M_VLANTAG) != 0) {
 1825                 cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
 1826                 cflags |= JME_TD_VLAN_TAG;
 1827         }
 1828 
 1829         desc = &sc->jme_rdata.jme_tx_ring[prod];
 1830         desc->flags = htole32(cflags);
 1831         desc->buflen = htole32(tsosegsz);
 1832         desc->addr_hi = htole32(m->m_pkthdr.len);
 1833         desc->addr_lo = 0;
 1834         sc->jme_cdata.jme_tx_cnt++;
 1835         JME_DESC_INC(prod, JME_TX_RING_CNT);
 1836         for (i = 0; i < nsegs; i++) {
 1837                 desc = &sc->jme_rdata.jme_tx_ring[prod];
 1838                 desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
 1839                 desc->buflen = htole32(txsegs[i].ds_len);
 1840                 desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
 1841                 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
 1842                 sc->jme_cdata.jme_tx_cnt++;
 1843                 JME_DESC_INC(prod, JME_TX_RING_CNT);
 1844         }
 1845 
 1846         /* Update producer index. */
 1847         sc->jme_cdata.jme_tx_prod = prod;
 1848         /*
 1849          * Finally request interrupt and give the first descriptor
 1850          * owenership to hardware.
 1851          */
 1852         desc = txd->tx_desc;
 1853         desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
 1854 
 1855         txd->tx_m = m;
 1856         txd->tx_ndesc = nsegs + 1;
 1857 
 1858         /* Sync descriptors. */
 1859         bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
 1860             BUS_DMASYNC_PREWRITE);
 1861         bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
 1862             sc->jme_cdata.jme_tx_ring_map,
 1863             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1864 
 1865         return (0);
 1866 }
 1867 
 1868 static void
 1869 jme_start(struct ifnet *ifp)
 1870 {
 1871         struct jme_softc *sc;
 1872 
 1873         sc = ifp->if_softc;
 1874         JME_LOCK(sc);
 1875         jme_start_locked(ifp);
 1876         JME_UNLOCK(sc);
 1877 }
 1878 
 1879 static void
 1880 jme_start_locked(struct ifnet *ifp)
 1881 {
 1882         struct jme_softc *sc;
 1883         struct mbuf *m_head;
 1884         int enq;
 1885 
 1886         sc = ifp->if_softc;
 1887 
 1888         JME_LOCK_ASSERT(sc);
 1889 
 1890         if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
 1891                 jme_txeof(sc);
 1892 
 1893         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1894             IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
 1895                 return;
 1896 
 1897         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1898                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1899                 if (m_head == NULL)
 1900                         break;
 1901                 /*
 1902                  * Pack the data into the transmit ring. If we
 1903                  * don't have room, set the OACTIVE flag and wait
 1904                  * for the NIC to drain the ring.
 1905                  */
 1906                 if (jme_encap(sc, &m_head)) {
 1907                         if (m_head == NULL)
 1908                                 break;
 1909                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1910                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1911                         break;
 1912                 }
 1913 
 1914                 enq++;
 1915                 /*
 1916                  * If there's a BPF listener, bounce a copy of this frame
 1917                  * to him.
 1918                  */
 1919                 ETHER_BPF_MTAP(ifp, m_head);
 1920         }
 1921 
 1922         if (enq > 0) {
 1923                 /*
 1924                  * Reading TXCSR takes very long time under heavy load
 1925                  * so cache TXCSR value and writes the ORed value with
 1926                  * the kick command to the TXCSR. This saves one register
 1927                  * access cycle.
 1928                  */
 1929                 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
 1930                     TXCSR_TXQ_N_START(TXCSR_TXQ0));
 1931                 /* Set a timeout in case the chip goes out to lunch. */
 1932                 sc->jme_watchdog_timer = JME_TX_TIMEOUT;
 1933         }
 1934 }
 1935 
 1936 static void
 1937 jme_watchdog(struct jme_softc *sc)
 1938 {
 1939         struct ifnet *ifp;
 1940 
 1941         JME_LOCK_ASSERT(sc);
 1942 
 1943         if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
 1944                 return;
 1945 
 1946         ifp = sc->jme_ifp;
 1947         if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
 1948                 if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
 1949                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1950                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1951                 jme_init_locked(sc);
 1952                 return;
 1953         }
 1954         jme_txeof(sc);
 1955         if (sc->jme_cdata.jme_tx_cnt == 0) {
 1956                 if_printf(sc->jme_ifp,
 1957                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
 1958                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1959                         jme_start_locked(ifp);
 1960                 return;
 1961         }
 1962 
 1963         if_printf(sc->jme_ifp, "watchdog timeout\n");
 1964         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1965         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1966         jme_init_locked(sc);
 1967         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1968                 jme_start_locked(ifp);
 1969 }
 1970 
 1971 static int
 1972 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1973 {
 1974         struct jme_softc *sc;
 1975         struct ifreq *ifr;
 1976         struct mii_data *mii;
 1977         uint32_t reg;
 1978         int error, mask;
 1979 
 1980         sc = ifp->if_softc;
 1981         ifr = (struct ifreq *)data;
 1982         error = 0;
 1983         switch (cmd) {
 1984         case SIOCSIFMTU:
 1985                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
 1986                     ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
 1987                     ifr->ifr_mtu > JME_MAX_MTU)) {
 1988                         error = EINVAL;
 1989                         break;
 1990                 }
 1991 
 1992                 if (ifp->if_mtu != ifr->ifr_mtu) {
 1993                         /*
 1994                          * No special configuration is required when interface
 1995                          * MTU is changed but availability of TSO/Tx checksum
 1996                          * offload should be chcked against new MTU size as
 1997                          * FIFO size is just 2K.
 1998                          */
 1999                         JME_LOCK(sc);
 2000                         if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
 2001                                 ifp->if_capenable &=
 2002                                     ~(IFCAP_TXCSUM | IFCAP_TSO4);
 2003                                 ifp->if_hwassist &=
 2004                                     ~(JME_CSUM_FEATURES | CSUM_TSO);
 2005                                 VLAN_CAPABILITIES(ifp);
 2006                         }
 2007                         ifp->if_mtu = ifr->ifr_mtu;
 2008                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2009                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2010                                 jme_init_locked(sc);
 2011                         }
 2012                         JME_UNLOCK(sc);
 2013                 }
 2014                 break;
 2015         case SIOCSIFFLAGS:
 2016                 JME_LOCK(sc);
 2017                 if ((ifp->if_flags & IFF_UP) != 0) {
 2018                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2019                                 if (((ifp->if_flags ^ sc->jme_if_flags)
 2020                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 2021                                         jme_set_filter(sc);
 2022                         } else {
 2023                                 if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
 2024                                         jme_init_locked(sc);
 2025                         }
 2026                 } else {
 2027                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2028                                 jme_stop(sc);
 2029                 }
 2030                 sc->jme_if_flags = ifp->if_flags;
 2031                 JME_UNLOCK(sc);
 2032                 break;
 2033         case SIOCADDMULTI:
 2034         case SIOCDELMULTI:
 2035                 JME_LOCK(sc);
 2036                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2037                         jme_set_filter(sc);
 2038                 JME_UNLOCK(sc);
 2039                 break;
 2040         case SIOCSIFMEDIA:
 2041         case SIOCGIFMEDIA:
 2042                 mii = device_get_softc(sc->jme_miibus);
 2043                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 2044                 break;
 2045         case SIOCSIFCAP:
 2046                 JME_LOCK(sc);
 2047                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 2048                 if ((mask & IFCAP_TXCSUM) != 0 &&
 2049                     ifp->if_mtu < JME_TX_FIFO_SIZE) {
 2050                         if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
 2051                                 ifp->if_capenable ^= IFCAP_TXCSUM;
 2052                                 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
 2053                                         ifp->if_hwassist |= JME_CSUM_FEATURES;
 2054                                 else
 2055                                         ifp->if_hwassist &= ~JME_CSUM_FEATURES;
 2056                         }
 2057                 }
 2058                 if ((mask & IFCAP_RXCSUM) != 0 &&
 2059                     (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
 2060                         ifp->if_capenable ^= IFCAP_RXCSUM;
 2061                         reg = CSR_READ_4(sc, JME_RXMAC);
 2062                         reg &= ~RXMAC_CSUM_ENB;
 2063                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 2064                                 reg |= RXMAC_CSUM_ENB;
 2065                         CSR_WRITE_4(sc, JME_RXMAC, reg);
 2066                 }
 2067                 if ((mask & IFCAP_TSO4) != 0 &&
 2068                     ifp->if_mtu < JME_TX_FIFO_SIZE) {
 2069                         if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
 2070                                 ifp->if_capenable ^= IFCAP_TSO4;
 2071                                 if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
 2072                                         ifp->if_hwassist |= CSUM_TSO;
 2073                                 else
 2074                                         ifp->if_hwassist &= ~CSUM_TSO;
 2075                         }
 2076                 }
 2077                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 2078                     (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
 2079                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 2080                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 2081                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 2082                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 2083                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 2084                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 2085                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 2086                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 2087                     (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
 2088                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 2089                         jme_set_vlan(sc);
 2090                 }
 2091                 JME_UNLOCK(sc);
 2092                 VLAN_CAPABILITIES(ifp);
 2093                 break;
 2094         default:
 2095                 error = ether_ioctl(ifp, cmd, data);
 2096                 break;
 2097         }
 2098 
 2099         return (error);
 2100 }
 2101 
 2102 static void
 2103 jme_mac_config(struct jme_softc *sc)
 2104 {
 2105         struct mii_data *mii;
 2106         uint32_t ghc, gpreg, rxmac, txmac, txpause;
 2107         uint32_t txclk;
 2108 
 2109         JME_LOCK_ASSERT(sc);
 2110 
 2111         mii = device_get_softc(sc->jme_miibus);
 2112 
 2113         CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
 2114         DELAY(10);
 2115         CSR_WRITE_4(sc, JME_GHC, 0);
 2116         ghc = 0;
 2117         txclk = 0;
 2118         rxmac = CSR_READ_4(sc, JME_RXMAC);
 2119         rxmac &= ~RXMAC_FC_ENB;
 2120         txmac = CSR_READ_4(sc, JME_TXMAC);
 2121         txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
 2122         txpause = CSR_READ_4(sc, JME_TXPFC);
 2123         txpause &= ~TXPFC_PAUSE_ENB;
 2124         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 2125                 ghc |= GHC_FULL_DUPLEX;
 2126                 rxmac &= ~RXMAC_COLL_DET_ENB;
 2127                 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
 2128                     TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
 2129                     TXMAC_FRAME_BURST);
 2130                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 2131                         txpause |= TXPFC_PAUSE_ENB;
 2132                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 2133                         rxmac |= RXMAC_FC_ENB;
 2134                 /* Disable retry transmit timer/retry limit. */
 2135                 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
 2136                     ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
 2137         } else {
 2138                 rxmac |= RXMAC_COLL_DET_ENB;
 2139                 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
 2140                 /* Enable retry transmit timer/retry limit. */
 2141                 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
 2142                     TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
 2143         }
 2144                 /* Reprogram Tx/Rx MACs with resolved speed/duplex. */
 2145         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2146         case IFM_10_T:
 2147                 ghc |= GHC_SPEED_10;
 2148                 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
 2149                 break;
 2150         case IFM_100_TX:
 2151                 ghc |= GHC_SPEED_100;
 2152                 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
 2153                 break;
 2154         case IFM_1000_T:
 2155                 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
 2156                         break;
 2157                 ghc |= GHC_SPEED_1000;
 2158                 txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
 2159                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
 2160                         txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
 2161                 break;
 2162         default:
 2163                 break;
 2164         }
 2165         if (sc->jme_rev == DEVICEID_JMC250 &&
 2166             sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
 2167                 /*
 2168                  * Workaround occasional packet loss issue of JMC250 A2
 2169                  * when it runs on half-duplex media.
 2170                  */
 2171                 gpreg = CSR_READ_4(sc, JME_GPREG1);
 2172                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
 2173                         gpreg &= ~GPREG1_HDPX_FIX;
 2174                 else
 2175                         gpreg |= GPREG1_HDPX_FIX;
 2176                 CSR_WRITE_4(sc, JME_GPREG1, gpreg);
 2177                 /* Workaround CRC errors at 100Mbps on JMC250 A2. */
 2178                 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
 2179                         /* Extend interface FIFO depth. */
 2180                         jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
 2181                             0x1B, 0x0000);
 2182                 } else {
 2183                         /* Select default interface FIFO depth. */
 2184                         jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
 2185                             0x1B, 0x0004);
 2186                 }
 2187         }
 2188         if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
 2189                 ghc |= txclk;
 2190         CSR_WRITE_4(sc, JME_GHC, ghc);
 2191         CSR_WRITE_4(sc, JME_RXMAC, rxmac);
 2192         CSR_WRITE_4(sc, JME_TXMAC, txmac);
 2193         CSR_WRITE_4(sc, JME_TXPFC, txpause);
 2194 }
 2195 
 2196 static void
 2197 jme_link_task(void *arg, int pending)
 2198 {
 2199         struct jme_softc *sc;
 2200         struct mii_data *mii;
 2201         struct ifnet *ifp;
 2202         struct jme_txdesc *txd;
 2203         bus_addr_t paddr;
 2204         int i;
 2205 
 2206         sc = (struct jme_softc *)arg;
 2207 
 2208         JME_LOCK(sc);
 2209         mii = device_get_softc(sc->jme_miibus);
 2210         ifp = sc->jme_ifp;
 2211         if (mii == NULL || ifp == NULL ||
 2212             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 2213                 JME_UNLOCK(sc);
 2214                 return;
 2215         }
 2216 
 2217         sc->jme_flags &= ~JME_FLAG_LINK;
 2218         if ((mii->mii_media_status & IFM_AVALID) != 0) {
 2219                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2220                 case IFM_10_T:
 2221                 case IFM_100_TX:
 2222                         sc->jme_flags |= JME_FLAG_LINK;
 2223                         break;
 2224                 case IFM_1000_T:
 2225                         if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
 2226                                 break;
 2227                         sc->jme_flags |= JME_FLAG_LINK;
 2228                         break;
 2229                 default:
 2230                         break;
 2231                 }
 2232         }
 2233 
 2234         /*
 2235          * Disabling Rx/Tx MACs have a side-effect of resetting
 2236          * JME_TXNDA/JME_RXNDA register to the first address of
 2237          * Tx/Rx descriptor address. So driver should reset its
 2238          * internal procucer/consumer pointer and reclaim any
 2239          * allocated resources. Note, just saving the value of
 2240          * JME_TXNDA and JME_RXNDA registers before stopping MAC
 2241          * and restoring JME_TXNDA/JME_RXNDA register is not
 2242          * sufficient to make sure correct MAC state because
 2243          * stopping MAC operation can take a while and hardware
 2244          * might have updated JME_TXNDA/JME_RXNDA registers
 2245          * during the stop operation.
 2246          */
 2247         /* Block execution of task. */
 2248         taskqueue_block(sc->jme_tq);
 2249         /* Disable interrupts and stop driver. */
 2250         CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
 2251         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2252         callout_stop(&sc->jme_tick_ch);
 2253         sc->jme_watchdog_timer = 0;
 2254 
 2255         /* Stop receiver/transmitter. */
 2256         jme_stop_rx(sc);
 2257         jme_stop_tx(sc);
 2258 
 2259         /* XXX Drain all queued tasks. */
 2260         JME_UNLOCK(sc);
 2261         taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
 2262         JME_LOCK(sc);
 2263 
 2264         if (sc->jme_cdata.jme_rxhead != NULL)
 2265                 m_freem(sc->jme_cdata.jme_rxhead);
 2266         JME_RXCHAIN_RESET(sc);
 2267         jme_txeof(sc);
 2268         if (sc->jme_cdata.jme_tx_cnt != 0) {
 2269                 /* Remove queued packets for transmit. */
 2270                 for (i = 0; i < JME_TX_RING_CNT; i++) {
 2271                         txd = &sc->jme_cdata.jme_txdesc[i];
 2272                         if (txd->tx_m != NULL) {
 2273                                 bus_dmamap_sync(
 2274                                     sc->jme_cdata.jme_tx_tag,
 2275                                     txd->tx_dmamap,
 2276                                     BUS_DMASYNC_POSTWRITE);
 2277                                 bus_dmamap_unload(
 2278                                     sc->jme_cdata.jme_tx_tag,
 2279                                     txd->tx_dmamap);
 2280                                 m_freem(txd->tx_m);
 2281                                 txd->tx_m = NULL;
 2282                                 txd->tx_ndesc = 0;
 2283                                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 2284                         }
 2285                 }
 2286         }
 2287 
 2288         /*
 2289          * Reuse configured Rx descriptors and reset
 2290          * producer/consumer index.
 2291          */
 2292         sc->jme_cdata.jme_rx_cons = 0;
 2293         sc->jme_morework = 0;
 2294         jme_init_tx_ring(sc);
 2295         /* Initialize shadow status block. */
 2296         jme_init_ssb(sc);
 2297 
 2298         /* Program MAC with resolved speed/duplex/flow-control. */
 2299         if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
 2300                 jme_mac_config(sc);
 2301                 jme_stats_clear(sc);
 2302 
 2303                 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
 2304                 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
 2305 
 2306                 /* Set Tx ring address to the hardware. */
 2307                 paddr = JME_TX_RING_ADDR(sc, 0);
 2308                 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
 2309                 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
 2310 
 2311                 /* Set Rx ring address to the hardware. */
 2312                 paddr = JME_RX_RING_ADDR(sc, 0);
 2313                 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
 2314                 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
 2315 
 2316                 /* Restart receiver/transmitter. */
 2317                 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
 2318                     RXCSR_RXQ_START);
 2319                 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
 2320                 /* Lastly enable TX/RX clock. */
 2321                 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
 2322                         CSR_WRITE_4(sc, JME_GHC,
 2323                             CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
 2324                 if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
 2325                         CSR_WRITE_4(sc, JME_GPREG1,
 2326                             CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
 2327         }
 2328 
 2329         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2330         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2331         callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
 2332         /* Unblock execution of task. */
 2333         taskqueue_unblock(sc->jme_tq);
 2334         /* Reenable interrupts. */
 2335         CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
 2336 
 2337         JME_UNLOCK(sc);
 2338 }
 2339 
 2340 static int
 2341 jme_intr(void *arg)
 2342 {
 2343         struct jme_softc *sc;
 2344         uint32_t status;
 2345 
 2346         sc = (struct jme_softc *)arg;
 2347 
 2348         status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
 2349         if (status == 0 || status == 0xFFFFFFFF)
 2350                 return (FILTER_STRAY);
 2351         /* Disable interrupts. */
 2352         CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
 2353         taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
 2354 
 2355         return (FILTER_HANDLED);
 2356 }
 2357 
 2358 static void
 2359 jme_int_task(void *arg, int pending)
 2360 {
 2361         struct jme_softc *sc;
 2362         struct ifnet *ifp;
 2363         uint32_t status;
 2364         int more;
 2365 
 2366         sc = (struct jme_softc *)arg;
 2367         ifp = sc->jme_ifp;
 2368 
 2369         JME_LOCK(sc);
 2370         status = CSR_READ_4(sc, JME_INTR_STATUS);
 2371         if (sc->jme_morework != 0) {
 2372                 sc->jme_morework = 0;
 2373                 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
 2374         }
 2375         if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
 2376                 goto done;
 2377         /* Reset PCC counter/timer and Ack interrupts. */
 2378         status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
 2379         if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
 2380                 status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
 2381         if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
 2382                 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
 2383         CSR_WRITE_4(sc, JME_INTR_STATUS, status);
 2384         more = 0;
 2385         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2386                 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
 2387                         more = jme_rxintr(sc, sc->jme_process_limit);
 2388                         if (more != 0)
 2389                                 sc->jme_morework = 1;
 2390                 }
 2391                 if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
 2392                         /*
 2393                          * Notify hardware availability of new Rx
 2394                          * buffers.
 2395                          * Reading RXCSR takes very long time under
 2396                          * heavy load so cache RXCSR value and writes
 2397                          * the ORed value with the kick command to
 2398                          * the RXCSR. This saves one register access
 2399                          * cycle.
 2400                          */
 2401                         CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
 2402                             RXCSR_RX_ENB | RXCSR_RXQ_START);
 2403                 }
 2404                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2405                         jme_start_locked(ifp);
 2406         }
 2407 
 2408         if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
 2409                 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
 2410                 JME_UNLOCK(sc);
 2411                 return;
 2412         }
 2413 done:
 2414         JME_UNLOCK(sc);
 2415 
 2416         /* Reenable interrupts. */
 2417         CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
 2418 }
 2419 
 2420 static void
 2421 jme_txeof(struct jme_softc *sc)
 2422 {
 2423         struct ifnet *ifp;
 2424         struct jme_txdesc *txd;
 2425         uint32_t status;
 2426         int cons, nsegs;
 2427 
 2428         JME_LOCK_ASSERT(sc);
 2429 
 2430         ifp = sc->jme_ifp;
 2431 
 2432         cons = sc->jme_cdata.jme_tx_cons;
 2433         if (cons == sc->jme_cdata.jme_tx_prod)
 2434                 return;
 2435 
 2436         bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
 2437             sc->jme_cdata.jme_tx_ring_map,
 2438             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2439 
 2440         /*
 2441          * Go through our Tx list and free mbufs for those
 2442          * frames which have been transmitted.
 2443          */
 2444         for (; cons != sc->jme_cdata.jme_tx_prod;) {
 2445                 txd = &sc->jme_cdata.jme_txdesc[cons];
 2446                 status = le32toh(txd->tx_desc->flags);
 2447                 if ((status & JME_TD_OWN) == JME_TD_OWN)
 2448                         break;
 2449 
 2450                 if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
 2451                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 2452                 else {
 2453                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 2454                         if ((status & JME_TD_COLLISION) != 0)
 2455                                 if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
 2456                                     le32toh(txd->tx_desc->buflen) &
 2457                                     JME_TD_BUF_LEN_MASK);
 2458                 }
 2459                 /*
 2460                  * Only the first descriptor of multi-descriptor
 2461                  * transmission is updated so driver have to skip entire
 2462                  * chained buffers for the transmiited frame. In other
 2463                  * words, JME_TD_OWN bit is valid only at the first
 2464                  * descriptor of a multi-descriptor transmission.
 2465                  */
 2466                 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
 2467                         sc->jme_rdata.jme_tx_ring[cons].flags = 0;
 2468                         JME_DESC_INC(cons, JME_TX_RING_CNT);
 2469                 }
 2470 
 2471                 /* Reclaim transferred mbufs. */
 2472                 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
 2473                     BUS_DMASYNC_POSTWRITE);
 2474                 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
 2475 
 2476                 KASSERT(txd->tx_m != NULL,
 2477                     ("%s: freeing NULL mbuf!\n", __func__));
 2478                 m_freem(txd->tx_m);
 2479                 txd->tx_m = NULL;
 2480                 sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
 2481                 KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
 2482                     ("%s: Active Tx desc counter was garbled\n", __func__));
 2483                 txd->tx_ndesc = 0;
 2484                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2485         }
 2486         sc->jme_cdata.jme_tx_cons = cons;
 2487         /* Unarm watchdog timer when there is no pending descriptors in queue. */
 2488         if (sc->jme_cdata.jme_tx_cnt == 0)
 2489                 sc->jme_watchdog_timer = 0;
 2490 
 2491         bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
 2492             sc->jme_cdata.jme_tx_ring_map,
 2493             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2494 }
 2495 
 2496 static __inline void
 2497 jme_discard_rxbuf(struct jme_softc *sc, int cons)
 2498 {
 2499         struct jme_desc *desc;
 2500 
 2501         desc = &sc->jme_rdata.jme_rx_ring[cons];
 2502         desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
 2503         desc->buflen = htole32(MCLBYTES);
 2504 }
 2505 
 2506 /* Receive a frame. */
 2507 static void
 2508 jme_rxeof(struct jme_softc *sc)
 2509 {
 2510         struct ifnet *ifp;
 2511         struct jme_desc *desc;
 2512         struct jme_rxdesc *rxd;
 2513         struct mbuf *mp, *m;
 2514         uint32_t flags, status;
 2515         int cons, count, nsegs;
 2516 
 2517         JME_LOCK_ASSERT(sc);
 2518 
 2519         ifp = sc->jme_ifp;
 2520 
 2521         cons = sc->jme_cdata.jme_rx_cons;
 2522         desc = &sc->jme_rdata.jme_rx_ring[cons];
 2523         flags = le32toh(desc->flags);
 2524         status = le32toh(desc->buflen);
 2525         nsegs = JME_RX_NSEGS(status);
 2526         sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
 2527         if ((status & JME_RX_ERR_STAT) != 0) {
 2528                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 2529                 jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
 2530 #ifdef JME_SHOW_ERRORS
 2531                 device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
 2532                     __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
 2533 #endif
 2534                 sc->jme_cdata.jme_rx_cons += nsegs;
 2535                 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
 2536                 return;
 2537         }
 2538 
 2539         for (count = 0; count < nsegs; count++,
 2540             JME_DESC_INC(cons, JME_RX_RING_CNT)) {
 2541                 rxd = &sc->jme_cdata.jme_rxdesc[cons];
 2542                 mp = rxd->rx_m;
 2543                 /* Add a new receive buffer to the ring. */
 2544                 if (jme_newbuf(sc, rxd) != 0) {
 2545                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2546                         /* Reuse buffer. */
 2547                         for (; count < nsegs; count++) {
 2548                                 jme_discard_rxbuf(sc, cons);
 2549                                 JME_DESC_INC(cons, JME_RX_RING_CNT);
 2550                         }
 2551                         if (sc->jme_cdata.jme_rxhead != NULL) {
 2552                                 m_freem(sc->jme_cdata.jme_rxhead);
 2553                                 JME_RXCHAIN_RESET(sc);
 2554                         }
 2555                         break;
 2556                 }
 2557 
 2558                 /*
 2559                  * Assume we've received a full sized frame.
 2560                  * Actual size is fixed when we encounter the end of
 2561                  * multi-segmented frame.
 2562                  */
 2563                 mp->m_len = MCLBYTES;
 2564 
 2565                 /* Chain received mbufs. */
 2566                 if (sc->jme_cdata.jme_rxhead == NULL) {
 2567                         sc->jme_cdata.jme_rxhead = mp;
 2568                         sc->jme_cdata.jme_rxtail = mp;
 2569                 } else {
 2570                         /*
 2571                          * Receive processor can receive a maximum frame
 2572                          * size of 65535 bytes.
 2573                          */
 2574                         mp->m_flags &= ~M_PKTHDR;
 2575                         sc->jme_cdata.jme_rxtail->m_next = mp;
 2576                         sc->jme_cdata.jme_rxtail = mp;
 2577                 }
 2578 
 2579                 if (count == nsegs - 1) {
 2580                         /* Last desc. for this frame. */
 2581                         m = sc->jme_cdata.jme_rxhead;
 2582                         m->m_flags |= M_PKTHDR;
 2583                         m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
 2584                         if (nsegs > 1) {
 2585                                 /* Set first mbuf size. */
 2586                                 m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
 2587                                 /* Set last mbuf size. */
 2588                                 mp->m_len = sc->jme_cdata.jme_rxlen -
 2589                                     ((MCLBYTES - JME_RX_PAD_BYTES) +
 2590                                     (MCLBYTES * (nsegs - 2)));
 2591                         } else
 2592                                 m->m_len = sc->jme_cdata.jme_rxlen;
 2593                         m->m_pkthdr.rcvif = ifp;
 2594 
 2595                         /*
 2596                          * Account for 10bytes auto padding which is used
 2597                          * to align IP header on 32bit boundary. Also note,
 2598                          * CRC bytes is automatically removed by the
 2599                          * hardware.
 2600                          */
 2601                         m->m_data += JME_RX_PAD_BYTES;
 2602 
 2603                         /* Set checksum information. */
 2604                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 2605                             (flags & JME_RD_IPV4) != 0) {
 2606                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2607                                 if ((flags & JME_RD_IPCSUM) != 0)
 2608                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2609                                 if (((flags & JME_RD_MORE_FRAG) == 0) &&
 2610                                     ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
 2611                                     (JME_RD_TCP | JME_RD_TCPCSUM) ||
 2612                                     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
 2613                                     (JME_RD_UDP | JME_RD_UDPCSUM))) {
 2614                                         m->m_pkthdr.csum_flags |=
 2615                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2616                                         m->m_pkthdr.csum_data = 0xffff;
 2617                                 }
 2618                         }
 2619 
 2620                         /* Check for VLAN tagged packets. */
 2621                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 2622                             (flags & JME_RD_VLAN_TAG) != 0) {
 2623                                 m->m_pkthdr.ether_vtag =
 2624                                     flags & JME_RD_VLAN_MASK;
 2625                                 m->m_flags |= M_VLANTAG;
 2626                         }
 2627 
 2628                         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 2629                         /* Pass it on. */
 2630                         JME_UNLOCK(sc);
 2631                         (*ifp->if_input)(ifp, m);
 2632                         JME_LOCK(sc);
 2633 
 2634                         /* Reset mbuf chains. */
 2635                         JME_RXCHAIN_RESET(sc);
 2636                 }
 2637         }
 2638 
 2639         sc->jme_cdata.jme_rx_cons += nsegs;
 2640         sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
 2641 }
 2642 
 2643 static int
 2644 jme_rxintr(struct jme_softc *sc, int count)
 2645 {
 2646         struct jme_desc *desc;
 2647         int nsegs, prog, pktlen;
 2648 
 2649         bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
 2650             sc->jme_cdata.jme_rx_ring_map,
 2651             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2652 
 2653         for (prog = 0; count > 0; prog++) {
 2654                 desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
 2655                 if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
 2656                         break;
 2657                 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
 2658                         break;
 2659                 nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
 2660                 /*
 2661                  * Check number of segments against received bytes.
 2662                  * Non-matching value would indicate that hardware
 2663                  * is still trying to update Rx descriptors. I'm not
 2664                  * sure whether this check is needed.
 2665                  */
 2666                 pktlen = JME_RX_BYTES(le32toh(desc->buflen));
 2667                 if (nsegs != howmany(pktlen, MCLBYTES))
 2668                         break;
 2669                 prog++;
 2670                 /* Received a frame. */
 2671                 jme_rxeof(sc);
 2672                 count -= nsegs;
 2673         }
 2674 
 2675         if (prog > 0)
 2676                 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
 2677                     sc->jme_cdata.jme_rx_ring_map,
 2678                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2679 
 2680         return (count > 0 ? 0 : EAGAIN);
 2681 }
 2682 
 2683 static void
 2684 jme_tick(void *arg)
 2685 {
 2686         struct jme_softc *sc;
 2687         struct mii_data *mii;
 2688 
 2689         sc = (struct jme_softc *)arg;
 2690 
 2691         JME_LOCK_ASSERT(sc);
 2692 
 2693         mii = device_get_softc(sc->jme_miibus);
 2694         mii_tick(mii);
 2695         /*
 2696          * Reclaim Tx buffers that have been completed. It's not
 2697          * needed here but it would release allocated mbuf chains
 2698          * faster and limit the maximum delay to a hz.
 2699          */
 2700         jme_txeof(sc);
 2701         jme_stats_update(sc);
 2702         jme_watchdog(sc);
 2703         callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
 2704 }
 2705 
 2706 static void
 2707 jme_reset(struct jme_softc *sc)
 2708 {
 2709         uint32_t ghc, gpreg;
 2710 
 2711         /* Stop receiver, transmitter. */
 2712         jme_stop_rx(sc);
 2713         jme_stop_tx(sc);
 2714 
 2715         /* Reset controller. */
 2716         CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
 2717         CSR_READ_4(sc, JME_GHC);
 2718         DELAY(10);
 2719         /*
 2720          * Workaround Rx FIFO overruns seen under certain conditions.
 2721          * Explicitly synchorize TX/RX clock.  TX/RX clock should be
 2722          * enabled only after enabling TX/RX MACs.
 2723          */
 2724         if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
 2725                 /* Disable TX clock. */
 2726                 CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
 2727                 /* Disable RX clock. */
 2728                 gpreg = CSR_READ_4(sc, JME_GPREG1);
 2729                 CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
 2730                 gpreg = CSR_READ_4(sc, JME_GPREG1);
 2731                 /* De-assert RESET but still disable TX clock. */
 2732                 CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
 2733                 ghc = CSR_READ_4(sc, JME_GHC);
 2734 
 2735                 /* Enable TX clock. */
 2736                 CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
 2737                 /* Enable RX clock. */
 2738                 CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
 2739                 CSR_READ_4(sc, JME_GPREG1);
 2740 
 2741                 /* Disable TX/RX clock again. */
 2742                 CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
 2743                 CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
 2744         } else
 2745                 CSR_WRITE_4(sc, JME_GHC, 0);
 2746         CSR_READ_4(sc, JME_GHC);
 2747         DELAY(10);
 2748 }
 2749 
 2750 static void
 2751 jme_init(void *xsc)
 2752 {
 2753         struct jme_softc *sc;
 2754 
 2755         sc = (struct jme_softc *)xsc;
 2756         JME_LOCK(sc);
 2757         jme_init_locked(sc);
 2758         JME_UNLOCK(sc);
 2759 }
 2760 
 2761 static void
 2762 jme_init_locked(struct jme_softc *sc)
 2763 {
 2764         struct ifnet *ifp;
 2765         struct mii_data *mii;
 2766         bus_addr_t paddr;
 2767         uint32_t reg;
 2768         int error;
 2769 
 2770         JME_LOCK_ASSERT(sc);
 2771 
 2772         ifp = sc->jme_ifp;
 2773         mii = device_get_softc(sc->jme_miibus);
 2774 
 2775         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2776                 return;
 2777         /*
 2778          * Cancel any pending I/O.
 2779          */
 2780         jme_stop(sc);
 2781 
 2782         /*
 2783          * Reset the chip to a known state.
 2784          */
 2785         jme_reset(sc);
 2786 
 2787         /* Init descriptors. */
 2788         error = jme_init_rx_ring(sc);
 2789         if (error != 0) {
 2790                 device_printf(sc->jme_dev,
 2791                     "%s: initialization failed: no memory for Rx buffers.\n",
 2792                     __func__);
 2793                 jme_stop(sc);
 2794                 return;
 2795         }
 2796         jme_init_tx_ring(sc);
 2797         /* Initialize shadow status block. */
 2798         jme_init_ssb(sc);
 2799 
 2800         /* Reprogram the station address. */
 2801         jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
 2802 
 2803         /*
 2804          * Configure Tx queue.
 2805          *  Tx priority queue weight value : 0
 2806          *  Tx FIFO threshold for processing next packet : 16QW
 2807          *  Maximum Tx DMA length : 512
 2808          *  Allow Tx DMA burst.
 2809          */
 2810         sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
 2811         sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
 2812         sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
 2813         sc->jme_txcsr |= sc->jme_tx_dma_size;
 2814         sc->jme_txcsr |= TXCSR_DMA_BURST;
 2815         CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
 2816 
 2817         /* Set Tx descriptor counter. */
 2818         CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
 2819 
 2820         /* Set Tx ring address to the hardware. */
 2821         paddr = JME_TX_RING_ADDR(sc, 0);
 2822         CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
 2823         CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
 2824 
 2825         /* Configure TxMAC parameters. */
 2826         reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
 2827         reg |= TXMAC_THRESH_1_PKT;
 2828         reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
 2829         CSR_WRITE_4(sc, JME_TXMAC, reg);
 2830 
 2831         /*
 2832          * Configure Rx queue.
 2833          *  FIFO full threshold for transmitting Tx pause packet : 128T
 2834          *  FIFO threshold for processing next packet : 128QW
 2835          *  Rx queue 0 select
 2836          *  Max Rx DMA length : 128
 2837          *  Rx descriptor retry : 32
 2838          *  Rx descriptor retry time gap : 256ns
 2839          *  Don't receive runt/bad frame.
 2840          */
 2841         sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
 2842         /*
 2843          * Since Rx FIFO size is 4K bytes, receiving frames larger
 2844          * than 4K bytes will suffer from Rx FIFO overruns. So
 2845          * decrease FIFO threshold to reduce the FIFO overruns for
 2846          * frames larger than 4000 bytes.
 2847          * For best performance of standard MTU sized frames use
 2848          * maximum allowable FIFO threshold, 128QW. Note these do
 2849          * not hold on chip full mask version >=2. For these
 2850          * controllers 64QW and 128QW are not valid value.
 2851          */
 2852         if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
 2853                 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
 2854         else {
 2855                 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
 2856                     ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
 2857                         sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
 2858                 else
 2859                         sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
 2860         }
 2861         sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
 2862         sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
 2863         sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
 2864         CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
 2865 
 2866         /* Set Rx descriptor counter. */
 2867         CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
 2868 
 2869         /* Set Rx ring address to the hardware. */
 2870         paddr = JME_RX_RING_ADDR(sc, 0);
 2871         CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
 2872         CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
 2873 
 2874         /* Clear receive filter. */
 2875         CSR_WRITE_4(sc, JME_RXMAC, 0);
 2876         /* Set up the receive filter. */
 2877         jme_set_filter(sc);
 2878         jme_set_vlan(sc);
 2879 
 2880         /*
 2881          * Disable all WOL bits as WOL can interfere normal Rx
 2882          * operation. Also clear WOL detection status bits.
 2883          */
 2884         reg = CSR_READ_4(sc, JME_PMCS);
 2885         reg &= ~PMCS_WOL_ENB_MASK;
 2886         CSR_WRITE_4(sc, JME_PMCS, reg);
 2887 
 2888         reg = CSR_READ_4(sc, JME_RXMAC);
 2889         /*
 2890          * Pad 10bytes right before received frame. This will greatly
 2891          * help Rx performance on strict-alignment architectures as
 2892          * it does not need to copy the frame to align the payload.
 2893          */
 2894         reg |= RXMAC_PAD_10BYTES;
 2895         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 2896                 reg |= RXMAC_CSUM_ENB;
 2897         CSR_WRITE_4(sc, JME_RXMAC, reg);
 2898 
 2899         /* Configure general purpose reg0 */
 2900         reg = CSR_READ_4(sc, JME_GPREG0);
 2901         reg &= ~GPREG0_PCC_UNIT_MASK;
 2902         /* Set PCC timer resolution to micro-seconds unit. */
 2903         reg |= GPREG0_PCC_UNIT_US;
 2904         /*
 2905          * Disable all shadow register posting as we have to read
 2906          * JME_INTR_STATUS register in jme_int_task. Also it seems
 2907          * that it's hard to synchronize interrupt status between
 2908          * hardware and software with shadow posting due to
 2909          * requirements of bus_dmamap_sync(9).
 2910          */
 2911         reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
 2912             GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
 2913             GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
 2914             GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
 2915         /* Disable posting of DW0. */
 2916         reg &= ~GPREG0_POST_DW0_ENB;
 2917         /* Clear PME message. */
 2918         reg &= ~GPREG0_PME_ENB;
 2919         /* Set PHY address. */
 2920         reg &= ~GPREG0_PHY_ADDR_MASK;
 2921         reg |= sc->jme_phyaddr;
 2922         CSR_WRITE_4(sc, JME_GPREG0, reg);
 2923 
 2924         /* Configure Tx queue 0 packet completion coalescing. */
 2925         reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
 2926             PCCTX_COAL_TO_MASK;
 2927         reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
 2928             PCCTX_COAL_PKT_MASK;
 2929         reg |= PCCTX_COAL_TXQ0;
 2930         CSR_WRITE_4(sc, JME_PCCTX, reg);
 2931 
 2932         /* Configure Rx queue 0 packet completion coalescing. */
 2933         reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
 2934             PCCRX_COAL_TO_MASK;
 2935         reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
 2936             PCCRX_COAL_PKT_MASK;
 2937         CSR_WRITE_4(sc, JME_PCCRX0, reg);
 2938 
 2939         /*
 2940          * Configure PCD(Packet Completion Deferring).  It seems PCD
 2941          * generates an interrupt when the time interval between two
 2942          * back-to-back incoming/outgoing packet is long enough for
 2943          * it to reach its timer value 0. The arrival of new packets
 2944          * after timer has started causes the PCD timer to restart.
 2945          * Unfortunately, it's not clear how PCD is useful at this
 2946          * moment, so just use the same of PCC parameters.
 2947          */
 2948         if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
 2949                 sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
 2950                 if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
 2951                         sc->jme_rx_pcd_to = PCDRX_TO_MAX;
 2952                 sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
 2953                 if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
 2954                         sc->jme_tx_pcd_to = PCDTX_TO_MAX;
 2955                 reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
 2956                 reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
 2957                 CSR_WRITE_4(sc, PCDRX_REG(0), reg);
 2958                 reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
 2959                 reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
 2960                 CSR_WRITE_4(sc, JME_PCDTX, reg);
 2961         }
 2962 
 2963         /* Configure shadow status block but don't enable posting. */
 2964         paddr = sc->jme_rdata.jme_ssb_block_paddr;
 2965         CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
 2966         CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
 2967 
 2968         /* Disable Timer 1 and Timer 2. */
 2969         CSR_WRITE_4(sc, JME_TIMER1, 0);
 2970         CSR_WRITE_4(sc, JME_TIMER2, 0);
 2971 
 2972         /* Configure retry transmit period, retry limit value. */
 2973         CSR_WRITE_4(sc, JME_TXTRHD,
 2974             ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
 2975             TXTRHD_RT_PERIOD_MASK) |
 2976             ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
 2977             TXTRHD_RT_LIMIT_SHIFT));
 2978 
 2979         /* Disable RSS. */
 2980         CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
 2981 
 2982         /* Initialize the interrupt mask. */
 2983         CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
 2984         CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
 2985 
 2986         /*
 2987          * Enabling Tx/Rx DMA engines and Rx queue processing is
 2988          * done after detection of valid link in jme_link_task.
 2989          */
 2990 
 2991         sc->jme_flags &= ~JME_FLAG_LINK;
 2992         /* Set the current media. */
 2993         mii_mediachg(mii);
 2994 
 2995         callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
 2996 
 2997         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2998         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2999 }
 3000 
 3001 static void
 3002 jme_stop(struct jme_softc *sc)
 3003 {
 3004         struct ifnet *ifp;
 3005         struct jme_txdesc *txd;
 3006         struct jme_rxdesc *rxd;
 3007         int i;
 3008 
 3009         JME_LOCK_ASSERT(sc);
 3010         /*
 3011          * Mark the interface down and cancel the watchdog timer.
 3012          */
 3013         ifp = sc->jme_ifp;
 3014         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3015         sc->jme_flags &= ~JME_FLAG_LINK;
 3016         callout_stop(&sc->jme_tick_ch);
 3017         sc->jme_watchdog_timer = 0;
 3018 
 3019         /*
 3020          * Disable interrupts.
 3021          */
 3022         CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
 3023         CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
 3024 
 3025         /* Disable updating shadow status block. */
 3026         CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
 3027             CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
 3028 
 3029         /* Stop receiver, transmitter. */
 3030         jme_stop_rx(sc);
 3031         jme_stop_tx(sc);
 3032 
 3033          /* Reclaim Rx/Tx buffers that have been completed. */
 3034         jme_rxintr(sc, JME_RX_RING_CNT);
 3035         if (sc->jme_cdata.jme_rxhead != NULL)
 3036                 m_freem(sc->jme_cdata.jme_rxhead);
 3037         JME_RXCHAIN_RESET(sc);
 3038         jme_txeof(sc);
 3039         /*
 3040          * Free RX and TX mbufs still in the queues.
 3041          */
 3042         for (i = 0; i < JME_RX_RING_CNT; i++) {
 3043                 rxd = &sc->jme_cdata.jme_rxdesc[i];
 3044                 if (rxd->rx_m != NULL) {
 3045                         bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
 3046                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
 3047                         bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
 3048                             rxd->rx_dmamap);
 3049                         m_freem(rxd->rx_m);
 3050                         rxd->rx_m = NULL;
 3051                 }
 3052         }
 3053         for (i = 0; i < JME_TX_RING_CNT; i++) {
 3054                 txd = &sc->jme_cdata.jme_txdesc[i];
 3055                 if (txd->tx_m != NULL) {
 3056                         bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
 3057                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 3058                         bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
 3059                             txd->tx_dmamap);
 3060                         m_freem(txd->tx_m);
 3061                         txd->tx_m = NULL;
 3062                         txd->tx_ndesc = 0;
 3063                 }
 3064         }
 3065         jme_stats_update(sc);
 3066         jme_stats_save(sc);
 3067 }
 3068 
 3069 static void
 3070 jme_stop_tx(struct jme_softc *sc)
 3071 {
 3072         uint32_t reg;
 3073         int i;
 3074 
 3075         reg = CSR_READ_4(sc, JME_TXCSR);
 3076         if ((reg & TXCSR_TX_ENB) == 0)
 3077                 return;
 3078         reg &= ~TXCSR_TX_ENB;
 3079         CSR_WRITE_4(sc, JME_TXCSR, reg);
 3080         for (i = JME_TIMEOUT; i > 0; i--) {
 3081                 DELAY(1);
 3082                 if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
 3083                         break;
 3084         }
 3085         if (i == 0)
 3086                 device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
 3087 }
 3088 
 3089 static void
 3090 jme_stop_rx(struct jme_softc *sc)
 3091 {
 3092         uint32_t reg;
 3093         int i;
 3094 
 3095         reg = CSR_READ_4(sc, JME_RXCSR);
 3096         if ((reg & RXCSR_RX_ENB) == 0)
 3097                 return;
 3098         reg &= ~RXCSR_RX_ENB;
 3099         CSR_WRITE_4(sc, JME_RXCSR, reg);
 3100         for (i = JME_TIMEOUT; i > 0; i--) {
 3101                 DELAY(1);
 3102                 if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
 3103                         break;
 3104         }
 3105         if (i == 0)
 3106                 device_printf(sc->jme_dev, "stopping recevier timeout!\n");
 3107 }
 3108 
 3109 static void
 3110 jme_init_tx_ring(struct jme_softc *sc)
 3111 {
 3112         struct jme_ring_data *rd;
 3113         struct jme_txdesc *txd;
 3114         int i;
 3115 
 3116         sc->jme_cdata.jme_tx_prod = 0;
 3117         sc->jme_cdata.jme_tx_cons = 0;
 3118         sc->jme_cdata.jme_tx_cnt = 0;
 3119 
 3120         rd = &sc->jme_rdata;
 3121         bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
 3122         for (i = 0; i < JME_TX_RING_CNT; i++) {
 3123                 txd = &sc->jme_cdata.jme_txdesc[i];
 3124                 txd->tx_m = NULL;
 3125                 txd->tx_desc = &rd->jme_tx_ring[i];
 3126                 txd->tx_ndesc = 0;
 3127         }
 3128 
 3129         bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
 3130             sc->jme_cdata.jme_tx_ring_map,
 3131             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3132 }
 3133 
 3134 static void
 3135 jme_init_ssb(struct jme_softc *sc)
 3136 {
 3137         struct jme_ring_data *rd;
 3138 
 3139         rd = &sc->jme_rdata;
 3140         bzero(rd->jme_ssb_block, JME_SSB_SIZE);
 3141         bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
 3142             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3143 }
 3144 
 3145 static int
 3146 jme_init_rx_ring(struct jme_softc *sc)
 3147 {
 3148         struct jme_ring_data *rd;
 3149         struct jme_rxdesc *rxd;
 3150         int i;
 3151 
 3152         sc->jme_cdata.jme_rx_cons = 0;
 3153         JME_RXCHAIN_RESET(sc);
 3154         sc->jme_morework = 0;
 3155 
 3156         rd = &sc->jme_rdata;
 3157         bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
 3158         for (i = 0; i < JME_RX_RING_CNT; i++) {
 3159                 rxd = &sc->jme_cdata.jme_rxdesc[i];
 3160                 rxd->rx_m = NULL;
 3161                 rxd->rx_desc = &rd->jme_rx_ring[i];
 3162                 if (jme_newbuf(sc, rxd) != 0)
 3163                         return (ENOBUFS);
 3164         }
 3165 
 3166         bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
 3167             sc->jme_cdata.jme_rx_ring_map,
 3168             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3169 
 3170         return (0);
 3171 }
 3172 
 3173 static int
 3174 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
 3175 {
 3176         struct jme_desc *desc;
 3177         struct mbuf *m;
 3178         bus_dma_segment_t segs[1];
 3179         bus_dmamap_t map;
 3180         int nsegs;
 3181 
 3182         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 3183         if (m == NULL)
 3184                 return (ENOBUFS);
 3185         /*
 3186          * JMC250 has 64bit boundary alignment limitation so jme(4)
 3187          * takes advantage of 10 bytes padding feature of hardware
 3188          * in order not to copy entire frame to align IP header on
 3189          * 32bit boundary.
 3190          */
 3191         m->m_len = m->m_pkthdr.len = MCLBYTES;
 3192 
 3193         if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
 3194             sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
 3195                 m_freem(m);
 3196                 return (ENOBUFS);
 3197         }
 3198         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 3199 
 3200         if (rxd->rx_m != NULL) {
 3201                 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
 3202                     BUS_DMASYNC_POSTREAD);
 3203                 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
 3204         }
 3205         map = rxd->rx_dmamap;
 3206         rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
 3207         sc->jme_cdata.jme_rx_sparemap = map;
 3208         bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
 3209             BUS_DMASYNC_PREREAD);
 3210         rxd->rx_m = m;
 3211 
 3212         desc = rxd->rx_desc;
 3213         desc->buflen = htole32(segs[0].ds_len);
 3214         desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
 3215         desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
 3216         desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
 3217 
 3218         return (0);
 3219 }
 3220 
 3221 static void
 3222 jme_set_vlan(struct jme_softc *sc)
 3223 {
 3224         struct ifnet *ifp;
 3225         uint32_t reg;
 3226 
 3227         JME_LOCK_ASSERT(sc);
 3228 
 3229         ifp = sc->jme_ifp;
 3230         reg = CSR_READ_4(sc, JME_RXMAC);
 3231         reg &= ~RXMAC_VLAN_ENB;
 3232         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 3233                 reg |= RXMAC_VLAN_ENB;
 3234         CSR_WRITE_4(sc, JME_RXMAC, reg);
 3235 }
 3236 
 3237 static u_int
 3238 jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 3239 {
 3240         uint32_t crc, *mchash = arg;
 3241 
 3242         crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
 3243 
 3244         /* Just want the 6 least significant bits. */
 3245         crc &= 0x3f;
 3246 
 3247         /* Set the corresponding bit in the hash table. */
 3248         mchash[crc >> 5] |= 1 << (crc & 0x1f);
 3249 
 3250         return (1);
 3251 }
 3252 
 3253 static void
 3254 jme_set_filter(struct jme_softc *sc)
 3255 {
 3256         struct ifnet *ifp;
 3257         uint32_t mchash[2];
 3258         uint32_t rxcfg;
 3259 
 3260         JME_LOCK_ASSERT(sc);
 3261 
 3262         ifp = sc->jme_ifp;
 3263 
 3264         rxcfg = CSR_READ_4(sc, JME_RXMAC);
 3265         rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
 3266             RXMAC_ALLMULTI);
 3267         /* Always accept frames destined to our station address. */
 3268         rxcfg |= RXMAC_UNICAST;
 3269         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 3270                 rxcfg |= RXMAC_BROADCAST;
 3271         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
 3272                 if ((ifp->if_flags & IFF_PROMISC) != 0)
 3273                         rxcfg |= RXMAC_PROMISC;
 3274                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
 3275                         rxcfg |= RXMAC_ALLMULTI;
 3276                 CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
 3277                 CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
 3278                 CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
 3279                 return;
 3280         }
 3281 
 3282         /*
 3283          * Set up the multicast address filter by passing all multicast
 3284          * addresses through a CRC generator, and then using the low-order
 3285          * 6 bits as an index into the 64 bit multicast hash table.  The
 3286          * high order bits select the register, while the rest of the bits
 3287          * select the bit within the register.
 3288          */
 3289         rxcfg |= RXMAC_MULTICAST;
 3290         bzero(mchash, sizeof(mchash));
 3291         if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
 3292 
 3293         CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
 3294         CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
 3295         CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
 3296 }
 3297 
 3298 static void
 3299 jme_stats_clear(struct jme_softc *sc)
 3300 {
 3301 
 3302         JME_LOCK_ASSERT(sc);
 3303 
 3304         if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
 3305                 return;
 3306 
 3307         /* Disable and clear counters. */
 3308         CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
 3309         /* Activate hw counters. */
 3310         CSR_WRITE_4(sc, JME_STATCSR, 0);
 3311         CSR_READ_4(sc, JME_STATCSR);
 3312         bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
 3313 }
 3314 
 3315 static void
 3316 jme_stats_save(struct jme_softc *sc)
 3317 {
 3318 
 3319         JME_LOCK_ASSERT(sc);
 3320 
 3321         if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
 3322                 return;
 3323         /* Save current counters. */
 3324         bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
 3325         /* Disable and clear counters. */
 3326         CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
 3327 }
 3328 
 3329 static void
 3330 jme_stats_update(struct jme_softc *sc)
 3331 {
 3332         struct jme_hw_stats *stat, *ostat;
 3333         uint32_t reg;
 3334 
 3335         JME_LOCK_ASSERT(sc);
 3336 
 3337         if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
 3338                 return;
 3339         stat = &sc->jme_stats;
 3340         ostat = &sc->jme_ostats;
 3341         stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
 3342         stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
 3343         reg = CSR_READ_4(sc, JME_STAT_CRCMII);
 3344         stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
 3345             STAT_RX_CRC_ERR_SHIFT;
 3346         stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
 3347             STAT_RX_MII_ERR_SHIFT;
 3348         reg = CSR_READ_4(sc, JME_STAT_RXERR);
 3349         stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
 3350             STAT_RXERR_OFLOW_SHIFT;
 3351         stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
 3352             STAT_RXERR_MPTY_SHIFT;
 3353         reg = CSR_READ_4(sc, JME_STAT_FAIL);
 3354         stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
 3355         stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
 3356 
 3357         /* Account for previous counters. */
 3358         stat->rx_good_frames += ostat->rx_good_frames;
 3359         stat->rx_crc_errs += ostat->rx_crc_errs;
 3360         stat->rx_mii_errs += ostat->rx_mii_errs;
 3361         stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
 3362         stat->rx_desc_empty += ostat->rx_desc_empty;
 3363         stat->rx_bad_frames += ostat->rx_bad_frames;
 3364         stat->tx_good_frames += ostat->tx_good_frames;
 3365         stat->tx_bad_frames += ostat->tx_bad_frames;
 3366 }
 3367 
 3368 static void
 3369 jme_phy_down(struct jme_softc *sc)
 3370 {
 3371         uint32_t reg;
 3372 
 3373         jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
 3374         if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
 3375                 reg = CSR_READ_4(sc, JME_PHYPOWDN);
 3376                 reg |= 0x0000000F;
 3377                 CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
 3378                 reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
 3379                 reg &= ~PE1_GIGA_PDOWN_MASK;
 3380                 reg |= PE1_GIGA_PDOWN_D3;
 3381                 pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
 3382         }
 3383 }
 3384 
 3385 static void
 3386 jme_phy_up(struct jme_softc *sc)
 3387 {
 3388         uint32_t reg;
 3389         uint16_t bmcr;
 3390 
 3391         bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
 3392         bmcr &= ~BMCR_PDOWN;
 3393         jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
 3394         if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
 3395                 reg = CSR_READ_4(sc, JME_PHYPOWDN);
 3396                 reg &= ~0x0000000F;
 3397                 CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
 3398                 reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
 3399                 reg &= ~PE1_GIGA_PDOWN_MASK;
 3400                 reg |= PE1_GIGA_PDOWN_DIS;
 3401                 pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
 3402         }
 3403 }
 3404 
 3405 static int
 3406 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 3407 {
 3408         int error, value;
 3409 
 3410         if (arg1 == NULL)
 3411                 return (EINVAL);
 3412         value = *(int *)arg1;
 3413         error = sysctl_handle_int(oidp, &value, 0, req);
 3414         if (error || req->newptr == NULL)
 3415                 return (error);
 3416         if (value < low || value > high)
 3417                 return (EINVAL);
 3418         *(int *)arg1 = value;
 3419 
 3420         return (0);
 3421 }
 3422 
 3423 static int
 3424 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
 3425 {
 3426         return (sysctl_int_range(oidp, arg1, arg2, req,
 3427             PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
 3428 }
 3429 
 3430 static int
 3431 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
 3432 {
 3433         return (sysctl_int_range(oidp, arg1, arg2, req,
 3434             PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
 3435 }
 3436 
 3437 static int
 3438 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
 3439 {
 3440         return (sysctl_int_range(oidp, arg1, arg2, req,
 3441             PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
 3442 }
 3443 
 3444 static int
 3445 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
 3446 {
 3447         return (sysctl_int_range(oidp, arg1, arg2, req,
 3448             PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
 3449 }
 3450 
 3451 static int
 3452 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
 3453 {
 3454         return (sysctl_int_range(oidp, arg1, arg2, req,
 3455             JME_PROC_MIN, JME_PROC_MAX));
 3456 }

Cache object: 9e4a4b492d4e200cc347fcb6b39498f5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.