1 /*
2 * BSD LICENSE
3 *
4 * Copyright(c) 2017 Cavium, Inc.. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Cavium, Inc. nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 /*$FreeBSD$*/
34
35 #include "lio_bsd.h"
36 #include "lio_common.h"
37 #include "lio_droq.h"
38 #include "lio_iq.h"
39 #include "lio_response_manager.h"
40 #include "lio_device.h"
41 #include "lio_main.h"
42 #include "lio_network.h"
43 #include "cn23xx_pf_device.h"
44 #include "lio_image.h"
45 #include "lio_mem_ops.h"
46
47 static struct lio_config default_cn23xx_conf = {
48 .card_type = LIO_23XX,
49 .card_name = LIO_23XX_NAME,
50 /* IQ attributes */
51 .iq = {
52 .max_iqs = LIO_CN23XX_CFG_IO_QUEUES,
53 .pending_list_size = (LIO_CN23XX_DEFAULT_IQ_DESCRIPTORS *
54 LIO_CN23XX_CFG_IO_QUEUES),
55 .instr_type = LIO_64BYTE_INSTR,
56 .db_min = LIO_CN23XX_DB_MIN,
57 .db_timeout = LIO_CN23XX_DB_TIMEOUT,
58 .iq_intr_pkt = LIO_CN23XX_DEF_IQ_INTR_THRESHOLD,
59 },
60
61 /* OQ attributes */
62 .oq = {
63 .max_oqs = LIO_CN23XX_CFG_IO_QUEUES,
64 .pkts_per_intr = LIO_CN23XX_OQ_PKTS_PER_INTR,
65 .refill_threshold = LIO_CN23XX_OQ_REFIL_THRESHOLD,
66 .oq_intr_pkt = LIO_CN23XX_OQ_INTR_PKT,
67 .oq_intr_time = LIO_CN23XX_OQ_INTR_TIME,
68 },
69
70 .num_nic_ports = LIO_CN23XX_DEFAULT_NUM_PORTS,
71 .num_def_rx_descs = LIO_CN23XX_DEFAULT_OQ_DESCRIPTORS,
72 .num_def_tx_descs = LIO_CN23XX_DEFAULT_IQ_DESCRIPTORS,
73 .def_rx_buf_size = LIO_CN23XX_OQ_BUF_SIZE,
74
75 /* For ethernet interface 0: Port cfg Attributes */
76 .nic_if_cfg[0] = {
77 /* Max Txqs: Half for each of the two ports :max_iq/2 */
78 .max_txqs = LIO_MAX_TXQS_PER_INTF,
79
80 /* Actual configured value. Range could be: 1...max_txqs */
81 .num_txqs = LIO_DEF_TXQS_PER_INTF,
82
83 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
84 .max_rxqs = LIO_MAX_RXQS_PER_INTF,
85
86 /* Actual configured value. Range could be: 1...max_rxqs */
87 .num_rxqs = LIO_DEF_RXQS_PER_INTF,
88
89 /* Num of desc for rx rings */
90 .num_rx_descs = LIO_CN23XX_DEFAULT_OQ_DESCRIPTORS,
91
92 /* Num of desc for tx rings */
93 .num_tx_descs = LIO_CN23XX_DEFAULT_IQ_DESCRIPTORS,
94
95 /*
96 * Mbuf size, We need not change buf size even for Jumbo frames.
97 * Octeon can send jumbo frames in 4 consecutive descriptors,
98 */
99 .rx_buf_size = LIO_CN23XX_OQ_BUF_SIZE,
100
101 .base_queue = LIO_BASE_QUEUE_NOT_REQUESTED,
102
103 .gmx_port_id = 0,
104 },
105
106 .nic_if_cfg[1] = {
107 /* Max Txqs: Half for each of the two ports :max_iq/2 */
108 .max_txqs = LIO_MAX_TXQS_PER_INTF,
109
110 /* Actual configured value. Range could be: 1...max_txqs */
111 .num_txqs = LIO_DEF_TXQS_PER_INTF,
112
113 /* Max Rxqs: Half for each of the two ports :max_oq/2 */
114 .max_rxqs = LIO_MAX_RXQS_PER_INTF,
115
116 /* Actual configured value. Range could be: 1...max_rxqs */
117 .num_rxqs = LIO_DEF_RXQS_PER_INTF,
118
119 /* Num of desc for rx rings */
120 .num_rx_descs = LIO_CN23XX_DEFAULT_OQ_DESCRIPTORS,
121
122 /* Num of desc for tx rings */
123 .num_tx_descs = LIO_CN23XX_DEFAULT_IQ_DESCRIPTORS,
124
125 /*
126 * Mbuf size, We need not change buf size even for Jumbo frames.
127 * Octeon can send jumbo frames in 4 consecutive descriptors,
128 */
129 .rx_buf_size = LIO_CN23XX_OQ_BUF_SIZE,
130
131 .base_queue = LIO_BASE_QUEUE_NOT_REQUESTED,
132
133 .gmx_port_id = 1,
134 },
135
136 .misc = {
137 /* Host driver link query interval */
138 .oct_link_query_interval = 100,
139
140 /* Octeon link query interval */
141 .host_link_query_interval = 500,
142
143 .enable_sli_oq_bp = 0,
144
145 /* Control queue group */
146 .ctrlq_grp = 1,
147 }
148 };
149
150 static struct lio_config_ptr {
151 uint32_t conf_type;
152 } oct_conf_info[LIO_MAX_DEVICES] = {
153
154 {
155 LIO_CFG_TYPE_DEFAULT,
156 }, {
157 LIO_CFG_TYPE_DEFAULT,
158 }, {
159 LIO_CFG_TYPE_DEFAULT,
160 }, {
161 LIO_CFG_TYPE_DEFAULT,
162 },
163 };
164
165 static char lio_state_str[LIO_DEV_STATES + 1][32] = {
166 "BEGIN", "PCI-ENABLE-DONE", "PCI-MAP-DONE", "DISPATCH-INIT-DONE",
167 "IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE",
168 "DROQ-INIT-DONE", "MBOX-SETUP-DONE", "MSIX-ALLOC-VECTOR-DONE",
169 "INTR-SET-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE",
170 "HOST-READY", "CORE-READY", "RUNNING", "IN-RESET",
171 "INVALID"
172 };
173
174 static char lio_app_str[LIO_DRV_APP_COUNT + 1][32] = {"BASE", "NIC", "UNKNOWN"};
175
176 static struct octeon_device *octeon_device[LIO_MAX_DEVICES];
177 static volatile int lio_adapter_refcounts[LIO_MAX_DEVICES];
178
179 static uint32_t octeon_device_count;
180 /* locks device array (i.e. octeon_device[]) */
181 struct mtx octeon_devices_lock;
182
183 static struct lio_core_setup core_setup[LIO_MAX_DEVICES];
184
185 static void
186 oct_set_config_info(int oct_id, int conf_type)
187 {
188
189 if (conf_type < 0 || conf_type > (LIO_NUM_CFGS - 1))
190 conf_type = LIO_CFG_TYPE_DEFAULT;
191 oct_conf_info[oct_id].conf_type = conf_type;
192 }
193
194 void
195 lio_init_device_list(int conf_type)
196 {
197 int i;
198
199 bzero(octeon_device, (sizeof(void *) * LIO_MAX_DEVICES));
200 for (i = 0; i < LIO_MAX_DEVICES; i++)
201 oct_set_config_info(i, conf_type);
202 mtx_init(&octeon_devices_lock, "octeon_devices_lock", NULL, MTX_DEF);
203 }
204
205 static void *
206 __lio_retrieve_config_info(struct octeon_device *oct, uint16_t card_type)
207 {
208 void *ret = NULL;
209 uint32_t oct_id = oct->octeon_id;
210
211 switch (oct_conf_info[oct_id].conf_type) {
212 case LIO_CFG_TYPE_DEFAULT:
213 if (oct->chip_id == LIO_CN23XX_PF_VID) {
214 ret = &default_cn23xx_conf;
215 }
216
217 break;
218 default:
219 break;
220 }
221 return (ret);
222 }
223
224 void *
225 lio_get_config_info(struct octeon_device *oct, uint16_t card_type)
226 {
227 void *conf = NULL;
228
229 conf = __lio_retrieve_config_info(oct, card_type);
230 if (conf == NULL)
231 return (NULL);
232
233 return (conf);
234 }
235
236 char *
237 lio_get_state_string(volatile int *state_ptr)
238 {
239 int32_t istate = (int32_t)atomic_load_acq_int(state_ptr);
240
241 if (istate > LIO_DEV_STATES || istate < 0)
242 return (lio_state_str[LIO_DEV_STATE_INVALID]);
243
244 return (lio_state_str[istate]);
245 }
246
247 static char *
248 lio_get_app_string(uint32_t app_mode)
249 {
250
251 if (app_mode <= LIO_DRV_APP_END)
252 return (lio_app_str[app_mode - LIO_DRV_APP_START]);
253
254 return (lio_app_str[LIO_DRV_INVALID_APP - LIO_DRV_APP_START]);
255 }
256
257 void
258 lio_free_device_mem(struct octeon_device *oct)
259 {
260 int i;
261
262 for (i = 0; i < LIO_MAX_OUTPUT_QUEUES(oct); i++) {
263 if ((oct->io_qmask.oq & BIT_ULL(i)) && (oct->droq[i]))
264 free(oct->droq[i], M_DEVBUF);
265 }
266
267 for (i = 0; i < LIO_MAX_INSTR_QUEUES(oct); i++) {
268 if ((oct->io_qmask.iq & BIT_ULL(i)) && (oct->instr_queue[i]))
269 free(oct->instr_queue[i], M_DEVBUF);
270 }
271
272 i = oct->octeon_id;
273 free(oct->chip, M_DEVBUF);
274
275 octeon_device[i] = NULL;
276 octeon_device_count--;
277 }
278
279 static struct octeon_device *
280 lio_allocate_device_mem(device_t device)
281 {
282 struct octeon_device *oct;
283 uint32_t configsize = 0, pci_id = 0, size;
284 uint8_t *buf = NULL;
285
286 pci_id = pci_get_device(device);
287 switch (pci_id) {
288 case LIO_CN23XX_PF_VID:
289 configsize = sizeof(struct lio_cn23xx_pf);
290 break;
291 default:
292 device_printf(device, "Error: Unknown PCI Device: 0x%x\n",
293 pci_id);
294 return (NULL);
295 }
296
297 if (configsize & 0x7)
298 configsize += (8 - (configsize & 0x7));
299
300 size = configsize +
301 (sizeof(struct lio_dispatch) * LIO_DISPATCH_LIST_SIZE);
302
303 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
304 if (buf == NULL)
305 return (NULL);
306
307 oct = (struct octeon_device *)device_get_softc(device);
308 oct->chip = (void *)(buf);
309 oct->dispatch.dlist = (struct lio_dispatch *)(buf + configsize);
310
311 return (oct);
312 }
313
314 struct octeon_device *
315 lio_allocate_device(device_t device)
316 {
317 struct octeon_device *oct = NULL;
318 uint32_t oct_idx = 0;
319
320 mtx_lock(&octeon_devices_lock);
321
322 for (oct_idx = 0; oct_idx < LIO_MAX_DEVICES; oct_idx++)
323 if (!octeon_device[oct_idx])
324 break;
325
326 if (oct_idx < LIO_MAX_DEVICES) {
327 oct = lio_allocate_device_mem(device);
328 if (oct != NULL) {
329 octeon_device_count++;
330 octeon_device[oct_idx] = oct;
331 }
332 }
333
334 mtx_unlock(&octeon_devices_lock);
335
336 if (oct == NULL)
337 return (NULL);
338
339 mtx_init(&oct->pci_win_lock, "pci_win_lock", NULL, MTX_DEF);
340 mtx_init(&oct->mem_access_lock, "mem_access_lock", NULL, MTX_DEF);
341
342 oct->octeon_id = oct_idx;
343 snprintf(oct->device_name, sizeof(oct->device_name), "%s%d",
344 LIO_DRV_NAME, oct->octeon_id);
345
346 return (oct);
347 }
348
349 /*
350 * Register a device's bus location at initialization time.
351 * @param oct - pointer to the octeon device structure.
352 * @param bus - PCIe bus #
353 * @param dev - PCIe device #
354 * @param func - PCIe function #
355 * @param is_pf - TRUE for PF, FALSE for VF
356 * @return reference count of device's adapter
357 */
358 int
359 lio_register_device(struct octeon_device *oct, int bus, int dev, int func,
360 int is_pf)
361 {
362 int idx, refcount;
363
364 oct->loc.bus = bus;
365 oct->loc.dev = dev;
366 oct->loc.func = func;
367
368 oct->adapter_refcount = &lio_adapter_refcounts[oct->octeon_id];
369 atomic_store_rel_int(oct->adapter_refcount, 0);
370
371 mtx_lock(&octeon_devices_lock);
372 for (idx = (int)oct->octeon_id - 1; idx >= 0; idx--) {
373 if (octeon_device[idx] == NULL) {
374 lio_dev_err(oct, "%s: Internal driver error, missing dev\n",
375 __func__);
376 mtx_unlock(&octeon_devices_lock);
377 atomic_add_int(oct->adapter_refcount, 1);
378 return (1); /* here, refcount is guaranteed to be 1 */
379 }
380
381 /* if another device is at same bus/dev, use its refcounter */
382 if ((octeon_device[idx]->loc.bus == bus) &&
383 (octeon_device[idx]->loc.dev == dev)) {
384 oct->adapter_refcount =
385 octeon_device[idx]->adapter_refcount;
386 break;
387 }
388 }
389
390 mtx_unlock(&octeon_devices_lock);
391
392 atomic_add_int(oct->adapter_refcount, 1);
393 refcount = atomic_load_acq_int(oct->adapter_refcount);
394
395 lio_dev_dbg(oct, "%s: %02x:%02x:%d refcount %u\n", __func__,
396 oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
397
398 return (refcount);
399 }
400
401 /*
402 * Deregister a device at de-initialization time.
403 * @param oct - pointer to the octeon device structure.
404 * @return reference count of device's adapter
405 */
406 int
407 lio_deregister_device(struct octeon_device *oct)
408 {
409 int refcount;
410
411 atomic_subtract_int(oct->adapter_refcount, 1);
412 refcount = atomic_load_acq_int(oct->adapter_refcount);
413
414 lio_dev_dbg(oct, "%s: %04d:%02d:%d refcount %u\n", __func__,
415 oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
416
417 return (refcount);
418 }
419
420 int
421 lio_allocate_ioq_vector(struct octeon_device *oct)
422 {
423 struct lio_ioq_vector *ioq_vector;
424 int i, cpu_num, num_ioqs = 0, size;
425
426 if (LIO_CN23XX_PF(oct))
427 num_ioqs = oct->sriov_info.num_pf_rings;
428
429 size = sizeof(struct lio_ioq_vector) * num_ioqs;
430
431 oct->ioq_vector = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
432 if (oct->ioq_vector == NULL)
433 return (1);
434
435 for (i = 0; i < num_ioqs; i++) {
436 ioq_vector = &oct->ioq_vector[i];
437 ioq_vector->oct_dev = oct;
438 ioq_vector->droq_index = i;
439 cpu_num = i % mp_ncpus;
440 CPU_SETOF(cpu_num, &ioq_vector->affinity_mask);
441
442 if (oct->chip_id == LIO_CN23XX_PF_VID)
443 ioq_vector->ioq_num = i + oct->sriov_info.pf_srn;
444 else
445 ioq_vector->ioq_num = i;
446 }
447 return (0);
448 }
449
450 void
451 lio_free_ioq_vector(struct octeon_device *oct)
452 {
453
454 free(oct->ioq_vector, M_DEVBUF);
455 oct->ioq_vector = NULL;
456 }
457
458 /* this function is only for setting up the first queue */
459 int
460 lio_setup_instr_queue0(struct octeon_device *oct)
461 {
462 union octeon_txpciq txpciq;
463 uint32_t iq_no = 0;
464 uint32_t num_descs = 0;
465
466 if (LIO_CN23XX_PF(oct))
467 num_descs =
468 LIO_GET_NUM_DEF_TX_DESCS_CFG(LIO_CHIP_CONF(oct,
469 cn23xx_pf));
470
471 oct->num_iqs = 0;
472
473 oct->instr_queue[0]->q_index = 0;
474 oct->instr_queue[0]->app_ctx = (void *)(size_t)0;
475 oct->instr_queue[0]->ifidx = 0;
476 txpciq.txpciq64 = 0;
477 txpciq.s.q_no = iq_no;
478 txpciq.s.pkind = oct->pfvf_hsword.pkind;
479 txpciq.s.use_qpg = 0;
480 txpciq.s.qpg = 0;
481 if (lio_init_instr_queue(oct, txpciq, num_descs)) {
482 /* prevent memory leak */
483 lio_delete_instr_queue(oct, 0);
484 return (1);
485 }
486
487 oct->num_iqs++;
488 return (0);
489 }
490
491 int
492 lio_setup_output_queue0(struct octeon_device *oct)
493 {
494 uint32_t desc_size = 0, num_descs = 0, oq_no = 0;
495
496 if (LIO_CN23XX_PF(oct)) {
497 num_descs =
498 LIO_GET_NUM_DEF_RX_DESCS_CFG(LIO_CHIP_CONF(oct,
499 cn23xx_pf));
500 desc_size =
501 LIO_GET_DEF_RX_BUF_SIZE_CFG(LIO_CHIP_CONF(oct,
502 cn23xx_pf));
503 }
504
505 oct->num_oqs = 0;
506
507 if (lio_init_droq(oct, oq_no, num_descs, desc_size, NULL)) {
508 return (1);
509 }
510
511 oct->num_oqs++;
512
513 return (0);
514 }
515
516 int
517 lio_init_dispatch_list(struct octeon_device *oct)
518 {
519 uint32_t i;
520
521 oct->dispatch.count = 0;
522
523 for (i = 0; i < LIO_DISPATCH_LIST_SIZE; i++) {
524 oct->dispatch.dlist[i].opcode = 0;
525 STAILQ_INIT(&oct->dispatch.dlist[i].head);
526 }
527
528 mtx_init(&oct->dispatch.lock, "dispatch_lock", NULL, MTX_DEF);
529
530 return (0);
531 }
532
533 void
534 lio_delete_dispatch_list(struct octeon_device *oct)
535 {
536 struct lio_stailq_head freelist;
537 struct lio_stailq_node *temp, *tmp2;
538 uint32_t i;
539
540 STAILQ_INIT(&freelist);
541
542 mtx_lock(&oct->dispatch.lock);
543
544 for (i = 0; i < LIO_DISPATCH_LIST_SIZE; i++) {
545 struct lio_stailq_head *dispatch;
546
547 dispatch = &oct->dispatch.dlist[i].head;
548 while (!STAILQ_EMPTY(dispatch)) {
549 temp = STAILQ_FIRST(dispatch);
550 STAILQ_REMOVE_HEAD(&oct->dispatch.dlist[i].head,
551 entries);
552 STAILQ_INSERT_TAIL(&freelist, temp, entries);
553 }
554
555 oct->dispatch.dlist[i].opcode = 0;
556 }
557
558 oct->dispatch.count = 0;
559
560 mtx_unlock(&oct->dispatch.lock);
561
562 STAILQ_FOREACH_SAFE(temp, &freelist, entries, tmp2) {
563 STAILQ_REMOVE_HEAD(&freelist, entries);
564 free(temp, M_DEVBUF);
565 }
566 }
567
568 lio_dispatch_fn_t
569 lio_get_dispatch(struct octeon_device *octeon_dev, uint16_t opcode,
570 uint16_t subcode)
571 {
572 struct lio_stailq_node *dispatch;
573 lio_dispatch_fn_t fn = NULL;
574 uint32_t idx;
575 uint16_t combined_opcode = LIO_OPCODE_SUBCODE(opcode, subcode);
576
577 idx = combined_opcode & LIO_OPCODE_MASK;
578
579 mtx_lock(&octeon_dev->dispatch.lock);
580
581 if (octeon_dev->dispatch.count == 0) {
582 mtx_unlock(&octeon_dev->dispatch.lock);
583 return (NULL);
584 }
585
586 if (!(octeon_dev->dispatch.dlist[idx].opcode)) {
587 mtx_unlock(&octeon_dev->dispatch.lock);
588 return (NULL);
589 }
590
591 if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
592 fn = octeon_dev->dispatch.dlist[idx].dispatch_fn;
593 } else {
594 STAILQ_FOREACH(dispatch, &octeon_dev->dispatch.dlist[idx].head,
595 entries) {
596 if (((struct lio_dispatch *)dispatch)->opcode ==
597 combined_opcode) {
598 fn = ((struct lio_dispatch *)
599 dispatch)->dispatch_fn;
600 break;
601 }
602 }
603 }
604
605 mtx_unlock(&octeon_dev->dispatch.lock);
606 return (fn);
607 }
608
609 /*
610 * lio_register_dispatch_fn
611 * Parameters:
612 * octeon_id - id of the octeon device.
613 * opcode - opcode for which driver should call the registered function
614 * subcode - subcode for which driver should call the registered function
615 * fn - The function to call when a packet with "opcode" arrives in
616 * octeon output queues.
617 * fn_arg - The argument to be passed when calling function "fn".
618 * Description:
619 * Registers a function and its argument to be called when a packet
620 * arrives in Octeon output queues with "opcode".
621 * Returns:
622 * Success: 0
623 * Failure: 1
624 * Locks:
625 * No locks are held.
626 */
627 int
628 lio_register_dispatch_fn(struct octeon_device *oct, uint16_t opcode,
629 uint16_t subcode, lio_dispatch_fn_t fn, void *fn_arg)
630 {
631 lio_dispatch_fn_t pfn;
632 uint32_t idx;
633 uint16_t combined_opcode = LIO_OPCODE_SUBCODE(opcode, subcode);
634
635 idx = combined_opcode & LIO_OPCODE_MASK;
636
637 mtx_lock(&oct->dispatch.lock);
638 /* Add dispatch function to first level of lookup table */
639 if (oct->dispatch.dlist[idx].opcode == 0) {
640 oct->dispatch.dlist[idx].opcode = combined_opcode;
641 oct->dispatch.dlist[idx].dispatch_fn = fn;
642 oct->dispatch.dlist[idx].arg = fn_arg;
643 oct->dispatch.count++;
644 mtx_unlock(&oct->dispatch.lock);
645 return (0);
646 }
647
648 mtx_unlock(&oct->dispatch.lock);
649
650 /*
651 * Check if there was a function already registered for this
652 * opcode/subcode.
653 */
654 pfn = lio_get_dispatch(oct, opcode, subcode);
655 if (!pfn) {
656 struct lio_dispatch *dispatch;
657
658 lio_dev_dbg(oct,
659 "Adding opcode to dispatch list linked list\n");
660 dispatch = (struct lio_dispatch *)
661 malloc(sizeof(struct lio_dispatch),
662 M_DEVBUF, M_NOWAIT | M_ZERO);
663 if (dispatch == NULL) {
664 lio_dev_err(oct,
665 "No memory to add dispatch function\n");
666 return (1);
667 }
668
669 dispatch->opcode = combined_opcode;
670 dispatch->dispatch_fn = fn;
671 dispatch->arg = fn_arg;
672
673 /*
674 * Add dispatch function to linked list of fn ptrs
675 * at the hashed index.
676 */
677 mtx_lock(&oct->dispatch.lock);
678 STAILQ_INSERT_HEAD(&oct->dispatch.dlist[idx].head,
679 &dispatch->node, entries);
680 oct->dispatch.count++;
681 mtx_unlock(&oct->dispatch.lock);
682
683 } else {
684 lio_dev_err(oct, "Found previously registered dispatch fn for opcode/subcode: %x/%x\n",
685 opcode, subcode);
686 return (1);
687 }
688
689 return (0);
690 }
691
692 /*
693 * lio_unregister_dispatch_fn
694 * Parameters:
695 * oct - octeon device
696 * opcode - driver should unregister the function for this opcode
697 * subcode - driver should unregister the function for this subcode
698 * Description:
699 * Unregister the function set for this opcode+subcode.
700 * Returns:
701 * Success: 0
702 * Failure: 1
703 * Locks:
704 * No locks are held.
705 */
706 int
707 lio_unregister_dispatch_fn(struct octeon_device *oct, uint16_t opcode,
708 uint16_t subcode)
709 {
710 struct lio_stailq_head *dispatch_head;
711 struct lio_stailq_node *dispatch, *dfree = NULL, *tmp2;
712 int retval = 0;
713 uint32_t idx;
714 uint16_t combined_opcode = LIO_OPCODE_SUBCODE(opcode, subcode);
715
716 idx = combined_opcode & LIO_OPCODE_MASK;
717
718 mtx_lock(&oct->dispatch.lock);
719
720 if (oct->dispatch.count == 0) {
721 mtx_unlock(&oct->dispatch.lock);
722 lio_dev_err(oct, "No dispatch functions registered for this device\n");
723 return (1);
724 }
725 if (oct->dispatch.dlist[idx].opcode == combined_opcode) {
726 dispatch_head = &oct->dispatch.dlist[idx].head;
727 if (!STAILQ_EMPTY(dispatch_head)) {
728 dispatch = STAILQ_FIRST(dispatch_head);
729 oct->dispatch.dlist[idx].opcode =
730 ((struct lio_dispatch *)dispatch)->opcode;
731 oct->dispatch.dlist[idx].dispatch_fn =
732 ((struct lio_dispatch *)dispatch)->dispatch_fn;
733 oct->dispatch.dlist[idx].arg =
734 ((struct lio_dispatch *)dispatch)->arg;
735 STAILQ_REMOVE_HEAD(dispatch_head, entries);
736 dfree = dispatch;
737 } else {
738 oct->dispatch.dlist[idx].opcode = 0;
739 oct->dispatch.dlist[idx].dispatch_fn = NULL;
740 oct->dispatch.dlist[idx].arg = NULL;
741 }
742 } else {
743 retval = 1;
744 STAILQ_FOREACH_SAFE(dispatch,
745 &oct->dispatch.dlist[idx].head,
746 entries, tmp2) {
747 if (((struct lio_dispatch *)dispatch)->opcode ==
748 combined_opcode) {
749 STAILQ_REMOVE(&oct->dispatch.dlist[idx].head,
750 dispatch,
751 lio_stailq_node, entries);
752 dfree = dispatch;
753 retval = 0;
754 }
755 }
756 }
757
758 if (!retval)
759 oct->dispatch.count--;
760
761 mtx_unlock(&oct->dispatch.lock);
762 free(dfree, M_DEVBUF);
763
764 return (retval);
765 }
766
767 int
768 lio_core_drv_init(struct lio_recv_info *recv_info, void *buf)
769 {
770 struct octeon_device *oct = (struct octeon_device *)buf;
771 struct lio_recv_pkt *recv_pkt = recv_info->recv_pkt;
772 struct lio_core_setup *cs = NULL;
773 uint32_t i;
774 uint32_t num_nic_ports = 0;
775 char app_name[16];
776
777 if (LIO_CN23XX_PF(oct))
778 num_nic_ports = LIO_GET_NUM_NIC_PORTS_CFG(
779 LIO_CHIP_CONF(oct, cn23xx_pf));
780
781 if (atomic_load_acq_int(&oct->status) >= LIO_DEV_RUNNING) {
782 lio_dev_err(oct, "Received CORE OK when device state is 0x%x\n",
783 atomic_load_acq_int(&oct->status));
784 goto core_drv_init_err;
785 }
786
787 strncpy(app_name,
788 lio_get_app_string((uint32_t)
789 recv_pkt->rh.r_core_drv_init.app_mode),
790 sizeof(app_name) - 1);
791 oct->app_mode = (uint32_t)recv_pkt->rh.r_core_drv_init.app_mode;
792 if (recv_pkt->rh.r_core_drv_init.app_mode == LIO_DRV_NIC_APP) {
793 oct->fw_info.max_nic_ports =
794 (uint32_t)recv_pkt->rh.r_core_drv_init.max_nic_ports;
795 oct->fw_info.num_gmx_ports =
796 (uint32_t)recv_pkt->rh.r_core_drv_init.num_gmx_ports;
797 }
798
799 if (oct->fw_info.max_nic_ports < num_nic_ports) {
800 lio_dev_err(oct, "Config has more ports than firmware allows (%d > %d).\n",
801 num_nic_ports, oct->fw_info.max_nic_ports);
802 goto core_drv_init_err;
803 }
804
805 oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags;
806 oct->fw_info.app_mode = (uint32_t)recv_pkt->rh.r_core_drv_init.app_mode;
807 oct->pfvf_hsword.app_mode =
808 (uint32_t)recv_pkt->rh.r_core_drv_init.app_mode;
809
810 oct->pfvf_hsword.pkind = recv_pkt->rh.r_core_drv_init.pkind;
811
812 for (i = 0; i < oct->num_iqs; i++)
813 oct->instr_queue[i]->txpciq.s.pkind = oct->pfvf_hsword.pkind;
814
815 atomic_store_rel_int(&oct->status, LIO_DEV_CORE_OK);
816
817 cs = &core_setup[oct->octeon_id];
818
819 if (recv_pkt->buffer_size[0] != (sizeof(*cs) + LIO_DROQ_INFO_SIZE)) {
820 lio_dev_dbg(oct, "Core setup bytes expected %llu found %d\n",
821 LIO_CAST64(sizeof(*cs) + LIO_DROQ_INFO_SIZE),
822 recv_pkt->buffer_size[0]);
823 }
824
825 memcpy(cs, recv_pkt->buffer_ptr[0]->m_data + LIO_DROQ_INFO_SIZE,
826 sizeof(*cs));
827 strncpy(oct->boardinfo.name, cs->boardname, LIO_BOARD_NAME);
828 strncpy(oct->boardinfo.serial_number, cs->board_serial_number,
829 LIO_SERIAL_NUM_LEN);
830
831 lio_swap_8B_data((uint64_t *)cs, (sizeof(*cs) >> 3));
832
833 oct->boardinfo.major = cs->board_rev_major;
834 oct->boardinfo.minor = cs->board_rev_minor;
835
836 lio_dev_info(oct, "Running %s (%llu Hz)\n", app_name,
837 LIO_CAST64(cs->corefreq));
838
839 core_drv_init_err:
840 for (i = 0; i < recv_pkt->buffer_count; i++)
841 lio_recv_buffer_free(recv_pkt->buffer_ptr[i]);
842
843 lio_free_recv_info(recv_info);
844 return (0);
845 }
846
847 int
848 lio_get_tx_qsize(struct octeon_device *oct, uint32_t q_no)
849 {
850
851 if ((oct != NULL) && (q_no < (uint32_t)LIO_MAX_INSTR_QUEUES(oct)) &&
852 (oct->io_qmask.iq & BIT_ULL(q_no)))
853 return (oct->instr_queue[q_no]->max_count);
854
855
856 return (-1);
857 }
858
859 int
860 lio_get_rx_qsize(struct octeon_device *oct, uint32_t q_no)
861 {
862
863 if ((oct != NULL) && (q_no < (uint32_t)LIO_MAX_OUTPUT_QUEUES(oct)) &&
864 (oct->io_qmask.oq & BIT_ULL(q_no)))
865 return (oct->droq[q_no]->max_count);
866
867 return (-1);
868 }
869
870 /* Returns the host firmware handshake OCTEON specific configuration */
871 struct lio_config *
872 lio_get_conf(struct octeon_device *oct)
873 {
874 struct lio_config *default_oct_conf = NULL;
875
876 /*
877 * check the OCTEON Device model & return the corresponding octeon
878 * configuration
879 */
880 if (LIO_CN23XX_PF(oct)) {
881 default_oct_conf = (struct lio_config *)(
882 LIO_CHIP_CONF(oct, cn23xx_pf));
883 }
884
885 return (default_oct_conf);
886 }
887
888 /*
889 * Get the octeon device pointer.
890 * @param octeon_id - The id for which the octeon device pointer is required.
891 * @return Success: Octeon device pointer.
892 * @return Failure: NULL.
893 */
894 struct octeon_device *
895 lio_get_device(uint32_t octeon_id)
896 {
897
898 if (octeon_id >= LIO_MAX_DEVICES)
899 return (NULL);
900 else
901 return (octeon_device[octeon_id]);
902 }
903
904 uint64_t
905 lio_pci_readq(struct octeon_device *oct, uint64_t addr)
906 {
907 uint64_t val64;
908 volatile uint32_t addrhi;
909
910 mtx_lock(&oct->pci_win_lock);
911
912 /*
913 * The windowed read happens when the LSB of the addr is written.
914 * So write MSB first
915 */
916 addrhi = (addr >> 32);
917 if (oct->chip_id == LIO_CN23XX_PF_VID)
918 addrhi |= 0x00060000;
919 lio_write_csr32(oct, oct->reg_list.pci_win_rd_addr_hi, addrhi);
920
921 /* Read back to preserve ordering of writes */
922 (void)lio_read_csr32(oct, oct->reg_list.pci_win_rd_addr_hi);
923
924 lio_write_csr32(oct, oct->reg_list.pci_win_rd_addr_lo,
925 addr & 0xffffffff);
926 (void)lio_read_csr32(oct, oct->reg_list.pci_win_rd_addr_lo);
927
928 val64 = lio_read_csr64(oct, oct->reg_list.pci_win_rd_data);
929
930 mtx_unlock(&oct->pci_win_lock);
931
932 return (val64);
933 }
934
935 void
936 lio_pci_writeq(struct octeon_device *oct, uint64_t val, uint64_t addr)
937 {
938
939 mtx_lock(&oct->pci_win_lock);
940
941 lio_write_csr64(oct, oct->reg_list.pci_win_wr_addr, addr);
942
943 /* The write happens when the LSB is written. So write MSB first. */
944 lio_write_csr32(oct, oct->reg_list.pci_win_wr_data_hi, val >> 32);
945 /* Read the MSB to ensure ordering of writes. */
946 (void)lio_read_csr32(oct, oct->reg_list.pci_win_wr_data_hi);
947
948 lio_write_csr32(oct, oct->reg_list.pci_win_wr_data_lo,
949 val & 0xffffffff);
950
951 mtx_unlock(&oct->pci_win_lock);
952 }
953
954 int
955 lio_mem_access_ok(struct octeon_device *oct)
956 {
957 uint64_t access_okay = 0;
958 uint64_t lmc0_reset_ctl;
959
960 /* Check to make sure a DDR interface is enabled */
961 if (LIO_CN23XX_PF(oct)) {
962 lmc0_reset_ctl = lio_pci_readq(oct, LIO_CN23XX_LMC0_RESET_CTL);
963 access_okay =
964 (lmc0_reset_ctl & LIO_CN23XX_LMC0_RESET_CTL_DDR3RST_MASK);
965 }
966
967 return (access_okay ? 0 : 1);
968 }
969
970 int
971 lio_wait_for_ddr_init(struct octeon_device *oct, unsigned long *timeout)
972 {
973 int ret = 1;
974 uint32_t ms;
975
976 if (timeout == NULL)
977 return (ret);
978
979 for (ms = 0; ret && ((*timeout == 0) || (ms <= *timeout)); ms += 100) {
980 ret = lio_mem_access_ok(oct);
981
982 /* wait 100 ms */
983 if (ret)
984 lio_sleep_timeout(100);
985 }
986
987 return (ret);
988 }
989
990 /*
991 * Get the octeon id assigned to the octeon device passed as argument.
992 * This function is exported to other modules.
993 * @param dev - octeon device pointer passed as a void *.
994 * @return octeon device id
995 */
996 int
997 lio_get_device_id(void *dev)
998 {
999 struct octeon_device *octeon_dev = (struct octeon_device *)dev;
1000 uint32_t i;
1001
1002 for (i = 0; i < LIO_MAX_DEVICES; i++)
1003 if (octeon_device[i] == octeon_dev)
1004 return (octeon_dev->octeon_id);
1005
1006 return (-1);
1007 }
1008
1009 void
1010 lio_enable_irq(struct lio_droq *droq, struct lio_instr_queue *iq)
1011 {
1012 struct octeon_device *oct = NULL;
1013 uint64_t instr_cnt;
1014 uint32_t pkts_pend;
1015
1016 /* the whole thing needs to be atomic, ideally */
1017 if (droq != NULL) {
1018 oct = droq->oct_dev;
1019 pkts_pend = atomic_load_acq_int(&droq->pkts_pending);
1020 mtx_lock(&droq->lock);
1021 lio_write_csr32(oct, droq->pkts_sent_reg,
1022 droq->pkt_count - pkts_pend);
1023 droq->pkt_count = pkts_pend;
1024 /* this write needs to be flushed before we release the lock */
1025 __compiler_membar();
1026 mtx_unlock(&droq->lock);
1027 }
1028
1029 if (iq != NULL) {
1030 oct = iq->oct_dev;
1031 mtx_lock(&iq->lock);
1032 lio_write_csr32(oct, iq->inst_cnt_reg, iq->pkt_in_done);
1033 iq->pkt_in_done = 0;
1034 /* this write needs to be flushed before we release the lock */
1035 __compiler_membar();
1036 mtx_unlock(&iq->lock);
1037 }
1038
1039 /*
1040 * Implementation note:
1041 *
1042 * SLI_PKT(x)_CNTS[RESEND] is written separately so that if an interrupt
1043 * DOES occur as a result of RESEND, the DROQ lock will NOT be held.
1044 *
1045 * Write resend. Writing RESEND in SLI_PKTX_CNTS should be enough
1046 * to trigger tx interrupts as well, if they are pending.
1047 */
1048 if ((oct != NULL) && (LIO_CN23XX_PF(oct))) {
1049 if (droq != NULL)
1050 lio_write_csr64(oct, droq->pkts_sent_reg,
1051 LIO_CN23XX_INTR_RESEND);
1052 /* we race with firmrware here. */
1053 /* read and write the IN_DONE_CNTS */
1054 else if (iq != NULL) {
1055 instr_cnt = lio_read_csr64(oct, iq->inst_cnt_reg);
1056 lio_write_csr64(oct, iq->inst_cnt_reg,
1057 ((instr_cnt & 0xFFFFFFFF00000000ULL) |
1058 LIO_CN23XX_INTR_RESEND));
1059 }
1060 }
1061 }
Cache object: 74ae4e2c96e005f19d8e8af58b95478a
|