FreeBSD/Linux Kernel Cross Reference
sys/dev/mpr/mpr.c
1 /*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * Copyright (c) 2011-2015 LSI Corp.
4 * Copyright (c) 2013-2016 Avago Technologies
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
29 *
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 /* Communications core for Avago Technologies (LSI) MPT3 */
36
37 /* TODO Move headers to mprvar */
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/selinfo.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/module.h>
46 #include <sys/bus.h>
47 #include <sys/conf.h>
48 #include <sys/bio.h>
49 #include <sys/malloc.h>
50 #include <sys/uio.h>
51 #include <sys/sysctl.h>
52 #include <sys/queue.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/endian.h>
56 #include <sys/eventhandler.h>
57
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 #include <sys/proc.h>
62
63 #include <dev/pci/pcivar.h>
64
65 #include <cam/cam.h>
66 #include <cam/cam_ccb.h>
67 #include <cam/scsi/scsi_all.h>
68
69 #include <dev/mpr/mpi/mpi2_type.h>
70 #include <dev/mpr/mpi/mpi2.h>
71 #include <dev/mpr/mpi/mpi2_ioc.h>
72 #include <dev/mpr/mpi/mpi2_sas.h>
73 #include <dev/mpr/mpi/mpi2_pci.h>
74 #include <dev/mpr/mpi/mpi2_cnfg.h>
75 #include <dev/mpr/mpi/mpi2_init.h>
76 #include <dev/mpr/mpi/mpi2_tool.h>
77 #include <dev/mpr/mpr_ioctl.h>
78 #include <dev/mpr/mprvar.h>
79 #include <dev/mpr/mpr_table.h>
80 #include <dev/mpr/mpr_sas.h>
81
82 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
83 static int mpr_init_queues(struct mpr_softc *sc);
84 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
85 static int mpr_transition_operational(struct mpr_softc *sc);
86 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
87 static void mpr_iocfacts_free(struct mpr_softc *sc);
88 static void mpr_startup(void *arg);
89 static int mpr_send_iocinit(struct mpr_softc *sc);
90 static int mpr_alloc_queues(struct mpr_softc *sc);
91 static int mpr_alloc_replies(struct mpr_softc *sc);
92 static int mpr_alloc_requests(struct mpr_softc *sc);
93 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
94 static int mpr_attach_log(struct mpr_softc *sc);
95 static __inline void mpr_complete_command(struct mpr_softc *sc,
96 struct mpr_command *cm);
97 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
98 MPI2_EVENT_NOTIFICATION_REPLY *reply);
99 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
100 static void mpr_periodic(void *);
101 static int mpr_reregister_events(struct mpr_softc *sc);
102 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
103 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
104 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
105 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters");
106
107 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
108
109 /*
110 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
111 * any state and back to its initialization state machine.
112 */
113 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
114
115 /*
116 * Added this union to smoothly convert le64toh cm->cm_desc.Words.
117 * Compiler only supports uint64_t to be passed as an argument.
118 * Otherwise it will through this error:
119 * "aggregate value used where an integer was expected"
120 */
121 typedef union _reply_descriptor {
122 u64 word;
123 struct {
124 u32 low;
125 u32 high;
126 } u;
127 } reply_descriptor, request_descriptor;
128
129 /* Rate limit chain-fail messages to 1 per minute */
130 static struct timeval mpr_chainfail_interval = { 60, 0 };
131
132 /*
133 * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
134 * If this function is called from process context, it can sleep
135 * and there is no harm to sleep, in case if this fuction is called
136 * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
137 * based on sleep flags driver will call either msleep, pause or DELAY.
138 * msleep and pause are of same variant, but pause is used when mpr_mtx
139 * is not hold by driver.
140 */
141 static int
142 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
143 {
144 uint32_t reg;
145 int i, error, tries = 0;
146 uint8_t first_wait_done = FALSE;
147
148 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
149
150 /* Clear any pending interrupts */
151 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
152
153 /*
154 * Force NO_SLEEP for threads prohibited to sleep
155 * e.a Thread from interrupt handler are prohibited to sleep.
156 */
157 #if __FreeBSD_version >= 1000029
158 if (curthread->td_no_sleeping)
159 #else //__FreeBSD_version < 1000029
160 if (curthread->td_pflags & TDP_NOSLEEPING)
161 #endif //__FreeBSD_version >= 1000029
162 sleep_flag = NO_SLEEP;
163
164 /* Push the magic sequence */
165 error = ETIMEDOUT;
166 while (tries++ < 20) {
167 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
168 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
169 mpt2_reset_magic[i]);
170
171 /* wait 100 msec */
172 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
173 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
174 "mprdiag", hz/10);
175 else if (sleep_flag == CAN_SLEEP)
176 pause("mprdiag", hz/10);
177 else
178 DELAY(100 * 1000);
179
180 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
181 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
182 error = 0;
183 break;
184 }
185 }
186 if (error)
187 return (error);
188
189 /* Send the actual reset. XXX need to refresh the reg? */
190 mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
191 reg | MPI2_DIAG_RESET_ADAPTER);
192
193 /* Wait up to 300 seconds in 50ms intervals */
194 error = ETIMEDOUT;
195 for (i = 0; i < 6000; i++) {
196 /*
197 * Wait 50 msec. If this is the first time through, wait 256
198 * msec to satisfy Diag Reset timing requirements.
199 */
200 if (first_wait_done) {
201 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
202 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
203 "mprdiag", hz/20);
204 else if (sleep_flag == CAN_SLEEP)
205 pause("mprdiag", hz/20);
206 else
207 DELAY(50 * 1000);
208 } else {
209 DELAY(256 * 1000);
210 first_wait_done = TRUE;
211 }
212 /*
213 * Check for the RESET_ADAPTER bit to be cleared first, then
214 * wait for the RESET state to be cleared, which takes a little
215 * longer.
216 */
217 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
218 if (reg & MPI2_DIAG_RESET_ADAPTER) {
219 continue;
220 }
221 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
222 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
223 error = 0;
224 break;
225 }
226 }
227 if (error)
228 return (error);
229
230 mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
231
232 return (0);
233 }
234
235 static int
236 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
237 {
238
239 MPR_FUNCTRACE(sc);
240
241 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
242 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
243 MPI2_DOORBELL_FUNCTION_SHIFT);
244
245 if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
246 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed : <%s>\n",
247 __func__);
248 return (ETIMEDOUT);
249 }
250
251 return (0);
252 }
253
254 static int
255 mpr_transition_ready(struct mpr_softc *sc)
256 {
257 uint32_t reg, state;
258 int error, tries = 0;
259 int sleep_flags;
260
261 MPR_FUNCTRACE(sc);
262 /* If we are in attach call, do not sleep */
263 sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
264 ? CAN_SLEEP : NO_SLEEP;
265
266 error = 0;
267 while (tries++ < 1200) {
268 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
269 mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
270
271 /*
272 * Ensure the IOC is ready to talk. If it's not, try
273 * resetting it.
274 */
275 if (reg & MPI2_DOORBELL_USED) {
276 mpr_diag_reset(sc, sleep_flags);
277 DELAY(50000);
278 continue;
279 }
280
281 /* Is the adapter owned by another peer? */
282 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
283 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
284 device_printf(sc->mpr_dev, "IOC is under the control "
285 "of another peer host, aborting initialization.\n");
286 return (ENXIO);
287 }
288
289 state = reg & MPI2_IOC_STATE_MASK;
290 if (state == MPI2_IOC_STATE_READY) {
291 /* Ready to go! */
292 error = 0;
293 break;
294 } else if (state == MPI2_IOC_STATE_FAULT) {
295 mpr_dprint(sc, MPR_FAULT, "IOC in fault state 0x%x\n",
296 state & MPI2_DOORBELL_FAULT_CODE_MASK);
297 mpr_diag_reset(sc, sleep_flags);
298 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
299 /* Need to take ownership */
300 mpr_message_unit_reset(sc, sleep_flags);
301 } else if (state == MPI2_IOC_STATE_RESET) {
302 /* Wait a bit, IOC might be in transition */
303 mpr_dprint(sc, MPR_FAULT,
304 "IOC in unexpected reset state\n");
305 } else {
306 mpr_dprint(sc, MPR_FAULT,
307 "IOC in unknown state 0x%x\n", state);
308 error = EINVAL;
309 break;
310 }
311
312 /* Wait 50ms for things to settle down. */
313 DELAY(50000);
314 }
315
316 if (error)
317 device_printf(sc->mpr_dev, "Cannot transition IOC to ready\n");
318 return (error);
319 }
320
321 static int
322 mpr_transition_operational(struct mpr_softc *sc)
323 {
324 uint32_t reg, state;
325 int error;
326
327 MPR_FUNCTRACE(sc);
328
329 error = 0;
330 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
331 mpr_dprint(sc, MPR_INIT, "Doorbell= 0x%x\n", reg);
332
333 state = reg & MPI2_IOC_STATE_MASK;
334 if (state != MPI2_IOC_STATE_READY) {
335 if ((error = mpr_transition_ready(sc)) != 0) {
336 mpr_dprint(sc, MPR_FAULT,
337 "%s failed to transition ready\n", __func__);
338 return (error);
339 }
340 }
341
342 error = mpr_send_iocinit(sc);
343 return (error);
344 }
345
346 /*
347 * This is called during attach and when re-initializing due to a Diag Reset.
348 * IOC Facts is used to allocate many of the structures needed by the driver.
349 * If called from attach, de-allocation is not required because the driver has
350 * not allocated any structures yet, but if called from a Diag Reset, previously
351 * allocated structures based on IOC Facts will need to be freed and re-
352 * allocated bases on the latest IOC Facts.
353 */
354 static int
355 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
356 {
357 int error;
358 Mpi2IOCFactsReply_t saved_facts;
359 uint8_t saved_mode, reallocating;
360
361 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
362
363 /* Save old IOC Facts and then only reallocate if Facts have changed */
364 if (!attaching) {
365 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
366 }
367
368 /*
369 * Get IOC Facts. In all cases throughout this function, panic if doing
370 * a re-initialization and only return the error if attaching so the OS
371 * can handle it.
372 */
373 if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
374 if (attaching) {
375 mpr_dprint(sc, MPR_FAULT, "%s failed to get IOC Facts "
376 "with error %d\n", __func__, error);
377 return (error);
378 } else {
379 panic("%s failed to get IOC Facts with error %d\n",
380 __func__, error);
381 }
382 }
383
384 MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
385
386 snprintf(sc->fw_version, sizeof(sc->fw_version),
387 "%02d.%02d.%02d.%02d",
388 sc->facts->FWVersion.Struct.Major,
389 sc->facts->FWVersion.Struct.Minor,
390 sc->facts->FWVersion.Struct.Unit,
391 sc->facts->FWVersion.Struct.Dev);
392
393 mpr_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
394 MPR_DRIVER_VERSION);
395 mpr_printf(sc, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
396 "\2" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
397 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
398 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
399 "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
400
401 /*
402 * If the chip doesn't support event replay then a hard reset will be
403 * required to trigger a full discovery. Do the reset here then
404 * retransition to Ready. A hard reset might have already been done,
405 * but it doesn't hurt to do it again. Only do this if attaching, not
406 * for a Diag Reset.
407 */
408 if (attaching) {
409 if ((sc->facts->IOCCapabilities &
410 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
411 mpr_diag_reset(sc, NO_SLEEP);
412 if ((error = mpr_transition_ready(sc)) != 0) {
413 mpr_dprint(sc, MPR_FAULT, "%s failed to "
414 "transition to ready with error %d\n",
415 __func__, error);
416 return (error);
417 }
418 }
419 }
420
421 /*
422 * Set flag if IR Firmware is loaded. If the RAID Capability has
423 * changed from the previous IOC Facts, log a warning, but only if
424 * checking this after a Diag Reset and not during attach.
425 */
426 saved_mode = sc->ir_firmware;
427 if (sc->facts->IOCCapabilities &
428 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
429 sc->ir_firmware = 1;
430 if (!attaching) {
431 if (sc->ir_firmware != saved_mode) {
432 mpr_dprint(sc, MPR_FAULT, "%s new IR/IT mode in IOC "
433 "Facts does not match previous mode\n", __func__);
434 }
435 }
436
437 /* Only deallocate and reallocate if relevant IOC Facts have changed */
438 reallocating = FALSE;
439 sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
440
441 if ((!attaching) &&
442 ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
443 (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
444 (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
445 (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
446 (saved_facts.ProductID != sc->facts->ProductID) ||
447 (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
448 (saved_facts.IOCRequestFrameSize !=
449 sc->facts->IOCRequestFrameSize) ||
450 (saved_facts.IOCMaxChainSegmentSize !=
451 sc->facts->IOCMaxChainSegmentSize) ||
452 (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
453 (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
454 (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
455 (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
456 (saved_facts.MaxReplyDescriptorPostQueueDepth !=
457 sc->facts->MaxReplyDescriptorPostQueueDepth) ||
458 (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
459 (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
460 (saved_facts.MaxPersistentEntries !=
461 sc->facts->MaxPersistentEntries))) {
462 reallocating = TRUE;
463
464 /* Record that we reallocated everything */
465 sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
466 }
467
468 /*
469 * Some things should be done if attaching or re-allocating after a Diag
470 * Reset, but are not needed after a Diag Reset if the FW has not
471 * changed.
472 */
473 if (attaching || reallocating) {
474 /*
475 * Check if controller supports FW diag buffers and set flag to
476 * enable each type.
477 */
478 if (sc->facts->IOCCapabilities &
479 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
480 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
481 enabled = TRUE;
482 if (sc->facts->IOCCapabilities &
483 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
484 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
485 enabled = TRUE;
486 if (sc->facts->IOCCapabilities &
487 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
488 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
489 enabled = TRUE;
490
491 /*
492 * Set flags for some supported items.
493 */
494 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
495 sc->eedp_enabled = TRUE;
496 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
497 sc->control_TLR = TRUE;
498 if (sc->facts->IOCCapabilities &
499 MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
500 sc->atomic_desc_capable = TRUE;
501
502 /*
503 * Size the queues. Since the reply queues always need one free
504 * entry, we'll just deduct one reply message here.
505 */
506 sc->num_prireqs = MIN(MPR_PRI_REQ_FRAMES,
507 sc->facts->HighPriorityCredit);
508 sc->num_reqs = MIN(MPR_REQ_FRAMES, sc->facts->RequestCredit) +
509 sc->num_prireqs;
510 sc->num_replies = MIN(MPR_REPLY_FRAMES + MPR_EVT_REPLY_FRAMES,
511 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
512
513 /*
514 * Initialize all Tail Queues
515 */
516 TAILQ_INIT(&sc->req_list);
517 TAILQ_INIT(&sc->high_priority_req_list);
518 TAILQ_INIT(&sc->chain_list);
519 TAILQ_INIT(&sc->prp_page_list);
520 TAILQ_INIT(&sc->tm_list);
521 }
522
523 /*
524 * If doing a Diag Reset and the FW is significantly different
525 * (reallocating will be set above in IOC Facts comparison), then all
526 * buffers based on the IOC Facts will need to be freed before they are
527 * reallocated.
528 */
529 if (reallocating) {
530 mpr_iocfacts_free(sc);
531 mprsas_realloc_targets(sc, saved_facts.MaxTargets +
532 saved_facts.MaxVolumes);
533 }
534
535 /*
536 * Any deallocation has been completed. Now start reallocating
537 * if needed. Will only need to reallocate if attaching or if the new
538 * IOC Facts are different from the previous IOC Facts after a Diag
539 * Reset. Targets have already been allocated above if needed.
540 */
541 if (attaching || reallocating) {
542 if (((error = mpr_alloc_queues(sc)) != 0) ||
543 ((error = mpr_alloc_replies(sc)) != 0) ||
544 ((error = mpr_alloc_requests(sc)) != 0)) {
545 if (attaching ) {
546 mpr_dprint(sc, MPR_FAULT, "%s failed to alloc "
547 "queues with error %d\n", __func__, error);
548 mpr_free(sc);
549 return (error);
550 } else {
551 panic("%s failed to alloc queues with error "
552 "%d\n", __func__, error);
553 }
554 }
555 }
556
557 /* Always initialize the queues */
558 bzero(sc->free_queue, sc->fqdepth * 4);
559 mpr_init_queues(sc);
560
561 /*
562 * Always get the chip out of the reset state, but only panic if not
563 * attaching. If attaching and there is an error, that is handled by
564 * the OS.
565 */
566 error = mpr_transition_operational(sc);
567 if (error != 0) {
568 if (attaching) {
569 mpr_printf(sc, "%s failed to transition to operational "
570 "with error %d\n", __func__, error);
571 mpr_free(sc);
572 return (error);
573 } else {
574 panic("%s failed to transition to operational with "
575 "error %d\n", __func__, error);
576 }
577 }
578
579 /*
580 * Finish the queue initialization.
581 * These are set here instead of in mpr_init_queues() because the
582 * IOC resets these values during the state transition in
583 * mpr_transition_operational(). The free index is set to 1
584 * because the corresponding index in the IOC is set to 0, and the
585 * IOC treats the queues as full if both are set to the same value.
586 * Hence the reason that the queue can't hold all of the possible
587 * replies.
588 */
589 sc->replypostindex = 0;
590 mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
591 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
592
593 /*
594 * Attach the subsystems so they can prepare their event masks.
595 */
596 /* XXX Should be dynamic so that IM/IR and user modules can attach */
597 if (attaching) {
598 if (((error = mpr_attach_log(sc)) != 0) ||
599 ((error = mpr_attach_sas(sc)) != 0) ||
600 ((error = mpr_attach_user(sc)) != 0)) {
601 mpr_printf(sc, "%s failed to attach all subsystems: "
602 "error %d\n", __func__, error);
603 mpr_free(sc);
604 return (error);
605 }
606
607 if ((error = mpr_pci_setup_interrupts(sc)) != 0) {
608 mpr_printf(sc, "%s failed to setup interrupts\n",
609 __func__);
610 mpr_free(sc);
611 return (error);
612 }
613 }
614
615 return (error);
616 }
617
618 /*
619 * This is called if memory is being free (during detach for example) and when
620 * buffers need to be reallocated due to a Diag Reset.
621 */
622 static void
623 mpr_iocfacts_free(struct mpr_softc *sc)
624 {
625 struct mpr_command *cm;
626 int i;
627
628 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
629
630 if (sc->free_busaddr != 0)
631 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
632 if (sc->free_queue != NULL)
633 bus_dmamem_free(sc->queues_dmat, sc->free_queue,
634 sc->queues_map);
635 if (sc->queues_dmat != NULL)
636 bus_dma_tag_destroy(sc->queues_dmat);
637
638 if (sc->chain_busaddr != 0)
639 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
640 if (sc->chain_frames != NULL)
641 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
642 sc->chain_map);
643 if (sc->chain_dmat != NULL)
644 bus_dma_tag_destroy(sc->chain_dmat);
645
646 if (sc->sense_busaddr != 0)
647 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
648 if (sc->sense_frames != NULL)
649 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
650 sc->sense_map);
651 if (sc->sense_dmat != NULL)
652 bus_dma_tag_destroy(sc->sense_dmat);
653
654 if (sc->prp_page_busaddr != 0)
655 bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
656 if (sc->prp_pages != NULL)
657 bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
658 sc->prp_page_map);
659 if (sc->prp_page_dmat != NULL)
660 bus_dma_tag_destroy(sc->prp_page_dmat);
661
662 if (sc->reply_busaddr != 0)
663 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
664 if (sc->reply_frames != NULL)
665 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
666 sc->reply_map);
667 if (sc->reply_dmat != NULL)
668 bus_dma_tag_destroy(sc->reply_dmat);
669
670 if (sc->req_busaddr != 0)
671 bus_dmamap_unload(sc->req_dmat, sc->req_map);
672 if (sc->req_frames != NULL)
673 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
674 if (sc->req_dmat != NULL)
675 bus_dma_tag_destroy(sc->req_dmat);
676
677 if (sc->chains != NULL)
678 free(sc->chains, M_MPR);
679 if (sc->prps != NULL)
680 free(sc->prps, M_MPR);
681 if (sc->commands != NULL) {
682 for (i = 1; i < sc->num_reqs; i++) {
683 cm = &sc->commands[i];
684 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
685 }
686 free(sc->commands, M_MPR);
687 }
688 if (sc->buffer_dmat != NULL)
689 bus_dma_tag_destroy(sc->buffer_dmat);
690 }
691
692 /*
693 * The terms diag reset and hard reset are used interchangeably in the MPI
694 * docs to mean resetting the controller chip. In this code diag reset
695 * cleans everything up, and the hard reset function just sends the reset
696 * sequence to the chip. This should probably be refactored so that every
697 * subsystem gets a reset notification of some sort, and can clean up
698 * appropriately.
699 */
700 int
701 mpr_reinit(struct mpr_softc *sc)
702 {
703 int error;
704 struct mprsas_softc *sassc;
705
706 sassc = sc->sassc;
707
708 MPR_FUNCTRACE(sc);
709
710 mtx_assert(&sc->mpr_mtx, MA_OWNED);
711
712 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
713 mpr_dprint(sc, MPR_INIT, "%s reset already in progress\n",
714 __func__);
715 return 0;
716 }
717
718 mpr_dprint(sc, MPR_INFO, "Reinitializing controller,\n");
719 /* make sure the completion callbacks can recognize they're getting
720 * a NULL cm_reply due to a reset.
721 */
722 sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
723
724 /*
725 * Mask interrupts here.
726 */
727 mpr_dprint(sc, MPR_INIT, "%s mask interrupts\n", __func__);
728 mpr_mask_intr(sc);
729
730 error = mpr_diag_reset(sc, CAN_SLEEP);
731 if (error != 0) {
732 panic("%s hard reset failed with error %d\n", __func__, error);
733 }
734
735 /* Restore the PCI state, including the MSI-X registers */
736 mpr_pci_restore(sc);
737
738 /* Give the I/O subsystem special priority to get itself prepared */
739 mprsas_handle_reinit(sc);
740
741 /*
742 * Get IOC Facts and allocate all structures based on this information.
743 * The attach function will also call mpr_iocfacts_allocate at startup.
744 * If relevant values have changed in IOC Facts, this function will free
745 * all of the memory based on IOC Facts and reallocate that memory.
746 */
747 if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
748 panic("%s IOC Facts based allocation failed with error %d\n",
749 __func__, error);
750 }
751
752 /*
753 * Mapping structures will be re-allocated after getting IOC Page8, so
754 * free these structures here.
755 */
756 mpr_mapping_exit(sc);
757
758 /*
759 * The static page function currently read is IOC Page8. Others can be
760 * added in future. It's possible that the values in IOC Page8 have
761 * changed after a Diag Reset due to user modification, so always read
762 * these. Interrupts are masked, so unmask them before getting config
763 * pages.
764 */
765 mpr_unmask_intr(sc);
766 sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
767 mpr_base_static_config_pages(sc);
768
769 /*
770 * Some mapping info is based in IOC Page8 data, so re-initialize the
771 * mapping tables.
772 */
773 mpr_mapping_initialize(sc);
774
775 /*
776 * Restart will reload the event masks clobbered by the reset, and
777 * then enable the port.
778 */
779 mpr_reregister_events(sc);
780
781 /* the end of discovery will release the simq, so we're done. */
782 mpr_dprint(sc, MPR_INFO, "%s finished sc %p post %u free %u\n",
783 __func__, sc, sc->replypostindex, sc->replyfreeindex);
784 mprsas_release_simq_reinit(sassc);
785
786 return 0;
787 }
788
789 /* Wait for the chip to ACK a word that we've put into its FIFO
790 * Wait for <timeout> seconds. In single loop wait for busy loop
791 * for 500 microseconds.
792 * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
793 * */
794 static int
795 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
796 {
797 u32 cntdn, count;
798 u32 int_status;
799 u32 doorbell;
800
801 count = 0;
802 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
803 do {
804 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
805 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
806 mpr_dprint(sc, MPR_INIT, "%s: successful count(%d), "
807 "timeout(%d)\n", __func__, count, timeout);
808 return 0;
809 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
810 doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
811 if ((doorbell & MPI2_IOC_STATE_MASK) ==
812 MPI2_IOC_STATE_FAULT) {
813 mpr_dprint(sc, MPR_FAULT,
814 "fault_state(0x%04x)!\n", doorbell);
815 return (EFAULT);
816 }
817 } else if (int_status == 0xFFFFFFFF)
818 goto out;
819
820 /*
821 * If it can sleep, sleep for 1 milisecond, else busy loop for
822 * 0.5 milisecond
823 */
824 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
825 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
826 hz/1000);
827 else if (sleep_flag == CAN_SLEEP)
828 pause("mprdba", hz/1000);
829 else
830 DELAY(500);
831 count++;
832 } while (--cntdn);
833
834 out:
835 mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
836 "int_status(%x)!\n", __func__, count, int_status);
837 return (ETIMEDOUT);
838 }
839
840 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
841 static int
842 mpr_wait_db_int(struct mpr_softc *sc)
843 {
844 int retry;
845
846 for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
847 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
848 MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
849 return (0);
850 DELAY(2000);
851 }
852 return (ETIMEDOUT);
853 }
854
855 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
856 static int
857 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
858 int req_sz, int reply_sz, int timeout)
859 {
860 uint32_t *data32;
861 uint16_t *data16;
862 int i, count, ioc_sz, residual;
863 int sleep_flags = CAN_SLEEP;
864
865 #if __FreeBSD_version >= 1000029
866 if (curthread->td_no_sleeping)
867 #else //__FreeBSD_version < 1000029
868 if (curthread->td_pflags & TDP_NOSLEEPING)
869 #endif //__FreeBSD_version >= 1000029
870 sleep_flags = NO_SLEEP;
871
872 /* Step 1 */
873 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
874
875 /* Step 2 */
876 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
877 return (EBUSY);
878
879 /* Step 3
880 * Announce that a message is coming through the doorbell. Messages
881 * are pushed at 32bit words, so round up if needed.
882 */
883 count = (req_sz + 3) / 4;
884 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
885 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
886 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
887
888 /* Step 4 */
889 if (mpr_wait_db_int(sc) ||
890 (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
891 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
892 return (ENXIO);
893 }
894 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
895 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
896 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
897 return (ENXIO);
898 }
899
900 /* Step 5 */
901 /* Clock out the message data synchronously in 32-bit dwords*/
902 data32 = (uint32_t *)req;
903 for (i = 0; i < count; i++) {
904 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
905 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
906 mpr_dprint(sc, MPR_FAULT,
907 "Timeout while writing doorbell\n");
908 return (ENXIO);
909 }
910 }
911
912 /* Step 6 */
913 /* Clock in the reply in 16-bit words. The total length of the
914 * message is always in the 4th byte, so clock out the first 2 words
915 * manually, then loop the rest.
916 */
917 data16 = (uint16_t *)reply;
918 if (mpr_wait_db_int(sc) != 0) {
919 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
920 return (ENXIO);
921 }
922 data16[0] =
923 mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
924 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
925 if (mpr_wait_db_int(sc) != 0) {
926 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
927 return (ENXIO);
928 }
929 data16[1] =
930 mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
931 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
932
933 /* Number of 32bit words in the message */
934 ioc_sz = reply->MsgLength;
935
936 /*
937 * Figure out how many 16bit words to clock in without overrunning.
938 * The precision loss with dividing reply_sz can safely be
939 * ignored because the messages can only be multiples of 32bits.
940 */
941 residual = 0;
942 count = MIN((reply_sz / 4), ioc_sz) * 2;
943 if (count < ioc_sz * 2) {
944 residual = ioc_sz * 2 - count;
945 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
946 "residual message words\n", residual);
947 }
948
949 for (i = 2; i < count; i++) {
950 if (mpr_wait_db_int(sc) != 0) {
951 mpr_dprint(sc, MPR_FAULT,
952 "Timeout reading doorbell %d\n", i);
953 return (ENXIO);
954 }
955 data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
956 MPI2_DOORBELL_DATA_MASK;
957 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
958 }
959
960 /*
961 * Pull out residual words that won't fit into the provided buffer.
962 * This keeps the chip from hanging due to a driver programming
963 * error.
964 */
965 while (residual--) {
966 if (mpr_wait_db_int(sc) != 0) {
967 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
968 return (ENXIO);
969 }
970 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
971 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
972 }
973
974 /* Step 7 */
975 if (mpr_wait_db_int(sc) != 0) {
976 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
977 return (ENXIO);
978 }
979 if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
980 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
981 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
982
983 return (0);
984 }
985
986 static void
987 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
988 {
989 request_descriptor rd;
990
991 MPR_FUNCTRACE(sc);
992 mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
993 cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
994
995 if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
996 MPR_FLAGS_SHUTDOWN))
997 mtx_assert(&sc->mpr_mtx, MA_OWNED);
998
999 if (++sc->io_cmds_active > sc->io_cmds_highwater)
1000 sc->io_cmds_highwater++;
1001
1002 if (sc->atomic_desc_capable) {
1003 rd.u.low = cm->cm_desc.Words.Low;
1004 mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
1005 rd.u.low);
1006 } else {
1007 rd.u.low = cm->cm_desc.Words.Low;
1008 rd.u.high = cm->cm_desc.Words.High;
1009 rd.word = htole64(rd.word);
1010 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1011 rd.u.low);
1012 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1013 rd.u.high);
1014 }
1015 }
1016
1017 /*
1018 * Just the FACTS, ma'am.
1019 */
1020 static int
1021 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1022 {
1023 MPI2_DEFAULT_REPLY *reply;
1024 MPI2_IOC_FACTS_REQUEST request;
1025 int error, req_sz, reply_sz;
1026
1027 MPR_FUNCTRACE(sc);
1028
1029 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1030 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1031 reply = (MPI2_DEFAULT_REPLY *)facts;
1032
1033 bzero(&request, req_sz);
1034 request.Function = MPI2_FUNCTION_IOC_FACTS;
1035 error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1036
1037 return (error);
1038 }
1039
1040 static int
1041 mpr_send_iocinit(struct mpr_softc *sc)
1042 {
1043 MPI2_IOC_INIT_REQUEST init;
1044 MPI2_DEFAULT_REPLY reply;
1045 int req_sz, reply_sz, error;
1046 struct timeval now;
1047 uint64_t time_in_msec;
1048
1049 MPR_FUNCTRACE(sc);
1050
1051 req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1052 reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1053 bzero(&init, req_sz);
1054 bzero(&reply, reply_sz);
1055
1056 /*
1057 * Fill in the init block. Note that most addresses are
1058 * deliberately in the lower 32bits of memory. This is a micro-
1059 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1060 */
1061 init.Function = MPI2_FUNCTION_IOC_INIT;
1062 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1063 init.MsgVersion = htole16(MPI2_VERSION);
1064 init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1065 init.SystemRequestFrameSize = htole16(sc->facts->IOCRequestFrameSize);
1066 init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1067 init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1068 init.SenseBufferAddressHigh = 0;
1069 init.SystemReplyAddressHigh = 0;
1070 init.SystemRequestFrameBaseAddress.High = 0;
1071 init.SystemRequestFrameBaseAddress.Low =
1072 htole32((uint32_t)sc->req_busaddr);
1073 init.ReplyDescriptorPostQueueAddress.High = 0;
1074 init.ReplyDescriptorPostQueueAddress.Low =
1075 htole32((uint32_t)sc->post_busaddr);
1076 init.ReplyFreeQueueAddress.High = 0;
1077 init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1078 getmicrotime(&now);
1079 time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1080 init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1081 init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1082 init.HostPageSize = HOST_PAGE_SIZE_4K;
1083
1084 error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1085 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1086 error = ENXIO;
1087
1088 mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1089 return (error);
1090 }
1091
1092 void
1093 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1094 {
1095 bus_addr_t *addr;
1096
1097 addr = arg;
1098 *addr = segs[0].ds_addr;
1099 }
1100
1101 static int
1102 mpr_alloc_queues(struct mpr_softc *sc)
1103 {
1104 bus_addr_t queues_busaddr;
1105 uint8_t *queues;
1106 int qsize, fqsize, pqsize;
1107
1108 /*
1109 * The reply free queue contains 4 byte entries in multiples of 16 and
1110 * aligned on a 16 byte boundary. There must always be an unused entry.
1111 * This queue supplies fresh reply frames for the firmware to use.
1112 *
1113 * The reply descriptor post queue contains 8 byte entries in
1114 * multiples of 16 and aligned on a 16 byte boundary. This queue
1115 * contains filled-in reply frames sent from the firmware to the host.
1116 *
1117 * These two queues are allocated together for simplicity.
1118 */
1119 sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1120 sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1121 fqsize= sc->fqdepth * 4;
1122 pqsize = sc->pqdepth * 8;
1123 qsize = fqsize + pqsize;
1124
1125 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1126 16, 0, /* algnmnt, boundary */
1127 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1128 BUS_SPACE_MAXADDR, /* highaddr */
1129 NULL, NULL, /* filter, filterarg */
1130 qsize, /* maxsize */
1131 1, /* nsegments */
1132 qsize, /* maxsegsize */
1133 0, /* flags */
1134 NULL, NULL, /* lockfunc, lockarg */
1135 &sc->queues_dmat)) {
1136 device_printf(sc->mpr_dev, "Cannot allocate queues DMA tag\n");
1137 return (ENOMEM);
1138 }
1139 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1140 &sc->queues_map)) {
1141 device_printf(sc->mpr_dev, "Cannot allocate queues memory\n");
1142 return (ENOMEM);
1143 }
1144 bzero(queues, qsize);
1145 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1146 mpr_memaddr_cb, &queues_busaddr, 0);
1147
1148 sc->free_queue = (uint32_t *)queues;
1149 sc->free_busaddr = queues_busaddr;
1150 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1151 sc->post_busaddr = queues_busaddr + fqsize;
1152
1153 return (0);
1154 }
1155
1156 static int
1157 mpr_alloc_replies(struct mpr_softc *sc)
1158 {
1159 int rsize, num_replies;
1160
1161 /*
1162 * sc->num_replies should be one less than sc->fqdepth. We need to
1163 * allocate space for sc->fqdepth replies, but only sc->num_replies
1164 * replies can be used at once.
1165 */
1166 num_replies = max(sc->fqdepth, sc->num_replies);
1167
1168 rsize = sc->facts->ReplyFrameSize * num_replies * 4;
1169 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1170 4, 0, /* algnmnt, boundary */
1171 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1172 BUS_SPACE_MAXADDR, /* highaddr */
1173 NULL, NULL, /* filter, filterarg */
1174 rsize, /* maxsize */
1175 1, /* nsegments */
1176 rsize, /* maxsegsize */
1177 0, /* flags */
1178 NULL, NULL, /* lockfunc, lockarg */
1179 &sc->reply_dmat)) {
1180 device_printf(sc->mpr_dev, "Cannot allocate replies DMA tag\n");
1181 return (ENOMEM);
1182 }
1183 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1184 BUS_DMA_NOWAIT, &sc->reply_map)) {
1185 device_printf(sc->mpr_dev, "Cannot allocate replies memory\n");
1186 return (ENOMEM);
1187 }
1188 bzero(sc->reply_frames, rsize);
1189 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1190 mpr_memaddr_cb, &sc->reply_busaddr, 0);
1191
1192 return (0);
1193 }
1194
1195 static int
1196 mpr_alloc_requests(struct mpr_softc *sc)
1197 {
1198 struct mpr_command *cm;
1199 struct mpr_chain *chain;
1200 int i, rsize, nsegs;
1201
1202 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
1203 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1204 16, 0, /* algnmnt, boundary */
1205 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1206 BUS_SPACE_MAXADDR, /* highaddr */
1207 NULL, NULL, /* filter, filterarg */
1208 rsize, /* maxsize */
1209 1, /* nsegments */
1210 rsize, /* maxsegsize */
1211 0, /* flags */
1212 NULL, NULL, /* lockfunc, lockarg */
1213 &sc->req_dmat)) {
1214 device_printf(sc->mpr_dev, "Cannot allocate request DMA tag\n");
1215 return (ENOMEM);
1216 }
1217 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1218 BUS_DMA_NOWAIT, &sc->req_map)) {
1219 device_printf(sc->mpr_dev, "Cannot allocate request memory\n");
1220 return (ENOMEM);
1221 }
1222 bzero(sc->req_frames, rsize);
1223 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1224 mpr_memaddr_cb, &sc->req_busaddr, 0);
1225
1226 /*
1227 * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
1228 * get the size of a Chain Frame. Previous versions use the size as a
1229 * Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize
1230 * is 0, use the default value. The IOCMaxChainSegmentSize is the
1231 * number of 16-byte elelements that can fit in a Chain Frame, which is
1232 * the size of an IEEE Simple SGE.
1233 */
1234 if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
1235 sc->chain_seg_size =
1236 htole16(sc->facts->IOCMaxChainSegmentSize);
1237 if (sc->chain_seg_size == 0) {
1238 sc->chain_frame_size = MPR_DEFAULT_CHAIN_SEG_SIZE *
1239 MPR_MAX_CHAIN_ELEMENT_SIZE;
1240 } else {
1241 sc->chain_frame_size = sc->chain_seg_size *
1242 MPR_MAX_CHAIN_ELEMENT_SIZE;
1243 }
1244 } else {
1245 sc->chain_frame_size = sc->facts->IOCRequestFrameSize * 4;
1246 }
1247 rsize = sc->chain_frame_size * sc->max_chains;
1248 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1249 16, 0, /* algnmnt, boundary */
1250 BUS_SPACE_MAXADDR, /* lowaddr */
1251 BUS_SPACE_MAXADDR, /* highaddr */
1252 NULL, NULL, /* filter, filterarg */
1253 rsize, /* maxsize */
1254 1, /* nsegments */
1255 rsize, /* maxsegsize */
1256 0, /* flags */
1257 NULL, NULL, /* lockfunc, lockarg */
1258 &sc->chain_dmat)) {
1259 device_printf(sc->mpr_dev, "Cannot allocate chain DMA tag\n");
1260 return (ENOMEM);
1261 }
1262 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1263 BUS_DMA_NOWAIT, &sc->chain_map)) {
1264 device_printf(sc->mpr_dev, "Cannot allocate chain memory\n");
1265 return (ENOMEM);
1266 }
1267 bzero(sc->chain_frames, rsize);
1268 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
1269 mpr_memaddr_cb, &sc->chain_busaddr, 0);
1270
1271 rsize = MPR_SENSE_LEN * sc->num_reqs;
1272 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1273 1, 0, /* algnmnt, boundary */
1274 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1275 BUS_SPACE_MAXADDR, /* highaddr */
1276 NULL, NULL, /* filter, filterarg */
1277 rsize, /* maxsize */
1278 1, /* nsegments */
1279 rsize, /* maxsegsize */
1280 0, /* flags */
1281 NULL, NULL, /* lockfunc, lockarg */
1282 &sc->sense_dmat)) {
1283 device_printf(sc->mpr_dev, "Cannot allocate sense DMA tag\n");
1284 return (ENOMEM);
1285 }
1286 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1287 BUS_DMA_NOWAIT, &sc->sense_map)) {
1288 device_printf(sc->mpr_dev, "Cannot allocate sense memory\n");
1289 return (ENOMEM);
1290 }
1291 bzero(sc->sense_frames, rsize);
1292 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1293 mpr_memaddr_cb, &sc->sense_busaddr, 0);
1294
1295 sc->chains = malloc(sizeof(struct mpr_chain) * sc->max_chains, M_MPR,
1296 M_WAITOK | M_ZERO);
1297 if (!sc->chains) {
1298 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1299 __func__, __LINE__);
1300 return (ENOMEM);
1301 }
1302 for (i = 0; i < sc->max_chains; i++) {
1303 chain = &sc->chains[i];
1304 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
1305 i * sc->chain_frame_size);
1306 chain->chain_busaddr = sc->chain_busaddr +
1307 i * sc->chain_frame_size;
1308 mpr_free_chain(sc, chain);
1309 sc->chain_free_lowwater++;
1310 }
1311
1312 /*
1313 * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
1314 * these devices.
1315 */
1316 if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
1317 (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
1318 if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
1319 return (ENOMEM);
1320 }
1321
1322 /* XXX Need to pick a more precise value */
1323 nsegs = (MAXPHYS / PAGE_SIZE) + 1;
1324 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1325 1, 0, /* algnmnt, boundary */
1326 BUS_SPACE_MAXADDR, /* lowaddr */
1327 BUS_SPACE_MAXADDR, /* highaddr */
1328 NULL, NULL, /* filter, filterarg */
1329 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1330 nsegs, /* nsegments */
1331 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1332 BUS_DMA_ALLOCNOW, /* flags */
1333 busdma_lock_mutex, /* lockfunc */
1334 &sc->mpr_mtx, /* lockarg */
1335 &sc->buffer_dmat)) {
1336 device_printf(sc->mpr_dev, "Cannot allocate buffer DMA tag\n");
1337 return (ENOMEM);
1338 }
1339
1340 /*
1341 * SMID 0 cannot be used as a free command per the firmware spec.
1342 * Just drop that command instead of risking accounting bugs.
1343 */
1344 sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
1345 M_MPR, M_WAITOK | M_ZERO);
1346 if (!sc->commands) {
1347 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1348 __func__, __LINE__);
1349 return (ENOMEM);
1350 }
1351 for (i = 1; i < sc->num_reqs; i++) {
1352 cm = &sc->commands[i];
1353 cm->cm_req = sc->req_frames +
1354 i * sc->facts->IOCRequestFrameSize * 4;
1355 cm->cm_req_busaddr = sc->req_busaddr +
1356 i * sc->facts->IOCRequestFrameSize * 4;
1357 cm->cm_sense = &sc->sense_frames[i];
1358 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
1359 cm->cm_desc.Default.SMID = i;
1360 cm->cm_sc = sc;
1361 TAILQ_INIT(&cm->cm_chain_list);
1362 TAILQ_INIT(&cm->cm_prp_page_list);
1363 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
1364
1365 /* XXX Is a failure here a critical problem? */
1366 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
1367 == 0) {
1368 if (i <= sc->num_prireqs)
1369 mpr_free_high_priority_command(sc, cm);
1370 else
1371 mpr_free_command(sc, cm);
1372 } else {
1373 panic("failed to allocate command %d\n", i);
1374 sc->num_reqs = i;
1375 break;
1376 }
1377 }
1378
1379 return (0);
1380 }
1381
1382 /*
1383 * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
1384 * which are scatter/gather lists for NVMe devices.
1385 *
1386 * This buffer must be contiguous due to the nature of how NVMe PRPs are built
1387 * and translated by FW.
1388 *
1389 * returns ENOMEM if memory could not be allocated, otherwise returns 0.
1390 */
1391 static int
1392 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
1393 {
1394 int PRPs_per_page, PRPs_required, pages_required;
1395 int rsize, i;
1396 struct mpr_prp_page *prp_page;
1397
1398 /*
1399 * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
1400 * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
1401 * MAX_IO_SIZE / PAGE_SIZE = 256
1402 *
1403 * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
1404 * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
1405 * page (4096 / 8 = 512), so only one page is required for each I/O.
1406 *
1407 * Each of these buffers will need to be contiguous. For simplicity,
1408 * only one buffer is allocated here, which has all of the space
1409 * required for the NVMe Queue Depth. If there are problems allocating
1410 * this one buffer, this function will need to change to allocate
1411 * individual, contiguous NVME_QDEPTH buffers.
1412 *
1413 * The real calculation will use the real max io size. Above is just an
1414 * example.
1415 *
1416 */
1417 PRPs_required = sc->maxio / PAGE_SIZE;
1418 PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
1419 pages_required = (PRPs_required / PRPs_per_page) + 1;
1420
1421 sc->prp_buffer_size = PAGE_SIZE * pages_required;
1422 rsize = sc->prp_buffer_size * NVME_QDEPTH;
1423 if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */
1424 4, 0, /* algnmnt, boundary */
1425 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1426 BUS_SPACE_MAXADDR, /* highaddr */
1427 NULL, NULL, /* filter, filterarg */
1428 rsize, /* maxsize */
1429 1, /* nsegments */
1430 rsize, /* maxsegsize */
1431 0, /* flags */
1432 NULL, NULL, /* lockfunc, lockarg */
1433 &sc->prp_page_dmat)) {
1434 device_printf(sc->mpr_dev, "Cannot allocate NVMe PRP DMA "
1435 "tag\n");
1436 return (ENOMEM);
1437 }
1438 if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
1439 BUS_DMA_NOWAIT, &sc->prp_page_map)) {
1440 device_printf(sc->mpr_dev, "Cannot allocate NVMe PRP memory\n");
1441 return (ENOMEM);
1442 }
1443 bzero(sc->prp_pages, rsize);
1444 bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
1445 rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
1446
1447 sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
1448 M_WAITOK | M_ZERO);
1449 for (i = 0; i < NVME_QDEPTH; i++) {
1450 prp_page = &sc->prps[i];
1451 prp_page->prp_page = (uint64_t *)(sc->prp_pages +
1452 i * sc->prp_buffer_size);
1453 prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
1454 i * sc->prp_buffer_size);
1455 mpr_free_prp_page(sc, prp_page);
1456 sc->prp_pages_free_lowwater++;
1457 }
1458
1459 return (0);
1460 }
1461
1462 static int
1463 mpr_init_queues(struct mpr_softc *sc)
1464 {
1465 int i;
1466
1467 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1468
1469 /*
1470 * According to the spec, we need to use one less reply than we
1471 * have space for on the queue. So sc->num_replies (the number we
1472 * use) should be less than sc->fqdepth (allocated size).
1473 */
1474 if (sc->num_replies >= sc->fqdepth)
1475 return (EINVAL);
1476
1477 /*
1478 * Initialize all of the free queue entries.
1479 */
1480 for (i = 0; i < sc->fqdepth; i++) {
1481 sc->free_queue[i] = sc->reply_busaddr +
1482 (i * sc->facts->ReplyFrameSize * 4);
1483 }
1484 sc->replyfreeindex = sc->num_replies;
1485
1486 return (0);
1487 }
1488
1489 /* Get the driver parameter tunables. Lowest priority are the driver defaults.
1490 * Next are the global settings, if they exist. Highest are the per-unit
1491 * settings, if they exist.
1492 */
1493 void
1494 mpr_get_tunables(struct mpr_softc *sc)
1495 {
1496 char tmpstr[80];
1497
1498 /* XXX default to some debugging for now */
1499 sc->mpr_debug = MPR_INFO | MPR_FAULT;
1500 sc->disable_msix = 0;
1501 sc->disable_msi = 0;
1502 sc->max_chains = MPR_CHAIN_FRAMES;
1503 sc->max_io_pages = MPR_MAXIO_PAGES;
1504 sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
1505 sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1506 sc->use_phynum = 1;
1507
1508 /*
1509 * Grab the global variables.
1510 */
1511 TUNABLE_INT_FETCH("hw.mpr.debug_level", &sc->mpr_debug);
1512 TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
1513 TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
1514 TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
1515 TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
1516 TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
1517 TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
1518 TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
1519
1520 /* Grab the unit-instance variables */
1521 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
1522 device_get_unit(sc->mpr_dev));
1523 TUNABLE_INT_FETCH(tmpstr, &sc->mpr_debug);
1524
1525 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
1526 device_get_unit(sc->mpr_dev));
1527 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1528
1529 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
1530 device_get_unit(sc->mpr_dev));
1531 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1532
1533 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
1534 device_get_unit(sc->mpr_dev));
1535 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1536
1537 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
1538 device_get_unit(sc->mpr_dev));
1539 TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1540
1541 bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1542 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
1543 device_get_unit(sc->mpr_dev));
1544 TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1545
1546 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
1547 device_get_unit(sc->mpr_dev));
1548 TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1549
1550 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
1551 device_get_unit(sc->mpr_dev));
1552 TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1553
1554 snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
1555 device_get_unit(sc->mpr_dev));
1556 TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1557 }
1558
1559 static void
1560 mpr_setup_sysctl(struct mpr_softc *sc)
1561 {
1562 struct sysctl_ctx_list *sysctl_ctx = NULL;
1563 struct sysctl_oid *sysctl_tree = NULL;
1564 char tmpstr[80], tmpstr2[80];
1565
1566 /*
1567 * Setup the sysctl variable so the user can change the debug level
1568 * on the fly.
1569 */
1570 snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
1571 device_get_unit(sc->mpr_dev));
1572 snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
1573
1574 sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
1575 if (sysctl_ctx != NULL)
1576 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
1577
1578 if (sysctl_tree == NULL) {
1579 sysctl_ctx_init(&sc->sysctl_ctx);
1580 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1581 SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
1582 CTLFLAG_RD, 0, tmpstr);
1583 if (sc->sysctl_tree == NULL)
1584 return;
1585 sysctl_ctx = &sc->sysctl_ctx;
1586 sysctl_tree = sc->sysctl_tree;
1587 }
1588
1589 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1590 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mpr_debug, 0,
1591 "mpr debug level");
1592
1593 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1594 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1595 "Disable the use of MSI-X interrupts");
1596
1597 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1598 OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1599 "Disable the use of MSI interrupts");
1600
1601 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1602 OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version,
1603 strlen(sc->fw_version), "firmware version");
1604
1605 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1606 OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION,
1607 strlen(MPR_DRIVER_VERSION), "driver version");
1608
1609 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1610 OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1611 &sc->io_cmds_active, 0, "number of currently active commands");
1612
1613 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1614 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1615 &sc->io_cmds_highwater, 0, "maximum active commands seen");
1616
1617 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1618 OID_AUTO, "chain_free", CTLFLAG_RD,
1619 &sc->chain_free, 0, "number of free chain elements");
1620
1621 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1622 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1623 &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1624
1625 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1626 OID_AUTO, "max_chains", CTLFLAG_RD,
1627 &sc->max_chains, 0,"maximum chain frames that will be allocated");
1628
1629 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1630 OID_AUTO, "max_io_pages", CTLFLAG_RD,
1631 &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1632 "IOCFacts)");
1633
1634 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1635 OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1636 "enable SSU to SATA SSD/HDD at shutdown");
1637
1638 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1639 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1640 &sc->chain_alloc_fail, "chain allocation failures");
1641
1642 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1643 OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1644 &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1645 "spinup after SATA ID error");
1646
1647 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1648 OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1649 "Use the phy number for enumeration");
1650
1651 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1652 OID_AUTO, "prp_pages_free", CTLFLAG_RD,
1653 &sc->prp_pages_free, 0, "number of free PRP pages");
1654
1655 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1656 OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
1657 &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
1658
1659 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1660 OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
1661 &sc->prp_page_alloc_fail, "PRP page allocation failures");
1662 }
1663
1664 int
1665 mpr_attach(struct mpr_softc *sc)
1666 {
1667 int error;
1668
1669 MPR_FUNCTRACE(sc);
1670
1671 mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
1672 callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
1673 callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
1674 TAILQ_INIT(&sc->event_list);
1675 timevalclear(&sc->lastfail);
1676
1677 if ((error = mpr_transition_ready(sc)) != 0) {
1678 mpr_printf(sc, "%s failed to transition ready\n", __func__);
1679 return (error);
1680 }
1681
1682 sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
1683 M_ZERO|M_NOWAIT);
1684 if (!sc->facts) {
1685 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
1686 __func__, __LINE__);
1687 return (ENOMEM);
1688 }
1689
1690 /*
1691 * Get IOC Facts and allocate all structures based on this information.
1692 * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
1693 * Facts. If relevant values have changed in IOC Facts, this function
1694 * will free all of the memory based on IOC Facts and reallocate that
1695 * memory. If this fails, any allocated memory should already be freed.
1696 */
1697 if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
1698 mpr_dprint(sc, MPR_FAULT, "%s IOC Facts based allocation "
1699 "failed with error %d\n", __func__, error);
1700 return (error);
1701 }
1702
1703 /* Start the periodic watchdog check on the IOC Doorbell */
1704 mpr_periodic(sc);
1705
1706 /*
1707 * The portenable will kick off discovery events that will drive the
1708 * rest of the initialization process. The CAM/SAS module will
1709 * hold up the boot sequence until discovery is complete.
1710 */
1711 sc->mpr_ich.ich_func = mpr_startup;
1712 sc->mpr_ich.ich_arg = sc;
1713 if (config_intrhook_establish(&sc->mpr_ich) != 0) {
1714 mpr_dprint(sc, MPR_ERROR, "Cannot establish MPR config hook\n");
1715 error = EINVAL;
1716 }
1717
1718 /*
1719 * Allow IR to shutdown gracefully when shutdown occurs.
1720 */
1721 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1722 mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1723
1724 if (sc->shutdown_eh == NULL)
1725 mpr_dprint(sc, MPR_ERROR, "shutdown event registration "
1726 "failed\n");
1727
1728 mpr_setup_sysctl(sc);
1729
1730 sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
1731
1732 return (error);
1733 }
1734
1735 /* Run through any late-start handlers. */
1736 static void
1737 mpr_startup(void *arg)
1738 {
1739 struct mpr_softc *sc;
1740
1741 sc = (struct mpr_softc *)arg;
1742
1743 mpr_lock(sc);
1744 mpr_unmask_intr(sc);
1745
1746 /* initialize device mapping tables */
1747 mpr_base_static_config_pages(sc);
1748 mpr_mapping_initialize(sc);
1749 mprsas_startup(sc);
1750 mpr_unlock(sc);
1751 }
1752
1753 /* Periodic watchdog. Is called with the driver lock already held. */
1754 static void
1755 mpr_periodic(void *arg)
1756 {
1757 struct mpr_softc *sc;
1758 uint32_t db;
1759
1760 sc = (struct mpr_softc *)arg;
1761 if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
1762 return;
1763
1764 db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
1765 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1766 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
1767 IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
1768 panic("TEMPERATURE FAULT: STOPPING.");
1769 }
1770 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
1771 mpr_reinit(sc);
1772 }
1773
1774 callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
1775 }
1776
1777 static void
1778 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
1779 MPI2_EVENT_NOTIFICATION_REPLY *event)
1780 {
1781 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1782
1783 MPR_DPRINT_EVENT(sc, generic, event);
1784
1785 switch (event->Event) {
1786 case MPI2_EVENT_LOG_DATA:
1787 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
1788 if (sc->mpr_debug & MPR_EVENT)
1789 hexdump(event->EventData, event->EventDataLength, NULL,
1790 0);
1791 break;
1792 case MPI2_EVENT_LOG_ENTRY_ADDED:
1793 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1794 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1795 "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1796 entry->LogSequence);
1797 break;
1798 default:
1799 break;
1800 }
1801 return;
1802 }
1803
1804 static int
1805 mpr_attach_log(struct mpr_softc *sc)
1806 {
1807 uint8_t events[16];
1808
1809 bzero(events, 16);
1810 setbit(events, MPI2_EVENT_LOG_DATA);
1811 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1812
1813 mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
1814 &sc->mpr_log_eh);
1815
1816 return (0);
1817 }
1818
1819 static int
1820 mpr_detach_log(struct mpr_softc *sc)
1821 {
1822
1823 if (sc->mpr_log_eh != NULL)
1824 mpr_deregister_events(sc, sc->mpr_log_eh);
1825 return (0);
1826 }
1827
1828 /*
1829 * Free all of the driver resources and detach submodules. Should be called
1830 * without the lock held.
1831 */
1832 int
1833 mpr_free(struct mpr_softc *sc)
1834 {
1835 int error;
1836
1837 /* Turn off the watchdog */
1838 mpr_lock(sc);
1839 sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
1840 mpr_unlock(sc);
1841 /* Lock must not be held for this */
1842 callout_drain(&sc->periodic);
1843 callout_drain(&sc->device_check_callout);
1844
1845 if (((error = mpr_detach_log(sc)) != 0) ||
1846 ((error = mpr_detach_sas(sc)) != 0))
1847 return (error);
1848
1849 mpr_detach_user(sc);
1850
1851 /* Put the IOC back in the READY state. */
1852 mpr_lock(sc);
1853 if ((error = mpr_transition_ready(sc)) != 0) {
1854 mpr_unlock(sc);
1855 return (error);
1856 }
1857 mpr_unlock(sc);
1858
1859 if (sc->facts != NULL)
1860 free(sc->facts, M_MPR);
1861
1862 /*
1863 * Free all buffers that are based on IOC Facts. A Diag Reset may need
1864 * to free these buffers too.
1865 */
1866 mpr_iocfacts_free(sc);
1867
1868 if (sc->sysctl_tree != NULL)
1869 sysctl_ctx_free(&sc->sysctl_ctx);
1870
1871 /* Deregister the shutdown function */
1872 if (sc->shutdown_eh != NULL)
1873 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1874
1875 mtx_destroy(&sc->mpr_mtx);
1876
1877 return (0);
1878 }
1879
1880 static __inline void
1881 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
1882 {
1883 MPR_FUNCTRACE(sc);
1884
1885 if (cm == NULL) {
1886 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
1887 return;
1888 }
1889
1890 if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
1891 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
1892
1893 if (cm->cm_complete != NULL) {
1894 mpr_dprint(sc, MPR_TRACE,
1895 "%s cm %p calling cm_complete %p data %p reply %p\n",
1896 __func__, cm, cm->cm_complete, cm->cm_complete_data,
1897 cm->cm_reply);
1898 cm->cm_complete(sc, cm);
1899 }
1900
1901 if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
1902 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
1903 wakeup(cm);
1904 }
1905
1906 if (sc->io_cmds_active != 0) {
1907 sc->io_cmds_active--;
1908 } else {
1909 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
1910 "out of sync - resynching to 0\n");
1911 }
1912 }
1913
1914 static void
1915 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
1916 {
1917 union loginfo_type {
1918 u32 loginfo;
1919 struct {
1920 u32 subcode:16;
1921 u32 code:8;
1922 u32 originator:4;
1923 u32 bus_type:4;
1924 } dw;
1925 };
1926 union loginfo_type sas_loginfo;
1927 char *originator_str = NULL;
1928
1929 sas_loginfo.loginfo = log_info;
1930 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1931 return;
1932
1933 /* each nexus loss loginfo */
1934 if (log_info == 0x31170000)
1935 return;
1936
1937 /* eat the loginfos associated with task aborts */
1938 if ((log_info == 30050000) || (log_info == 0x31140000) ||
1939 (log_info == 0x31130000))
1940 return;
1941
1942 switch (sas_loginfo.dw.originator) {
1943 case 0:
1944 originator_str = "IOP";
1945 break;
1946 case 1:
1947 originator_str = "PL";
1948 break;
1949 case 2:
1950 originator_str = "IR";
1951 break;
1952 }
1953
1954 mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
1955 "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
1956 sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1957 }
1958
1959 static void
1960 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
1961 {
1962 MPI2DefaultReply_t *mpi_reply;
1963 u16 sc_status;
1964
1965 mpi_reply = (MPI2DefaultReply_t*)reply;
1966 sc_status = le16toh(mpi_reply->IOCStatus);
1967 if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
1968 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
1969 }
1970
1971 void
1972 mpr_intr(void *data)
1973 {
1974 struct mpr_softc *sc;
1975 uint32_t status;
1976
1977 sc = (struct mpr_softc *)data;
1978 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
1979
1980 /*
1981 * Check interrupt status register to flush the bus. This is
1982 * needed for both INTx interrupts and driver-driven polling
1983 */
1984 status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1985 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1986 return;
1987
1988 mpr_lock(sc);
1989 mpr_intr_locked(data);
1990 mpr_unlock(sc);
1991 return;
1992 }
1993
1994 /*
1995 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1996 * chip. Hopefully this theory is correct.
1997 */
1998 void
1999 mpr_intr_msi(void *data)
2000 {
2001 struct mpr_softc *sc;
2002
2003 sc = (struct mpr_softc *)data;
2004 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2005 mpr_lock(sc);
2006 mpr_intr_locked(data);
2007 mpr_unlock(sc);
2008 return;
2009 }
2010
2011 /*
2012 * The locking is overly broad and simplistic, but easy to deal with for now.
2013 */
2014 void
2015 mpr_intr_locked(void *data)
2016 {
2017 MPI2_REPLY_DESCRIPTORS_UNION *desc;
2018 struct mpr_softc *sc;
2019 struct mpr_command *cm = NULL;
2020 uint8_t flags;
2021 u_int pq;
2022 MPI2_DIAG_RELEASE_REPLY *rel_rep;
2023 mpr_fw_diagnostic_buffer_t *pBuffer;
2024
2025 sc = (struct mpr_softc *)data;
2026
2027 pq = sc->replypostindex;
2028 mpr_dprint(sc, MPR_TRACE,
2029 "%s sc %p starting with replypostindex %u\n",
2030 __func__, sc, sc->replypostindex);
2031
2032 for ( ;; ) {
2033 cm = NULL;
2034 desc = &sc->post_queue[sc->replypostindex];
2035 flags = desc->Default.ReplyFlags &
2036 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2037 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
2038 (le32toh(desc->Words.High) == 0xffffffff))
2039 break;
2040
2041 /* increment the replypostindex now, so that event handlers
2042 * and cm completion handlers which decide to do a diag
2043 * reset can zero it without it getting incremented again
2044 * afterwards, and we break out of this loop on the next
2045 * iteration since the reply post queue has been cleared to
2046 * 0xFF and all descriptors look unused (which they are).
2047 */
2048 if (++sc->replypostindex >= sc->pqdepth)
2049 sc->replypostindex = 0;
2050
2051 switch (flags) {
2052 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2053 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
2054 case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
2055 cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2056 cm->cm_reply = NULL;
2057 break;
2058 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2059 {
2060 uint32_t baddr;
2061 uint8_t *reply;
2062
2063 /*
2064 * Re-compose the reply address from the address
2065 * sent back from the chip. The ReplyFrameAddress
2066 * is the lower 32 bits of the physical address of
2067 * particular reply frame. Convert that address to
2068 * host format, and then use that to provide the
2069 * offset against the virtual address base
2070 * (sc->reply_frames).
2071 */
2072 baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2073 reply = sc->reply_frames +
2074 (baddr - ((uint32_t)sc->reply_busaddr));
2075 /*
2076 * Make sure the reply we got back is in a valid
2077 * range. If not, go ahead and panic here, since
2078 * we'll probably panic as soon as we deference the
2079 * reply pointer anyway.
2080 */
2081 if ((reply < sc->reply_frames)
2082 || (reply > (sc->reply_frames +
2083 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
2084 printf("%s: WARNING: reply %p out of range!\n",
2085 __func__, reply);
2086 printf("%s: reply_frames %p, fqdepth %d, "
2087 "frame size %d\n", __func__,
2088 sc->reply_frames, sc->fqdepth,
2089 sc->facts->ReplyFrameSize * 4);
2090 printf("%s: baddr %#x,\n", __func__, baddr);
2091 /* LSI-TODO. See Linux Code for Graceful exit */
2092 panic("Reply address out of range");
2093 }
2094 if (le16toh(desc->AddressReply.SMID) == 0) {
2095 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2096 MPI2_FUNCTION_DIAG_BUFFER_POST) {
2097 /*
2098 * If SMID is 0 for Diag Buffer Post,
2099 * this implies that the reply is due to
2100 * a release function with a status that
2101 * the buffer has been released. Set
2102 * the buffer flags accordingly.
2103 */
2104 rel_rep =
2105 (MPI2_DIAG_RELEASE_REPLY *)reply;
2106 if ((le16toh(rel_rep->IOCStatus) &
2107 MPI2_IOCSTATUS_MASK) ==
2108 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2109 {
2110 pBuffer =
2111 &sc->fw_diag_buffer_list[
2112 rel_rep->BufferType];
2113 pBuffer->valid_data = TRUE;
2114 pBuffer->owned_by_firmware =
2115 FALSE;
2116 pBuffer->immediate = FALSE;
2117 }
2118 } else
2119 mpr_dispatch_event(sc, baddr,
2120 (MPI2_EVENT_NOTIFICATION_REPLY *)
2121 reply);
2122 } else {
2123 cm = &sc->commands[
2124 le16toh(desc->AddressReply.SMID)];
2125 cm->cm_reply = reply;
2126 cm->cm_reply_data =
2127 le32toh(desc->AddressReply.
2128 ReplyFrameAddress);
2129 }
2130 break;
2131 }
2132 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2133 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2134 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2135 default:
2136 /* Unhandled */
2137 mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
2138 desc->Default.ReplyFlags);
2139 cm = NULL;
2140 break;
2141 }
2142
2143 if (cm != NULL) {
2144 // Print Error reply frame
2145 if (cm->cm_reply)
2146 mpr_display_reply_info(sc,cm->cm_reply);
2147 mpr_complete_command(sc, cm);
2148 }
2149
2150 desc->Words.Low = 0xffffffff;
2151 desc->Words.High = 0xffffffff;
2152 }
2153
2154 if (pq != sc->replypostindex) {
2155 mpr_dprint(sc, MPR_TRACE,
2156 "%s sc %p writing postindex %d\n",
2157 __func__, sc, sc->replypostindex);
2158 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2159 sc->replypostindex);
2160 }
2161
2162 return;
2163 }
2164
2165 static void
2166 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
2167 MPI2_EVENT_NOTIFICATION_REPLY *reply)
2168 {
2169 struct mpr_event_handle *eh;
2170 int event, handled = 0;
2171
2172 event = le16toh(reply->Event);
2173 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2174 if (isset(eh->mask, event)) {
2175 eh->callback(sc, data, reply);
2176 handled++;
2177 }
2178 }
2179
2180 if (handled == 0)
2181 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
2182 le16toh(event));
2183
2184 /*
2185 * This is the only place that the event/reply should be freed.
2186 * Anything wanting to hold onto the event data should have
2187 * already copied it into their own storage.
2188 */
2189 mpr_free_reply(sc, data);
2190 }
2191
2192 static void
2193 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
2194 {
2195 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2196
2197 if (cm->cm_reply)
2198 MPR_DPRINT_EVENT(sc, generic,
2199 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2200
2201 mpr_free_command(sc, cm);
2202
2203 /* next, send a port enable */
2204 mprsas_startup(sc);
2205 }
2206
2207 /*
2208 * For both register_events and update_events, the caller supplies a bitmap
2209 * of events that it _wants_. These functions then turn that into a bitmask
2210 * suitable for the controller.
2211 */
2212 int
2213 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
2214 mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
2215 {
2216 struct mpr_event_handle *eh;
2217 int error = 0;
2218
2219 eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
2220 if (!eh) {
2221 device_printf(sc->mpr_dev, "Cannot allocate memory %s %d\n",
2222 __func__, __LINE__);
2223 return (ENOMEM);
2224 }
2225 eh->callback = cb;
2226 eh->data = data;
2227 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2228 if (mask != NULL)
2229 error = mpr_update_events(sc, eh, mask);
2230 *handle = eh;
2231
2232 return (error);
2233 }
2234
2235 int
2236 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
2237 uint8_t *mask)
2238 {
2239 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2240 MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2241 struct mpr_command *cm = NULL;
2242 struct mpr_event_handle *eh;
2243 int error, i;
2244
2245 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2246
2247 if ((mask != NULL) && (handle != NULL))
2248 bcopy(mask, &handle->mask[0], 16);
2249 memset(sc->event_mask, 0xff, 16);
2250
2251 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2252 for (i = 0; i < 16; i++)
2253 sc->event_mask[i] &= ~eh->mask[i];
2254 }
2255
2256 if ((cm = mpr_alloc_command(sc)) == NULL)
2257 return (EBUSY);
2258 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2259 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2260 evtreq->MsgFlags = 0;
2261 evtreq->SASBroadcastPrimitiveMasks = 0;
2262 #ifdef MPR_DEBUG_ALL_EVENTS
2263 {
2264 u_char fullmask[16];
2265 memset(fullmask, 0x00, 16);
2266 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2267 }
2268 #else
2269 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2270 #endif
2271 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2272 cm->cm_data = NULL;
2273
2274 error = mpr_request_polled(sc, &cm);
2275 if (cm != NULL)
2276 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2277 if ((reply == NULL) ||
2278 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2279 error = ENXIO;
2280
2281 if (reply)
2282 MPR_DPRINT_EVENT(sc, generic, reply);
2283
2284 mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
2285
2286 if (cm != NULL)
2287 mpr_free_command(sc, cm);
2288 return (error);
2289 }
2290
2291 static int
2292 mpr_reregister_events(struct mpr_softc *sc)
2293 {
2294 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2295 struct mpr_command *cm;
2296 struct mpr_event_handle *eh;
2297 int error, i;
2298
2299 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2300
2301 /* first, reregister events */
2302
2303 memset(sc->event_mask, 0xff, 16);
2304
2305 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2306 for (i = 0; i < 16; i++)
2307 sc->event_mask[i] &= ~eh->mask[i];
2308 }
2309
2310 if ((cm = mpr_alloc_command(sc)) == NULL)
2311 return (EBUSY);
2312 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2313 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2314 evtreq->MsgFlags = 0;
2315 evtreq->SASBroadcastPrimitiveMasks = 0;
2316 #ifdef MPR_DEBUG_ALL_EVENTS
2317 {
2318 u_char fullmask[16];
2319 memset(fullmask, 0x00, 16);
2320 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
2321 }
2322 #else
2323 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
2324 #endif
2325 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2326 cm->cm_data = NULL;
2327 cm->cm_complete = mpr_reregister_events_complete;
2328
2329 error = mpr_map_command(sc, cm);
2330
2331 mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
2332 error);
2333 return (error);
2334 }
2335
2336 int
2337 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
2338 {
2339
2340 TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2341 free(handle, M_MPR);
2342 return (mpr_update_events(sc, NULL, NULL));
2343 }
2344
2345 /**
2346 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
2347 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
2348 * of the NVMe message (PRP1). If the data buffer is small enough to be described
2349 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
2350 * describe a larger data buffer. If the data buffer is too large to describe
2351 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
2352 * first data memory segment, and PRP2 contains a pointer to a PRP list located
2353 * elsewhere in memory to describe the remaining data memory segments. The PRP
2354 * list will be contiguous.
2355
2356 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2357 * consists of a list of PRP entries to describe a number of noncontigous
2358 * physical memory segments as a single memory buffer, just as a SGL does. Note
2359 * however, that this function is only used by the IOCTL call, so the memory
2360 * given will be guaranteed to be contiguous. There is no need to translate
2361 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
2362 * space that is one page size each.
2363 *
2364 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2365 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
2366 * the second PRP element if the memory being described fits within 2 PRP
2367 * entries, or a PRP list pointer if the PRP spans more than two entries.
2368 *
2369 * A PRP list pointer contains the address of a PRP list, structured as a linear
2370 * array of PRP entries. Each PRP entry in this list describes a segment of
2371 * physical memory.
2372 *
2373 * Each 64-bit PRP entry comprises an address and an offset field. The address
2374 * always points to the beginning of a PAGE_SIZE physical memory page, and the
2375 * offset describes where within that page the memory segment begins. Only the
2376 * first element in a PRP list may contain a non-zero offest, implying that all
2377 * memory segments following the first begin at the start of a PAGE_SIZE page.
2378 *
2379 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
2380 * with exceptions for the first and last elements in the list. If the memory
2381 * being described by the list begins at a non-zero offset within the first page,
2382 * then the first PRP element will contain a non-zero offset indicating where the
2383 * region begins within the page. The last memory segment may end before the end
2384 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
2385 * described by the PRP list.
2386 *
2387 * Since PRP entries lack any indication of size, the overall data buffer length
2388 * is used to determine where the end of the data memory buffer is located, and
2389 * how many PRP entries are required to describe it.
2390 *
2391 * Returns nothing.
2392 */
2393 void
2394 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
2395 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
2396 uint32_t data_in_sz, uint32_t data_out_sz)
2397 {
2398 int prp_size = PRP_ENTRY_SIZE;
2399 uint64_t *prp_entry, *prp1_entry, *prp2_entry;
2400 uint64_t *prp_entry_phys, *prp_page, *prp_page_phys;
2401 uint32_t offset, entry_len, page_mask_result, page_mask;
2402 bus_addr_t paddr;
2403 size_t length;
2404 struct mpr_prp_page *prp_page_info = NULL;
2405
2406 /*
2407 * Not all commands require a data transfer. If no data, just return
2408 * without constructing any PRP.
2409 */
2410 if (!data_in_sz && !data_out_sz)
2411 return;
2412
2413 /*
2414 * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
2415 * located at a 24 byte offset from the start of the NVMe command. Then
2416 * set the current PRP entry pointer to PRP1.
2417 */
2418 prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2419 NVME_CMD_PRP1_OFFSET);
2420 prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
2421 NVME_CMD_PRP2_OFFSET);
2422 prp_entry = prp1_entry;
2423
2424 /*
2425 * For the PRP entries, use the specially allocated buffer of
2426 * contiguous memory. PRP Page allocation failures should not happen
2427 * because there should be enough PRP page buffers to account for the
2428 * possible NVMe QDepth.
2429 */
2430 prp_page_info = mpr_alloc_prp_page(sc);
2431 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2432 "used for building a native NVMe SGL.\n", __func__));
2433 prp_page = (uint64_t *)prp_page_info->prp_page;
2434 prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2435
2436 /*
2437 * Insert the allocated PRP page into the command's PRP page list. This
2438 * will be freed when the command is freed.
2439 */
2440 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2441
2442 /*
2443 * Check if we are within 1 entry of a page boundary we don't want our
2444 * first entry to be a PRP List entry.
2445 */
2446 page_mask = PAGE_SIZE - 1;
2447 page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
2448 page_mask;
2449 if (!page_mask_result)
2450 {
2451 /* Bump up to next page boundary. */
2452 prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
2453 prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
2454 prp_size);
2455 }
2456
2457 /*
2458 * Set PRP physical pointer, which initially points to the current PRP
2459 * DMA memory page.
2460 */
2461 prp_entry_phys = prp_page_phys;
2462
2463 /* Get physical address and length of the data buffer. */
2464 paddr = (bus_addr_t)data;
2465 if (data_in_sz)
2466 length = data_in_sz;
2467 else
2468 length = data_out_sz;
2469
2470 /* Loop while the length is not zero. */
2471 while (length)
2472 {
2473 /*
2474 * Check if we need to put a list pointer here if we are at page
2475 * boundary - prp_size (8 bytes).
2476 */
2477 page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
2478 prp_size) & page_mask;
2479 if (!page_mask_result)
2480 {
2481 /*
2482 * This is the last entry in a PRP List, so we need to
2483 * put a PRP list pointer here. What this does is:
2484 * - bump the current memory pointer to the next
2485 * address, which will be the next full page.
2486 * - set the PRP Entry to point to that page. This is
2487 * now the PRP List pointer.
2488 * - bump the PRP Entry pointer the start of the next
2489 * page. Since all of this PRP memory is contiguous,
2490 * no need to get a new page - it's just the next
2491 * address.
2492 */
2493 prp_entry_phys++;
2494 *prp_entry =
2495 htole64((uint64_t)(uintptr_t)prp_entry_phys);
2496 prp_entry++;
2497 }
2498
2499 /* Need to handle if entry will be part of a page. */
2500 offset = (uint32_t)paddr & page_mask;
2501 entry_len = PAGE_SIZE - offset;
2502
2503 if (prp_entry == prp1_entry)
2504 {
2505 /*
2506 * Must fill in the first PRP pointer (PRP1) before
2507 * moving on.
2508 */
2509 *prp1_entry = htole64((uint64_t)paddr);
2510
2511 /*
2512 * Now point to the second PRP entry within the
2513 * command (PRP2).
2514 */
2515 prp_entry = prp2_entry;
2516 }
2517 else if (prp_entry == prp2_entry)
2518 {
2519 /*
2520 * Should the PRP2 entry be a PRP List pointer or just a
2521 * regular PRP pointer? If there is more than one more
2522 * page of data, must use a PRP List pointer.
2523 */
2524 if (length > PAGE_SIZE)
2525 {
2526 /*
2527 * PRP2 will contain a PRP List pointer because
2528 * more PRP's are needed with this command. The
2529 * list will start at the beginning of the
2530 * contiguous buffer.
2531 */
2532 *prp2_entry =
2533 htole64(
2534 (uint64_t)(uintptr_t)prp_entry_phys);
2535
2536 /*
2537 * The next PRP Entry will be the start of the
2538 * first PRP List.
2539 */
2540 prp_entry = prp_page;
2541 }
2542 else
2543 {
2544 /*
2545 * After this, the PRP Entries are complete.
2546 * This command uses 2 PRP's and no PRP list.
2547 */
2548 *prp2_entry = htole64((uint64_t)paddr);
2549 }
2550 }
2551 else
2552 {
2553 /*
2554 * Put entry in list and bump the addresses.
2555 *
2556 * After PRP1 and PRP2 are filled in, this will fill in
2557 * all remaining PRP entries in a PRP List, one per each
2558 * time through the loop.
2559 */
2560 *prp_entry = htole64((uint64_t)paddr);
2561 prp_entry++;
2562 prp_entry_phys++;
2563 }
2564
2565 /*
2566 * Bump the phys address of the command's data buffer by the
2567 * entry_len.
2568 */
2569 paddr += entry_len;
2570
2571 /* Decrement length accounting for last partial page. */
2572 if (entry_len > length)
2573 length = 0;
2574 else
2575 length -= entry_len;
2576 }
2577 }
2578
2579 /*
2580 * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
2581 * determine if the driver needs to build a native SGL. If so, that native SGL
2582 * is built in the contiguous buffers allocated especially for PCIe SGL
2583 * creation. If the driver will not build a native SGL, return TRUE and a
2584 * normal IEEE SGL will be built. Currently this routine supports NVMe devices
2585 * only.
2586 *
2587 * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
2588 */
2589 static int
2590 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
2591 bus_dma_segment_t *segs, int segs_left)
2592 {
2593 uint32_t i, sge_dwords, length, offset, entry_len;
2594 uint32_t num_entries, buff_len = 0, sges_in_segment;
2595 uint32_t page_mask, page_mask_result, *curr_buff;
2596 uint32_t *ptr_sgl, *ptr_first_sgl, first_page_offset;
2597 uint32_t first_page_data_size, end_residual;
2598 uint64_t *msg_phys;
2599 bus_addr_t paddr;
2600 int build_native_sgl = 0, first_prp_entry;
2601 int prp_size = PRP_ENTRY_SIZE;
2602 Mpi25IeeeSgeChain64_t *main_chain_element = NULL;
2603 struct mpr_prp_page *prp_page_info = NULL;
2604
2605 mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
2606
2607 /*
2608 * Add up the sizes of each segment length to get the total transfer
2609 * size, which will be checked against the Maximum Data Transfer Size.
2610 * If the data transfer length exceeds the MDTS for this device, just
2611 * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
2612 * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
2613 */
2614 for (i = 0; i < segs_left; i++)
2615 buff_len += htole32(segs[i].ds_len);
2616 if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
2617 return 1;
2618
2619 /* Create page_mask (to get offset within page) */
2620 page_mask = PAGE_SIZE - 1;
2621
2622 /*
2623 * Check if the number of elements exceeds the max number that can be
2624 * put in the main message frame (H/W can only translate an SGL that
2625 * is contained entirely in the main message frame).
2626 */
2627 sges_in_segment = (sc->facts->IOCRequestFrameSize -
2628 offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
2629 if (segs_left > sges_in_segment)
2630 build_native_sgl = 1;
2631 else
2632 {
2633 /*
2634 * NVMe uses one PRP for each physical page (or part of physical
2635 * page).
2636 * if 4 pages or less then IEEE is OK
2637 * if > 5 pages then we need to build a native SGL
2638 * if > 4 and <= 5 pages, then check the physical address of
2639 * the first SG entry, then if this first size in the page
2640 * is >= the residual beyond 4 pages then use IEEE,
2641 * otherwise use native SGL
2642 */
2643 if (buff_len > (PAGE_SIZE * 5))
2644 build_native_sgl = 1;
2645 else if ((buff_len > (PAGE_SIZE * 4)) &&
2646 (buff_len <= (PAGE_SIZE * 5)) )
2647 {
2648 msg_phys = (uint64_t *)segs[0].ds_addr;
2649 first_page_offset =
2650 ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
2651 page_mask);
2652 first_page_data_size = PAGE_SIZE - first_page_offset;
2653 end_residual = buff_len % PAGE_SIZE;
2654
2655 /*
2656 * If offset into first page pushes the end of the data
2657 * beyond end of the 5th page, we need the extra PRP
2658 * list.
2659 */
2660 if (first_page_data_size < end_residual)
2661 build_native_sgl = 1;
2662
2663 /*
2664 * Check if first SG entry size is < residual beyond 4
2665 * pages.
2666 */
2667 if (htole32(segs[0].ds_len) <
2668 (buff_len - (PAGE_SIZE * 4)))
2669 build_native_sgl = 1;
2670 }
2671 }
2672
2673 /* check if native SGL is needed */
2674 if (!build_native_sgl)
2675 return 1;
2676
2677 /*
2678 * Native SGL is needed.
2679 * Put a chain element in main message frame that points to the first
2680 * chain buffer.
2681 *
2682 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2683 * a native SGL.
2684 */
2685
2686 /* Set main message chain element pointer */
2687 main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
2688
2689 /*
2690 * For NVMe the chain element needs to be the 2nd SGL entry in the main
2691 * message.
2692 */
2693 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2694 ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2695
2696 /*
2697 * For the PRP entries, use the specially allocated buffer of
2698 * contiguous memory. PRP Page allocation failures should not happen
2699 * because there should be enough PRP page buffers to account for the
2700 * possible NVMe QDepth.
2701 */
2702 prp_page_info = mpr_alloc_prp_page(sc);
2703 KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
2704 "used for building a native NVMe SGL.\n", __func__));
2705 curr_buff = (uint32_t *)prp_page_info->prp_page;
2706 msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
2707
2708 /*
2709 * Insert the allocated PRP page into the command's PRP page list. This
2710 * will be freed when the command is freed.
2711 */
2712 TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
2713
2714 /*
2715 * Check if we are within 1 entry of a page boundary we don't want our
2716 * first entry to be a PRP List entry.
2717 */
2718 page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
2719 page_mask;
2720 if (!page_mask_result) {
2721 /* Bump up to next page boundary. */
2722 curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
2723 msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
2724 }
2725
2726 /* Fill in the chain element and make it an NVMe segment type. */
2727 main_chain_element->Address.High =
2728 htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
2729 main_chain_element->Address.Low =
2730 htole32((uint32_t)(uintptr_t)msg_phys);
2731 main_chain_element->NextChainOffset = 0;
2732 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2733 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2734 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2735
2736 /* Set SGL pointer to start of contiguous PCIe buffer. */
2737 ptr_sgl = curr_buff;
2738 sge_dwords = 2;
2739 num_entries = 0;
2740
2741 /*
2742 * NVMe has a very convoluted PRP format. One PRP is required for each
2743 * page or partial page. We need to split up OS SG entries if they are
2744 * longer than one page or cross a page boundary. We also have to insert
2745 * a PRP list pointer entry as the last entry in each physical page of
2746 * the PRP list.
2747 *
2748 * NOTE: The first PRP "entry" is actually placed in the first SGL entry
2749 * in the main message in IEEE 64 format. The 2nd entry in the main
2750 * message is the chain element, and the rest of the PRP entries are
2751 * built in the contiguous PCIe buffer.
2752 */
2753 first_prp_entry = 1;
2754 ptr_first_sgl = (uint32_t *)cm->cm_sge;
2755
2756 for (i = 0; i < segs_left; i++) {
2757 /* Get physical address and length of this SG entry. */
2758 paddr = segs[i].ds_addr;
2759 length = segs[i].ds_len;
2760
2761 /*
2762 * Check whether a given SGE buffer lies on a non-PAGED
2763 * boundary if this is not the first page. If so, this is not
2764 * expected so have FW build the SGL.
2765 */
2766 if (i) {
2767 if ((uint32_t)paddr & page_mask) {
2768 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
2769 "building NVMe PRPs, low address is 0x%x\n",
2770 (uint32_t)paddr);
2771 return 1;
2772 }
2773 }
2774
2775 /* Apart from last SGE, if any other SGE boundary is not page
2776 * aligned then it means that hole exists. Existence of hole
2777 * leads to data corruption. So fallback to IEEE SGEs.
2778 */
2779 if (i != (segs_left - 1)) {
2780 if (((uint32_t)paddr + length) & page_mask) {
2781 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
2782 "boundary while building NVMe PRPs, low "
2783 "address: 0x%x and length: %u\n",
2784 (uint32_t)paddr, length);
2785 return 1;
2786 }
2787 }
2788
2789 /* Loop while the length is not zero. */
2790 while (length) {
2791 /*
2792 * Check if we need to put a list pointer here if we are
2793 * at page boundary - prp_size.
2794 */
2795 page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
2796 prp_size) & page_mask;
2797 if (!page_mask_result) {
2798 /*
2799 * Need to put a PRP list pointer here.
2800 */
2801 msg_phys = (uint64_t *)((uint8_t *)msg_phys +
2802 prp_size);
2803 *ptr_sgl = htole32((uintptr_t)msg_phys);
2804 *(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
2805 msg_phys >> 32);
2806 ptr_sgl += sge_dwords;
2807 num_entries++;
2808 }
2809
2810 /* Need to handle if entry will be part of a page. */
2811 offset = (uint32_t)paddr & page_mask;
2812 entry_len = PAGE_SIZE - offset;
2813 if (first_prp_entry) {
2814 /*
2815 * Put IEEE entry in first SGE in main message.
2816 * (Simple element, System addr, not end of
2817 * list.)
2818 */
2819 *ptr_first_sgl = htole32((uint32_t)paddr);
2820 *(ptr_first_sgl + 1) =
2821 htole32((uint32_t)((uint64_t)paddr >> 32));
2822 *(ptr_first_sgl + 2) = htole32(entry_len);
2823 *(ptr_first_sgl + 3) = 0;
2824
2825 /* No longer the first PRP entry. */
2826 first_prp_entry = 0;
2827 } else {
2828 /* Put entry in list. */
2829 *ptr_sgl = htole32((uint32_t)paddr);
2830 *(ptr_sgl + 1) =
2831 htole32((uint32_t)((uint64_t)paddr >> 32));
2832
2833 /* Bump ptr_sgl, msg_phys, and num_entries. */
2834 ptr_sgl += sge_dwords;
2835 msg_phys = (uint64_t *)((uint8_t *)msg_phys +
2836 prp_size);
2837 num_entries++;
2838 }
2839
2840 /* Bump the phys address by the entry_len. */
2841 paddr += entry_len;
2842
2843 /* Decrement length accounting for last partial page. */
2844 if (entry_len > length)
2845 length = 0;
2846 else
2847 length -= entry_len;
2848 }
2849 }
2850
2851 /* Set chain element Length. */
2852 main_chain_element->Length = htole32(num_entries * prp_size);
2853
2854 /* Return 0, indicating we built a native SGL. */
2855 return 0;
2856 }
2857
2858 /*
2859 * Add a chain element as the next SGE for the specified command.
2860 * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
2861 * only required for IEEE commands. Therefore there is no code for commands
2862 * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
2863 * shouldn't be requesting chains).
2864 */
2865 static int
2866 mpr_add_chain(struct mpr_command *cm, int segsleft)
2867 {
2868 struct mpr_softc *sc = cm->cm_sc;
2869 MPI2_REQUEST_HEADER *req;
2870 MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
2871 struct mpr_chain *chain;
2872 int sgc_size, current_segs, rem_segs, segs_per_frame;
2873 uint8_t next_chain_offset = 0;
2874
2875 /*
2876 * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3
2877 * only IEEE commands should be requesting chains. Return some error
2878 * code other than 0.
2879 */
2880 if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
2881 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
2882 "an MPI SGL.\n");
2883 return(ENOBUFS);
2884 }
2885
2886 sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
2887 if (cm->cm_sglsize < sgc_size)
2888 panic("MPR: Need SGE Error Code\n");
2889
2890 chain = mpr_alloc_chain(cm->cm_sc);
2891 if (chain == NULL)
2892 return (ENOBUFS);
2893
2894 /*
2895 * Note: a double-linked list is used to make it easier to walk for
2896 * debugging.
2897 */
2898 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2899
2900 /*
2901 * Need to know if the number of frames left is more than 1 or not. If
2902 * more than 1 frame is required, NextChainOffset will need to be set,
2903 * which will just be the last segment of the frame.
2904 */
2905 rem_segs = 0;
2906 if (cm->cm_sglsize < (sgc_size * segsleft)) {
2907 /*
2908 * rem_segs is the number of segements remaining after the
2909 * segments that will go into the current frame. Since it is
2910 * known that at least one more frame is required, account for
2911 * the chain element. To know if more than one more frame is
2912 * required, just check if there will be a remainder after using
2913 * the current frame (with this chain) and the next frame. If
2914 * so the NextChainOffset must be the last element of the next
2915 * frame.
2916 */
2917 current_segs = (cm->cm_sglsize / sgc_size) - 1;
2918 rem_segs = segsleft - current_segs;
2919 segs_per_frame = sc->chain_frame_size / sgc_size;
2920 if (rem_segs > segs_per_frame) {
2921 next_chain_offset = segs_per_frame - 1;
2922 }
2923 }
2924 ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
2925 ieee_sgc->Length = next_chain_offset ?
2926 htole32((uint32_t)sc->chain_frame_size) :
2927 htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
2928 ieee_sgc->NextChainOffset = next_chain_offset;
2929 ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2930 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
2931 ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
2932 ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
2933 cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
2934 req = (MPI2_REQUEST_HEADER *)cm->cm_req;
2935 req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
2936
2937 cm->cm_sglsize = sc->chain_frame_size;
2938 return (0);
2939 }
2940
2941 /*
2942 * Add one scatter-gather element to the scatter-gather list for a command.
2943 * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
2944 * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a
2945 * chain, so don't consider any chain additions.
2946 */
2947 int
2948 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
2949 int segsleft)
2950 {
2951 uint32_t saved_buf_len, saved_address_low, saved_address_high;
2952 u32 sge_flags;
2953
2954 /*
2955 * case 1: >=1 more segment, no room for anything (error)
2956 * case 2: 1 more segment and enough room for it
2957 */
2958
2959 if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
2960 mpr_dprint(cm->cm_sc, MPR_ERROR,
2961 "%s: warning: Not enough room for MPI SGL in frame.\n",
2962 __func__);
2963 return(ENOBUFS);
2964 }
2965
2966 KASSERT(segsleft == 1,
2967 ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
2968 segsleft));
2969
2970 /*
2971 * There is one more segment left to add for the MPI SGL and there is
2972 * enough room in the frame to add it. This is the normal case because
2973 * MPI SGL's don't have chains, otherwise something is wrong.
2974 *
2975 * If this is a bi-directional request, need to account for that
2976 * here. Save the pre-filled sge values. These will be used
2977 * either for the 2nd SGL or for a single direction SGL. If
2978 * cm_out_len is non-zero, this is a bi-directional request, so
2979 * fill in the OUT SGL first, then the IN SGL, otherwise just
2980 * fill in the IN SGL. Note that at this time, when filling in
2981 * 2 SGL's for a bi-directional request, they both use the same
2982 * DMA buffer (same cm command).
2983 */
2984 saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
2985 saved_address_low = sge->Address.Low;
2986 saved_address_high = sge->Address.High;
2987 if (cm->cm_out_len) {
2988 sge->FlagsLength = cm->cm_out_len |
2989 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2990 MPI2_SGE_FLAGS_END_OF_BUFFER |
2991 MPI2_SGE_FLAGS_HOST_TO_IOC |
2992 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2993 MPI2_SGE_FLAGS_SHIFT);
2994 cm->cm_sglsize -= len;
2995 /* Endian Safe code */
2996 sge_flags = sge->FlagsLength;
2997 sge->FlagsLength = htole32(sge_flags);
2998 sge->Address.High = htole32(sge->Address.High);
2999 sge->Address.Low = htole32(sge->Address.Low);
3000 bcopy(sge, cm->cm_sge, len);
3001 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3002 }
3003 sge->FlagsLength = saved_buf_len |
3004 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3005 MPI2_SGE_FLAGS_END_OF_BUFFER |
3006 MPI2_SGE_FLAGS_LAST_ELEMENT |
3007 MPI2_SGE_FLAGS_END_OF_LIST |
3008 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
3009 MPI2_SGE_FLAGS_SHIFT);
3010 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
3011 sge->FlagsLength |=
3012 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
3013 MPI2_SGE_FLAGS_SHIFT);
3014 } else {
3015 sge->FlagsLength |=
3016 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
3017 MPI2_SGE_FLAGS_SHIFT);
3018 }
3019 sge->Address.Low = saved_address_low;
3020 sge->Address.High = saved_address_high;
3021
3022 cm->cm_sglsize -= len;
3023 /* Endian Safe code */
3024 sge_flags = sge->FlagsLength;
3025 sge->FlagsLength = htole32(sge_flags);
3026 sge->Address.High = htole32(sge->Address.High);
3027 sge->Address.Low = htole32(sge->Address.Low);
3028 bcopy(sge, cm->cm_sge, len);
3029 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
3030 return (0);
3031 }
3032
3033 /*
3034 * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
3035 * gather list for a command. Maintain cm_sglsize and cm_sge as the
3036 * remaining size and pointer to the next SGE to fill in, respectively.
3037 */
3038 int
3039 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
3040 {
3041 MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
3042 int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
3043 uint32_t saved_buf_len, saved_address_low, saved_address_high;
3044 uint32_t sge_length;
3045
3046 /*
3047 * case 1: No room for chain or segment (error).
3048 * case 2: Two or more segments left but only room for chain.
3049 * case 3: Last segment and room for it, so set flags.
3050 */
3051
3052 /*
3053 * There should be room for at least one element, or there is a big
3054 * problem.
3055 */
3056 if (cm->cm_sglsize < ieee_sge_size)
3057 panic("MPR: Need SGE Error Code\n");
3058
3059 if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
3060 if ((error = mpr_add_chain(cm, segsleft)) != 0)
3061 return (error);
3062 }
3063
3064 if (segsleft == 1) {
3065 /*
3066 * If this is a bi-directional request, need to account for that
3067 * here. Save the pre-filled sge values. These will be used
3068 * either for the 2nd SGL or for a single direction SGL. If
3069 * cm_out_len is non-zero, this is a bi-directional request, so
3070 * fill in the OUT SGL first, then the IN SGL, otherwise just
3071 * fill in the IN SGL. Note that at this time, when filling in
3072 * 2 SGL's for a bi-directional request, they both use the same
3073 * DMA buffer (same cm command).
3074 */
3075 saved_buf_len = sge->Length;
3076 saved_address_low = sge->Address.Low;
3077 saved_address_high = sge->Address.High;
3078 if (cm->cm_out_len) {
3079 sge->Length = cm->cm_out_len;
3080 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3081 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3082 cm->cm_sglsize -= ieee_sge_size;
3083 /* Endian Safe code */
3084 sge_length = sge->Length;
3085 sge->Length = htole32(sge_length);
3086 sge->Address.High = htole32(sge->Address.High);
3087 sge->Address.Low = htole32(sge->Address.Low);
3088 bcopy(sgep, cm->cm_sge, ieee_sge_size);
3089 cm->cm_sge =
3090 (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3091 ieee_sge_size);
3092 }
3093 sge->Length = saved_buf_len;
3094 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3095 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
3096 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
3097 sge->Address.Low = saved_address_low;
3098 sge->Address.High = saved_address_high;
3099 }
3100
3101 cm->cm_sglsize -= ieee_sge_size;
3102 /* Endian Safe code */
3103 sge_length = sge->Length;
3104 sge->Length = htole32(sge_length);
3105 sge->Address.High = htole32(sge->Address.High);
3106 sge->Address.Low = htole32(sge->Address.Low);
3107 bcopy(sgep, cm->cm_sge, ieee_sge_size);
3108 cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
3109 ieee_sge_size);
3110 return (0);
3111 }
3112
3113 /*
3114 * Add one dma segment to the scatter-gather list for a command.
3115 */
3116 int
3117 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
3118 int segsleft)
3119 {
3120 MPI2_SGE_SIMPLE64 sge;
3121 MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
3122
3123 if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
3124 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3125 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
3126 ieee_sge.Length = len;
3127 mpr_from_u64(pa, &ieee_sge.Address);
3128
3129 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
3130 } else {
3131 /*
3132 * This driver always uses 64-bit address elements for
3133 * simplicity.
3134 */
3135 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
3136 MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
3137 /* Set Endian safe macro in mpr_push_sge */
3138 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
3139 mpr_from_u64(pa, &sge.Address);
3140
3141 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
3142 }
3143 }
3144
3145 static void
3146 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3147 {
3148 struct mpr_softc *sc;
3149 struct mpr_command *cm;
3150 u_int i, dir, sflags;
3151
3152 cm = (struct mpr_command *)arg;
3153 sc = cm->cm_sc;
3154
3155 /*
3156 * In this case, just print out a warning and let the chip tell the
3157 * user they did the wrong thing.
3158 */
3159 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
3160 mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
3161 "segments, more than the %d allowed\n", __func__, nsegs,
3162 cm->cm_max_segs);
3163 }
3164
3165 /*
3166 * Set up DMA direction flags. Bi-directional requests are also handled
3167 * here. In that case, both direction flags will be set.
3168 */
3169 sflags = 0;
3170 if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
3171 /*
3172 * We have to add a special case for SMP passthrough, there
3173 * is no easy way to generically handle it. The first
3174 * S/G element is used for the command (therefore the
3175 * direction bit needs to be set). The second one is used
3176 * for the reply. We'll leave it to the caller to make
3177 * sure we only have two buffers.
3178 */
3179 /*
3180 * Even though the busdma man page says it doesn't make
3181 * sense to have both direction flags, it does in this case.
3182 * We have one s/g element being accessed in each direction.
3183 */
3184 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
3185
3186 /*
3187 * Set the direction flag on the first buffer in the SMP
3188 * passthrough request. We'll clear it for the second one.
3189 */
3190 sflags |= MPI2_SGE_FLAGS_DIRECTION |
3191 MPI2_SGE_FLAGS_END_OF_BUFFER;
3192 } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
3193 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
3194 dir = BUS_DMASYNC_PREWRITE;
3195 } else
3196 dir = BUS_DMASYNC_PREREAD;
3197
3198 /* Check if a native SG list is needed for an NVMe PCIe device. */
3199 if (cm->cm_targ && cm->cm_targ->is_nvme &&
3200 mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
3201 /* A native SG list was built, skip to end. */
3202 goto out;
3203 }
3204
3205 for (i = 0; i < nsegs; i++) {
3206 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
3207 sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
3208 }
3209 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
3210 sflags, nsegs - i);
3211 if (error != 0) {
3212 /* Resource shortage, roll back! */
3213 if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
3214 mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
3215 "consider increasing hw.mpr.max_chains.\n");
3216 cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
3217 mpr_complete_command(sc, cm);
3218 return;
3219 }
3220 }
3221
3222 out:
3223 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
3224 mpr_enqueue_request(sc, cm);
3225
3226 return;
3227 }
3228
3229 static void
3230 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
3231 int error)
3232 {
3233 mpr_data_cb(arg, segs, nsegs, error);
3234 }
3235
3236 /*
3237 * This is the routine to enqueue commands ansynchronously.
3238 * Note that the only error path here is from bus_dmamap_load(), which can
3239 * return EINPROGRESS if it is waiting for resources. Other than this, it's
3240 * assumed that if you have a command in-hand, then you have enough credits
3241 * to use it.
3242 */
3243 int
3244 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
3245 {
3246 int error = 0;
3247
3248 if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
3249 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3250 &cm->cm_uio, mpr_data_cb2, cm, 0);
3251 } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
3252 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3253 cm->cm_data, mpr_data_cb, cm, 0);
3254 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3255 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3256 cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
3257 } else {
3258 /* Add a zero-length element as needed */
3259 if (cm->cm_sge != NULL)
3260 mpr_add_dmaseg(cm, 0, 0, 0, 1);
3261 mpr_enqueue_request(sc, cm);
3262 }
3263
3264 return (error);
3265 }
3266
3267 /*
3268 * This is the routine to enqueue commands synchronously. An error of
3269 * EINPROGRESS from mpr_map_command() is ignored since the command will
3270 * be executed and enqueued automatically. Other errors come from msleep().
3271 */
3272 int
3273 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
3274 int sleep_flag)
3275 {
3276 int error, rc;
3277 struct timeval cur_time, start_time;
3278 struct mpr_command *cm = *cmp;
3279
3280 if (sc->mpr_flags & MPR_FLAGS_DIAGRESET)
3281 return EBUSY;
3282
3283 cm->cm_complete = NULL;
3284 cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
3285 error = mpr_map_command(sc, cm);
3286 if ((error != 0) && (error != EINPROGRESS))
3287 return (error);
3288
3289 // Check for context and wait for 50 mSec at a time until time has
3290 // expired or the command has finished. If msleep can't be used, need
3291 // to poll.
3292 #if __FreeBSD_version >= 1000029
3293 if (curthread->td_no_sleeping)
3294 #else //__FreeBSD_version < 1000029
3295 if (curthread->td_pflags & TDP_NOSLEEPING)
3296 #endif //__FreeBSD_version >= 1000029
3297 sleep_flag = NO_SLEEP;
3298 getmicrouptime(&start_time);
3299 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
3300 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
3301 if (error == EWOULDBLOCK) {
3302 /*
3303 * Record the actual elapsed time in the case of a
3304 * timeout for the message below.
3305 */
3306 getmicrouptime(&cur_time);
3307 timevalsub(&cur_time, &start_time);
3308 }
3309 } else {
3310 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3311 mpr_intr_locked(sc);
3312 if (sleep_flag == CAN_SLEEP)
3313 pause("mprwait", hz/20);
3314 else
3315 DELAY(50000);
3316
3317 getmicrouptime(&cur_time);
3318 timevalsub(&cur_time, &start_time);
3319 if (cur_time.tv_sec > timeout) {
3320 error = EWOULDBLOCK;
3321 break;
3322 }
3323 }
3324 }
3325
3326 if (error == EWOULDBLOCK) {
3327 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
3328 " elapsed=%jd\n", __func__, timeout,
3329 (intmax_t)cur_time.tv_sec);
3330 rc = mpr_reinit(sc);
3331 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3332 "failed");
3333 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3334 /*
3335 * Tell the caller that we freed the command in a
3336 * reinit.
3337 */
3338 *cmp = NULL;
3339 }
3340 error = ETIMEDOUT;
3341 }
3342 return (error);
3343 }
3344
3345 /*
3346 * This is the routine to enqueue a command synchonously and poll for
3347 * completion. Its use should be rare.
3348 */
3349 int
3350 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
3351 {
3352 int error, rc;
3353 struct timeval cur_time, start_time;
3354 struct mpr_command *cm = *cmp;
3355
3356 error = 0;
3357
3358 cm->cm_flags |= MPR_CM_FLAGS_POLLED;
3359 cm->cm_complete = NULL;
3360 mpr_map_command(sc, cm);
3361
3362 getmicrouptime(&start_time);
3363 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
3364 mpr_intr_locked(sc);
3365
3366 if (mtx_owned(&sc->mpr_mtx))
3367 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
3368 "mprpoll", hz/20);
3369 else
3370 pause("mprpoll", hz/20);
3371
3372 /*
3373 * Check for real-time timeout and fail if more than 60 seconds.
3374 */
3375 getmicrouptime(&cur_time);
3376 timevalsub(&cur_time, &start_time);
3377 if (cur_time.tv_sec > 60) {
3378 mpr_dprint(sc, MPR_FAULT, "polling failed\n");
3379 error = ETIMEDOUT;
3380 break;
3381 }
3382 }
3383
3384 if (error) {
3385 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
3386 rc = mpr_reinit(sc);
3387 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3388 "failed");
3389
3390 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
3391 /*
3392 * Tell the caller that we freed the command in a
3393 * reinit.
3394 */
3395 *cmp = NULL;
3396 }
3397 }
3398 return (error);
3399 }
3400
3401 /*
3402 * The MPT driver had a verbose interface for config pages. In this driver,
3403 * reduce it to much simpler terms, similar to the Linux driver.
3404 */
3405 int
3406 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3407 {
3408 MPI2_CONFIG_REQUEST *req;
3409 struct mpr_command *cm;
3410 int error;
3411
3412 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
3413 return (EBUSY);
3414 }
3415
3416 cm = mpr_alloc_command(sc);
3417 if (cm == NULL) {
3418 return (EBUSY);
3419 }
3420
3421 req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3422 req->Function = MPI2_FUNCTION_CONFIG;
3423 req->Action = params->action;
3424 req->SGLFlags = 0;
3425 req->ChainOffset = 0;
3426 req->PageAddress = params->page_address;
3427 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3428 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3429
3430 hdr = ¶ms->hdr.Ext;
3431 req->ExtPageType = hdr->ExtPageType;
3432 req->ExtPageLength = hdr->ExtPageLength;
3433 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3434 req->Header.PageLength = 0; /* Must be set to zero */
3435 req->Header.PageNumber = hdr->PageNumber;
3436 req->Header.PageVersion = hdr->PageVersion;
3437 } else {
3438 MPI2_CONFIG_PAGE_HEADER *hdr;
3439
3440 hdr = ¶ms->hdr.Struct;
3441 req->Header.PageType = hdr->PageType;
3442 req->Header.PageNumber = hdr->PageNumber;
3443 req->Header.PageLength = hdr->PageLength;
3444 req->Header.PageVersion = hdr->PageVersion;
3445 }
3446
3447 cm->cm_data = params->buffer;
3448 cm->cm_length = params->length;
3449 if (cm->cm_data != NULL) {
3450 cm->cm_sge = &req->PageBufferSGE;
3451 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3452 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
3453 } else
3454 cm->cm_sge = NULL;
3455 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3456
3457 cm->cm_complete_data = params;
3458 if (params->callback != NULL) {
3459 cm->cm_complete = mpr_config_complete;
3460 return (mpr_map_command(sc, cm));
3461 } else {
3462 error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
3463 if (error) {
3464 mpr_dprint(sc, MPR_FAULT,
3465 "Error %d reading config page\n", error);
3466 if (cm != NULL)
3467 mpr_free_command(sc, cm);
3468 return (error);
3469 }
3470 mpr_config_complete(sc, cm);
3471 }
3472
3473 return (0);
3474 }
3475
3476 int
3477 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
3478 {
3479 return (EINVAL);
3480 }
3481
3482 static void
3483 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
3484 {
3485 MPI2_CONFIG_REPLY *reply;
3486 struct mpr_config_params *params;
3487
3488 MPR_FUNCTRACE(sc);
3489 params = cm->cm_complete_data;
3490
3491 if (cm->cm_data != NULL) {
3492 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3493 BUS_DMASYNC_POSTREAD);
3494 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3495 }
3496
3497 /*
3498 * XXX KDM need to do more error recovery? This results in the
3499 * device in question not getting probed.
3500 */
3501 if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
3502 params->status = MPI2_IOCSTATUS_BUSY;
3503 goto done;
3504 }
3505
3506 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3507 if (reply == NULL) {
3508 params->status = MPI2_IOCSTATUS_BUSY;
3509 goto done;
3510 }
3511 params->status = reply->IOCStatus;
3512 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3513 params->hdr.Ext.ExtPageType = reply->ExtPageType;
3514 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3515 params->hdr.Ext.PageType = reply->Header.PageType;
3516 params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3517 params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3518 } else {
3519 params->hdr.Struct.PageType = reply->Header.PageType;
3520 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3521 params->hdr.Struct.PageLength = reply->Header.PageLength;
3522 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3523 }
3524
3525 done:
3526 mpr_free_command(sc, cm);
3527 if (params->callback != NULL)
3528 params->callback(sc, params);
3529
3530 return;
3531 }
Cache object: 33b1bd0f764633689229fe558a0af1db
|