The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/midivar.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: midivar.h,v 1.20 2014/12/22 07:02:22 mrg Exp $ */
    2 
    3 /*
    4  * Copyright (c) 1998, 2008 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to The NetBSD Foundation
    8  * by Lennart Augustsson (augustss@NetBSD.org) and (midi FST refactoring and
    9  * Active Sense) Chapman Flack (chap@NetBSD.org).
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30  * POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 #ifndef _SYS_DEV_MIDIVAR_H_
   34 #define _SYS_DEV_MIDIVAR_H_
   35 
   36 #define MIDI_BUFSIZE 1024
   37 
   38 #include <sys/callout.h>
   39 #include <sys/cdefs.h>
   40 #include <sys/device.h>
   41 #include <sys/condvar.h>
   42 #include <sys/mutex.h>
   43 
   44 /*
   45  * In both xmt and rcv direction, the midi_fst runs at the time data are
   46  * buffered (midi_writebytes for xmt, midi_in for rcv) so what's in the
   47  * buffer is always in canonical form (or compressed, on xmt, if the hw
   48  * wants it that way). To preserve message boundaries for the buffer
   49  * consumer, but allow transfers larger than one message, the buffer is
   50  * split into a buf fork and an idx fork, where each byte of idx encodes
   51  * the type and length of a message. Because messages are variable length,
   52  * it is a guess how to set the relative sizes of idx and buf, or how many
   53  * messages can be buffered before one or the other fills.
   54  *
   55  * The producer adds only complete messages to a buffer (except for SysEx
   56  * messages, which have unpredictable length). A consumer serving byte-at-a-
   57  * time hardware may partially consume a message, in which case it updates
   58  * the length count at *idx_consumerp to reflect the remaining length of the
   59  * message, only incrementing idx_consumerp when the message has been entirely
   60  * consumed.
   61  *
   62  * The buffers are structured in the simple 1 reader 1 writer bounded buffer
   63  * form, considered full when 1 unused byte remains. This should allow their
   64  * use with minimal locking provided single pointer reads and writes can be
   65  * assured atomic ... but then I chickened out on assuming that assurance, and
   66  * added the extra locks to the code.
   67  *
   68  * Macros for manipulating the buffers:
   69  *
   70  * MIDI_BUF_DECLARE(frk) where frk is either buf or idx:
   71  *   declares the local variables frk_cur, frk_lim, frk_org, and frk_end.
   72  *
   73  * MIDI_BUF_CONSUMER_INIT(mb,frk)
   74  * MIDI_BUF_PRODUCER_INIT(mb,frk)
   75  *   initializes frk_org and frk_end to the base and end (that is, address just
   76  *   past the last valid byte) of the buffer fork frk, frk_cur to the
   77  *   consumer's or producer's current position, respectively, and frk_lim to
   78  *   the current limit (for either consumer or producer, immediately following
   79  *   this macro, frk_lim-frk_cur gives the number of bytes to play with). That
   80  *   means frk_lim may actually point past the buffer; loops on the condition
   81  *   (frk_cur < frk_lim) must contain WRAP(frk) if proceeding byte-by-byte, or
   82  *   must explicitly handle wrapping around frk_end if doing anything clever.
   83  *   These are expression-shaped macros that have the value frk_lim. When used
   84  *   without locking--provided pointer reads and writes can be assumed atomic--
   85  *   these macros give a conservative estimate of what is available to consume
   86  *   or produce.
   87  *
   88  * MIDI_BUF_WRAP(frk)
   89  *   tests whether frk_cur == frk_end and, if so, wraps both frk_cur and
   90  *   frk_lim around the beginning of the buffer. Because the test is ==, it
   91  *   must be applied at each byte in a loop; if the loop is proceeding in
   92  *   bigger steps, the possibility of wrap must be coded for. This expression-
   93  *   shaped macro has the value of frk_cur after wrapping.
   94  *
   95  * MIDI_BUF_CONSUMER_REFRESH(mb,frk)
   96  * MIDI_BUF_PRODUCER_REFRESH(mb,frk)
   97  *   refresh the local value frk_lim for a new snapshot of bytes available; an
   98  *   expression-shaped macro with the new value of frk_lim. Usually used after
   99  *   using up the first conservative estimate and obtaining a lock to get a
  100  *   final value. Used unlocked, just gives a more recent conservative estimate.
  101  *
  102  * MIDI_BUF_CONSUMER_WBACK(mb,frk)
  103  * MIDI_BUF_PRODUCER_WBACK(mb,frk)
  104  *   write back the local copy of frk_cur to the buffer, after a barrier to
  105  *   ensure prior writes go first. Under the right atomicity conditions a
  106  *   producer could get away with using these unlocked, as long as the order
  107  *   is buf followed by idx. A consumer should update both in a critical
  108  *   section.
  109  */
  110 struct midi_buffer {
  111         u_char * __volatile idx_producerp;
  112         u_char * __volatile idx_consumerp;
  113         u_char * __volatile buf_producerp;
  114         u_char * __volatile buf_consumerp;
  115         u_char idx[MIDI_BUFSIZE/3];
  116         u_char buf[MIDI_BUFSIZE-MIDI_BUFSIZE/3];
  117 };
  118 #define MIDI_BUF_DECLARE(frk) \
  119 u_char *__CONCAT(frk,_cur); \
  120 u_char *__CONCAT(frk,_lim); \
  121 u_char *__CONCAT(frk,_org); \
  122 u_char *__CONCAT(frk,_end)
  123 
  124 #define MIDI_BUF_CONSUMER_REFRESH(mb,frk) \
  125 ((__CONCAT(frk,_lim)=(mb)->__CONCAT(frk,_producerp)), \
  126 __CONCAT(frk,_lim) < __CONCAT(frk,_cur) ? \
  127 (__CONCAT(frk,_lim) += sizeof (mb)->frk) : __CONCAT(frk,_lim))
  128 
  129 #define MIDI_BUF_PRODUCER_REFRESH(mb,frk) \
  130 ((__CONCAT(frk,_lim)=(mb)->__CONCAT(frk,_consumerp)-1), \
  131 __CONCAT(frk,_lim) < __CONCAT(frk,_cur) ? \
  132 (__CONCAT(frk,_lim) += sizeof (mb)->frk) : __CONCAT(frk,_lim))
  133 
  134 #define MIDI_BUF_EXTENT_INIT(mb,frk) \
  135 ((__CONCAT(frk,_org)=(mb)->frk), \
  136 (__CONCAT(frk,_end)=__CONCAT(frk,_org)+sizeof (mb)->frk))
  137 
  138 #define MIDI_BUF_CONSUMER_INIT(mb,frk) \
  139 (MIDI_BUF_EXTENT_INIT((mb),frk), \
  140 (__CONCAT(frk,_cur)=(mb)->__CONCAT(frk,_consumerp)), \
  141 MIDI_BUF_CONSUMER_REFRESH((mb),frk))
  142 
  143 #define MIDI_BUF_PRODUCER_INIT(mb,frk) \
  144 (MIDI_BUF_EXTENT_INIT((mb),frk), \
  145 (__CONCAT(frk,_cur)=(mb)->__CONCAT(frk,_producerp)), \
  146 MIDI_BUF_PRODUCER_REFRESH((mb),frk))
  147 
  148 #define MIDI_BUF_WRAP(frk) \
  149 (__predict_false(__CONCAT(frk,_cur)==__CONCAT(frk,_end)) ? (\
  150 (__CONCAT(frk,_lim)-=__CONCAT(frk,_end)-__CONCAT(frk,_org)), \
  151 (__CONCAT(frk,_cur)=__CONCAT(frk,_org))) : __CONCAT(frk,_cur))
  152 
  153 #define MIDI_BUF_CONSUMER_WBACK(mb,frk) do { \
  154 __insn_barrier(); \
  155 (mb)->__CONCAT(frk,_consumerp)=__CONCAT(frk,_cur); \
  156 } while (/*CONSTCOND*/0)
  157 
  158 #define MIDI_BUF_PRODUCER_WBACK(mb,frk) do { \
  159 __insn_barrier(); \
  160 (mb)->__CONCAT(frk,_producerp)=__CONCAT(frk,_cur); \
  161 } while (/*CONSTCOND*/0)
  162 
  163 
  164 #define MIDI_MAX_WRITE 32       /* max bytes written with busy wait */
  165 #define MIDI_WAIT 10000         /* microseconds to wait after busy wait */
  166 
  167 struct midi_state {
  168         struct  evcnt bytesDiscarded;
  169         struct  evcnt incompleteMessages;
  170         struct {
  171                 uint32_t bytesDiscarded;
  172                 uint32_t incompleteMessages;
  173         }       atOpen,
  174                 atQuery;
  175         int     state;
  176         u_char *pos;
  177         u_char *end;
  178         u_char  msg[3];
  179 };
  180 
  181 struct midi_softc {
  182         device_t dev;           /* Hardware device struct */
  183         void    *hw_hdl;        /* Hardware driver handle */
  184         const struct    midi_hw_if *hw_if; /* Hardware interface */
  185         const struct    midi_hw_if_ext *hw_if_ext; /* see midi_if.h */
  186         int     isopen;         /* Open indicator */
  187         int     flags;          /* Open flags */
  188         int     dying;
  189         struct  midi_buffer outbuf;
  190         struct  midi_buffer inbuf;
  191         int     props;
  192         int     refcnt;
  193         kcondvar_t detach_cv;
  194         kcondvar_t rchan;
  195         kcondvar_t wchan;
  196         kmutex_t *lock;
  197         int     pbus;
  198         int     rcv_expect_asense;
  199         int     rcv_quiescent;
  200         int     rcv_eof;
  201         struct  selinfo wsel;   /* write selector */
  202         struct  selinfo rsel;   /* read selector */
  203         pid_t   async;  /* process who wants audio SIGIO */
  204         void    *sih;
  205 
  206         struct callout xmt_asense_co;
  207         struct callout rcv_asense_co;
  208 
  209         /* MIDI input state machine; states are *s of 4 to allow | CAT bits */
  210         struct midi_state rcv;
  211         struct midi_state xmt;
  212 #define MIDI_IN_START   0
  213 #define MIDI_IN_RUN0_1  4
  214 #define MIDI_IN_RUN1_1  8
  215 #define MIDI_IN_RUN0_2 12
  216 #define MIDI_IN_RUN1_2 16
  217 #define MIDI_IN_RUN2_2 20
  218 #define MIDI_IN_COM0_1 24
  219 #define MIDI_IN_COM0_2 28
  220 #define MIDI_IN_COM1_2 32
  221 #define MIDI_IN_SYX1_3 36
  222 #define MIDI_IN_SYX2_3 40
  223 #define MIDI_IN_SYX0_3 44
  224 #define MIDI_IN_RNX0_1 48
  225 #define MIDI_IN_RNX0_2 52
  226 #define MIDI_IN_RNX1_2 56
  227 #define MIDI_IN_RNY1_2 60 /* not needed except for accurate error counts */
  228 /*
  229  * Four more states are needed to model the equivalence of NoteOff vel. 64
  230  * and NoteOn vel. 0 for canonicalization or compression. In each of these 4
  231  * states, we know the last message input and output was a NoteOn or a NoteOff.
  232  */
  233 #define MIDI_IN_RXX2_2 64 /* last output == msg[0] != last input */
  234 #define MIDI_IN_RXX0_2 68 /* last output != msg[0] == this input */
  235 #define MIDI_IN_RXX1_2 72 /* " */
  236 #define MIDI_IN_RXY1_2 76 /* variant of RXX1_2 needed for error count only */
  237 
  238 #define MIDI_CAT_DATA 0
  239 #define MIDI_CAT_STATUS1 1
  240 #define MIDI_CAT_STATUS2 2
  241 #define MIDI_CAT_COMMON 3
  242 
  243         /* Synthesizer emulation stuff */
  244         int     seqopen;
  245         struct  midi_dev *seq_md; /* structure that links us with the seq. */
  246 };
  247 
  248 #define MIDIUNIT(d) ((d) & 0xff)
  249 
  250 #endif /* _SYS_DEV_MIDIVAR_H_ */

Cache object: 837ccce268ec3bf1aabbdfb40e2edee4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.