The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/liquidio/base/lio_request_manager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  *   BSD LICENSE
    3  *
    4  *   Copyright(c) 2017 Cavium, Inc.. All rights reserved.
    5  *   All rights reserved.
    6  *
    7  *   Redistribution and use in source and binary forms, with or without
    8  *   modification, are permitted provided that the following conditions
    9  *   are met:
   10  *
   11  *     * Redistributions of source code must retain the above copyright
   12  *       notice, this list of conditions and the following disclaimer.
   13  *     * Redistributions in binary form must reproduce the above copyright
   14  *       notice, this list of conditions and the following disclaimer in
   15  *       the documentation and/or other materials provided with the
   16  *       distribution.
   17  *     * Neither the name of Cavium, Inc. nor the names of its
   18  *       contributors may be used to endorse or promote products derived
   19  *       from this software without specific prior written permission.
   20  *
   21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   25  *   OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 /*$FreeBSD$*/
   34 
   35 #include "lio_bsd.h"
   36 #include "lio_common.h"
   37 #include "lio_droq.h"
   38 #include "lio_iq.h"
   39 #include "lio_response_manager.h"
   40 #include "lio_device.h"
   41 #include "lio_main.h"
   42 #include "lio_network.h"
   43 #include "cn23xx_pf_device.h"
   44 #include "lio_rxtx.h"
   45 
   46 struct lio_iq_post_status {
   47         int     status;
   48         int     index;
   49 };
   50 
   51 static void     lio_check_db_timeout(void *arg, int pending);
   52 static void     __lio_check_db_timeout(struct octeon_device *oct,
   53                                        uint64_t iq_no);
   54 
   55 /* Return 0 on success, 1 on failure */
   56 int
   57 lio_init_instr_queue(struct octeon_device *oct, union octeon_txpciq txpciq,
   58                      uint32_t num_descs)
   59 {
   60         struct lio_instr_queue  *iq;
   61         struct lio_iq_config    *conf = NULL;
   62         struct lio_tq           *db_tq;
   63         struct lio_request_list *request_buf;
   64         bus_size_t              max_size;
   65         uint32_t                iq_no = (uint32_t)txpciq.s.q_no;
   66         uint32_t                q_size;
   67         int                     error, i;
   68 
   69         if (LIO_CN23XX_PF(oct))
   70                 conf = &(LIO_GET_IQ_CFG(LIO_CHIP_CONF(oct, cn23xx_pf)));
   71         if (conf == NULL) {
   72                 lio_dev_err(oct, "Unsupported Chip %x\n", oct->chip_id);
   73                 return (1);
   74         }
   75 
   76         q_size = (uint32_t)conf->instr_type * num_descs;
   77         iq = oct->instr_queue[iq_no];
   78         iq->oct_dev = oct;
   79 
   80         max_size = LIO_CN23XX_PKI_MAX_FRAME_SIZE * num_descs;
   81 
   82         error = bus_dma_tag_create(bus_get_dma_tag(oct->device),        /* parent */
   83                                    1, 0,                                /* alignment, bounds */
   84                                    BUS_SPACE_MAXADDR,                   /* lowaddr */
   85                                    BUS_SPACE_MAXADDR,                   /* highaddr */
   86                                    NULL, NULL,                          /* filter, filterarg */
   87                                    max_size,                            /* maxsize */
   88                                    LIO_MAX_SG,                          /* nsegments */
   89                                    PAGE_SIZE,                           /* maxsegsize */
   90                                    0,                                   /* flags */
   91                                    NULL,                                /* lockfunc */
   92                                    NULL,                                /* lockfuncarg */
   93                                    &iq->txtag);
   94         if (error) {
   95                 lio_dev_err(oct, "Cannot allocate memory for instr queue %d\n",
   96                             iq_no);
   97                 return (1);
   98         }
   99 
  100         iq->base_addr = lio_dma_alloc(q_size, (vm_paddr_t *)&iq->base_addr_dma);
  101         if (!iq->base_addr) {
  102                 lio_dev_err(oct, "Cannot allocate memory for instr queue %d\n",
  103                             iq_no);
  104                 return (1);
  105         }
  106 
  107         iq->max_count = num_descs;
  108 
  109         /*
  110          * Initialize a list to holds requests that have been posted to
  111          * Octeon but has yet to be fetched by octeon
  112          */
  113         iq->request_list = malloc(sizeof(*iq->request_list) * num_descs,
  114                                   M_DEVBUF, M_NOWAIT | M_ZERO);
  115         if (iq->request_list == NULL) {
  116                 lio_dev_err(oct, "Alloc failed for IQ[%d] nr free list\n",
  117                             iq_no);
  118                 return (1);
  119         }
  120 
  121         lio_dev_dbg(oct, "IQ[%d]: base: %p basedma: %llx count: %d\n",
  122                     iq_no, iq->base_addr, LIO_CAST64(iq->base_addr_dma),
  123                     iq->max_count);
  124 
  125         /* Create the descriptor buffer dma maps */
  126         request_buf = iq->request_list;
  127         for (i = 0; i < num_descs; i++, request_buf++) {
  128                 error = bus_dmamap_create(iq->txtag, 0, &request_buf->map);
  129                 if (error) {
  130                         lio_dev_err(oct, "Unable to create TX DMA map\n");
  131                         return (1);
  132                 }
  133         }
  134 
  135         iq->txpciq.txpciq64 = txpciq.txpciq64;
  136         iq->fill_cnt = 0;
  137         iq->host_write_index = 0;
  138         iq->octeon_read_index = 0;
  139         iq->flush_index = 0;
  140         iq->last_db_time = 0;
  141         iq->db_timeout = (uint32_t)conf->db_timeout;
  142         atomic_store_rel_int(&iq->instr_pending, 0);
  143 
  144         /* Initialize the lock for this instruction queue */
  145         mtx_init(&iq->lock, "Tx_lock", NULL, MTX_DEF);
  146         mtx_init(&iq->post_lock, "iq_post_lock", NULL, MTX_DEF);
  147         mtx_init(&iq->enq_lock, "enq_lock", NULL, MTX_DEF);
  148 
  149         mtx_init(&iq->iq_flush_running_lock, "iq_flush_running_lock", NULL,
  150                  MTX_DEF);
  151 
  152         oct->io_qmask.iq |= BIT_ULL(iq_no);
  153 
  154         /* Set the 32B/64B mode for each input queue */
  155         oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
  156         iq->iqcmd_64B = (conf->instr_type == 64);
  157 
  158         oct->fn_list.setup_iq_regs(oct, iq_no);
  159 
  160         db_tq = &oct->check_db_tq[iq_no];
  161         db_tq->tq = taskqueue_create("lio_check_db_timeout", M_WAITOK,
  162                                      taskqueue_thread_enqueue, &db_tq->tq);
  163         if (db_tq->tq == NULL) {
  164                 lio_dev_err(oct, "check db wq create failed for iq %d\n",
  165                             iq_no);
  166                 return (1);
  167         }
  168 
  169         TIMEOUT_TASK_INIT(db_tq->tq, &db_tq->work, 0, lio_check_db_timeout,
  170                           (void *)db_tq);
  171         db_tq->ctxul = iq_no;
  172         db_tq->ctxptr = oct;
  173 
  174         taskqueue_start_threads(&db_tq->tq, 1, PI_NET,
  175                                 "lio%d_check_db_timeout:%d",
  176                                 oct->octeon_id, iq_no);
  177         taskqueue_enqueue_timeout(db_tq->tq, &db_tq->work, 1);
  178 
  179         /* Allocate a buf ring */
  180         oct->instr_queue[iq_no]->br =
  181                 buf_ring_alloc(LIO_BR_SIZE, M_DEVBUF, M_WAITOK,
  182                                &oct->instr_queue[iq_no]->enq_lock);
  183         if (oct->instr_queue[iq_no]->br == NULL) {
  184                 lio_dev_err(oct, "Critical Failure setting up buf ring\n");
  185                 return (1);
  186         }
  187 
  188         return (0);
  189 }
  190 
  191 int
  192 lio_delete_instr_queue(struct octeon_device *oct, uint32_t iq_no)
  193 {
  194         struct lio_instr_queue          *iq = oct->instr_queue[iq_no];
  195         struct lio_request_list         *request_buf;
  196         struct lio_mbuf_free_info       *finfo;
  197         uint64_t                        desc_size = 0, q_size;
  198         int                             i;
  199 
  200         lio_dev_dbg(oct, "%s[%d]\n", __func__, iq_no);
  201 
  202         if (oct->check_db_tq[iq_no].tq != NULL) {
  203                 while (taskqueue_cancel_timeout(oct->check_db_tq[iq_no].tq,
  204                                                 &oct->check_db_tq[iq_no].work,
  205                                                 NULL))
  206                         taskqueue_drain_timeout(oct->check_db_tq[iq_no].tq,
  207                                                 &oct->check_db_tq[iq_no].work);
  208                 taskqueue_free(oct->check_db_tq[iq_no].tq);
  209                 oct->check_db_tq[iq_no].tq = NULL;
  210         }
  211 
  212         if (LIO_CN23XX_PF(oct))
  213                 desc_size =
  214                     LIO_GET_IQ_INSTR_TYPE_CFG(LIO_CHIP_CONF(oct, cn23xx_pf));
  215 
  216         request_buf = iq->request_list;
  217         for (i = 0; i < iq->max_count; i++, request_buf++) {
  218                 if ((request_buf->reqtype == LIO_REQTYPE_NORESP_NET) ||
  219                     (request_buf->reqtype == LIO_REQTYPE_NORESP_NET_SG)) {
  220                         if (request_buf->buf != NULL) {
  221                                 finfo = request_buf->buf;
  222                                 bus_dmamap_sync(iq->txtag, request_buf->map,
  223                                                 BUS_DMASYNC_POSTWRITE);
  224                                 bus_dmamap_unload(iq->txtag,
  225                                                   request_buf->map);
  226                                 m_freem(finfo->mb);
  227                                 request_buf->buf = NULL;
  228                                 if (request_buf->map != NULL) {
  229                                         bus_dmamap_destroy(iq->txtag,
  230                                                            request_buf->map);
  231                                         request_buf->map = NULL;
  232                                 }
  233                         } else if (request_buf->map != NULL) {
  234                                 bus_dmamap_unload(iq->txtag, request_buf->map);
  235                                 bus_dmamap_destroy(iq->txtag, request_buf->map);
  236                                 request_buf->map = NULL;
  237                         }
  238                 }
  239         }
  240 
  241         if (iq->br != NULL) {
  242                 buf_ring_free(iq->br, M_DEVBUF);
  243                 iq->br = NULL;
  244         }
  245 
  246         if (iq->request_list != NULL) {
  247                 free(iq->request_list, M_DEVBUF);
  248                 iq->request_list = NULL;
  249         }
  250 
  251         if (iq->txtag != NULL) {
  252                 bus_dma_tag_destroy(iq->txtag);
  253                 iq->txtag = NULL;
  254         }
  255 
  256         if (iq->base_addr) {
  257                 q_size = iq->max_count * desc_size;
  258                 lio_dma_free((uint32_t)q_size, iq->base_addr);
  259 
  260                 oct->io_qmask.iq &= ~(1ULL << iq_no);
  261                 bzero(oct->instr_queue[iq_no], sizeof(struct lio_instr_queue));
  262                 oct->num_iqs--;
  263 
  264                 return (0);
  265         }
  266 
  267         return (1);
  268 }
  269 
  270 /* Return 0 on success, 1 on failure */
  271 int
  272 lio_setup_iq(struct octeon_device *oct, int ifidx, int q_index,
  273              union octeon_txpciq txpciq, uint32_t num_descs)
  274 {
  275         uint32_t        iq_no = (uint32_t)txpciq.s.q_no;
  276 
  277         if (oct->instr_queue[iq_no]->oct_dev != NULL) {
  278                 lio_dev_dbg(oct, "IQ is in use. Cannot create the IQ: %d again\n",
  279                             iq_no);
  280                 oct->instr_queue[iq_no]->txpciq.txpciq64 = txpciq.txpciq64;
  281                 return (0);
  282         }
  283 
  284         oct->instr_queue[iq_no]->q_index = q_index;
  285         oct->instr_queue[iq_no]->ifidx = ifidx;
  286 
  287         if (lio_init_instr_queue(oct, txpciq, num_descs)) {
  288                 lio_delete_instr_queue(oct, iq_no);
  289                 return (1);
  290         }
  291 
  292         oct->num_iqs++;
  293         if (oct->fn_list.enable_io_queues(oct))
  294                 return (1);
  295 
  296         return (0);
  297 }
  298 
  299 int
  300 lio_wait_for_instr_fetch(struct octeon_device *oct)
  301 {
  302         int     i, retry = 1000, pending, instr_cnt = 0;
  303 
  304         do {
  305                 instr_cnt = 0;
  306 
  307                 for (i = 0; i < LIO_MAX_INSTR_QUEUES(oct); i++) {
  308                         if (!(oct->io_qmask.iq & BIT_ULL(i)))
  309                                 continue;
  310                         pending = atomic_load_acq_int(
  311                                         &oct->instr_queue[i]->instr_pending);
  312                         if (pending)
  313                                 __lio_check_db_timeout(oct, i);
  314                         instr_cnt += pending;
  315                 }
  316 
  317                 if (instr_cnt == 0)
  318                         break;
  319 
  320                 lio_sleep_timeout(1);
  321 
  322         } while (retry-- && instr_cnt);
  323 
  324         return (instr_cnt);
  325 }
  326 
  327 static inline void
  328 lio_ring_doorbell(struct octeon_device *oct, struct lio_instr_queue *iq)
  329 {
  330 
  331         if (atomic_load_acq_int(&oct->status) == LIO_DEV_RUNNING) {
  332                 lio_write_csr32(oct, iq->doorbell_reg, iq->fill_cnt);
  333                 /* make sure doorbell write goes through */
  334                 __compiler_membar();
  335                 iq->fill_cnt = 0;
  336                 iq->last_db_time = ticks;
  337                 return;
  338         }
  339 }
  340 
  341 static inline void
  342 __lio_copy_cmd_into_iq(struct lio_instr_queue *iq, uint8_t *cmd)
  343 {
  344         uint8_t *iqptr, cmdsize;
  345 
  346         cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
  347         iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
  348 
  349         memcpy(iqptr, cmd, cmdsize);
  350 }
  351 
  352 static inline struct lio_iq_post_status
  353 __lio_post_command2(struct lio_instr_queue *iq, uint8_t *cmd)
  354 {
  355         struct lio_iq_post_status       st;
  356 
  357         st.status = LIO_IQ_SEND_OK;
  358 
  359         /*
  360          * This ensures that the read index does not wrap around to the same
  361          * position if queue gets full before Octeon could fetch any instr.
  362          */
  363         if (atomic_load_acq_int(&iq->instr_pending) >=
  364             (int32_t)(iq->max_count - 1)) {
  365                 st.status = LIO_IQ_SEND_FAILED;
  366                 st.index = -1;
  367                 return (st);
  368         }
  369 
  370         if (atomic_load_acq_int(&iq->instr_pending) >=
  371             (int32_t)(iq->max_count - 2))
  372                 st.status = LIO_IQ_SEND_STOP;
  373 
  374         __lio_copy_cmd_into_iq(iq, cmd);
  375 
  376         /* "index" is returned, host_write_index is modified. */
  377         st.index = iq->host_write_index;
  378         iq->host_write_index = lio_incr_index(iq->host_write_index, 1,
  379                                               iq->max_count);
  380         iq->fill_cnt++;
  381 
  382         /*
  383          * Flush the command into memory. We need to be sure the data is in
  384          * memory before indicating that the instruction is pending.
  385          */
  386         wmb();
  387 
  388         atomic_add_int(&iq->instr_pending, 1);
  389 
  390         return (st);
  391 }
  392 
  393 static inline void
  394 __lio_add_to_request_list(struct lio_instr_queue *iq, int idx, void *buf,
  395                           int reqtype)
  396 {
  397 
  398         iq->request_list[idx].buf = buf;
  399         iq->request_list[idx].reqtype = reqtype;
  400 }
  401 
  402 /* Can only run in process context */
  403 int
  404 lio_process_iq_request_list(struct octeon_device *oct,
  405                             struct lio_instr_queue *iq, uint32_t budget)
  406 {
  407         struct lio_soft_command         *sc;
  408         struct octeon_instr_irh         *irh = NULL;
  409         void                            *buf;
  410         uint32_t                        inst_count = 0;
  411         uint32_t                        old = iq->flush_index;
  412         int                             reqtype;
  413 
  414         while (old != iq->octeon_read_index) {
  415                 reqtype = iq->request_list[old].reqtype;
  416                 buf = iq->request_list[old].buf;
  417 
  418                 if (reqtype == LIO_REQTYPE_NONE)
  419                         goto skip_this;
  420 
  421                 switch (reqtype) {
  422                 case LIO_REQTYPE_NORESP_NET:
  423                         lio_free_mbuf(iq, buf);
  424                         break;
  425                 case LIO_REQTYPE_NORESP_NET_SG:
  426                         lio_free_sgmbuf(iq, buf);
  427                         break;
  428                 case LIO_REQTYPE_RESP_NET:
  429                 case LIO_REQTYPE_SOFT_COMMAND:
  430                         sc = buf;
  431                         if (LIO_CN23XX_PF(oct))
  432                                 irh = (struct octeon_instr_irh *)
  433                                         &sc->cmd.cmd3.irh;
  434                         if (irh->rflag) {
  435                                 /*
  436                                  * We're expecting a response from Octeon.
  437                                  * It's up to lio_process_ordered_list() to
  438                                  * process  sc. Add sc to the ordered soft
  439                                  * command response list because we expect
  440                                  * a response from Octeon.
  441                                  */
  442                                 mtx_lock(&oct->response_list
  443                                          [LIO_ORDERED_SC_LIST].lock);
  444                                 atomic_add_int(&oct->response_list
  445                                                [LIO_ORDERED_SC_LIST].
  446                                                pending_req_count, 1);
  447                                 STAILQ_INSERT_TAIL(&oct->response_list
  448                                                    [LIO_ORDERED_SC_LIST].
  449                                                    head, &sc->node, entries);
  450                                 mtx_unlock(&oct->response_list
  451                                            [LIO_ORDERED_SC_LIST].lock);
  452                         } else {
  453                                 if (sc->callback != NULL) {
  454                                         /* This callback must not sleep */
  455                                         sc->callback(oct, LIO_REQUEST_DONE,
  456                                                      sc->callback_arg);
  457                                 }
  458                         }
  459 
  460                         break;
  461                 default:
  462                         lio_dev_err(oct, "%s Unknown reqtype: %d buf: %p at idx %d\n",
  463                                     __func__, reqtype, buf, old);
  464                 }
  465 
  466                 iq->request_list[old].buf = NULL;
  467                 iq->request_list[old].reqtype = 0;
  468 
  469 skip_this:
  470                 inst_count++;
  471                 old = lio_incr_index(old, 1, iq->max_count);
  472 
  473                 if ((budget) && (inst_count >= budget))
  474                         break;
  475         }
  476 
  477         iq->flush_index = old;
  478 
  479         return (inst_count);
  480 }
  481 
  482 /* Can only be called from process context */
  483 int
  484 lio_flush_iq(struct octeon_device *oct, struct lio_instr_queue *iq,
  485              uint32_t budget)
  486 {
  487         uint32_t        inst_processed = 0;
  488         uint32_t        tot_inst_processed = 0;
  489         int             tx_done = 1;
  490 
  491         if (!mtx_trylock(&iq->iq_flush_running_lock))
  492                 return (tx_done);
  493 
  494         mtx_lock(&iq->lock);
  495 
  496         iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
  497 
  498         do {
  499                 /* Process any outstanding IQ packets. */
  500                 if (iq->flush_index == iq->octeon_read_index)
  501                         break;
  502 
  503                 if (budget)
  504                         inst_processed =
  505                                 lio_process_iq_request_list(oct, iq,
  506                                                             budget -
  507                                                             tot_inst_processed);
  508                 else
  509                         inst_processed =
  510                                 lio_process_iq_request_list(oct, iq, 0);
  511 
  512                 if (inst_processed) {
  513                         atomic_subtract_int(&iq->instr_pending, inst_processed);
  514                         iq->stats.instr_processed += inst_processed;
  515                 }
  516                 tot_inst_processed += inst_processed;
  517                 inst_processed = 0;
  518 
  519         } while (tot_inst_processed < budget);
  520 
  521         if (budget && (tot_inst_processed >= budget))
  522                 tx_done = 0;
  523 
  524         iq->last_db_time = ticks;
  525 
  526         mtx_unlock(&iq->lock);
  527 
  528         mtx_unlock(&iq->iq_flush_running_lock);
  529 
  530         return (tx_done);
  531 }
  532 
  533 /*
  534  * Process instruction queue after timeout.
  535  * This routine gets called from a taskqueue or when removing the module.
  536  */
  537 static void
  538 __lio_check_db_timeout(struct octeon_device *oct, uint64_t iq_no)
  539 {
  540         struct lio_instr_queue  *iq;
  541         uint64_t                next_time;
  542 
  543         if (oct == NULL)
  544                 return;
  545 
  546         iq = oct->instr_queue[iq_no];
  547         if (iq == NULL)
  548                 return;
  549 
  550         if (atomic_load_acq_int(&iq->instr_pending)) {
  551                 /* If ticks - last_db_time < db_timeout do nothing  */
  552                 next_time = iq->last_db_time + lio_ms_to_ticks(iq->db_timeout);
  553                 if (!lio_check_timeout(ticks, next_time))
  554                         return;
  555 
  556                 iq->last_db_time = ticks;
  557 
  558                 /* Flush the instruction queue */
  559                 lio_flush_iq(oct, iq, 0);
  560 
  561                 lio_enable_irq(NULL, iq);
  562         }
  563 
  564         if (oct->props.ifp != NULL && iq->br != NULL) {
  565                 if (mtx_trylock(&iq->enq_lock)) {
  566                         if (!drbr_empty(oct->props.ifp, iq->br))
  567                                 lio_mq_start_locked(oct->props.ifp, iq);
  568 
  569                         mtx_unlock(&iq->enq_lock);
  570                 }
  571         }
  572 }
  573 
  574 /*
  575  * Called by the Poll thread at regular intervals to check the instruction
  576  * queue for commands to be posted and for commands that were fetched by Octeon.
  577  */
  578 static void
  579 lio_check_db_timeout(void *arg, int pending)
  580 {
  581         struct lio_tq           *db_tq = (struct lio_tq *)arg;
  582         struct octeon_device    *oct = db_tq->ctxptr;
  583         uint64_t                iq_no = db_tq->ctxul;
  584         uint32_t                delay = 10;
  585 
  586         __lio_check_db_timeout(oct, iq_no);
  587         taskqueue_enqueue_timeout(db_tq->tq, &db_tq->work,
  588                                   lio_ms_to_ticks(delay));
  589 }
  590 
  591 int
  592 lio_send_command(struct octeon_device *oct, uint32_t iq_no,
  593                  uint32_t force_db, void *cmd, void *buf,
  594                  uint32_t datasize, uint32_t reqtype)
  595 {
  596         struct lio_iq_post_status       st;
  597         struct lio_instr_queue          *iq = oct->instr_queue[iq_no];
  598 
  599         /*
  600          * Get the lock and prevent other tasks and tx interrupt handler
  601          * from running.
  602          */
  603         mtx_lock(&iq->post_lock);
  604 
  605         st = __lio_post_command2(iq, cmd);
  606 
  607         if (st.status != LIO_IQ_SEND_FAILED) {
  608                 __lio_add_to_request_list(iq, st.index, buf, reqtype);
  609                 LIO_INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
  610                 LIO_INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
  611 
  612                 if (force_db || (st.status == LIO_IQ_SEND_STOP))
  613                         lio_ring_doorbell(oct, iq);
  614         } else {
  615                 LIO_INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
  616         }
  617 
  618         mtx_unlock(&iq->post_lock);
  619 
  620         /*
  621          * This is only done here to expedite packets being flushed for
  622          * cases where there are no IQ completion interrupts.
  623          */
  624 
  625         return (st.status);
  626 }
  627 
  628 void
  629 lio_prepare_soft_command(struct octeon_device *oct, struct lio_soft_command *sc,
  630                          uint8_t opcode, uint8_t subcode, uint32_t irh_ossp,
  631                          uint64_t ossp0, uint64_t ossp1)
  632 {
  633         struct octeon_instr_ih3         *ih3;
  634         struct octeon_instr_pki_ih3     *pki_ih3;
  635         struct octeon_instr_irh         *irh;
  636         struct octeon_instr_rdp         *rdp;
  637 
  638         KASSERT(opcode <= 15, ("%s, %d, opcode > 15", __func__, __LINE__));
  639         KASSERT(subcode <= 127, ("%s, %d, opcode > 127", __func__, __LINE__));
  640 
  641         if (LIO_CN23XX_PF(oct)) {
  642                 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
  643 
  644                 ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
  645 
  646                 pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
  647 
  648                 pki_ih3->w = 1;
  649                 pki_ih3->raw = 1;
  650                 pki_ih3->utag = 1;
  651                 pki_ih3->uqpg = oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
  652                 pki_ih3->utt = 1;
  653                 pki_ih3->tag = LIO_CONTROL;
  654                 pki_ih3->tagtype = LIO_ATOMIC_TAG;
  655                 pki_ih3->qpg = oct->instr_queue[sc->iq_no]->txpciq.s.qpg;
  656                 pki_ih3->pm = 0x7;
  657                 pki_ih3->sl = 8;
  658 
  659                 if (sc->datasize)
  660                         ih3->dlengsz = sc->datasize;
  661 
  662                 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
  663                 irh->opcode = opcode;
  664                 irh->subcode = subcode;
  665 
  666                 /* opcode/subcode specific parameters (ossp) */
  667                 irh->ossp = irh_ossp;
  668                 sc->cmd.cmd3.ossp[0] = ossp0;
  669                 sc->cmd.cmd3.ossp[1] = ossp1;
  670 
  671                 if (sc->rdatasize) {
  672                         rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
  673                         rdp->pcie_port = oct->pcie_port;
  674                         rdp->rlen = sc->rdatasize;
  675 
  676                         irh->rflag = 1;
  677                         /* PKI IH3 */
  678                         /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
  679                         ih3->fsz = LIO_SOFTCMDRESP_IH3;
  680                 } else {
  681                         irh->rflag = 0;
  682                         /* PKI IH3 */
  683                         /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
  684                         ih3->fsz = LIO_PCICMD_O3;
  685                 }
  686         }
  687 }
  688 
  689 int
  690 lio_send_soft_command(struct octeon_device *oct, struct lio_soft_command *sc)
  691 {
  692         struct octeon_instr_ih3 *ih3;
  693         struct octeon_instr_irh *irh;
  694         uint32_t                len = 0;
  695 
  696         if (LIO_CN23XX_PF(oct)) {
  697                 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
  698                 if (ih3->dlengsz) {
  699                         KASSERT(sc->dmadptr, ("%s, %d, sc->dmadptr is NULL",
  700                                               __func__, __LINE__));
  701                         sc->cmd.cmd3.dptr = sc->dmadptr;
  702                 }
  703 
  704                 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
  705                 if (irh->rflag) {
  706                         KASSERT(sc->dmarptr, ("%s, %d, sc->dmarptr is NULL",
  707                                               __func__, __LINE__));
  708                         KASSERT(sc->status_word, ("%s, %d, sc->status_word is NULL",
  709                                                   __func__, __LINE__));
  710                         *sc->status_word = COMPLETION_WORD_INIT;
  711                         sc->cmd.cmd3.rptr = sc->dmarptr;
  712                 }
  713                 len = (uint32_t)ih3->dlengsz;
  714         }
  715         if (sc->wait_time)
  716                 sc->timeout = ticks + lio_ms_to_ticks(sc->wait_time);
  717 
  718         return (lio_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
  719                                  len, LIO_REQTYPE_SOFT_COMMAND));
  720 }
  721 
  722 int
  723 lio_setup_sc_buffer_pool(struct octeon_device *oct)
  724 {
  725         struct lio_soft_command *sc;
  726         uint64_t                dma_addr;
  727         int                     i;
  728 
  729         STAILQ_INIT(&oct->sc_buf_pool.head);
  730         mtx_init(&oct->sc_buf_pool.lock, "sc_pool_lock", NULL, MTX_DEF);
  731         atomic_store_rel_int(&oct->sc_buf_pool.alloc_buf_count, 0);
  732 
  733         for (i = 0; i < LIO_MAX_SOFT_COMMAND_BUFFERS; i++) {
  734                 sc = (struct lio_soft_command *)
  735                         lio_dma_alloc(LIO_SOFT_COMMAND_BUFFER_SIZE, (vm_paddr_t *)&dma_addr);
  736                 if (sc == NULL) {
  737                         lio_free_sc_buffer_pool(oct);
  738                         return (1);
  739                 }
  740 
  741                 sc->dma_addr = dma_addr;
  742                 sc->size = LIO_SOFT_COMMAND_BUFFER_SIZE;
  743 
  744                 STAILQ_INSERT_TAIL(&oct->sc_buf_pool.head, &sc->node, entries);
  745         }
  746 
  747         return (0);
  748 }
  749 
  750 int
  751 lio_free_sc_buffer_pool(struct octeon_device *oct)
  752 {
  753         struct lio_stailq_node  *tmp, *tmp2;
  754         struct lio_soft_command *sc;
  755 
  756         mtx_lock(&oct->sc_buf_pool.lock);
  757 
  758         STAILQ_FOREACH_SAFE(tmp, &oct->sc_buf_pool.head, entries, tmp2) {
  759                 sc = LIO_STAILQ_FIRST_ENTRY(&oct->sc_buf_pool.head,
  760                                             struct lio_soft_command, node);
  761 
  762                 STAILQ_REMOVE_HEAD(&oct->sc_buf_pool.head, entries);
  763 
  764                 lio_dma_free(sc->size, sc);
  765         }
  766 
  767         STAILQ_INIT(&oct->sc_buf_pool.head);
  768 
  769         mtx_unlock(&oct->sc_buf_pool.lock);
  770 
  771         return (0);
  772 }
  773 
  774 struct lio_soft_command *
  775 lio_alloc_soft_command(struct octeon_device *oct, uint32_t datasize,
  776                        uint32_t rdatasize, uint32_t ctxsize)
  777 {
  778         struct lio_soft_command *sc = NULL;
  779         struct lio_stailq_node  *tmp;
  780         uint64_t                dma_addr;
  781         uint32_t                size;
  782         uint32_t                offset = sizeof(struct lio_soft_command);
  783 
  784         KASSERT((offset + datasize + rdatasize + ctxsize) <=
  785                 LIO_SOFT_COMMAND_BUFFER_SIZE,
  786                 ("%s, %d, offset + datasize + rdatasize + ctxsize > LIO_SOFT_COMMAND_BUFFER_SIZE",
  787                  __func__, __LINE__));
  788 
  789         mtx_lock(&oct->sc_buf_pool.lock);
  790 
  791         if (STAILQ_EMPTY(&oct->sc_buf_pool.head)) {
  792                 mtx_unlock(&oct->sc_buf_pool.lock);
  793                 return (NULL);
  794         }
  795         tmp = STAILQ_LAST(&oct->sc_buf_pool.head, lio_stailq_node, entries);
  796 
  797         STAILQ_REMOVE(&oct->sc_buf_pool.head, tmp, lio_stailq_node, entries);
  798 
  799         atomic_add_int(&oct->sc_buf_pool.alloc_buf_count, 1);
  800 
  801         mtx_unlock(&oct->sc_buf_pool.lock);
  802 
  803         sc = (struct lio_soft_command *)tmp;
  804 
  805         dma_addr = sc->dma_addr;
  806         size = sc->size;
  807 
  808         bzero(sc, sc->size);
  809 
  810         sc->dma_addr = dma_addr;
  811         sc->size = size;
  812 
  813         if (ctxsize) {
  814                 sc->ctxptr = (uint8_t *)sc + offset;
  815                 sc->ctxsize = ctxsize;
  816         }
  817 
  818         /* Start data at 128 byte boundary */
  819         offset = (offset + ctxsize + 127) & 0xffffff80;
  820 
  821         if (datasize) {
  822                 sc->virtdptr = (uint8_t *)sc + offset;
  823                 sc->dmadptr = dma_addr + offset;
  824                 sc->datasize = datasize;
  825         }
  826         /* Start rdata at 128 byte boundary */
  827         offset = (offset + datasize + 127) & 0xffffff80;
  828 
  829         if (rdatasize) {
  830                 KASSERT(rdatasize >= 16, ("%s, %d, rdatasize < 16", __func__,
  831                                           __LINE__));
  832                 sc->virtrptr = (uint8_t *)sc + offset;
  833                 sc->dmarptr = dma_addr + offset;
  834                 sc->rdatasize = rdatasize;
  835                 sc->status_word = (uint64_t *)((uint8_t *)(sc->virtrptr) +
  836                                                rdatasize - 8);
  837         }
  838         return (sc);
  839 }
  840 
  841 void
  842 lio_free_soft_command(struct octeon_device *oct,
  843                       struct lio_soft_command *sc)
  844 {
  845 
  846         mtx_lock(&oct->sc_buf_pool.lock);
  847 
  848         STAILQ_INSERT_TAIL(&oct->sc_buf_pool.head, &sc->node, entries);
  849 
  850         atomic_subtract_int(&oct->sc_buf_pool.alloc_buf_count, 1);
  851 
  852         mtx_unlock(&oct->sc_buf_pool.lock);
  853 }

Cache object: 3a45e8909fe5b8b6f986aedc75014af2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.