The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/mpr/mpr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2009 Yahoo! Inc.
    3  * Copyright (c) 2011-2015 LSI Corp.
    4  * Copyright (c) 2013-2016 Avago Technologies
    5  * Copyright 2000-2020 Broadcom Inc.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
   30  *
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 /* Communications core for Avago Technologies (LSI) MPT3 */
   37 
   38 /* TODO Move headers to mprvar */
   39 #include <sys/types.h>
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/kernel.h>
   43 #include <sys/selinfo.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/module.h>
   47 #include <sys/bus.h>
   48 #include <sys/conf.h>
   49 #include <sys/bio.h>
   50 #include <sys/malloc.h>
   51 #include <sys/uio.h>
   52 #include <sys/sysctl.h>
   53 #include <sys/smp.h>
   54 #include <sys/queue.h>
   55 #include <sys/kthread.h>
   56 #include <sys/taskqueue.h>
   57 #include <sys/endian.h>
   58 #include <sys/eventhandler.h>
   59 #include <sys/sbuf.h>
   60 #include <sys/priv.h>
   61 
   62 #include <machine/bus.h>
   63 #include <machine/resource.h>
   64 #include <sys/rman.h>
   65 #include <sys/proc.h>
   66 
   67 #include <dev/pci/pcivar.h>
   68 
   69 #include <cam/cam.h>
   70 #include <cam/cam_ccb.h>
   71 #include <cam/scsi/scsi_all.h>
   72 
   73 #include <dev/mpr/mpi/mpi2_type.h>
   74 #include <dev/mpr/mpi/mpi2.h>
   75 #include <dev/mpr/mpi/mpi2_ioc.h>
   76 #include <dev/mpr/mpi/mpi2_sas.h>
   77 #include <dev/mpr/mpi/mpi2_pci.h>
   78 #include <dev/mpr/mpi/mpi2_cnfg.h>
   79 #include <dev/mpr/mpi/mpi2_init.h>
   80 #include <dev/mpr/mpi/mpi2_tool.h>
   81 #include <dev/mpr/mpr_ioctl.h>
   82 #include <dev/mpr/mprvar.h>
   83 #include <dev/mpr/mpr_table.h>
   84 #include <dev/mpr/mpr_sas.h>
   85 
   86 static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag);
   87 static int mpr_init_queues(struct mpr_softc *sc);
   88 static void mpr_resize_queues(struct mpr_softc *sc);
   89 static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag);
   90 static int mpr_transition_operational(struct mpr_softc *sc);
   91 static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching);
   92 static void mpr_iocfacts_free(struct mpr_softc *sc);
   93 static void mpr_startup(void *arg);
   94 static int mpr_send_iocinit(struct mpr_softc *sc);
   95 static int mpr_alloc_queues(struct mpr_softc *sc);
   96 static int mpr_alloc_hw_queues(struct mpr_softc *sc);
   97 static int mpr_alloc_replies(struct mpr_softc *sc);
   98 static int mpr_alloc_requests(struct mpr_softc *sc);
   99 static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc);
  100 static int mpr_attach_log(struct mpr_softc *sc);
  101 static __inline void mpr_complete_command(struct mpr_softc *sc,
  102     struct mpr_command *cm);
  103 static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
  104     MPI2_EVENT_NOTIFICATION_REPLY *reply);
  105 static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm);
  106 static void mpr_periodic(void *);
  107 static int mpr_reregister_events(struct mpr_softc *sc);
  108 static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm);
  109 static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
  110 static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag);
  111 static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS);
  112 static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS);
  113 static void mpr_parse_debug(struct mpr_softc *sc, char *list);
  114 
  115 SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  116     "MPR Driver Parameters");
  117 
  118 MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory");
  119 
  120 /*
  121  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
  122  * any state and back to its initialization state machine.
  123  */
  124 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
  125 
  126 /* 
  127  * Added this union to smoothly convert le64toh cm->cm_desc.Words.
  128  * Compiler only supports uint64_t to be passed as an argument.
  129  * Otherwise it will throw this error:
  130  * "aggregate value used where an integer was expected"
  131  */
  132 typedef union {
  133         u64 word;
  134         struct {
  135                 u32 low;
  136                 u32 high;
  137         } u;
  138 } request_descriptor_t;
  139 
  140 /* Rate limit chain-fail messages to 1 per minute */
  141 static struct timeval mpr_chainfail_interval = { 60, 0 };
  142 
  143 /* 
  144  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
  145  * If this function is called from process context, it can sleep
  146  * and there is no harm to sleep, in case if this fuction is called
  147  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
  148  * based on sleep flags driver will call either msleep, pause or DELAY.
  149  * msleep and pause are of same variant, but pause is used when mpr_mtx
  150  * is not hold by driver.
  151  */
  152 static int
  153 mpr_diag_reset(struct mpr_softc *sc,int sleep_flag)
  154 {
  155         uint32_t reg;
  156         int i, error, tries = 0;
  157         uint8_t first_wait_done = FALSE;
  158 
  159         mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
  160 
  161         /* Clear any pending interrupts */
  162         mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  163 
  164         /*
  165          * Force NO_SLEEP for threads prohibited to sleep
  166          * e.a Thread from interrupt handler are prohibited to sleep.
  167          */
  168         if (curthread->td_no_sleeping)
  169                 sleep_flag = NO_SLEEP;
  170 
  171         mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag);
  172         /* Push the magic sequence */
  173         error = ETIMEDOUT;
  174         while (tries++ < 20) {
  175                 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
  176                         mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
  177                             mpt2_reset_magic[i]);
  178 
  179                 /* wait 100 msec */
  180                 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
  181                         msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
  182                             "mprdiag", hz/10);
  183                 else if (sleep_flag == CAN_SLEEP)
  184                         pause("mprdiag", hz/10);
  185                 else
  186                         DELAY(100 * 1000);
  187 
  188                 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
  189                 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
  190                         error = 0;
  191                         break;
  192                 }
  193         }
  194         if (error) {
  195                 mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n",
  196                     error);
  197                 return (error);
  198         }
  199 
  200         /* Send the actual reset.  XXX need to refresh the reg? */
  201         reg |= MPI2_DIAG_RESET_ADAPTER;
  202         mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n",
  203             reg);
  204         mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
  205 
  206         /* Wait up to 300 seconds in 50ms intervals */
  207         error = ETIMEDOUT;
  208         for (i = 0; i < 6000; i++) {
  209                 /*
  210                  * Wait 50 msec. If this is the first time through, wait 256
  211                  * msec to satisfy Diag Reset timing requirements.
  212                  */
  213                 if (first_wait_done) {
  214                         if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
  215                                 msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
  216                                     "mprdiag", hz/20);
  217                         else if (sleep_flag == CAN_SLEEP)
  218                                 pause("mprdiag", hz/20);
  219                         else
  220                                 DELAY(50 * 1000);
  221                 } else {
  222                         DELAY(256 * 1000);
  223                         first_wait_done = TRUE;
  224                 }
  225                 /*
  226                  * Check for the RESET_ADAPTER bit to be cleared first, then
  227                  * wait for the RESET state to be cleared, which takes a little
  228                  * longer.
  229                  */
  230                 reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
  231                 if (reg & MPI2_DIAG_RESET_ADAPTER) {
  232                         continue;
  233                 }
  234                 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
  235                 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
  236                         error = 0;
  237                         break;
  238                 }
  239         }
  240         if (error) {
  241                 mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n",
  242                     error);
  243                 return (error);
  244         }
  245 
  246         mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
  247         mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n");
  248 
  249         return (0);
  250 }
  251 
  252 static int
  253 mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag)
  254 {
  255         int error;
  256 
  257         MPR_FUNCTRACE(sc);
  258 
  259         mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
  260 
  261         error = 0;
  262         mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
  263             MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
  264             MPI2_DOORBELL_FUNCTION_SHIFT);
  265 
  266         if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) {
  267                 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
  268                     "Doorbell handshake failed\n");
  269                 error = ETIMEDOUT;
  270         }
  271 
  272         mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
  273         return (error);
  274 }
  275 
  276 static int
  277 mpr_transition_ready(struct mpr_softc *sc)
  278 {
  279         uint32_t reg, state;
  280         int error, tries = 0;
  281         int sleep_flags;
  282 
  283         MPR_FUNCTRACE(sc);
  284         /* If we are in attach call, do not sleep */
  285         sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE)
  286             ? CAN_SLEEP : NO_SLEEP;
  287 
  288         error = 0;
  289 
  290         mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n",
  291             __func__, sleep_flags);
  292 
  293         while (tries++ < 1200) {
  294                 reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
  295                 mpr_dprint(sc, MPR_INIT, "  Doorbell= 0x%x\n", reg);
  296 
  297                 /*
  298                  * Ensure the IOC is ready to talk.  If it's not, try
  299                  * resetting it.
  300                  */
  301                 if (reg & MPI2_DOORBELL_USED) {
  302                         mpr_dprint(sc, MPR_INIT, "  Not ready, sending diag "
  303                             "reset\n");
  304                         mpr_diag_reset(sc, sleep_flags);
  305                         DELAY(50000);
  306                         continue;
  307                 }
  308 
  309                 /* Is the adapter owned by another peer? */
  310                 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
  311                     (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
  312                         mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the "
  313                             "control of another peer host, aborting "
  314                             "initialization.\n");
  315                         error = ENXIO;
  316                         break;
  317                 }
  318                 
  319                 state = reg & MPI2_IOC_STATE_MASK;
  320                 if (state == MPI2_IOC_STATE_READY) {
  321                         /* Ready to go! */
  322                         error = 0;
  323                         break;
  324                 } else if (state == MPI2_IOC_STATE_FAULT) {
  325                         mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault "
  326                             "state 0x%x, resetting\n",
  327                             state & MPI2_DOORBELL_FAULT_CODE_MASK);
  328                         mpr_diag_reset(sc, sleep_flags);
  329                 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
  330                         /* Need to take ownership */
  331                         mpr_message_unit_reset(sc, sleep_flags);
  332                 } else if (state == MPI2_IOC_STATE_RESET) {
  333                         /* Wait a bit, IOC might be in transition */
  334                         mpr_dprint(sc, MPR_INIT|MPR_FAULT,
  335                             "IOC in unexpected reset state\n");
  336                 } else {
  337                         mpr_dprint(sc, MPR_INIT|MPR_FAULT,
  338                             "IOC in unknown state 0x%x\n", state);
  339                         error = EINVAL;
  340                         break;
  341                 }
  342 
  343                 /* Wait 50ms for things to settle down. */
  344                 DELAY(50000);
  345         }
  346 
  347         if (error)
  348                 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
  349                     "Cannot transition IOC to ready\n");
  350         mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
  351         return (error);
  352 }
  353 
  354 static int
  355 mpr_transition_operational(struct mpr_softc *sc)
  356 {
  357         uint32_t reg, state;
  358         int error;
  359 
  360         MPR_FUNCTRACE(sc);
  361 
  362         error = 0;
  363         reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
  364         mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
  365 
  366         state = reg & MPI2_IOC_STATE_MASK;
  367         if (state != MPI2_IOC_STATE_READY) {
  368                 mpr_dprint(sc, MPR_INIT, "IOC not ready\n");
  369                 if ((error = mpr_transition_ready(sc)) != 0) {
  370                         mpr_dprint(sc, MPR_INIT|MPR_FAULT, 
  371                             "failed to transition ready, exit\n");
  372                         return (error);
  373                 }
  374         }
  375 
  376         error = mpr_send_iocinit(sc);
  377         mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
  378 
  379         return (error);
  380 }
  381 
  382 static void
  383 mpr_resize_queues(struct mpr_softc *sc)
  384 {
  385         u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size;
  386 
  387         /*
  388          * Size the queues. Since the reply queues always need one free
  389          * entry, we'll deduct one reply message here.  The LSI documents
  390          * suggest instead to add a count to the request queue, but I think
  391          * that it's better to deduct from reply queue.
  392          */
  393         prireqcr = MAX(1, sc->max_prireqframes);
  394         prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
  395 
  396         reqcr = MAX(2, sc->max_reqframes);
  397         reqcr = MIN(reqcr, sc->facts->RequestCredit);
  398 
  399         sc->num_reqs = prireqcr + reqcr;
  400         sc->num_prireqs = prireqcr;
  401         sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
  402             sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
  403 
  404         /* Store the request frame size in bytes rather than as 32bit words */
  405         sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
  406 
  407         /*
  408          * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to
  409          * get the size of a Chain Frame.  Previous versions use the size as a
  410          * Request Frame for the Chain Frame size.  If IOCMaxChainSegmentSize
  411          * is 0, use the default value.  The IOCMaxChainSegmentSize is the
  412          * number of 16-byte elelements that can fit in a Chain Frame, which is
  413          * the size of an IEEE Simple SGE.
  414          */
  415         if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) {
  416                 chain_seg_size = htole16(sc->facts->IOCMaxChainSegmentSize);
  417                 if (chain_seg_size == 0)
  418                         chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE;
  419                 sc->chain_frame_size = chain_seg_size *
  420                     MPR_MAX_CHAIN_ELEMENT_SIZE;
  421         } else {
  422                 sc->chain_frame_size = sc->reqframesz;
  423         }
  424 
  425         /*
  426          * Max IO Size is Page Size * the following:
  427          * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
  428          * + 1 for no chain needed in last frame
  429          *
  430          * If user suggests a Max IO size to use, use the smaller of the
  431          * user's value and the calculated value as long as the user's
  432          * value is larger than 0. The user's value is in pages.
  433          */
  434         sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1;
  435         maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
  436 
  437         /*
  438          * If I/O size limitation requested then use it and pass up to CAM.
  439          * If not, use maxphys as an optimization hint, but report HW limit.
  440          */
  441         if (sc->max_io_pages > 0) {
  442                 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
  443                 sc->maxio = maxio;
  444         } else {
  445                 sc->maxio = maxio;
  446                 maxio = min(maxio, maxphys);
  447         }
  448 
  449         sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
  450             sges_per_frame * reqcr;
  451         if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
  452                 sc->num_chains = sc->max_chains;
  453 
  454         /*
  455          * Figure out the number of MSIx-based queues.  If the firmware or
  456          * user has done something crazy and not allowed enough credit for
  457          * the queues to be useful then don't enable multi-queue.
  458          */
  459         if (sc->facts->MaxMSIxVectors < 2)
  460                 sc->msi_msgs = 1;
  461 
  462         if (sc->msi_msgs > 1) {
  463                 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
  464                 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
  465                 if (sc->num_reqs / sc->msi_msgs < 2)
  466                         sc->msi_msgs = 1;
  467         }
  468 
  469         mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
  470             sc->msi_msgs, sc->num_reqs, sc->num_replies);
  471 }
  472 
  473 /*
  474  * This is called during attach and when re-initializing due to a Diag Reset.
  475  * IOC Facts is used to allocate many of the structures needed by the driver.
  476  * If called from attach, de-allocation is not required because the driver has
  477  * not allocated any structures yet, but if called from a Diag Reset, previously
  478  * allocated structures based on IOC Facts will need to be freed and re-
  479  * allocated bases on the latest IOC Facts.
  480  */
  481 static int
  482 mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching)
  483 {
  484         int error;
  485         Mpi2IOCFactsReply_t saved_facts;
  486         uint8_t saved_mode, reallocating;
  487 
  488         mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__);
  489 
  490         /* Save old IOC Facts and then only reallocate if Facts have changed */
  491         if (!attaching) {
  492                 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
  493         }
  494 
  495         /*
  496          * Get IOC Facts.  In all cases throughout this function, panic if doing
  497          * a re-initialization and only return the error if attaching so the OS
  498          * can handle it.
  499          */
  500         if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) {
  501                 if (attaching) {
  502                         mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get "
  503                             "IOC Facts with error %d, exit\n", error);
  504                         return (error);
  505                 } else {
  506                         panic("%s failed to get IOC Facts with error %d\n",
  507                             __func__, error);
  508                 }
  509         }
  510 
  511         MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts);
  512 
  513         snprintf(sc->fw_version, sizeof(sc->fw_version), 
  514             "%02d.%02d.%02d.%02d", 
  515             sc->facts->FWVersion.Struct.Major,
  516             sc->facts->FWVersion.Struct.Minor,
  517             sc->facts->FWVersion.Struct.Unit,
  518             sc->facts->FWVersion.Struct.Dev);
  519 
  520         snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
  521             (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
  522             MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT,
  523             (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
  524             MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
  525 
  526         mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
  527             MPR_DRIVER_VERSION);
  528         mpr_dprint(sc, MPR_INFO,
  529             "IOCCapabilities: %b\n", sc->facts->IOCCapabilities,
  530             "\2" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
  531             "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
  532             "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc"
  533             "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV");
  534 
  535         /*
  536          * If the chip doesn't support event replay then a hard reset will be
  537          * required to trigger a full discovery.  Do the reset here then
  538          * retransition to Ready.  A hard reset might have already been done,
  539          * but it doesn't hurt to do it again.  Only do this if attaching, not
  540          * for a Diag Reset.
  541          */
  542         if (attaching && ((sc->facts->IOCCapabilities &
  543             MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
  544                 mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n");
  545                 mpr_diag_reset(sc, NO_SLEEP);
  546                 if ((error = mpr_transition_ready(sc)) != 0) {
  547                         mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
  548                             "transition to ready with error %d, exit\n",
  549                             error);
  550                         return (error);
  551                 }
  552         }
  553 
  554         /*
  555          * Set flag if IR Firmware is loaded.  If the RAID Capability has
  556          * changed from the previous IOC Facts, log a warning, but only if
  557          * checking this after a Diag Reset and not during attach.
  558          */
  559         saved_mode = sc->ir_firmware;
  560         if (sc->facts->IOCCapabilities &
  561             MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
  562                 sc->ir_firmware = 1;
  563         if (!attaching) {
  564                 if (sc->ir_firmware != saved_mode) {
  565                         mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode "
  566                             "in IOC Facts does not match previous mode\n");
  567                 }
  568         }
  569 
  570         /* Only deallocate and reallocate if relevant IOC Facts have changed */
  571         reallocating = FALSE;
  572         sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED;
  573 
  574         if ((!attaching) &&
  575             ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
  576             (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
  577             (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
  578             (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
  579             (saved_facts.ProductID != sc->facts->ProductID) ||
  580             (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
  581             (saved_facts.IOCRequestFrameSize !=
  582             sc->facts->IOCRequestFrameSize) ||
  583             (saved_facts.IOCMaxChainSegmentSize !=
  584             sc->facts->IOCMaxChainSegmentSize) ||
  585             (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
  586             (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
  587             (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
  588             (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
  589             (saved_facts.MaxReplyDescriptorPostQueueDepth !=
  590             sc->facts->MaxReplyDescriptorPostQueueDepth) ||
  591             (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
  592             (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
  593             (saved_facts.MaxPersistentEntries !=
  594             sc->facts->MaxPersistentEntries))) {
  595                 reallocating = TRUE;
  596 
  597                 /* Record that we reallocated everything */
  598                 sc->mpr_flags |= MPR_FLAGS_REALLOCATED;
  599         }
  600 
  601         /*
  602          * Some things should be done if attaching or re-allocating after a Diag
  603          * Reset, but are not needed after a Diag Reset if the FW has not
  604          * changed.
  605          */
  606         if (attaching || reallocating) {
  607                 /*
  608                  * Check if controller supports FW diag buffers and set flag to
  609                  * enable each type.
  610                  */
  611                 if (sc->facts->IOCCapabilities &
  612                     MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
  613                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
  614                             enabled = TRUE;
  615                 if (sc->facts->IOCCapabilities &
  616                     MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
  617                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
  618                             enabled = TRUE;
  619                 if (sc->facts->IOCCapabilities &
  620                     MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
  621                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
  622                             enabled = TRUE;
  623 
  624                 /*
  625                  * Set flags for some supported items.
  626                  */
  627                 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
  628                         sc->eedp_enabled = TRUE;
  629                 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
  630                         sc->control_TLR = TRUE;
  631                 if ((sc->facts->IOCCapabilities &
  632                     MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) &&
  633                     (sc->mpr_flags & MPR_FLAGS_SEA_IOC))
  634                         sc->atomic_desc_capable = TRUE;
  635 
  636                 mpr_resize_queues(sc);
  637 
  638                 /*
  639                  * Initialize all Tail Queues
  640                  */
  641                 TAILQ_INIT(&sc->req_list);
  642                 TAILQ_INIT(&sc->high_priority_req_list);
  643                 TAILQ_INIT(&sc->chain_list);
  644                 TAILQ_INIT(&sc->prp_page_list);
  645                 TAILQ_INIT(&sc->tm_list);
  646         }
  647 
  648         /*
  649          * If doing a Diag Reset and the FW is significantly different
  650          * (reallocating will be set above in IOC Facts comparison), then all
  651          * buffers based on the IOC Facts will need to be freed before they are
  652          * reallocated.
  653          */
  654         if (reallocating) {
  655                 mpr_iocfacts_free(sc);
  656                 mprsas_realloc_targets(sc, saved_facts.MaxTargets +
  657                     saved_facts.MaxVolumes);
  658         }
  659 
  660         /*
  661          * Any deallocation has been completed.  Now start reallocating
  662          * if needed.  Will only need to reallocate if attaching or if the new
  663          * IOC Facts are different from the previous IOC Facts after a Diag
  664          * Reset. Targets have already been allocated above if needed.
  665          */
  666         error = 0;
  667         while (attaching || reallocating) {
  668                 if ((error = mpr_alloc_hw_queues(sc)) != 0)
  669                         break;
  670                 if ((error = mpr_alloc_replies(sc)) != 0)
  671                         break;
  672                 if ((error = mpr_alloc_requests(sc)) != 0)
  673                         break;
  674                 if ((error = mpr_alloc_queues(sc)) != 0)
  675                         break;
  676                 break;
  677         }
  678         if (error) {
  679                 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
  680                     "Failed to alloc queues with error %d\n", error);
  681                 mpr_free(sc);
  682                 return (error);
  683         }
  684 
  685         /* Always initialize the queues */
  686         bzero(sc->free_queue, sc->fqdepth * 4);
  687         mpr_init_queues(sc);
  688 
  689         /*
  690          * Always get the chip out of the reset state, but only panic if not
  691          * attaching.  If attaching and there is an error, that is handled by
  692          * the OS.
  693          */
  694         error = mpr_transition_operational(sc);
  695         if (error != 0) {
  696                 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to "
  697                     "transition to operational with error %d\n", error);
  698                 mpr_free(sc);
  699                 return (error);
  700         }
  701 
  702         /*
  703          * Finish the queue initialization.
  704          * These are set here instead of in mpr_init_queues() because the
  705          * IOC resets these values during the state transition in
  706          * mpr_transition_operational().  The free index is set to 1
  707          * because the corresponding index in the IOC is set to 0, and the
  708          * IOC treats the queues as full if both are set to the same value.
  709          * Hence the reason that the queue can't hold all of the possible
  710          * replies.
  711          */
  712         sc->replypostindex = 0;
  713         mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
  714         mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
  715 
  716         /*
  717          * Attach the subsystems so they can prepare their event masks.
  718          * XXX Should be dynamic so that IM/IR and user modules can attach
  719          */
  720         error = 0;
  721         while (attaching) {
  722                 mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n");
  723                 if ((error = mpr_attach_log(sc)) != 0)
  724                         break;
  725                 if ((error = mpr_attach_sas(sc)) != 0)
  726                         break;
  727                 if ((error = mpr_attach_user(sc)) != 0)
  728                         break;
  729                 break;
  730         }
  731         if (error) {
  732                 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
  733                     "Failed to attach all subsystems: error %d\n", error);
  734                 mpr_free(sc);
  735                 return (error);
  736         }
  737 
  738         /*
  739          * XXX If the number of MSI-X vectors changes during re-init, this
  740          * won't see it and adjust.
  741          */
  742         if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) {
  743                 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
  744                     "Failed to setup interrupts\n");
  745                 mpr_free(sc);
  746                 return (error);
  747         }
  748 
  749         return (error);
  750 }
  751 
  752 /*
  753  * This is called if memory is being free (during detach for example) and when
  754  * buffers need to be reallocated due to a Diag Reset.
  755  */
  756 static void
  757 mpr_iocfacts_free(struct mpr_softc *sc)
  758 {
  759         struct mpr_command *cm;
  760         int i;
  761 
  762         mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
  763 
  764         if (sc->free_busaddr != 0)
  765                 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
  766         if (sc->free_queue != NULL)
  767                 bus_dmamem_free(sc->queues_dmat, sc->free_queue,
  768                     sc->queues_map);
  769         if (sc->queues_dmat != NULL)
  770                 bus_dma_tag_destroy(sc->queues_dmat);
  771 
  772         if (sc->chain_frames != NULL) {
  773                 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
  774                 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
  775                     sc->chain_map);
  776         }
  777         if (sc->chain_dmat != NULL)
  778                 bus_dma_tag_destroy(sc->chain_dmat);
  779 
  780         if (sc->sense_busaddr != 0)
  781                 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
  782         if (sc->sense_frames != NULL)
  783                 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
  784                     sc->sense_map);
  785         if (sc->sense_dmat != NULL)
  786                 bus_dma_tag_destroy(sc->sense_dmat);
  787 
  788         if (sc->prp_page_busaddr != 0)
  789                 bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map);
  790         if (sc->prp_pages != NULL)
  791                 bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages,
  792                     sc->prp_page_map);
  793         if (sc->prp_page_dmat != NULL)
  794                 bus_dma_tag_destroy(sc->prp_page_dmat);
  795 
  796         if (sc->reply_busaddr != 0)
  797                 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
  798         if (sc->reply_frames != NULL)
  799                 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
  800                     sc->reply_map);
  801         if (sc->reply_dmat != NULL)
  802                 bus_dma_tag_destroy(sc->reply_dmat);
  803 
  804         if (sc->req_busaddr != 0)
  805                 bus_dmamap_unload(sc->req_dmat, sc->req_map);
  806         if (sc->req_frames != NULL)
  807                 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
  808         if (sc->req_dmat != NULL)
  809                 bus_dma_tag_destroy(sc->req_dmat);
  810 
  811         if (sc->chains != NULL)
  812                 free(sc->chains, M_MPR);
  813         if (sc->prps != NULL)
  814                 free(sc->prps, M_MPR);
  815         if (sc->commands != NULL) {
  816                 for (i = 1; i < sc->num_reqs; i++) {
  817                         cm = &sc->commands[i];
  818                         bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
  819                 }
  820                 free(sc->commands, M_MPR);
  821         }
  822         if (sc->buffer_dmat != NULL)
  823                 bus_dma_tag_destroy(sc->buffer_dmat);
  824 
  825         mpr_pci_free_interrupts(sc);
  826         free(sc->queues, M_MPR);
  827         sc->queues = NULL;
  828 }
  829 
  830 /* 
  831  * The terms diag reset and hard reset are used interchangeably in the MPI
  832  * docs to mean resetting the controller chip.  In this code diag reset
  833  * cleans everything up, and the hard reset function just sends the reset
  834  * sequence to the chip.  This should probably be refactored so that every
  835  * subsystem gets a reset notification of some sort, and can clean up
  836  * appropriately.
  837  */
  838 int
  839 mpr_reinit(struct mpr_softc *sc)
  840 {
  841         int error;
  842         struct mprsas_softc *sassc;
  843 
  844         sassc = sc->sassc;
  845 
  846         MPR_FUNCTRACE(sc);
  847 
  848         mtx_assert(&sc->mpr_mtx, MA_OWNED);
  849 
  850         mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n");
  851         if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) {
  852                 mpr_dprint(sc, MPR_INIT, "Reset already in progress\n");
  853                 return 0;
  854         }
  855 
  856         /*
  857          * Make sure the completion callbacks can recognize they're getting
  858          * a NULL cm_reply due to a reset.
  859          */
  860         sc->mpr_flags |= MPR_FLAGS_DIAGRESET;
  861 
  862         /*
  863          * Mask interrupts here.
  864          */
  865         mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n");
  866         mpr_mask_intr(sc);
  867 
  868         error = mpr_diag_reset(sc, CAN_SLEEP);
  869         if (error != 0) {
  870                 panic("%s hard reset failed with error %d\n", __func__, error);
  871         }
  872 
  873         /* Restore the PCI state, including the MSI-X registers */
  874         mpr_pci_restore(sc);
  875 
  876         /* Give the I/O subsystem special priority to get itself prepared */
  877         mprsas_handle_reinit(sc);
  878 
  879         /*
  880          * Get IOC Facts and allocate all structures based on this information.
  881          * The attach function will also call mpr_iocfacts_allocate at startup.
  882          * If relevant values have changed in IOC Facts, this function will free
  883          * all of the memory based on IOC Facts and reallocate that memory.
  884          */
  885         if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) {
  886                 panic("%s IOC Facts based allocation failed with error %d\n",
  887                     __func__, error);
  888         }
  889 
  890         /*
  891          * Mapping structures will be re-allocated after getting IOC Page8, so
  892          * free these structures here.
  893          */
  894         mpr_mapping_exit(sc);
  895 
  896         /*
  897          * The static page function currently read is IOC Page8.  Others can be
  898          * added in future.  It's possible that the values in IOC Page8 have
  899          * changed after a Diag Reset due to user modification, so always read
  900          * these.  Interrupts are masked, so unmask them before getting config
  901          * pages.
  902          */
  903         mpr_unmask_intr(sc);
  904         sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET;
  905         mpr_base_static_config_pages(sc);
  906 
  907         /*
  908          * Some mapping info is based in IOC Page8 data, so re-initialize the
  909          * mapping tables.
  910          */
  911         mpr_mapping_initialize(sc);
  912 
  913         /*
  914          * Restart will reload the event masks clobbered by the reset, and
  915          * then enable the port.
  916          */
  917         mpr_reregister_events(sc);
  918 
  919         /* the end of discovery will release the simq, so we're done. */
  920         mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n", 
  921             sc, sc->replypostindex, sc->replyfreeindex);
  922         mprsas_release_simq_reinit(sassc);
  923         mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
  924 
  925         return 0;
  926 }
  927 
  928 /* Wait for the chip to ACK a word that we've put into its FIFO 
  929  * Wait for <timeout> seconds. In single loop wait for busy loop
  930  * for 500 microseconds.
  931  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
  932  * */
  933 static int
  934 mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag)
  935 {
  936         u32 cntdn, count;
  937         u32 int_status;
  938         u32 doorbell;
  939 
  940         count = 0;
  941         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
  942         do {
  943                 int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
  944                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
  945                         mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), "
  946                             "timeout(%d)\n", __func__, count, timeout);
  947                         return 0;
  948                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
  949                         doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
  950                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
  951                             MPI2_IOC_STATE_FAULT) {
  952                                 mpr_dprint(sc, MPR_FAULT,
  953                                     "fault_state(0x%04x)!\n", doorbell);
  954                                 return (EFAULT);
  955                         }
  956                 } else if (int_status == 0xFFFFFFFF)
  957                         goto out;
  958                         
  959                 /*
  960                  * If it can sleep, sleep for 1 milisecond, else busy loop for
  961                  * 0.5 milisecond
  962                  */
  963                 if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP)
  964                         msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba",
  965                             hz/1000);
  966                 else if (sleep_flag == CAN_SLEEP)
  967                         pause("mprdba", hz/1000);
  968                 else
  969                         DELAY(500);
  970                 count++;
  971         } while (--cntdn);
  972 
  973 out:
  974         mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), "
  975                 "int_status(%x)!\n", __func__, count, int_status);
  976         return (ETIMEDOUT);
  977 }
  978 
  979 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
  980 static int
  981 mpr_wait_db_int(struct mpr_softc *sc)
  982 {
  983         int retry;
  984 
  985         for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) {
  986                 if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
  987                     MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
  988                         return (0);
  989                 DELAY(2000);
  990         }
  991         return (ETIMEDOUT);
  992 }
  993 
  994 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
  995 static int
  996 mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
  997     int req_sz, int reply_sz, int timeout)
  998 {
  999         uint32_t *data32;
 1000         uint16_t *data16;
 1001         int i, count, ioc_sz, residual;
 1002         int sleep_flags = CAN_SLEEP;
 1003 
 1004         if (curthread->td_no_sleeping)
 1005                 sleep_flags = NO_SLEEP;
 1006 
 1007         /* Step 1 */
 1008         mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1009 
 1010         /* Step 2 */
 1011         if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
 1012                 return (EBUSY);
 1013 
 1014         /* Step 3
 1015          * Announce that a message is coming through the doorbell.  Messages
 1016          * are pushed at 32bit words, so round up if needed.
 1017          */
 1018         count = (req_sz + 3) / 4;
 1019         mpr_regwrite(sc, MPI2_DOORBELL_OFFSET,
 1020             (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
 1021             (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
 1022 
 1023         /* Step 4 */
 1024         if (mpr_wait_db_int(sc) ||
 1025             (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
 1026                 mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n");
 1027                 return (ENXIO);
 1028         }
 1029         mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1030         if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
 1031                 mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n");
 1032                 return (ENXIO);
 1033         }
 1034 
 1035         /* Step 5 */
 1036         /* Clock out the message data synchronously in 32-bit dwords*/
 1037         data32 = (uint32_t *)req;
 1038         for (i = 0; i < count; i++) {
 1039                 mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
 1040                 if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) {
 1041                         mpr_dprint(sc, MPR_FAULT,
 1042                             "Timeout while writing doorbell\n");
 1043                         return (ENXIO);
 1044                 }
 1045         }
 1046 
 1047         /* Step 6 */
 1048         /* Clock in the reply in 16-bit words.  The total length of the
 1049          * message is always in the 4th byte, so clock out the first 2 words
 1050          * manually, then loop the rest.
 1051          */
 1052         data16 = (uint16_t *)reply;
 1053         if (mpr_wait_db_int(sc) != 0) {
 1054                 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n");
 1055                 return (ENXIO);
 1056         }
 1057         data16[0] =
 1058             mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
 1059         mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1060         if (mpr_wait_db_int(sc) != 0) {
 1061                 mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n");
 1062                 return (ENXIO);
 1063         }
 1064         data16[1] =
 1065             mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
 1066         mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1067 
 1068         /* Number of 32bit words in the message */
 1069         ioc_sz = reply->MsgLength;
 1070 
 1071         /*
 1072          * Figure out how many 16bit words to clock in without overrunning.
 1073          * The precision loss with dividing reply_sz can safely be
 1074          * ignored because the messages can only be multiples of 32bits.
 1075          */
 1076         residual = 0;
 1077         count = MIN((reply_sz / 4), ioc_sz) * 2;
 1078         if (count < ioc_sz * 2) {
 1079                 residual = ioc_sz * 2 - count;
 1080                 mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d "
 1081                     "residual message words\n", residual);
 1082         }
 1083 
 1084         for (i = 2; i < count; i++) {
 1085                 if (mpr_wait_db_int(sc) != 0) {
 1086                         mpr_dprint(sc, MPR_FAULT,
 1087                             "Timeout reading doorbell %d\n", i);
 1088                         return (ENXIO);
 1089                 }
 1090                 data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) &
 1091                     MPI2_DOORBELL_DATA_MASK;
 1092                 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1093         }
 1094 
 1095         /*
 1096          * Pull out residual words that won't fit into the provided buffer.
 1097          * This keeps the chip from hanging due to a driver programming
 1098          * error.
 1099          */
 1100         while (residual--) {
 1101                 if (mpr_wait_db_int(sc) != 0) {
 1102                         mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n");
 1103                         return (ENXIO);
 1104                 }
 1105                 (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET);
 1106                 mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1107         }
 1108 
 1109         /* Step 7 */
 1110         if (mpr_wait_db_int(sc) != 0) {
 1111                 mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n");
 1112                 return (ENXIO);
 1113         }
 1114         if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
 1115                 mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n");
 1116         mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1117 
 1118         return (0);
 1119 }
 1120 
 1121 static void
 1122 mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm)
 1123 {
 1124         request_descriptor_t rd;
 1125 
 1126         MPR_FUNCTRACE(sc);
 1127         mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n",
 1128             cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
 1129 
 1130         if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags &
 1131             MPR_FLAGS_SHUTDOWN))
 1132                 mtx_assert(&sc->mpr_mtx, MA_OWNED);
 1133 
 1134         if (++sc->io_cmds_active > sc->io_cmds_highwater)
 1135                 sc->io_cmds_highwater++;
 1136 
 1137         KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n"));
 1138         cm->cm_state = MPR_CM_STATE_INQUEUE;
 1139 
 1140         if (sc->atomic_desc_capable) {
 1141                 rd.u.low = cm->cm_desc.Words.Low;
 1142                 mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET,
 1143                     rd.u.low);
 1144         } else {
 1145                 rd.u.low = cm->cm_desc.Words.Low;
 1146                 rd.u.high = cm->cm_desc.Words.High;
 1147                 rd.word = htole64(rd.word);
 1148                 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
 1149                     rd.u.low);
 1150                 mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
 1151                     rd.u.high);
 1152         }
 1153 }
 1154 
 1155 /*
 1156  * Just the FACTS, ma'am.
 1157  */
 1158 static int
 1159 mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
 1160 {
 1161         MPI2_DEFAULT_REPLY *reply;
 1162         MPI2_IOC_FACTS_REQUEST request;
 1163         int error, req_sz, reply_sz;
 1164 
 1165         MPR_FUNCTRACE(sc);
 1166         mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
 1167 
 1168         req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
 1169         reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
 1170         reply = (MPI2_DEFAULT_REPLY *)facts;
 1171 
 1172         bzero(&request, req_sz);
 1173         request.Function = MPI2_FUNCTION_IOC_FACTS;
 1174         error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
 1175 
 1176         mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error);
 1177         return (error);
 1178 }
 1179 
 1180 static int
 1181 mpr_send_iocinit(struct mpr_softc *sc)
 1182 {
 1183         MPI2_IOC_INIT_REQUEST   init;
 1184         MPI2_DEFAULT_REPLY      reply;
 1185         int req_sz, reply_sz, error;
 1186         struct timeval now;
 1187         uint64_t time_in_msec;
 1188 
 1189         MPR_FUNCTRACE(sc);
 1190         mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
 1191 
 1192         /* Do a quick sanity check on proper initialization */
 1193         if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
 1194             || (sc->replyframesz == 0)) {
 1195                 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
 1196                     "Driver not fully initialized for IOCInit\n");
 1197                 return (EINVAL);
 1198         }
 1199 
 1200         req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
 1201         reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
 1202         bzero(&init, req_sz);
 1203         bzero(&reply, reply_sz);
 1204 
 1205         /*
 1206          * Fill in the init block.  Note that most addresses are
 1207          * deliberately in the lower 32bits of memory.  This is a micro-
 1208          * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
 1209          */
 1210         init.Function = MPI2_FUNCTION_IOC_INIT;
 1211         init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
 1212         init.MsgVersion = htole16(MPI2_VERSION);
 1213         init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
 1214         init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
 1215         init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
 1216         init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
 1217         init.SenseBufferAddressHigh = 0;
 1218         init.SystemReplyAddressHigh = 0;
 1219         init.SystemRequestFrameBaseAddress.High = 0;
 1220         init.SystemRequestFrameBaseAddress.Low =
 1221             htole32((uint32_t)sc->req_busaddr);
 1222         init.ReplyDescriptorPostQueueAddress.High = 0;
 1223         init.ReplyDescriptorPostQueueAddress.Low =
 1224             htole32((uint32_t)sc->post_busaddr);
 1225         init.ReplyFreeQueueAddress.High = 0;
 1226         init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
 1227         getmicrotime(&now);
 1228         time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
 1229         init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
 1230         init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
 1231         init.HostPageSize = HOST_PAGE_SIZE_4K;
 1232 
 1233         error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
 1234         if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
 1235                 error = ENXIO;
 1236 
 1237         mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
 1238         mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
 1239         return (error);
 1240 }
 1241 
 1242 void
 1243 mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1244 {
 1245         bus_addr_t *addr;
 1246 
 1247         addr = arg;
 1248         *addr = segs[0].ds_addr;
 1249 }
 1250 
 1251 void
 1252 mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1253 {
 1254         struct mpr_busdma_context *ctx;
 1255         int need_unload, need_free;
 1256 
 1257         ctx = (struct mpr_busdma_context *)arg;
 1258         need_unload = 0;
 1259         need_free = 0;
 1260 
 1261         mpr_lock(ctx->softc);
 1262         ctx->error = error;
 1263         ctx->completed = 1;
 1264         if ((error == 0) && (ctx->abandoned == 0)) {
 1265                 *ctx->addr = segs[0].ds_addr;
 1266         } else {
 1267                 if (nsegs != 0)
 1268                         need_unload = 1;
 1269                 if (ctx->abandoned != 0)
 1270                         need_free = 1;
 1271         }
 1272         if (need_free == 0)
 1273                 wakeup(ctx);
 1274 
 1275         mpr_unlock(ctx->softc);
 1276 
 1277         if (need_unload != 0) {
 1278                 bus_dmamap_unload(ctx->buffer_dmat,
 1279                                   ctx->buffer_dmamap);
 1280                 *ctx->addr = 0;
 1281         }
 1282 
 1283         if (need_free != 0)
 1284                 free(ctx, M_MPR);
 1285 }
 1286 
 1287 static int
 1288 mpr_alloc_queues(struct mpr_softc *sc)
 1289 {
 1290         struct mpr_queue *q;
 1291         int nq, i;
 1292 
 1293         nq = sc->msi_msgs;
 1294         mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq);
 1295 
 1296         sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR,
 1297              M_NOWAIT|M_ZERO);
 1298         if (sc->queues == NULL)
 1299                 return (ENOMEM);
 1300 
 1301         for (i = 0; i < nq; i++) {
 1302                 q = &sc->queues[i];
 1303                 mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q);
 1304                 q->sc = sc;
 1305                 q->qnum = i;
 1306         }
 1307         return (0);
 1308 }
 1309 
 1310 static int
 1311 mpr_alloc_hw_queues(struct mpr_softc *sc)
 1312 {
 1313         bus_dma_template_t t;
 1314         bus_addr_t queues_busaddr;
 1315         uint8_t *queues;
 1316         int qsize, fqsize, pqsize;
 1317 
 1318         /*
 1319          * The reply free queue contains 4 byte entries in multiples of 16 and
 1320          * aligned on a 16 byte boundary. There must always be an unused entry.
 1321          * This queue supplies fresh reply frames for the firmware to use.
 1322          *
 1323          * The reply descriptor post queue contains 8 byte entries in
 1324          * multiples of 16 and aligned on a 16 byte boundary.  This queue
 1325          * contains filled-in reply frames sent from the firmware to the host.
 1326          *
 1327          * These two queues are allocated together for simplicity.
 1328          */
 1329         sc->fqdepth = roundup2(sc->num_replies + 1, 16);
 1330         sc->pqdepth = roundup2(sc->num_replies + 1, 16);
 1331         fqsize= sc->fqdepth * 4;
 1332         pqsize = sc->pqdepth * 8;
 1333         qsize = fqsize + pqsize;
 1334 
 1335         bus_dma_template_init(&t, sc->mpr_parent_dmat);
 1336         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize),
 1337             BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1),
 1338             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
 1339         if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
 1340                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n");
 1341                 return (ENOMEM);
 1342         }
 1343         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
 1344             &sc->queues_map)) {
 1345                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n");
 1346                 return (ENOMEM);
 1347         }
 1348         bzero(queues, qsize);
 1349         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
 1350             mpr_memaddr_cb, &queues_busaddr, 0);
 1351 
 1352         sc->free_queue = (uint32_t *)queues;
 1353         sc->free_busaddr = queues_busaddr;
 1354         sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
 1355         sc->post_busaddr = queues_busaddr + fqsize;
 1356         mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n",
 1357             (uintmax_t)sc->free_busaddr, fqsize);
 1358         mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n",
 1359             (uintmax_t)sc->post_busaddr, pqsize);
 1360 
 1361         return (0);
 1362 }
 1363 
 1364 static int
 1365 mpr_alloc_replies(struct mpr_softc *sc)
 1366 {
 1367         bus_dma_template_t t;
 1368         int rsize, num_replies;
 1369 
 1370         /* Store the reply frame size in bytes rather than as 32bit words */
 1371         sc->replyframesz = sc->facts->ReplyFrameSize * 4;
 1372 
 1373         /*
 1374          * sc->num_replies should be one less than sc->fqdepth.  We need to
 1375          * allocate space for sc->fqdepth replies, but only sc->num_replies
 1376          * replies can be used at once.
 1377          */
 1378         num_replies = max(sc->fqdepth, sc->num_replies);
 1379 
 1380         rsize = sc->replyframesz * num_replies; 
 1381         bus_dma_template_init(&t, sc->mpr_parent_dmat);
 1382         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
 1383             BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
 1384             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
 1385         if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
 1386                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n");
 1387                 return (ENOMEM);
 1388         }
 1389         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
 1390             BUS_DMA_NOWAIT, &sc->reply_map)) {
 1391                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n");
 1392                 return (ENOMEM);
 1393         }
 1394         bzero(sc->reply_frames, rsize);
 1395         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
 1396             mpr_memaddr_cb, &sc->reply_busaddr, 0);
 1397         mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n",
 1398             (uintmax_t)sc->reply_busaddr, rsize);
 1399 
 1400         return (0);
 1401 }
 1402 
 1403 static void
 1404 mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1405 {
 1406         struct mpr_softc *sc = arg;
 1407         struct mpr_chain *chain;
 1408         bus_size_t bo;
 1409         int i, o, s;
 1410 
 1411         if (error != 0)
 1412                 return;
 1413 
 1414         for (i = 0, o = 0, s = 0; s < nsegs; s++) {
 1415                 for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len;
 1416                     bo += sc->chain_frame_size) {
 1417                         chain = &sc->chains[i++];
 1418                         chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
 1419                         chain->chain_busaddr = segs[s].ds_addr + bo;
 1420                         o += sc->chain_frame_size;
 1421                         mpr_free_chain(sc, chain);
 1422                 }
 1423                 if (bo != segs[s].ds_len)
 1424                         o += segs[s].ds_len - bo;
 1425         }
 1426         sc->chain_free_lowwater = i;
 1427 }
 1428 
 1429 static int
 1430 mpr_alloc_requests(struct mpr_softc *sc)
 1431 {
 1432         bus_dma_template_t t;
 1433         struct mpr_command *cm;
 1434         int i, rsize, nsegs;
 1435 
 1436         rsize = sc->reqframesz * sc->num_reqs;
 1437         bus_dma_template_init(&t, sc->mpr_parent_dmat);
 1438         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
 1439             BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
 1440             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
 1441         if (bus_dma_template_tag(&t, &sc->req_dmat)) {
 1442                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n");
 1443                 return (ENOMEM);
 1444         }
 1445         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
 1446             BUS_DMA_NOWAIT, &sc->req_map)) {
 1447                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n");
 1448                 return (ENOMEM);
 1449         }
 1450         bzero(sc->req_frames, rsize);
 1451         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
 1452             mpr_memaddr_cb, &sc->req_busaddr, 0);
 1453         mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n",
 1454             (uintmax_t)sc->req_busaddr, rsize);
 1455 
 1456         sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR,
 1457             M_NOWAIT | M_ZERO);
 1458         if (!sc->chains) {
 1459                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
 1460                 return (ENOMEM);
 1461         }
 1462         rsize = sc->chain_frame_size * sc->num_chains;
 1463         bus_dma_template_init(&t, sc->mpr_parent_dmat);
 1464         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
 1465             BD_MAXSEGSIZE(rsize), BD_NSEGMENTS((howmany(rsize, PAGE_SIZE))));
 1466         if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
 1467                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n");
 1468                 return (ENOMEM);
 1469         }
 1470         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
 1471             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
 1472                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n");
 1473                 return (ENOMEM);
 1474         }
 1475         if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
 1476             rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
 1477                 mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n");
 1478                 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
 1479                     sc->chain_map);
 1480                 return (ENOMEM);
 1481         }
 1482 
 1483         rsize = MPR_SENSE_LEN * sc->num_reqs;
 1484         bus_dma_template_clone(&t, sc->req_dmat);
 1485         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize),
 1486             BD_MAXSEGSIZE(rsize));
 1487         if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
 1488                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n");
 1489                 return (ENOMEM);
 1490         }
 1491         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
 1492             BUS_DMA_NOWAIT, &sc->sense_map)) {
 1493                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n");
 1494                 return (ENOMEM);
 1495         }
 1496         bzero(sc->sense_frames, rsize);
 1497         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
 1498             mpr_memaddr_cb, &sc->sense_busaddr, 0);
 1499         mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n",
 1500             (uintmax_t)sc->sense_busaddr, rsize);
 1501 
 1502         /*
 1503          * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports
 1504          * these devices.
 1505          */
 1506         if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) &&
 1507             (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) {
 1508                 if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM)
 1509                         return (ENOMEM);
 1510         }
 1511 
 1512         nsegs = (sc->maxio / PAGE_SIZE) + 1;
 1513         bus_dma_template_init(&t, sc->mpr_parent_dmat);
 1514         BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT),
 1515             BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_32BIT),
 1516             BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex),
 1517             BD_LOCKFUNCARG(&sc->mpr_mtx));
 1518         if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
 1519                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n");
 1520                 return (ENOMEM);
 1521         }
 1522 
 1523         /*
 1524          * SMID 0 cannot be used as a free command per the firmware spec.
 1525          * Just drop that command instead of risking accounting bugs.
 1526          */
 1527         sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs,
 1528             M_MPR, M_WAITOK | M_ZERO);
 1529         for (i = 1; i < sc->num_reqs; i++) {
 1530                 cm = &sc->commands[i];
 1531                 cm->cm_req = sc->req_frames + i * sc->reqframesz;
 1532                 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
 1533                 cm->cm_sense = &sc->sense_frames[i];
 1534                 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN;
 1535                 cm->cm_desc.Default.SMID = i;
 1536                 cm->cm_sc = sc;
 1537                 cm->cm_state = MPR_CM_STATE_BUSY;
 1538                 TAILQ_INIT(&cm->cm_chain_list);
 1539                 TAILQ_INIT(&cm->cm_prp_page_list);
 1540                 callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0);
 1541 
 1542                 /* XXX Is a failure here a critical problem? */
 1543                 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap)
 1544                     == 0) {
 1545                         if (i <= sc->num_prireqs)
 1546                                 mpr_free_high_priority_command(sc, cm);
 1547                         else
 1548                                 mpr_free_command(sc, cm);
 1549                 } else {
 1550                         panic("failed to allocate command %d\n", i);
 1551                         sc->num_reqs = i;
 1552                         break;
 1553                 }
 1554         }
 1555 
 1556         return (0);
 1557 }
 1558 
 1559 /*
 1560  * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs,
 1561  * which are scatter/gather lists for NVMe devices. 
 1562  *
 1563  * This buffer must be contiguous due to the nature of how NVMe PRPs are built
 1564  * and translated by FW.
 1565  *
 1566  * returns ENOMEM if memory could not be allocated, otherwise returns 0.
 1567  */
 1568 static int
 1569 mpr_alloc_nvme_prp_pages(struct mpr_softc *sc)
 1570 {
 1571         bus_dma_template_t t;
 1572         struct mpr_prp_page *prp_page;
 1573         int PRPs_per_page, PRPs_required, pages_required;
 1574         int rsize, i;
 1575 
 1576         /*
 1577          * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number
 1578          * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is:
 1579          * MAX_IO_SIZE / PAGE_SIZE = 256
 1580          * 
 1581          * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs
 1582          * required for the remainder of the 1MB I/O. 512 PRPs can fit into one
 1583          * page (4096 / 8 = 512), so only one page is required for each I/O.
 1584          *
 1585          * Each of these buffers will need to be contiguous. For simplicity,
 1586          * only one buffer is allocated here, which has all of the space
 1587          * required for the NVMe Queue Depth. If there are problems allocating
 1588          * this one buffer, this function will need to change to allocate
 1589          * individual, contiguous NVME_QDEPTH buffers.
 1590          *
 1591          * The real calculation will use the real max io size. Above is just an
 1592          * example.
 1593          *
 1594          */
 1595         PRPs_required = sc->maxio / PAGE_SIZE;
 1596         PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1;
 1597         pages_required = (PRPs_required / PRPs_per_page) + 1;
 1598 
 1599         sc->prp_buffer_size = PAGE_SIZE * pages_required; 
 1600         rsize = sc->prp_buffer_size * NVME_QDEPTH; 
 1601         bus_dma_template_init(&t, sc->mpr_parent_dmat);
 1602         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
 1603             BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
 1604             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
 1605         if (bus_dma_template_tag(&t, &sc->prp_page_dmat)) {
 1606                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA "
 1607                     "tag\n");
 1608                 return (ENOMEM);
 1609         }
 1610         if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages,
 1611             BUS_DMA_NOWAIT, &sc->prp_page_map)) {
 1612                 mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n");
 1613                 return (ENOMEM);
 1614         }
 1615         bzero(sc->prp_pages, rsize);
 1616         bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages,
 1617             rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0);
 1618 
 1619         sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR,
 1620             M_WAITOK | M_ZERO);
 1621         for (i = 0; i < NVME_QDEPTH; i++) {
 1622                 prp_page = &sc->prps[i];
 1623                 prp_page->prp_page = (uint64_t *)(sc->prp_pages +
 1624                     i * sc->prp_buffer_size);
 1625                 prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr +
 1626                     i * sc->prp_buffer_size);
 1627                 mpr_free_prp_page(sc, prp_page);
 1628                 sc->prp_pages_free_lowwater++;
 1629         }
 1630 
 1631         return (0);
 1632 }
 1633 
 1634 static int
 1635 mpr_init_queues(struct mpr_softc *sc)
 1636 {
 1637         int i;
 1638 
 1639         memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
 1640 
 1641         /*
 1642          * According to the spec, we need to use one less reply than we
 1643          * have space for on the queue.  So sc->num_replies (the number we
 1644          * use) should be less than sc->fqdepth (allocated size).
 1645          */
 1646         if (sc->num_replies >= sc->fqdepth)
 1647                 return (EINVAL);
 1648 
 1649         /*
 1650          * Initialize all of the free queue entries.
 1651          */
 1652         for (i = 0; i < sc->fqdepth; i++) {
 1653                 sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
 1654         }
 1655         sc->replyfreeindex = sc->num_replies;
 1656 
 1657         return (0);
 1658 }
 1659 
 1660 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
 1661  * Next are the global settings, if they exist.  Highest are the per-unit
 1662  * settings, if they exist.
 1663  */
 1664 void
 1665 mpr_get_tunables(struct mpr_softc *sc)
 1666 {
 1667         char tmpstr[80], mpr_debug[80];
 1668 
 1669         /* XXX default to some debugging for now */
 1670         sc->mpr_debug = MPR_INFO | MPR_FAULT;
 1671         sc->disable_msix = 0;
 1672         sc->disable_msi = 0;
 1673         sc->max_msix = MPR_MSIX_MAX;
 1674         sc->max_chains = MPR_CHAIN_FRAMES;
 1675         sc->max_io_pages = MPR_MAXIO_PAGES;
 1676         sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD;
 1677         sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
 1678         sc->use_phynum = 1;
 1679         sc->max_reqframes = MPR_REQ_FRAMES;
 1680         sc->max_prireqframes = MPR_PRI_REQ_FRAMES;
 1681         sc->max_replyframes = MPR_REPLY_FRAMES;
 1682         sc->max_evtframes = MPR_EVT_REPLY_FRAMES;
 1683 
 1684         /*
 1685          * Grab the global variables.
 1686          */
 1687         bzero(mpr_debug, 80);
 1688         if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0)
 1689                 mpr_parse_debug(sc, mpr_debug);
 1690         TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix);
 1691         TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi);
 1692         TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix);
 1693         TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains);
 1694         TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages);
 1695         TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu);
 1696         TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time);
 1697         TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum);
 1698         TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes);
 1699         TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes);
 1700         TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes);
 1701         TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes);
 1702 
 1703         /* Grab the unit-instance variables */
 1704         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level",
 1705             device_get_unit(sc->mpr_dev));
 1706         bzero(mpr_debug, 80);
 1707         if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0)
 1708                 mpr_parse_debug(sc, mpr_debug);
 1709 
 1710         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix",
 1711             device_get_unit(sc->mpr_dev));
 1712         TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
 1713 
 1714         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi",
 1715             device_get_unit(sc->mpr_dev));
 1716         TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
 1717 
 1718         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix",
 1719             device_get_unit(sc->mpr_dev));
 1720         TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
 1721 
 1722         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains",
 1723             device_get_unit(sc->mpr_dev));
 1724         TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
 1725 
 1726         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages",
 1727             device_get_unit(sc->mpr_dev));
 1728         TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
 1729 
 1730         bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
 1731         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids",
 1732             device_get_unit(sc->mpr_dev));
 1733         TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
 1734 
 1735         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu",
 1736             device_get_unit(sc->mpr_dev));
 1737         TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
 1738 
 1739         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time",
 1740             device_get_unit(sc->mpr_dev));
 1741         TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
 1742 
 1743         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num",
 1744             device_get_unit(sc->mpr_dev));
 1745         TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
 1746 
 1747         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes",
 1748             device_get_unit(sc->mpr_dev));
 1749         TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
 1750 
 1751         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes",
 1752             device_get_unit(sc->mpr_dev));
 1753         TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
 1754 
 1755         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes",
 1756             device_get_unit(sc->mpr_dev));
 1757         TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
 1758 
 1759         snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes",
 1760             device_get_unit(sc->mpr_dev));
 1761         TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
 1762 }
 1763 
 1764 static void
 1765 mpr_setup_sysctl(struct mpr_softc *sc)
 1766 {
 1767         struct sysctl_ctx_list  *sysctl_ctx = NULL;
 1768         struct sysctl_oid       *sysctl_tree = NULL;
 1769         char tmpstr[80], tmpstr2[80];
 1770 
 1771         /*
 1772          * Setup the sysctl variable so the user can change the debug level
 1773          * on the fly.
 1774          */
 1775         snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d",
 1776             device_get_unit(sc->mpr_dev));
 1777         snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev));
 1778 
 1779         sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev);
 1780         if (sysctl_ctx != NULL)
 1781                 sysctl_tree = device_get_sysctl_tree(sc->mpr_dev);
 1782 
 1783         if (sysctl_tree == NULL) {
 1784                 sysctl_ctx_init(&sc->sysctl_ctx);
 1785                 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
 1786                     SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2,
 1787                     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr);
 1788                 if (sc->sysctl_tree == NULL)
 1789                         return;
 1790                 sysctl_ctx = &sc->sysctl_ctx;
 1791                 sysctl_tree = sc->sysctl_tree;
 1792         }
 1793 
 1794         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1795             OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
 1796             sc, 0, mpr_debug_sysctl, "A", "mpr debug level");
 1797 
 1798         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1799             OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
 1800             "Disable the use of MSI-X interrupts");
 1801 
 1802         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1803             OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
 1804             "User-defined maximum number of MSIX queues");
 1805 
 1806         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1807             OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
 1808             "Negotiated number of MSIX queues");
 1809 
 1810         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1811             OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
 1812             "Total number of allocated request frames");
 1813 
 1814         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1815             OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
 1816             "Total number of allocated high priority request frames");
 1817 
 1818         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1819             OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
 1820             "Total number of allocated reply frames");
 1821 
 1822         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1823             OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
 1824             "Total number of event frames allocated");
 1825 
 1826         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1827             OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
 1828             strlen(sc->fw_version), "firmware version");
 1829 
 1830         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1831             OID_AUTO, "driver_version", CTLFLAG_RD, MPR_DRIVER_VERSION,
 1832             strlen(MPR_DRIVER_VERSION), "driver version");
 1833 
 1834         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1835             OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
 1836             strlen(sc->msg_version), "message interface version");
 1837 
 1838         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1839             OID_AUTO, "io_cmds_active", CTLFLAG_RD,
 1840             &sc->io_cmds_active, 0, "number of currently active commands");
 1841 
 1842         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1843             OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
 1844             &sc->io_cmds_highwater, 0, "maximum active commands seen");
 1845 
 1846         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1847             OID_AUTO, "chain_free", CTLFLAG_RD,
 1848             &sc->chain_free, 0, "number of free chain elements");
 1849 
 1850         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1851             OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
 1852             &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
 1853 
 1854         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1855             OID_AUTO, "max_chains", CTLFLAG_RD,
 1856             &sc->max_chains, 0,"maximum chain frames that will be allocated");
 1857 
 1858         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1859             OID_AUTO, "max_io_pages", CTLFLAG_RD,
 1860             &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
 1861             "IOCFacts)");
 1862 
 1863         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1864             OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
 1865             "enable SSU to SATA SSD/HDD at shutdown");
 1866 
 1867         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1868             OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
 1869             &sc->chain_alloc_fail, "chain allocation failures");
 1870 
 1871         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1872             OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
 1873             &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
 1874             "spinup after SATA ID error");
 1875 
 1876         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1877             OID_AUTO, "dump_reqs",
 1878             CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT,
 1879             sc, 0, mpr_dump_reqs, "I", "Dump Active Requests");
 1880 
 1881         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1882             OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
 1883             "Use the phy number for enumeration");
 1884 
 1885         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1886             OID_AUTO, "prp_pages_free", CTLFLAG_RD,
 1887             &sc->prp_pages_free, 0, "number of free PRP pages");
 1888 
 1889         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1890             OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD,
 1891             &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages");
 1892 
 1893         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1894             OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD,
 1895             &sc->prp_page_alloc_fail, "PRP page allocation failures");
 1896 }
 1897 
 1898 static struct mpr_debug_string {
 1899         char *name;
 1900         int flag;
 1901 } mpr_debug_strings[] = {
 1902         {"info", MPR_INFO},
 1903         {"fault", MPR_FAULT},
 1904         {"event", MPR_EVENT},
 1905         {"log", MPR_LOG},
 1906         {"recovery", MPR_RECOVERY},
 1907         {"error", MPR_ERROR},
 1908         {"init", MPR_INIT},
 1909         {"xinfo", MPR_XINFO},
 1910         {"user", MPR_USER},
 1911         {"mapping", MPR_MAPPING},
 1912         {"trace", MPR_TRACE}
 1913 };
 1914 
 1915 enum mpr_debug_level_combiner {
 1916         COMB_NONE,
 1917         COMB_ADD,
 1918         COMB_SUB
 1919 };
 1920 
 1921 static int
 1922 mpr_debug_sysctl(SYSCTL_HANDLER_ARGS)
 1923 {
 1924         struct mpr_softc *sc;
 1925         struct mpr_debug_string *string;
 1926         struct sbuf *sbuf;
 1927         char *buffer;
 1928         size_t sz;
 1929         int i, len, debug, error;
 1930 
 1931         sc = (struct mpr_softc *)arg1;
 1932 
 1933         error = sysctl_wire_old_buffer(req, 0);
 1934         if (error != 0)
 1935                 return (error);
 1936 
 1937         sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
 1938         debug = sc->mpr_debug;
 1939 
 1940         sbuf_printf(sbuf, "%#x", debug);
 1941 
 1942         sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
 1943         for (i = 0; i < sz; i++) {
 1944                 string = &mpr_debug_strings[i];
 1945                 if (debug & string->flag) 
 1946                         sbuf_printf(sbuf, ",%s", string->name);
 1947         }
 1948 
 1949         error = sbuf_finish(sbuf);
 1950         sbuf_delete(sbuf);
 1951 
 1952         if (error || req->newptr == NULL)
 1953                 return (error);
 1954 
 1955         len = req->newlen - req->newidx;
 1956         if (len == 0)
 1957                 return (0);
 1958 
 1959         buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK);
 1960         error = SYSCTL_IN(req, buffer, len);
 1961 
 1962         mpr_parse_debug(sc, buffer);
 1963 
 1964         free(buffer, M_MPR);
 1965         return (error);
 1966 }
 1967 
 1968 static void
 1969 mpr_parse_debug(struct mpr_softc *sc, char *list)
 1970 {
 1971         struct mpr_debug_string *string;
 1972         enum mpr_debug_level_combiner op;
 1973         char *token, *endtoken;
 1974         size_t sz;
 1975         int flags, i;
 1976 
 1977         if (list == NULL || *list == '\0')
 1978                 return;
 1979 
 1980         if (*list == '+') {
 1981                 op = COMB_ADD;
 1982                 list++;
 1983         } else if (*list == '-') {
 1984                 op = COMB_SUB;
 1985                 list++;
 1986         } else
 1987                 op = COMB_NONE;
 1988         if (*list == '\0')
 1989                 return;
 1990 
 1991         flags = 0;
 1992         sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]);
 1993         while ((token = strsep(&list, ":,")) != NULL) {
 1994                 /* Handle integer flags */
 1995                 flags |= strtol(token, &endtoken, 0);
 1996                 if (token != endtoken)
 1997                         continue;
 1998 
 1999                 /* Handle text flags */
 2000                 for (i = 0; i < sz; i++) {
 2001                         string = &mpr_debug_strings[i];
 2002                         if (strcasecmp(token, string->name) == 0) {
 2003                                 flags |= string->flag;
 2004                                 break;
 2005                         }
 2006                 }
 2007         }
 2008 
 2009         switch (op) {
 2010         case COMB_NONE:
 2011                 sc->mpr_debug = flags;
 2012                 break;
 2013         case COMB_ADD:
 2014                 sc->mpr_debug |= flags;
 2015                 break;
 2016         case COMB_SUB:
 2017                 sc->mpr_debug &= (~flags);
 2018                 break;
 2019         }
 2020         return;
 2021 }
 2022 
 2023 struct mpr_dumpreq_hdr {
 2024         uint32_t        smid;
 2025         uint32_t        state;
 2026         uint32_t        numframes;
 2027         uint32_t        deschi;
 2028         uint32_t        desclo;
 2029 };
 2030 
 2031 static int
 2032 mpr_dump_reqs(SYSCTL_HANDLER_ARGS)
 2033 {
 2034         struct mpr_softc *sc;
 2035         struct mpr_chain *chain, *chain1;
 2036         struct mpr_command *cm;
 2037         struct mpr_dumpreq_hdr hdr;
 2038         struct sbuf *sb;
 2039         uint32_t smid, state;
 2040         int i, numreqs, error = 0;
 2041 
 2042         sc = (struct mpr_softc *)arg1;
 2043 
 2044         if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
 2045                 printf("priv check error %d\n", error);
 2046                 return (error);
 2047         }
 2048 
 2049         state = MPR_CM_STATE_INQUEUE;
 2050         smid = 1;
 2051         numreqs = sc->num_reqs;
 2052 
 2053         if (req->newptr != NULL)
 2054                 return (EINVAL);
 2055 
 2056         if (smid == 0 || smid > sc->num_reqs)
 2057                 return (EINVAL);
 2058         if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
 2059                 numreqs = sc->num_reqs;
 2060         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
 2061 
 2062         /* Best effort, no locking */
 2063         for (i = smid; i < numreqs; i++) {
 2064                 cm = &sc->commands[i];
 2065                 if (cm->cm_state != state)
 2066                         continue;
 2067                 hdr.smid = i;
 2068                 hdr.state = cm->cm_state;
 2069                 hdr.numframes = 1;
 2070                 hdr.deschi = cm->cm_desc.Words.High;
 2071                 hdr.desclo = cm->cm_desc.Words.Low;
 2072                 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
 2073                    chain1)
 2074                         hdr.numframes++;
 2075                 sbuf_bcat(sb, &hdr, sizeof(hdr));
 2076                 sbuf_bcat(sb, cm->cm_req, 128);
 2077                 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
 2078                     chain1)
 2079                         sbuf_bcat(sb, chain->chain, 128);
 2080         }
 2081 
 2082         error = sbuf_finish(sb);
 2083         sbuf_delete(sb);
 2084         return (error);
 2085 }
 2086 
 2087 int
 2088 mpr_attach(struct mpr_softc *sc)
 2089 {
 2090         int error;
 2091 
 2092         MPR_FUNCTRACE(sc);
 2093         mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
 2094 
 2095         mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF);
 2096         callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0);
 2097         callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0);
 2098         TAILQ_INIT(&sc->event_list);
 2099         timevalclear(&sc->lastfail);
 2100 
 2101         if ((error = mpr_transition_ready(sc)) != 0) {
 2102                 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
 2103                     "Failed to transition ready\n");
 2104                 return (error);
 2105         }
 2106 
 2107         sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR,
 2108             M_ZERO|M_NOWAIT);
 2109         if (!sc->facts) {
 2110                 mpr_dprint(sc, MPR_INIT|MPR_FAULT,
 2111                     "Cannot allocate memory, exit\n");
 2112                 return (ENOMEM);
 2113         }
 2114 
 2115         /*
 2116          * Get IOC Facts and allocate all structures based on this information.
 2117          * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC
 2118          * Facts. If relevant values have changed in IOC Facts, this function
 2119          * will free all of the memory based on IOC Facts and reallocate that
 2120          * memory.  If this fails, any allocated memory should already be freed.
 2121          */
 2122         if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) {
 2123                 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation "
 2124                     "failed with error %d\n", error);
 2125                 return (error);
 2126         }
 2127 
 2128         /* Start the periodic watchdog check on the IOC Doorbell */
 2129         mpr_periodic(sc);
 2130 
 2131         /*
 2132          * The portenable will kick off discovery events that will drive the
 2133          * rest of the initialization process.  The CAM/SAS module will
 2134          * hold up the boot sequence until discovery is complete.
 2135          */
 2136         sc->mpr_ich.ich_func = mpr_startup;
 2137         sc->mpr_ich.ich_arg = sc;
 2138         if (config_intrhook_establish(&sc->mpr_ich) != 0) {
 2139                 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
 2140                     "Cannot establish MPR config hook\n");
 2141                 error = EINVAL;
 2142         }
 2143 
 2144         /*
 2145          * Allow IR to shutdown gracefully when shutdown occurs.
 2146          */
 2147         sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
 2148             mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
 2149 
 2150         if (sc->shutdown_eh == NULL)
 2151                 mpr_dprint(sc, MPR_INIT|MPR_ERROR,
 2152                     "shutdown event registration failed\n");
 2153 
 2154         mpr_setup_sysctl(sc);
 2155 
 2156         sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE;
 2157         mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error);
 2158 
 2159         return (error);
 2160 }
 2161 
 2162 /* Run through any late-start handlers. */
 2163 static void
 2164 mpr_startup(void *arg)
 2165 {
 2166         struct mpr_softc *sc;
 2167 
 2168         sc = (struct mpr_softc *)arg;
 2169         mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
 2170 
 2171         mpr_lock(sc);
 2172         mpr_unmask_intr(sc);
 2173 
 2174         /* initialize device mapping tables */
 2175         mpr_base_static_config_pages(sc);
 2176         mpr_mapping_initialize(sc);
 2177         mprsas_startup(sc);
 2178         mpr_unlock(sc);
 2179 
 2180         mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n");
 2181         config_intrhook_disestablish(&sc->mpr_ich);
 2182         sc->mpr_ich.ich_arg = NULL;
 2183 
 2184         mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
 2185 }
 2186 
 2187 /* Periodic watchdog.  Is called with the driver lock already held. */
 2188 static void
 2189 mpr_periodic(void *arg)
 2190 {
 2191         struct mpr_softc *sc;
 2192         uint32_t db;
 2193 
 2194         sc = (struct mpr_softc *)arg;
 2195         if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN)
 2196                 return;
 2197 
 2198         db = mpr_regread(sc, MPI2_DOORBELL_OFFSET);
 2199         if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
 2200                 if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) ==
 2201                     IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) {
 2202                         panic("TEMPERATURE FAULT: STOPPING.");
 2203                 }
 2204                 mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
 2205                 mpr_reinit(sc);
 2206         }
 2207 
 2208         callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc);
 2209 }
 2210 
 2211 static void
 2212 mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data,
 2213     MPI2_EVENT_NOTIFICATION_REPLY *event)
 2214 {
 2215         MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
 2216 
 2217         MPR_DPRINT_EVENT(sc, generic, event);
 2218 
 2219         switch (event->Event) {
 2220         case MPI2_EVENT_LOG_DATA:
 2221                 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n");
 2222                 if (sc->mpr_debug & MPR_EVENT)
 2223                         hexdump(event->EventData, event->EventDataLength, NULL,
 2224                             0);
 2225                 break;
 2226         case MPI2_EVENT_LOG_ENTRY_ADDED:
 2227                 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
 2228                 mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
 2229                     "0x%x Sequence %d:\n", entry->LogEntryQualifier,
 2230                      entry->LogSequence);
 2231                 break;
 2232         default:
 2233                 break;
 2234         }
 2235         return;
 2236 }
 2237 
 2238 static int
 2239 mpr_attach_log(struct mpr_softc *sc)
 2240 {
 2241         uint8_t events[16];
 2242 
 2243         bzero(events, 16);
 2244         setbit(events, MPI2_EVENT_LOG_DATA);
 2245         setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
 2246 
 2247         mpr_register_events(sc, events, mpr_log_evt_handler, NULL,
 2248             &sc->mpr_log_eh);
 2249 
 2250         return (0);
 2251 }
 2252 
 2253 static int
 2254 mpr_detach_log(struct mpr_softc *sc)
 2255 {
 2256 
 2257         if (sc->mpr_log_eh != NULL)
 2258                 mpr_deregister_events(sc, sc->mpr_log_eh);
 2259         return (0);
 2260 }
 2261 
 2262 /*
 2263  * Free all of the driver resources and detach submodules.  Should be called
 2264  * without the lock held.
 2265  */
 2266 int
 2267 mpr_free(struct mpr_softc *sc)
 2268 {
 2269         int error;
 2270 
 2271         mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__);
 2272         /* Turn off the watchdog */
 2273         mpr_lock(sc);
 2274         sc->mpr_flags |= MPR_FLAGS_SHUTDOWN;
 2275         mpr_unlock(sc);
 2276         /* Lock must not be held for this */
 2277         callout_drain(&sc->periodic);
 2278         callout_drain(&sc->device_check_callout);
 2279 
 2280         if (((error = mpr_detach_log(sc)) != 0) ||
 2281             ((error = mpr_detach_sas(sc)) != 0)) {
 2282                 mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach "
 2283                     "subsystems, error= %d, exit\n", error);
 2284                 return (error);
 2285         }
 2286 
 2287         mpr_detach_user(sc);
 2288 
 2289         /* Put the IOC back in the READY state. */
 2290         mpr_lock(sc);
 2291         if ((error = mpr_transition_ready(sc)) != 0) {
 2292                 mpr_unlock(sc);
 2293                 return (error);
 2294         }
 2295         mpr_unlock(sc);
 2296 
 2297         if (sc->facts != NULL)
 2298                 free(sc->facts, M_MPR);
 2299 
 2300         /*
 2301          * Free all buffers that are based on IOC Facts.  A Diag Reset may need
 2302          * to free these buffers too.
 2303          */
 2304         mpr_iocfacts_free(sc);
 2305 
 2306         if (sc->sysctl_tree != NULL)
 2307                 sysctl_ctx_free(&sc->sysctl_ctx);
 2308 
 2309         /* Deregister the shutdown function */
 2310         if (sc->shutdown_eh != NULL)
 2311                 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
 2312 
 2313         mtx_destroy(&sc->mpr_mtx);
 2314         mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__);
 2315 
 2316         return (0);
 2317 }
 2318 
 2319 static __inline void
 2320 mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm)
 2321 {
 2322         MPR_FUNCTRACE(sc);
 2323 
 2324         if (cm == NULL) {
 2325                 mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n");
 2326                 return;
 2327         }
 2328 
 2329         cm->cm_state = MPR_CM_STATE_BUSY;
 2330         if (cm->cm_flags & MPR_CM_FLAGS_POLLED)
 2331                 cm->cm_flags |= MPR_CM_FLAGS_COMPLETE;
 2332 
 2333         if (cm->cm_complete != NULL) {
 2334                 mpr_dprint(sc, MPR_TRACE,
 2335                     "%s cm %p calling cm_complete %p data %p reply %p\n",
 2336                     __func__, cm, cm->cm_complete, cm->cm_complete_data,
 2337                     cm->cm_reply);
 2338                 cm->cm_complete(sc, cm);
 2339         }
 2340 
 2341         if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) {
 2342                 mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm);
 2343                 wakeup(cm);
 2344         }
 2345 
 2346         if (sc->io_cmds_active != 0) {
 2347                 sc->io_cmds_active--;
 2348         } else {
 2349                 mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is "
 2350                     "out of sync - resynching to 0\n");
 2351         }
 2352 }
 2353 
 2354 static void
 2355 mpr_sas_log_info(struct mpr_softc *sc , u32 log_info)
 2356 {
 2357         union loginfo_type {
 2358                 u32     loginfo;
 2359                 struct {
 2360                         u32     subcode:16;
 2361                         u32     code:8;
 2362                         u32     originator:4;
 2363                         u32     bus_type:4;
 2364                 } dw;
 2365         };
 2366         union loginfo_type sas_loginfo;
 2367         char *originator_str = NULL;
 2368 
 2369         sas_loginfo.loginfo = log_info;
 2370         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
 2371                 return;
 2372 
 2373         /* each nexus loss loginfo */
 2374         if (log_info == 0x31170000)
 2375                 return;
 2376 
 2377         /* eat the loginfos associated with task aborts */
 2378         if ((log_info == 30050000) || (log_info == 0x31140000) ||
 2379             (log_info == 0x31130000))
 2380                 return;
 2381 
 2382         switch (sas_loginfo.dw.originator) {
 2383         case 0:
 2384                 originator_str = "IOP";
 2385                 break;
 2386         case 1:
 2387                 originator_str = "PL";
 2388                 break;
 2389         case 2:
 2390                 originator_str = "IR";
 2391                 break;
 2392         }
 2393 
 2394         mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), "
 2395             "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str,
 2396             sas_loginfo.dw.code, sas_loginfo.dw.subcode);
 2397 }
 2398 
 2399 static void
 2400 mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply)
 2401 {
 2402         MPI2DefaultReply_t *mpi_reply;
 2403         u16 sc_status;
 2404 
 2405         mpi_reply = (MPI2DefaultReply_t*)reply;
 2406         sc_status = le16toh(mpi_reply->IOCStatus);
 2407         if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
 2408                 mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
 2409 }
 2410 
 2411 void
 2412 mpr_intr(void *data)
 2413 {
 2414         struct mpr_softc *sc;
 2415         uint32_t status;
 2416 
 2417         sc = (struct mpr_softc *)data;
 2418         mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
 2419 
 2420         /*
 2421          * Check interrupt status register to flush the bus.  This is
 2422          * needed for both INTx interrupts and driver-driven polling
 2423          */
 2424         status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
 2425         if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
 2426                 return;
 2427 
 2428         mpr_lock(sc);
 2429         mpr_intr_locked(data);
 2430         mpr_unlock(sc);
 2431         return;
 2432 }
 2433 
 2434 /*
 2435  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
 2436  * chip.  Hopefully this theory is correct.
 2437  */
 2438 void
 2439 mpr_intr_msi(void *data)
 2440 {
 2441         struct mpr_softc *sc;
 2442 
 2443         sc = (struct mpr_softc *)data;
 2444         mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
 2445         mpr_lock(sc);
 2446         mpr_intr_locked(data);
 2447         mpr_unlock(sc);
 2448         return;
 2449 }
 2450 
 2451 /*
 2452  * The locking is overly broad and simplistic, but easy to deal with for now.
 2453  */
 2454 void
 2455 mpr_intr_locked(void *data)
 2456 {
 2457         MPI2_REPLY_DESCRIPTORS_UNION *desc;
 2458         MPI2_DIAG_RELEASE_REPLY *rel_rep;
 2459         mpr_fw_diagnostic_buffer_t *pBuffer;
 2460         struct mpr_softc *sc;
 2461         uint64_t tdesc;
 2462         struct mpr_command *cm = NULL;
 2463         uint8_t flags;
 2464         u_int pq;
 2465 
 2466         sc = (struct mpr_softc *)data;
 2467 
 2468         pq = sc->replypostindex;
 2469         mpr_dprint(sc, MPR_TRACE,
 2470             "%s sc %p starting with replypostindex %u\n", 
 2471             __func__, sc, sc->replypostindex);
 2472 
 2473         for ( ;; ) {
 2474                 cm = NULL;
 2475                 desc = &sc->post_queue[sc->replypostindex];
 2476 
 2477                 /*
 2478                  * Copy and clear out the descriptor so that any reentry will
 2479                  * immediately know that this descriptor has already been
 2480                  * looked at.  There is unfortunate casting magic because the
 2481                  * MPI API doesn't have a cardinal 64bit type.
 2482                  */
 2483                 tdesc = 0xffffffffffffffff;
 2484                 tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
 2485                 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
 2486 
 2487                 flags = desc->Default.ReplyFlags &
 2488                     MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
 2489                 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) ||
 2490                     (le32toh(desc->Words.High) == 0xffffffff))
 2491                         break;
 2492 
 2493                 /* increment the replypostindex now, so that event handlers
 2494                  * and cm completion handlers which decide to do a diag
 2495                  * reset can zero it without it getting incremented again
 2496                  * afterwards, and we break out of this loop on the next
 2497                  * iteration since the reply post queue has been cleared to
 2498                  * 0xFF and all descriptors look unused (which they are).
 2499                  */
 2500                 if (++sc->replypostindex >= sc->pqdepth)
 2501                         sc->replypostindex = 0;
 2502 
 2503                 switch (flags) {
 2504                 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
 2505                 case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS:
 2506                 case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS:
 2507                         cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
 2508                         KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE,
 2509                             ("command not inqueue\n"));
 2510                         cm->cm_state = MPR_CM_STATE_BUSY;
 2511                         cm->cm_reply = NULL;
 2512                         break;
 2513                 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
 2514                 {
 2515                         uint32_t baddr;
 2516                         uint8_t *reply;
 2517 
 2518                         /*
 2519                          * Re-compose the reply address from the address
 2520                          * sent back from the chip.  The ReplyFrameAddress
 2521                          * is the lower 32 bits of the physical address of
 2522                          * particular reply frame.  Convert that address to
 2523                          * host format, and then use that to provide the
 2524                          * offset against the virtual address base
 2525                          * (sc->reply_frames).
 2526                          */
 2527                         baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
 2528                         reply = sc->reply_frames +
 2529                                 (baddr - ((uint32_t)sc->reply_busaddr));
 2530                         /*
 2531                          * Make sure the reply we got back is in a valid
 2532                          * range.  If not, go ahead and panic here, since
 2533                          * we'll probably panic as soon as we deference the
 2534                          * reply pointer anyway.
 2535                          */
 2536                         if ((reply < sc->reply_frames)
 2537                          || (reply > (sc->reply_frames +
 2538                              (sc->fqdepth * sc->replyframesz)))) {
 2539                                 printf("%s: WARNING: reply %p out of range!\n",
 2540                                        __func__, reply);
 2541                                 printf("%s: reply_frames %p, fqdepth %d, "
 2542                                        "frame size %d\n", __func__,
 2543                                        sc->reply_frames, sc->fqdepth,
 2544                                        sc->replyframesz);
 2545                                 printf("%s: baddr %#x,\n", __func__, baddr);
 2546                                 /* LSI-TODO. See Linux Code for Graceful exit */
 2547                                 panic("Reply address out of range");
 2548                         }
 2549                         if (le16toh(desc->AddressReply.SMID) == 0) {
 2550                                 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
 2551                                     MPI2_FUNCTION_DIAG_BUFFER_POST) {
 2552                                         /*
 2553                                          * If SMID is 0 for Diag Buffer Post,
 2554                                          * this implies that the reply is due to
 2555                                          * a release function with a status that
 2556                                          * the buffer has been released.  Set
 2557                                          * the buffer flags accordingly.
 2558                                          */
 2559                                         rel_rep =
 2560                                             (MPI2_DIAG_RELEASE_REPLY *)reply;
 2561                                         if ((le16toh(rel_rep->IOCStatus) &
 2562                                             MPI2_IOCSTATUS_MASK) ==
 2563                                             MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
 2564                                         {
 2565                                                 pBuffer =
 2566                                                     &sc->fw_diag_buffer_list[
 2567                                                     rel_rep->BufferType];
 2568                                                 pBuffer->valid_data = TRUE;
 2569                                                 pBuffer->owned_by_firmware =
 2570                                                     FALSE;
 2571                                                 pBuffer->immediate = FALSE;
 2572                                         }
 2573                                 } else
 2574                                         mpr_dispatch_event(sc, baddr,
 2575                                             (MPI2_EVENT_NOTIFICATION_REPLY *)
 2576                                             reply);
 2577                         } else {
 2578                                 cm = &sc->commands[
 2579                                     le16toh(desc->AddressReply.SMID)];
 2580                                 if (cm->cm_state == MPR_CM_STATE_INQUEUE) {
 2581                                         cm->cm_reply = reply;
 2582                                         cm->cm_reply_data =
 2583                                             le32toh(desc->AddressReply.
 2584                                                 ReplyFrameAddress);
 2585                                 } else {
 2586                                         mpr_dprint(sc, MPR_RECOVERY,
 2587                                             "Bad state for ADDRESS_REPLY status,"
 2588                                             " ignoring state %d cm %p\n",
 2589                                             cm->cm_state, cm);
 2590                                 }
 2591                         }
 2592                         break;
 2593                 }
 2594                 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
 2595                 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
 2596                 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
 2597                 default:
 2598                         /* Unhandled */
 2599                         mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n",
 2600                             desc->Default.ReplyFlags);
 2601                         cm = NULL;
 2602                         break;
 2603                 }
 2604 
 2605                 if (cm != NULL) {
 2606                         // Print Error reply frame
 2607                         if (cm->cm_reply)
 2608                                 mpr_display_reply_info(sc,cm->cm_reply);
 2609                         mpr_complete_command(sc, cm);
 2610                 }
 2611         }
 2612 
 2613         if (pq != sc->replypostindex) {
 2614                 mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n",
 2615                     __func__, sc, sc->replypostindex);
 2616                 mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
 2617                     sc->replypostindex);
 2618         }
 2619 
 2620         return;
 2621 }
 2622 
 2623 static void
 2624 mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data,
 2625     MPI2_EVENT_NOTIFICATION_REPLY *reply)
 2626 {
 2627         struct mpr_event_handle *eh;
 2628         int event, handled = 0;
 2629 
 2630         event = le16toh(reply->Event);
 2631         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
 2632                 if (isset(eh->mask, event)) {
 2633                         eh->callback(sc, data, reply);
 2634                         handled++;
 2635                 }
 2636         }
 2637 
 2638         if (handled == 0)
 2639                 mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n",
 2640                     le16toh(event));
 2641 
 2642         /*
 2643          * This is the only place that the event/reply should be freed.
 2644          * Anything wanting to hold onto the event data should have
 2645          * already copied it into their own storage.
 2646          */
 2647         mpr_free_reply(sc, data);
 2648 }
 2649 
 2650 static void
 2651 mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm)
 2652 {
 2653         mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
 2654 
 2655         if (cm->cm_reply)
 2656                 MPR_DPRINT_EVENT(sc, generic,
 2657                         (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
 2658 
 2659         mpr_free_command(sc, cm);
 2660 
 2661         /* next, send a port enable */
 2662         mprsas_startup(sc);
 2663 }
 2664 
 2665 /*
 2666  * For both register_events and update_events, the caller supplies a bitmap
 2667  * of events that it _wants_.  These functions then turn that into a bitmask
 2668  * suitable for the controller.
 2669  */
 2670 int
 2671 mpr_register_events(struct mpr_softc *sc, uint8_t *mask,
 2672     mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle)
 2673 {
 2674         struct mpr_event_handle *eh;
 2675         int error = 0;
 2676 
 2677         eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO);
 2678         eh->callback = cb;
 2679         eh->data = data;
 2680         TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
 2681         if (mask != NULL)
 2682                 error = mpr_update_events(sc, eh, mask);
 2683         *handle = eh;
 2684 
 2685         return (error);
 2686 }
 2687 
 2688 int
 2689 mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle,
 2690     uint8_t *mask)
 2691 {
 2692         MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
 2693         MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
 2694         struct mpr_command *cm = NULL;
 2695         struct mpr_event_handle *eh;
 2696         int error, i;
 2697 
 2698         mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
 2699 
 2700         if ((mask != NULL) && (handle != NULL))
 2701                 bcopy(mask, &handle->mask[0], 16);
 2702         memset(sc->event_mask, 0xff, 16);
 2703 
 2704         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
 2705                 for (i = 0; i < 16; i++)
 2706                         sc->event_mask[i] &= ~eh->mask[i];
 2707         }
 2708 
 2709         if ((cm = mpr_alloc_command(sc)) == NULL)
 2710                 return (EBUSY);
 2711         evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
 2712         evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
 2713         evtreq->MsgFlags = 0;
 2714         evtreq->SASBroadcastPrimitiveMasks = 0;
 2715 #ifdef MPR_DEBUG_ALL_EVENTS
 2716         {
 2717                 u_char fullmask[16];
 2718                 memset(fullmask, 0x00, 16);
 2719                 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
 2720         }
 2721 #else
 2722                 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
 2723 #endif
 2724         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 2725         cm->cm_data = NULL;
 2726 
 2727         error = mpr_request_polled(sc, &cm);
 2728         if (cm != NULL)
 2729                 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
 2730         if ((reply == NULL) ||
 2731             (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
 2732                 error = ENXIO;
 2733 
 2734         if (reply)
 2735                 MPR_DPRINT_EVENT(sc, generic, reply);
 2736 
 2737         mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error);
 2738 
 2739         if (cm != NULL)
 2740                 mpr_free_command(sc, cm);
 2741         return (error);
 2742 }
 2743 
 2744 static int
 2745 mpr_reregister_events(struct mpr_softc *sc)
 2746 {
 2747         MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
 2748         struct mpr_command *cm;
 2749         struct mpr_event_handle *eh;
 2750         int error, i;
 2751 
 2752         mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
 2753 
 2754         /* first, reregister events */
 2755 
 2756         memset(sc->event_mask, 0xff, 16);
 2757 
 2758         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
 2759                 for (i = 0; i < 16; i++)
 2760                         sc->event_mask[i] &= ~eh->mask[i];
 2761         }
 2762 
 2763         if ((cm = mpr_alloc_command(sc)) == NULL)
 2764                 return (EBUSY);
 2765         evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
 2766         evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
 2767         evtreq->MsgFlags = 0;
 2768         evtreq->SASBroadcastPrimitiveMasks = 0;
 2769 #ifdef MPR_DEBUG_ALL_EVENTS
 2770         {
 2771                 u_char fullmask[16];
 2772                 memset(fullmask, 0x00, 16);
 2773                 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
 2774         }
 2775 #else
 2776                 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
 2777 #endif
 2778         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 2779         cm->cm_data = NULL;
 2780         cm->cm_complete = mpr_reregister_events_complete;
 2781 
 2782         error = mpr_map_command(sc, cm);
 2783 
 2784         mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__,
 2785             error);
 2786         return (error);
 2787 }
 2788 
 2789 int
 2790 mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle)
 2791 {
 2792 
 2793         TAILQ_REMOVE(&sc->event_list, handle, eh_list);
 2794         free(handle, M_MPR);
 2795         return (mpr_update_events(sc, NULL, NULL));
 2796 }
 2797 
 2798 /**
 2799 * mpr_build_nvme_prp - This function is called for NVMe end devices to build a
 2800 * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry
 2801 * of the NVMe message (PRP1). If the data buffer is small enough to be described
 2802 * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to
 2803 * describe a larger data buffer. If the data buffer is too large to describe
 2804 * using the two PRP entriess inside the NVMe message, then PRP1 describes the
 2805 * first data memory segment, and PRP2 contains a pointer to a PRP list located
 2806 * elsewhere in memory to describe the remaining data memory segments. The PRP
 2807 * list will be contiguous.
 2808 
 2809 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
 2810 * consists of a list of PRP entries to describe a number of noncontigous
 2811 * physical memory segments as a single memory buffer, just as a SGL does. Note
 2812 * however, that this function is only used by the IOCTL call, so the memory
 2813 * given will be guaranteed to be contiguous. There is no need to translate
 2814 * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous
 2815 * space that is one page size each.
 2816 *
 2817 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
 2818 * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains
 2819 * the second PRP element if the memory being described fits within 2 PRP
 2820 * entries, or a PRP list pointer if the PRP spans more than two entries.
 2821 *
 2822 * A PRP list pointer contains the address of a PRP list, structured as a linear
 2823 * array of PRP entries. Each PRP entry in this list describes a segment of
 2824 * physical memory.
 2825 *
 2826 * Each 64-bit PRP entry comprises an address and an offset field. The address
 2827 * always points to the beginning of a PAGE_SIZE physical memory page, and the
 2828 * offset describes where within that page the memory segment begins. Only the
 2829 * first element in a PRP list may contain a non-zero offest, implying that all
 2830 * memory segments following the first begin at the start of a PAGE_SIZE page.
 2831 *
 2832 * Each PRP element normally describes a chunck of PAGE_SIZE physical memory,
 2833 * with exceptions for the first and last elements in the list. If the memory
 2834 * being described by the list begins at a non-zero offset within the first page,
 2835 * then the first PRP element will contain a non-zero offset indicating where the
 2836 * region begins within the page. The last memory segment may end before the end
 2837 * of the PAGE_SIZE segment, depending upon the overall size of the memory being
 2838 * described by the PRP list. 
 2839 *
 2840 * Since PRP entries lack any indication of size, the overall data buffer length
 2841 * is used to determine where the end of the data memory buffer is located, and
 2842 * how many PRP entries are required to describe it.
 2843 *
 2844 * Returns nothing.
 2845 */
 2846 void 
 2847 mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm,
 2848     Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data,
 2849     uint32_t data_in_sz, uint32_t data_out_sz)
 2850 {
 2851         int                     prp_size = PRP_ENTRY_SIZE;
 2852         uint64_t                *prp_entry, *prp1_entry, *prp2_entry;
 2853         uint64_t                *prp_entry_phys, *prp_page, *prp_page_phys;
 2854         uint32_t                offset, entry_len, page_mask_result, page_mask;
 2855         bus_addr_t              paddr;
 2856         size_t                  length;
 2857         struct mpr_prp_page     *prp_page_info = NULL;
 2858 
 2859         /*
 2860          * Not all commands require a data transfer. If no data, just return
 2861          * without constructing any PRP.
 2862          */
 2863         if (!data_in_sz && !data_out_sz)
 2864                 return;
 2865 
 2866         /*
 2867          * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is
 2868          * located at a 24 byte offset from the start of the NVMe command. Then
 2869          * set the current PRP entry pointer to PRP1.
 2870          */
 2871         prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
 2872             NVME_CMD_PRP1_OFFSET);
 2873         prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command +
 2874             NVME_CMD_PRP2_OFFSET);
 2875         prp_entry = prp1_entry;
 2876 
 2877         /*
 2878          * For the PRP entries, use the specially allocated buffer of
 2879          * contiguous memory. PRP Page allocation failures should not happen
 2880          * because there should be enough PRP page buffers to account for the
 2881          * possible NVMe QDepth.
 2882          */
 2883         prp_page_info = mpr_alloc_prp_page(sc);
 2884         KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
 2885             "used for building a native NVMe SGL.\n", __func__));
 2886         prp_page = (uint64_t *)prp_page_info->prp_page;
 2887         prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
 2888 
 2889         /*
 2890          * Insert the allocated PRP page into the command's PRP page list. This
 2891          * will be freed when the command is freed.
 2892          */
 2893         TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
 2894 
 2895         /*
 2896          * Check if we are within 1 entry of a page boundary we don't want our
 2897          * first entry to be a PRP List entry.
 2898          */
 2899         page_mask = PAGE_SIZE - 1;
 2900         page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) &
 2901             page_mask;
 2902         if (!page_mask_result)
 2903         {
 2904                 /* Bump up to next page boundary. */
 2905                 prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size);
 2906                 prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys +
 2907                     prp_size);
 2908         }
 2909 
 2910         /*
 2911          * Set PRP physical pointer, which initially points to the current PRP
 2912          * DMA memory page.
 2913          */
 2914         prp_entry_phys = prp_page_phys;
 2915 
 2916         /* Get physical address and length of the data buffer. */
 2917         paddr = (bus_addr_t)(uintptr_t)data;
 2918         if (data_in_sz)
 2919                 length = data_in_sz;
 2920         else
 2921                 length = data_out_sz;
 2922 
 2923         /* Loop while the length is not zero. */
 2924         while (length)
 2925         {
 2926                 /*
 2927                  * Check if we need to put a list pointer here if we are at page
 2928                  * boundary - prp_size (8 bytes).
 2929                  */
 2930                 page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys +
 2931                     prp_size) & page_mask;
 2932                 if (!page_mask_result)
 2933                 {
 2934                         /*
 2935                          * This is the last entry in a PRP List, so we need to
 2936                          * put a PRP list pointer here. What this does is:
 2937                          *   - bump the current memory pointer to the next
 2938                          *     address, which will be the next full page.
 2939                          *   - set the PRP Entry to point to that page. This is
 2940                          *     now the PRP List pointer.
 2941                          *   - bump the PRP Entry pointer the start of the next
 2942                          *     page. Since all of this PRP memory is contiguous,
 2943                          *     no need to get a new page - it's just the next
 2944                          *     address.
 2945                          */
 2946                         prp_entry_phys++;
 2947                         *prp_entry =
 2948                             htole64((uint64_t)(uintptr_t)prp_entry_phys);
 2949                         prp_entry++;
 2950                 }
 2951 
 2952                 /* Need to handle if entry will be part of a page. */
 2953                 offset = (uint32_t)paddr & page_mask;
 2954                 entry_len = PAGE_SIZE - offset;
 2955 
 2956                 if (prp_entry == prp1_entry)
 2957                 {
 2958                         /*
 2959                          * Must fill in the first PRP pointer (PRP1) before
 2960                          * moving on.
 2961                          */
 2962                         *prp1_entry = htole64((uint64_t)paddr);
 2963 
 2964                         /*
 2965                          * Now point to the second PRP entry within the
 2966                          * command (PRP2).
 2967                          */
 2968                         prp_entry = prp2_entry;
 2969                 }
 2970                 else if (prp_entry == prp2_entry)
 2971                 {
 2972                         /*
 2973                          * Should the PRP2 entry be a PRP List pointer or just a
 2974                          * regular PRP pointer? If there is more than one more
 2975                          * page of data, must use a PRP List pointer.
 2976                          */
 2977                         if (length > PAGE_SIZE)
 2978                         {
 2979                                 /*
 2980                                  * PRP2 will contain a PRP List pointer because
 2981                                  * more PRP's are needed with this command. The
 2982                                  * list will start at the beginning of the
 2983                                  * contiguous buffer.
 2984                                  */
 2985                                 *prp2_entry =
 2986                                     htole64(
 2987                                     (uint64_t)(uintptr_t)prp_entry_phys);
 2988 
 2989                                 /*
 2990                                  * The next PRP Entry will be the start of the
 2991                                  * first PRP List.
 2992                                  */
 2993                                 prp_entry = prp_page;
 2994                         }
 2995                         else
 2996                         {
 2997                                 /*
 2998                                  * After this, the PRP Entries are complete.
 2999                                  * This command uses 2 PRP's and no PRP list.
 3000                                  */
 3001                                 *prp2_entry = htole64((uint64_t)paddr);
 3002                         }
 3003                 }
 3004                 else
 3005                 {
 3006                         /*
 3007                          * Put entry in list and bump the addresses.
 3008                          *
 3009                          * After PRP1 and PRP2 are filled in, this will fill in
 3010                          * all remaining PRP entries in a PRP List, one per each
 3011                          * time through the loop.
 3012                          */
 3013                         *prp_entry = htole64((uint64_t)paddr);
 3014                         prp_entry++;
 3015                         prp_entry_phys++;
 3016                 }
 3017 
 3018                 /*
 3019                  * Bump the phys address of the command's data buffer by the
 3020                  * entry_len.
 3021                  */
 3022                 paddr += entry_len;
 3023 
 3024                 /* Decrement length accounting for last partial page. */
 3025                 if (entry_len > length)
 3026                         length = 0;
 3027                 else
 3028                         length -= entry_len;
 3029         }
 3030 }
 3031 
 3032 /*
 3033  * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to
 3034  * determine if the driver needs to build a native SGL. If so, that native SGL
 3035  * is built in the contiguous buffers allocated especially for PCIe SGL
 3036  * creation. If the driver will not build a native SGL, return TRUE and a
 3037  * normal IEEE SGL will be built. Currently this routine supports NVMe devices
 3038  * only.
 3039  *
 3040  * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built.
 3041  */
 3042 static int
 3043 mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm,
 3044     bus_dma_segment_t *segs, int segs_left)
 3045 {
 3046         uint32_t                i, sge_dwords, length, offset, entry_len;
 3047         uint32_t                num_entries, buff_len = 0, sges_in_segment;
 3048         uint32_t                page_mask, page_mask_result, *curr_buff;
 3049         uint32_t                *ptr_sgl, *ptr_first_sgl, first_page_offset;
 3050         uint32_t                first_page_data_size, end_residual;
 3051         uint64_t                *msg_phys;
 3052         bus_addr_t              paddr;
 3053         int                     build_native_sgl = 0, first_prp_entry;
 3054         int                     prp_size = PRP_ENTRY_SIZE;
 3055         Mpi25IeeeSgeChain64_t   *main_chain_element = NULL;
 3056         struct mpr_prp_page     *prp_page_info = NULL;
 3057 
 3058         mpr_dprint(sc, MPR_TRACE, "%s\n", __func__);
 3059 
 3060         /*
 3061          * Add up the sizes of each segment length to get the total transfer
 3062          * size, which will be checked against the Maximum Data Transfer Size.
 3063          * If the data transfer length exceeds the MDTS for this device, just
 3064          * return 1 so a normal IEEE SGL will be built. F/W will break the I/O
 3065          * up into multiple I/O's. [nvme_mdts = 0 means unlimited]
 3066          */
 3067         for (i = 0; i < segs_left; i++)
 3068                 buff_len += htole32(segs[i].ds_len);
 3069         if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS))
 3070                 return 1;
 3071 
 3072         /* Create page_mask (to get offset within page) */
 3073         page_mask = PAGE_SIZE - 1;
 3074 
 3075         /*
 3076          * Check if the number of elements exceeds the max number that can be
 3077          * put in the main message frame (H/W can only translate an SGL that
 3078          * is contained entirely in the main message frame).
 3079          */
 3080         sges_in_segment = (sc->reqframesz -
 3081             offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION);
 3082         if (segs_left > sges_in_segment)
 3083                 build_native_sgl = 1;
 3084         else
 3085         {
 3086                 /*
 3087                  * NVMe uses one PRP for each physical page (or part of physical
 3088                  * page).
 3089                  *    if 4 pages or less then IEEE is OK
 3090                  *    if > 5 pages then we need to build a native SGL
 3091                  *    if > 4 and <= 5 pages, then check the physical address of
 3092                  *      the first SG entry, then if this first size in the page
 3093                  *      is >= the residual beyond 4 pages then use IEEE,
 3094                  *      otherwise use native SGL
 3095                  */
 3096                 if (buff_len > (PAGE_SIZE * 5))
 3097                         build_native_sgl = 1;
 3098                 else if ((buff_len > (PAGE_SIZE * 4)) &&
 3099                     (buff_len <= (PAGE_SIZE * 5)) )
 3100                 {
 3101                         msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr;
 3102                         first_page_offset =
 3103                             ((uint32_t)(uint64_t)(uintptr_t)msg_phys &
 3104                             page_mask);
 3105                         first_page_data_size = PAGE_SIZE - first_page_offset;
 3106                         end_residual = buff_len % PAGE_SIZE;
 3107 
 3108                         /*
 3109                          * If offset into first page pushes the end of the data
 3110                          * beyond end of the 5th page, we need the extra PRP
 3111                          * list.
 3112                          */
 3113                         if (first_page_data_size < end_residual)
 3114                                 build_native_sgl = 1;
 3115 
 3116                         /*
 3117                          * Check if first SG entry size is < residual beyond 4
 3118                          * pages.
 3119                          */
 3120                         if (htole32(segs[0].ds_len) <
 3121                             (buff_len - (PAGE_SIZE * 4)))
 3122                                 build_native_sgl = 1;
 3123                 }
 3124         }
 3125 
 3126         /* check if native SGL is needed */
 3127         if (!build_native_sgl)
 3128                 return 1;
 3129 
 3130         /*
 3131          * Native SGL is needed.
 3132          * Put a chain element in main message frame that points to the first
 3133          * chain buffer.
 3134          *
 3135          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
 3136          *        a native SGL.
 3137          */
 3138 
 3139         /* Set main message chain element pointer */
 3140         main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge;
 3141 
 3142         /*
 3143          * For NVMe the chain element needs to be the 2nd SGL entry in the main
 3144          * message.
 3145          */
 3146         main_chain_element = (Mpi25IeeeSgeChain64_t *)
 3147             ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
 3148 
 3149         /*
 3150          * For the PRP entries, use the specially allocated buffer of
 3151          * contiguous memory. PRP Page allocation failures should not happen
 3152          * because there should be enough PRP page buffers to account for the
 3153          * possible NVMe QDepth.
 3154          */
 3155         prp_page_info = mpr_alloc_prp_page(sc);
 3156         KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be "
 3157             "used for building a native NVMe SGL.\n", __func__));
 3158         curr_buff = (uint32_t *)prp_page_info->prp_page;
 3159         msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr;
 3160 
 3161         /*
 3162          * Insert the allocated PRP page into the command's PRP page list. This
 3163          * will be freed when the command is freed.
 3164          */
 3165         TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link);
 3166 
 3167         /*
 3168          * Check if we are within 1 entry of a page boundary we don't want our
 3169          * first entry to be a PRP List entry.
 3170          */
 3171         page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) &
 3172             page_mask;
 3173         if (!page_mask_result) {
 3174                 /* Bump up to next page boundary. */
 3175                 curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size);
 3176                 msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size);
 3177         }
 3178 
 3179         /* Fill in the chain element and make it an NVMe segment type. */
 3180         main_chain_element->Address.High =
 3181             htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32));
 3182         main_chain_element->Address.Low =
 3183             htole32((uint32_t)(uintptr_t)msg_phys);
 3184         main_chain_element->NextChainOffset = 0;
 3185         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
 3186             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
 3187             MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
 3188 
 3189         /* Set SGL pointer to start of contiguous PCIe buffer. */
 3190         ptr_sgl = curr_buff;
 3191         sge_dwords = 2;
 3192         num_entries = 0;
 3193 
 3194         /*
 3195          * NVMe has a very convoluted PRP format. One PRP is required for each
 3196          * page or partial page. We need to split up OS SG entries if they are
 3197          * longer than one page or cross a page boundary. We also have to insert
 3198          * a PRP list pointer entry as the last entry in each physical page of
 3199          * the PRP list.
 3200          *
 3201          * NOTE: The first PRP "entry" is actually placed in the first SGL entry
 3202          * in the main message in IEEE 64 format. The 2nd entry in the main
 3203          * message is the chain element, and the rest of the PRP entries are
 3204          * built in the contiguous PCIe buffer.
 3205          */
 3206         first_prp_entry = 1;
 3207         ptr_first_sgl = (uint32_t *)cm->cm_sge;
 3208 
 3209         for (i = 0; i < segs_left; i++) {
 3210                 /* Get physical address and length of this SG entry. */
 3211                 paddr = segs[i].ds_addr;
 3212                 length = segs[i].ds_len;
 3213 
 3214                 /*
 3215                  * Check whether a given SGE buffer lies on a non-PAGED
 3216                  * boundary if this is not the first page. If so, this is not
 3217                  * expected so have FW build the SGL.
 3218                  */
 3219                 if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) {
 3220                         mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while "
 3221                             "building NVMe PRPs, low address is 0x%x\n",
 3222                             (uint32_t)paddr);
 3223                         return 1;
 3224                 }
 3225 
 3226                 /* Apart from last SGE, if any other SGE boundary is not page
 3227                  * aligned then it means that hole exists. Existence of hole
 3228                  * leads to data corruption. So fallback to IEEE SGEs.
 3229                  */
 3230                 if (i != (segs_left - 1)) {
 3231                         if (((uint32_t)paddr + length) & page_mask) {
 3232                                 mpr_dprint(sc, MPR_ERROR, "Unaligned SGE "
 3233                                     "boundary while building NVMe PRPs, low "
 3234                                     "address: 0x%x and length: %u\n",
 3235                                     (uint32_t)paddr, length);
 3236                                 return 1;
 3237                         }
 3238                 }
 3239 
 3240                 /* Loop while the length is not zero. */
 3241                 while (length) {
 3242                         /*
 3243                          * Check if we need to put a list pointer here if we are
 3244                          * at page boundary - prp_size.
 3245                          */
 3246                         page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl +
 3247                             prp_size) & page_mask;
 3248                         if (!page_mask_result) {
 3249                                 /*
 3250                                  * Need to put a PRP list pointer here.
 3251                                  */
 3252                                 msg_phys = (uint64_t *)((uint8_t *)msg_phys +
 3253                                     prp_size);
 3254                                 *ptr_sgl = htole32((uintptr_t)msg_phys);
 3255                                 *(ptr_sgl+1) = htole32((uint64_t)(uintptr_t)
 3256                                     msg_phys >> 32);
 3257                                 ptr_sgl += sge_dwords;
 3258                                 num_entries++;
 3259                         }
 3260 
 3261                         /* Need to handle if entry will be part of a page. */
 3262                         offset = (uint32_t)paddr & page_mask;
 3263                         entry_len = PAGE_SIZE - offset;
 3264                         if (first_prp_entry) {
 3265                                 /*
 3266                                  * Put IEEE entry in first SGE in main message.
 3267                                  * (Simple element, System addr, not end of
 3268                                  * list.)
 3269                                  */
 3270                                 *ptr_first_sgl = htole32((uint32_t)paddr);
 3271                                 *(ptr_first_sgl + 1) =
 3272                                     htole32((uint32_t)((uint64_t)paddr >> 32));
 3273                                 *(ptr_first_sgl + 2) = htole32(entry_len);
 3274                                 *(ptr_first_sgl + 3) = 0;
 3275 
 3276                                 /* No longer the first PRP entry. */
 3277                                 first_prp_entry = 0;
 3278                         } else {
 3279                                 /* Put entry in list. */
 3280                                 *ptr_sgl = htole32((uint32_t)paddr);
 3281                                 *(ptr_sgl + 1) =
 3282                                     htole32((uint32_t)((uint64_t)paddr >> 32));
 3283 
 3284                                 /* Bump ptr_sgl, msg_phys, and num_entries. */
 3285                                 ptr_sgl += sge_dwords;
 3286                                 msg_phys = (uint64_t *)((uint8_t *)msg_phys +
 3287                                     prp_size);
 3288                                 num_entries++;
 3289                         }
 3290 
 3291                         /* Bump the phys address by the entry_len. */
 3292                         paddr += entry_len;
 3293 
 3294                         /* Decrement length accounting for last partial page. */
 3295                         if (entry_len > length)
 3296                                 length = 0;
 3297                         else
 3298                                 length -= entry_len;
 3299                 }
 3300         }
 3301 
 3302         /* Set chain element Length. */
 3303         main_chain_element->Length = htole32(num_entries * prp_size);
 3304 
 3305         /* Return 0, indicating we built a native SGL. */
 3306         return 0;
 3307 }
 3308 
 3309 /*
 3310  * Add a chain element as the next SGE for the specified command.
 3311  * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are
 3312  * only required for IEEE commands.  Therefore there is no code for commands
 3313  * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands
 3314  * shouldn't be requesting chains).
 3315  */
 3316 static int
 3317 mpr_add_chain(struct mpr_command *cm, int segsleft)
 3318 {
 3319         struct mpr_softc *sc = cm->cm_sc;
 3320         MPI2_REQUEST_HEADER *req;
 3321         MPI25_IEEE_SGE_CHAIN64 *ieee_sgc;
 3322         struct mpr_chain *chain;
 3323         int sgc_size, current_segs, rem_segs, segs_per_frame;
 3324         uint8_t next_chain_offset = 0;
 3325 
 3326         /*
 3327          * Fail if a command is requesting a chain for SIMPLE SGE's.  For SAS3
 3328          * only IEEE commands should be requesting chains.  Return some error
 3329          * code other than 0.
 3330          */
 3331         if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) {
 3332                 mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to "
 3333                     "an MPI SGL.\n");
 3334                 return(ENOBUFS);
 3335         }
 3336 
 3337         sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64);
 3338         if (cm->cm_sglsize < sgc_size)
 3339                 panic("MPR: Need SGE Error Code\n");
 3340 
 3341         chain = mpr_alloc_chain(cm->cm_sc);
 3342         if (chain == NULL)
 3343                 return (ENOBUFS);
 3344 
 3345         /*
 3346          * Note: a double-linked list is used to make it easier to walk for
 3347          * debugging.
 3348          */
 3349         TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
 3350 
 3351         /*
 3352          * Need to know if the number of frames left is more than 1 or not.  If
 3353          * more than 1 frame is required, NextChainOffset will need to be set,
 3354          * which will just be the last segment of the frame.
 3355          */
 3356         rem_segs = 0;
 3357         if (cm->cm_sglsize < (sgc_size * segsleft)) {
 3358                 /*
 3359                  * rem_segs is the number of segements remaining after the
 3360                  * segments that will go into the current frame.  Since it is
 3361                  * known that at least one more frame is required, account for
 3362                  * the chain element.  To know if more than one more frame is
 3363                  * required, just check if there will be a remainder after using
 3364                  * the current frame (with this chain) and the next frame.  If
 3365                  * so the NextChainOffset must be the last element of the next
 3366                  * frame.
 3367                  */
 3368                 current_segs = (cm->cm_sglsize / sgc_size) - 1;
 3369                 rem_segs = segsleft - current_segs;
 3370                 segs_per_frame = sc->chain_frame_size / sgc_size;
 3371                 if (rem_segs > segs_per_frame) {
 3372                         next_chain_offset = segs_per_frame - 1;
 3373                 }
 3374         }
 3375         ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain;
 3376         ieee_sgc->Length = next_chain_offset ?
 3377             htole32((uint32_t)sc->chain_frame_size) :
 3378             htole32((uint32_t)rem_segs * (uint32_t)sgc_size);
 3379         ieee_sgc->NextChainOffset = next_chain_offset;
 3380         ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
 3381             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
 3382         ieee_sgc->Address.Low = htole32(chain->chain_busaddr);
 3383         ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32);
 3384         cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple;
 3385         req = (MPI2_REQUEST_HEADER *)cm->cm_req;
 3386         req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4;
 3387 
 3388         cm->cm_sglsize = sc->chain_frame_size;
 3389         return (0);
 3390 }
 3391 
 3392 /*
 3393  * Add one scatter-gather element to the scatter-gather list for a command.
 3394  * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the
 3395  * next SGE to fill in, respectively.  In Gen3, the MPI SGL does not have a
 3396  * chain, so don't consider any chain additions.
 3397  */
 3398 int
 3399 mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len,
 3400     int segsleft)
 3401 {
 3402         uint32_t saved_buf_len, saved_address_low, saved_address_high;
 3403         u32 sge_flags;
 3404 
 3405         /*
 3406          * case 1: >=1 more segment, no room for anything (error)
 3407          * case 2: 1 more segment and enough room for it
 3408          */
 3409 
 3410         if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) {
 3411                 mpr_dprint(cm->cm_sc, MPR_ERROR,
 3412                     "%s: warning: Not enough room for MPI SGL in frame.\n",
 3413                     __func__);
 3414                 return(ENOBUFS);
 3415         }
 3416 
 3417         KASSERT(segsleft == 1,
 3418             ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n",
 3419             segsleft));
 3420 
 3421         /*
 3422          * There is one more segment left to add for the MPI SGL and there is
 3423          * enough room in the frame to add it.  This is the normal case because
 3424          * MPI SGL's don't have chains, otherwise something is wrong.
 3425          *
 3426          * If this is a bi-directional request, need to account for that
 3427          * here.  Save the pre-filled sge values.  These will be used
 3428          * either for the 2nd SGL or for a single direction SGL.  If
 3429          * cm_out_len is non-zero, this is a bi-directional request, so
 3430          * fill in the OUT SGL first, then the IN SGL, otherwise just
 3431          * fill in the IN SGL.  Note that at this time, when filling in
 3432          * 2 SGL's for a bi-directional request, they both use the same
 3433          * DMA buffer (same cm command).
 3434          */
 3435         saved_buf_len = sge->FlagsLength & 0x00FFFFFF;
 3436         saved_address_low = sge->Address.Low;
 3437         saved_address_high = sge->Address.High;
 3438         if (cm->cm_out_len) {
 3439                 sge->FlagsLength = cm->cm_out_len |
 3440                     ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 3441                     MPI2_SGE_FLAGS_END_OF_BUFFER |
 3442                     MPI2_SGE_FLAGS_HOST_TO_IOC |
 3443                     MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
 3444                     MPI2_SGE_FLAGS_SHIFT);
 3445                 cm->cm_sglsize -= len;
 3446                 /* Endian Safe code */
 3447                 sge_flags = sge->FlagsLength;
 3448                 sge->FlagsLength = htole32(sge_flags);
 3449                 sge->Address.High = htole32(sge->Address.High); 
 3450                 sge->Address.Low = htole32(sge->Address.Low);
 3451                 bcopy(sge, cm->cm_sge, len);
 3452                 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
 3453         }
 3454         sge->FlagsLength = saved_buf_len |
 3455             ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 3456             MPI2_SGE_FLAGS_END_OF_BUFFER |
 3457             MPI2_SGE_FLAGS_LAST_ELEMENT |
 3458             MPI2_SGE_FLAGS_END_OF_LIST |
 3459             MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
 3460             MPI2_SGE_FLAGS_SHIFT);
 3461         if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
 3462                 sge->FlagsLength |=
 3463                     ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
 3464                     MPI2_SGE_FLAGS_SHIFT);
 3465         } else {
 3466                 sge->FlagsLength |=
 3467                     ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
 3468                     MPI2_SGE_FLAGS_SHIFT);
 3469         }
 3470         sge->Address.Low = saved_address_low;
 3471         sge->Address.High = saved_address_high;
 3472 
 3473         cm->cm_sglsize -= len;
 3474         /* Endian Safe code */
 3475         sge_flags = sge->FlagsLength;
 3476         sge->FlagsLength = htole32(sge_flags);
 3477         sge->Address.High = htole32(sge->Address.High); 
 3478         sge->Address.Low = htole32(sge->Address.Low);
 3479         bcopy(sge, cm->cm_sge, len);
 3480         cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
 3481         return (0);
 3482 }
 3483 
 3484 /*
 3485  * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter-
 3486  * gather list for a command.  Maintain cm_sglsize and cm_sge as the
 3487  * remaining size and pointer to the next SGE to fill in, respectively.
 3488  */
 3489 int
 3490 mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft)
 3491 {
 3492         MPI2_IEEE_SGE_SIMPLE64 *sge = sgep;
 3493         int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION);
 3494         uint32_t saved_buf_len, saved_address_low, saved_address_high;
 3495         uint32_t sge_length;
 3496 
 3497         /*
 3498          * case 1: No room for chain or segment (error).
 3499          * case 2: Two or more segments left but only room for chain.
 3500          * case 3: Last segment and room for it, so set flags.
 3501          */
 3502 
 3503         /*
 3504          * There should be room for at least one element, or there is a big
 3505          * problem.
 3506          */
 3507         if (cm->cm_sglsize < ieee_sge_size)
 3508                 panic("MPR: Need SGE Error Code\n");
 3509 
 3510         if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) {
 3511                 if ((error = mpr_add_chain(cm, segsleft)) != 0)
 3512                         return (error);
 3513         }
 3514 
 3515         if (segsleft == 1) {
 3516                 /*
 3517                  * If this is a bi-directional request, need to account for that
 3518                  * here.  Save the pre-filled sge values.  These will be used
 3519                  * either for the 2nd SGL or for a single direction SGL.  If
 3520                  * cm_out_len is non-zero, this is a bi-directional request, so
 3521                  * fill in the OUT SGL first, then the IN SGL, otherwise just
 3522                  * fill in the IN SGL.  Note that at this time, when filling in
 3523                  * 2 SGL's for a bi-directional request, they both use the same
 3524                  * DMA buffer (same cm command).
 3525                  */
 3526                 saved_buf_len = sge->Length;
 3527                 saved_address_low = sge->Address.Low;
 3528                 saved_address_high = sge->Address.High;
 3529                 if (cm->cm_out_len) {
 3530                         sge->Length = cm->cm_out_len;
 3531                         sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
 3532                             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
 3533                         cm->cm_sglsize -= ieee_sge_size;
 3534                         /* Endian Safe code */
 3535                         sge_length = sge->Length;
 3536                         sge->Length = htole32(sge_length);
 3537                         sge->Address.High = htole32(sge->Address.High); 
 3538                         sge->Address.Low = htole32(sge->Address.Low);
 3539                         bcopy(sgep, cm->cm_sge, ieee_sge_size);
 3540                         cm->cm_sge =
 3541                             (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
 3542                             ieee_sge_size);
 3543                 }
 3544                 sge->Length = saved_buf_len;
 3545                 sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
 3546                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
 3547                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
 3548                 sge->Address.Low = saved_address_low;
 3549                 sge->Address.High = saved_address_high;
 3550         }
 3551 
 3552         cm->cm_sglsize -= ieee_sge_size;
 3553         /* Endian Safe code */
 3554         sge_length = sge->Length;
 3555         sge->Length = htole32(sge_length);
 3556         sge->Address.High = htole32(sge->Address.High); 
 3557         sge->Address.Low = htole32(sge->Address.Low);
 3558         bcopy(sgep, cm->cm_sge, ieee_sge_size);
 3559         cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge +
 3560             ieee_sge_size);
 3561         return (0);
 3562 }
 3563 
 3564 /*
 3565  * Add one dma segment to the scatter-gather list for a command.
 3566  */
 3567 int
 3568 mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags,
 3569     int segsleft)
 3570 {
 3571         MPI2_SGE_SIMPLE64 sge;
 3572         MPI2_IEEE_SGE_SIMPLE64 ieee_sge;
 3573 
 3574         if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) {
 3575                 ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
 3576                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR);
 3577                 ieee_sge.Length = len;
 3578                 mpr_from_u64(pa, &ieee_sge.Address);
 3579 
 3580                 return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft));
 3581         } else {
 3582                 /*
 3583                  * This driver always uses 64-bit address elements for
 3584                  * simplicity.
 3585                  */
 3586                 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 3587                     MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
 3588                 /* Set Endian safe macro in mpr_push_sge */
 3589                 sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT);
 3590                 mpr_from_u64(pa, &sge.Address);
 3591 
 3592                 return (mpr_push_sge(cm, &sge, sizeof sge, segsleft));
 3593         }
 3594 }
 3595 
 3596 static void
 3597 mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 3598 {
 3599         struct mpr_softc *sc;
 3600         struct mpr_command *cm;
 3601         u_int i, dir, sflags;
 3602 
 3603         cm = (struct mpr_command *)arg;
 3604         sc = cm->cm_sc;
 3605 
 3606         /*
 3607          * In this case, just print out a warning and let the chip tell the
 3608          * user they did the wrong thing.
 3609          */
 3610         if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
 3611                 mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d "
 3612                     "segments, more than the %d allowed\n", __func__, nsegs,
 3613                     cm->cm_max_segs);
 3614         }
 3615 
 3616         /*
 3617          * Set up DMA direction flags.  Bi-directional requests are also handled
 3618          * here.  In that case, both direction flags will be set.
 3619          */
 3620         sflags = 0;
 3621         if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) {
 3622                 /*
 3623                  * We have to add a special case for SMP passthrough, there
 3624                  * is no easy way to generically handle it.  The first
 3625                  * S/G element is used for the command (therefore the
 3626                  * direction bit needs to be set).  The second one is used
 3627                  * for the reply.  We'll leave it to the caller to make
 3628                  * sure we only have two buffers.
 3629                  */
 3630                 /*
 3631                  * Even though the busdma man page says it doesn't make
 3632                  * sense to have both direction flags, it does in this case.
 3633                  * We have one s/g element being accessed in each direction.
 3634                  */
 3635                 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
 3636 
 3637                 /*
 3638                  * Set the direction flag on the first buffer in the SMP
 3639                  * passthrough request.  We'll clear it for the second one.
 3640                  */
 3641                 sflags |= MPI2_SGE_FLAGS_DIRECTION |
 3642                           MPI2_SGE_FLAGS_END_OF_BUFFER;
 3643         } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) {
 3644                 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
 3645                 dir = BUS_DMASYNC_PREWRITE;
 3646         } else
 3647                 dir = BUS_DMASYNC_PREREAD;
 3648 
 3649         /* Check if a native SG list is needed for an NVMe PCIe device. */
 3650         if (cm->cm_targ && cm->cm_targ->is_nvme &&
 3651             mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) {
 3652                 /* A native SG list was built, skip to end. */
 3653                 goto out;
 3654         }
 3655 
 3656         for (i = 0; i < nsegs; i++) {
 3657                 if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) {
 3658                         sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
 3659                 }
 3660                 error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
 3661                     sflags, nsegs - i);
 3662                 if (error != 0) {
 3663                         /* Resource shortage, roll back! */
 3664                         if (ratecheck(&sc->lastfail, &mpr_chainfail_interval))
 3665                                 mpr_dprint(sc, MPR_INFO, "Out of chain frames, "
 3666                                     "consider increasing hw.mpr.max_chains.\n");
 3667                         cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED;
 3668                         mpr_complete_command(sc, cm);
 3669                         return;
 3670                 }
 3671         }
 3672 
 3673 out:
 3674         bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
 3675         mpr_enqueue_request(sc, cm);
 3676 
 3677         return;
 3678 }
 3679 
 3680 static void
 3681 mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
 3682              int error)
 3683 {
 3684         mpr_data_cb(arg, segs, nsegs, error);
 3685 }
 3686 
 3687 /*
 3688  * This is the routine to enqueue commands ansynchronously.
 3689  * Note that the only error path here is from bus_dmamap_load(), which can
 3690  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
 3691  * assumed that if you have a command in-hand, then you have enough credits
 3692  * to use it.
 3693  */
 3694 int
 3695 mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm)
 3696 {
 3697         int error = 0;
 3698 
 3699         if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) {
 3700                 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
 3701                     &cm->cm_uio, mpr_data_cb2, cm, 0);
 3702         } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) {
 3703                 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
 3704                     cm->cm_data, mpr_data_cb, cm, 0);
 3705         } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
 3706                 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
 3707                     cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0);
 3708         } else {
 3709                 /* Add a zero-length element as needed */
 3710                 if (cm->cm_sge != NULL)
 3711                         mpr_add_dmaseg(cm, 0, 0, 0, 1);
 3712                 mpr_enqueue_request(sc, cm);
 3713         }
 3714 
 3715         return (error);
 3716 }
 3717 
 3718 /*
 3719  * This is the routine to enqueue commands synchronously.  An error of
 3720  * EINPROGRESS from mpr_map_command() is ignored since the command will
 3721  * be executed and enqueued automatically.  Other errors come from msleep().
 3722  */
 3723 int
 3724 mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout,
 3725     int sleep_flag)
 3726 {
 3727         int error, rc;
 3728         struct timeval cur_time, start_time;
 3729         struct mpr_command *cm = *cmp;
 3730 
 3731         if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) 
 3732                 return  EBUSY;
 3733 
 3734         cm->cm_complete = NULL;
 3735         cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED);
 3736         error = mpr_map_command(sc, cm);
 3737         if ((error != 0) && (error != EINPROGRESS))
 3738                 return (error);
 3739 
 3740         // Check for context and wait for 50 mSec at a time until time has
 3741         // expired or the command has finished.  If msleep can't be used, need
 3742         // to poll.
 3743         if (curthread->td_no_sleeping)
 3744                 sleep_flag = NO_SLEEP;
 3745         getmicrouptime(&start_time);
 3746         if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) {
 3747                 error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz);
 3748                 if (error == EWOULDBLOCK) {
 3749                         /*
 3750                          * Record the actual elapsed time in the case of a
 3751                          * timeout for the message below.
 3752                          */
 3753                         getmicrouptime(&cur_time);
 3754                         timevalsub(&cur_time, &start_time);
 3755                 }
 3756         } else {
 3757                 while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
 3758                         mpr_intr_locked(sc);
 3759                         if (sleep_flag == CAN_SLEEP)
 3760                                 pause("mprwait", hz/20);
 3761                         else
 3762                                 DELAY(50000);
 3763                 
 3764                         getmicrouptime(&cur_time);
 3765                         timevalsub(&cur_time, &start_time);
 3766                         if (cur_time.tv_sec > timeout) {
 3767                                 error = EWOULDBLOCK;
 3768                                 break;
 3769                         }
 3770                 }
 3771         }
 3772 
 3773         if (error == EWOULDBLOCK) {
 3774                 if (cm->cm_timeout_handler == NULL) {
 3775                         mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d,"
 3776                             " elapsed=%jd\n", __func__, timeout,
 3777                             (intmax_t)cur_time.tv_sec);
 3778                         rc = mpr_reinit(sc);
 3779                         mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
 3780                             "failed");
 3781                 } else
 3782                         cm->cm_timeout_handler(sc, cm);
 3783                 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
 3784                         /*
 3785                          * Tell the caller that we freed the command in a
 3786                          * reinit.
 3787                          */
 3788                         *cmp = NULL;
 3789                 }
 3790                 error = ETIMEDOUT;
 3791         }
 3792         return (error);
 3793 }
 3794 
 3795 /*
 3796  * This is the routine to enqueue a command synchonously and poll for
 3797  * completion.  Its use should be rare.
 3798  */
 3799 int
 3800 mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp)
 3801 {
 3802         int error, rc;
 3803         struct timeval cur_time, start_time;
 3804         struct mpr_command *cm = *cmp;
 3805 
 3806         error = 0;
 3807 
 3808         cm->cm_flags |= MPR_CM_FLAGS_POLLED;
 3809         cm->cm_complete = NULL;
 3810         mpr_map_command(sc, cm);
 3811 
 3812         getmicrouptime(&start_time);
 3813         while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) {
 3814                 mpr_intr_locked(sc);
 3815 
 3816                 if (mtx_owned(&sc->mpr_mtx))
 3817                         msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0,
 3818                             "mprpoll", hz/20);
 3819                 else
 3820                         pause("mprpoll", hz/20);
 3821 
 3822                 /*
 3823                  * Check for real-time timeout and fail if more than 60 seconds.
 3824                  */
 3825                 getmicrouptime(&cur_time);
 3826                 timevalsub(&cur_time, &start_time);
 3827                 if (cur_time.tv_sec > 60) {
 3828                         mpr_dprint(sc, MPR_FAULT, "polling failed\n");
 3829                         error = ETIMEDOUT;
 3830                         break;
 3831                 }
 3832         }
 3833         cm->cm_state = MPR_CM_STATE_BUSY;
 3834         if (error) {
 3835                 mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__);
 3836                 rc = mpr_reinit(sc);
 3837                 mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
 3838                     "failed");
 3839 
 3840                 if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) {
 3841                         /*
 3842                          * Tell the caller that we freed the command in a
 3843                          * reinit.
 3844                          */
 3845                         *cmp = NULL;
 3846                 }
 3847         }
 3848         return (error);
 3849 }
 3850 
 3851 /*
 3852  * The MPT driver had a verbose interface for config pages.  In this driver,
 3853  * reduce it to much simpler terms, similar to the Linux driver.
 3854  */
 3855 int
 3856 mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
 3857 {
 3858         MPI2_CONFIG_REQUEST *req;
 3859         struct mpr_command *cm;
 3860         int error;
 3861 
 3862         if (sc->mpr_flags & MPR_FLAGS_BUSY) {
 3863                 return (EBUSY);
 3864         }
 3865 
 3866         cm = mpr_alloc_command(sc);
 3867         if (cm == NULL) {
 3868                 return (EBUSY);
 3869         }
 3870 
 3871         req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
 3872         req->Function = MPI2_FUNCTION_CONFIG;
 3873         req->Action = params->action;
 3874         req->SGLFlags = 0;
 3875         req->ChainOffset = 0;
 3876         req->PageAddress = params->page_address;
 3877         if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
 3878                 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
 3879 
 3880                 hdr = &params->hdr.Ext;
 3881                 req->ExtPageType = hdr->ExtPageType;
 3882                 req->ExtPageLength = hdr->ExtPageLength;
 3883                 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
 3884                 req->Header.PageLength = 0; /* Must be set to zero */
 3885                 req->Header.PageNumber = hdr->PageNumber;
 3886                 req->Header.PageVersion = hdr->PageVersion;
 3887         } else {
 3888                 MPI2_CONFIG_PAGE_HEADER *hdr;
 3889 
 3890                 hdr = &params->hdr.Struct;
 3891                 req->Header.PageType = hdr->PageType;
 3892                 req->Header.PageNumber = hdr->PageNumber;
 3893                 req->Header.PageLength = hdr->PageLength;
 3894                 req->Header.PageVersion = hdr->PageVersion;
 3895         }
 3896 
 3897         cm->cm_data = params->buffer;
 3898         cm->cm_length = params->length;
 3899         if (cm->cm_data != NULL) {
 3900                 cm->cm_sge = &req->PageBufferSGE;
 3901                 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
 3902                 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN;
 3903         } else
 3904                 cm->cm_sge = NULL;
 3905         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 3906 
 3907         cm->cm_complete_data = params;
 3908         if (params->callback != NULL) {
 3909                 cm->cm_complete = mpr_config_complete;
 3910                 return (mpr_map_command(sc, cm));
 3911         } else {
 3912                 error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP);
 3913                 if (error) {
 3914                         mpr_dprint(sc, MPR_FAULT,
 3915                             "Error %d reading config page\n", error);
 3916                         if (cm != NULL)
 3917                                 mpr_free_command(sc, cm);
 3918                         return (error);
 3919                 }
 3920                 mpr_config_complete(sc, cm);
 3921         }
 3922 
 3923         return (0);
 3924 }
 3925 
 3926 int
 3927 mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params)
 3928 {
 3929         return (EINVAL);
 3930 }
 3931 
 3932 static void
 3933 mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm)
 3934 {
 3935         MPI2_CONFIG_REPLY *reply;
 3936         struct mpr_config_params *params;
 3937 
 3938         MPR_FUNCTRACE(sc);
 3939         params = cm->cm_complete_data;
 3940 
 3941         if (cm->cm_data != NULL) {
 3942                 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
 3943                     BUS_DMASYNC_POSTREAD);
 3944                 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
 3945         }
 3946 
 3947         /*
 3948          * XXX KDM need to do more error recovery?  This results in the
 3949          * device in question not getting probed.
 3950          */
 3951         if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) {
 3952                 params->status = MPI2_IOCSTATUS_BUSY;
 3953                 goto done;
 3954         }
 3955 
 3956         reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
 3957         if (reply == NULL) {
 3958                 params->status = MPI2_IOCSTATUS_BUSY;
 3959                 goto done;
 3960         }
 3961         params->status = reply->IOCStatus;
 3962         if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
 3963                 params->hdr.Ext.ExtPageType = reply->ExtPageType;
 3964                 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
 3965                 params->hdr.Ext.PageType = reply->Header.PageType;
 3966                 params->hdr.Ext.PageNumber = reply->Header.PageNumber;
 3967                 params->hdr.Ext.PageVersion = reply->Header.PageVersion;
 3968         } else {
 3969                 params->hdr.Struct.PageType = reply->Header.PageType;
 3970                 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
 3971                 params->hdr.Struct.PageLength = reply->Header.PageLength;
 3972                 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
 3973         }
 3974 
 3975 done:
 3976         mpr_free_command(sc, cm);
 3977         if (params->callback != NULL)
 3978                 params->callback(sc, params);
 3979 
 3980         return;
 3981 }

Cache object: 118be2639debcfa4054ddea3039858fd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.