FreeBSD/Linux Kernel Cross Reference
sys/dev/mpr/mpr_user.c
1 /*-
2 * Copyright (c) 2008 Yahoo!, Inc.
3 * All rights reserved.
4 * Written by: John Baldwin <jhb@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the author nor the names of any co-contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31 */
32 /*-
33 * Copyright (c) 2011-2015 LSI Corp.
34 * Copyright (c) 2013-2016 Avago Technologies
35 * Copyright 2000-2020 Broadcom Inc.
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
60 *
61 * $FreeBSD$
62 */
63
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66
67 /* TODO Move headers to mprvar */
68 #include <sys/types.h>
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/selinfo.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/conf.h>
76 #include <sys/bio.h>
77 #include <sys/abi_compat.h>
78 #include <sys/malloc.h>
79 #include <sys/uio.h>
80 #include <sys/sysctl.h>
81 #include <sys/ioccom.h>
82 #include <sys/endian.h>
83 #include <sys/queue.h>
84 #include <sys/kthread.h>
85 #include <sys/taskqueue.h>
86 #include <sys/proc.h>
87 #include <sys/sysent.h>
88
89 #include <machine/bus.h>
90 #include <machine/resource.h>
91 #include <sys/rman.h>
92
93 #include <cam/cam.h>
94 #include <cam/cam_ccb.h>
95
96 #include <dev/mpr/mpi/mpi2_type.h>
97 #include <dev/mpr/mpi/mpi2.h>
98 #include <dev/mpr/mpi/mpi2_ioc.h>
99 #include <dev/mpr/mpi/mpi2_cnfg.h>
100 #include <dev/mpr/mpi/mpi2_init.h>
101 #include <dev/mpr/mpi/mpi2_tool.h>
102 #include <dev/mpr/mpi/mpi2_pci.h>
103 #include <dev/mpr/mpr_ioctl.h>
104 #include <dev/mpr/mprvar.h>
105 #include <dev/mpr/mpr_table.h>
106 #include <dev/mpr/mpr_sas.h>
107 #include <dev/pci/pcivar.h>
108 #include <dev/pci/pcireg.h>
109
110 static d_open_t mpr_open;
111 static d_close_t mpr_close;
112 static d_ioctl_t mpr_ioctl_devsw;
113
114 static struct cdevsw mpr_cdevsw = {
115 .d_version = D_VERSION,
116 .d_flags = 0,
117 .d_open = mpr_open,
118 .d_close = mpr_close,
119 .d_ioctl = mpr_ioctl_devsw,
120 .d_name = "mpr",
121 };
122
123 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
124 static mpr_user_f mpi_pre_ioc_facts;
125 static mpr_user_f mpi_pre_port_facts;
126 static mpr_user_f mpi_pre_fw_download;
127 static mpr_user_f mpi_pre_fw_upload;
128 static mpr_user_f mpi_pre_sata_passthrough;
129 static mpr_user_f mpi_pre_smp_passthrough;
130 static mpr_user_f mpi_pre_config;
131 static mpr_user_f mpi_pre_sas_io_unit_control;
132
133 static int mpr_user_read_cfg_header(struct mpr_softc *,
134 struct mpr_cfg_page_req *);
135 static int mpr_user_read_cfg_page(struct mpr_softc *,
136 struct mpr_cfg_page_req *, void *);
137 static int mpr_user_read_extcfg_header(struct mpr_softc *,
138 struct mpr_ext_cfg_page_req *);
139 static int mpr_user_read_extcfg_page(struct mpr_softc *,
140 struct mpr_ext_cfg_page_req *, void *);
141 static int mpr_user_write_cfg_page(struct mpr_softc *,
142 struct mpr_cfg_page_req *, void *);
143 static int mpr_user_setup_request(struct mpr_command *,
144 struct mpr_usr_command *);
145 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
146
147 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
148 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
149 mpr_adapter_data_t *data);
150 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
151 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
152 uint32_t unique_id);
153 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
154 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
155 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
156 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
157 uint32_t diag_type);
158 static int mpr_diag_register(struct mpr_softc *sc,
159 mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
160 static int mpr_diag_unregister(struct mpr_softc *sc,
161 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
162 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
163 uint32_t *return_code);
164 static int mpr_diag_read_buffer(struct mpr_softc *sc,
165 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
166 uint32_t *return_code);
167 static int mpr_diag_release(struct mpr_softc *sc,
168 mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
169 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
170 uint8_t *diag_action, uint32_t length, uint32_t *return_code);
171 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
172 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
173 static void mpr_user_event_enable(struct mpr_softc *sc,
174 mpr_event_enable_t *data);
175 static int mpr_user_event_report(struct mpr_softc *sc,
176 mpr_event_report_t *data);
177 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
178 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
179
180 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
181
182 /*
183 * MPI functions that support IEEE SGLs for SAS3.
184 */
185 static uint8_t ieee_sgl_func_list[] = {
186 MPI2_FUNCTION_SCSI_IO_REQUEST,
187 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
188 MPI2_FUNCTION_SMP_PASSTHROUGH,
189 MPI2_FUNCTION_SATA_PASSTHROUGH,
190 MPI2_FUNCTION_FW_UPLOAD,
191 MPI2_FUNCTION_FW_DOWNLOAD,
192 MPI2_FUNCTION_TARGET_ASSIST,
193 MPI2_FUNCTION_TARGET_STATUS_SEND,
194 MPI2_FUNCTION_TOOLBOX
195 };
196
197 int
198 mpr_attach_user(struct mpr_softc *sc)
199 {
200 int unit;
201
202 unit = device_get_unit(sc->mpr_dev);
203 sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
204 "mpr%d", unit);
205
206 if (sc->mpr_cdev == NULL)
207 return (ENOMEM);
208
209 sc->mpr_cdev->si_drv1 = sc;
210 return (0);
211 }
212
213 void
214 mpr_detach_user(struct mpr_softc *sc)
215 {
216
217 /* XXX: do a purge of pending requests? */
218 if (sc->mpr_cdev != NULL)
219 destroy_dev(sc->mpr_cdev);
220 }
221
222 static int
223 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
224 {
225
226 return (0);
227 }
228
229 static int
230 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
231 {
232
233 return (0);
234 }
235
236 static int
237 mpr_user_read_cfg_header(struct mpr_softc *sc,
238 struct mpr_cfg_page_req *page_req)
239 {
240 MPI2_CONFIG_PAGE_HEADER *hdr;
241 struct mpr_config_params params;
242 int error;
243
244 hdr = ¶ms.hdr.Struct;
245 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
246 params.page_address = le32toh(page_req->page_address);
247 hdr->PageVersion = 0;
248 hdr->PageLength = 0;
249 hdr->PageNumber = page_req->header.PageNumber;
250 hdr->PageType = page_req->header.PageType;
251 params.buffer = NULL;
252 params.length = 0;
253 params.callback = NULL;
254
255 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
256 /*
257 * Leave the request. Without resetting the chip, it's
258 * still owned by it and we'll just get into trouble
259 * freeing it now. Mark it as abandoned so that if it
260 * shows up later it can be freed.
261 */
262 mpr_printf(sc, "read_cfg_header timed out\n");
263 return (ETIMEDOUT);
264 }
265
266 page_req->ioc_status = htole16(params.status);
267 if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
268 MPI2_IOCSTATUS_SUCCESS) {
269 bcopy(hdr, &page_req->header, sizeof(page_req->header));
270 }
271
272 return (0);
273 }
274
275 static int
276 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
277 void *buf)
278 {
279 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
280 struct mpr_config_params params;
281 int error;
282
283 reqhdr = buf;
284 hdr = ¶ms.hdr.Struct;
285 hdr->PageVersion = reqhdr->PageVersion;
286 hdr->PageLength = reqhdr->PageLength;
287 hdr->PageNumber = reqhdr->PageNumber;
288 hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
289 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
290 params.page_address = le32toh(page_req->page_address);
291 params.buffer = buf;
292 params.length = le32toh(page_req->len);
293 params.callback = NULL;
294
295 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
296 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
297 return (ETIMEDOUT);
298 }
299
300 page_req->ioc_status = htole16(params.status);
301 return (0);
302 }
303
304 static int
305 mpr_user_read_extcfg_header(struct mpr_softc *sc,
306 struct mpr_ext_cfg_page_req *ext_page_req)
307 {
308 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
309 struct mpr_config_params params;
310 int error;
311
312 hdr = ¶ms.hdr.Ext;
313 params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
314 hdr->PageVersion = ext_page_req->header.PageVersion;
315 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
316 hdr->ExtPageLength = 0;
317 hdr->PageNumber = ext_page_req->header.PageNumber;
318 hdr->ExtPageType = ext_page_req->header.ExtPageType;
319 params.page_address = le32toh(ext_page_req->page_address);
320 params.buffer = NULL;
321 params.length = 0;
322 params.callback = NULL;
323
324 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
325 /*
326 * Leave the request. Without resetting the chip, it's
327 * still owned by it and we'll just get into trouble
328 * freeing it now. Mark it as abandoned so that if it
329 * shows up later it can be freed.
330 */
331 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
332 return (ETIMEDOUT);
333 }
334
335 ext_page_req->ioc_status = htole16(params.status);
336 if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
337 MPI2_IOCSTATUS_SUCCESS) {
338 ext_page_req->header.PageVersion = hdr->PageVersion;
339 ext_page_req->header.PageNumber = hdr->PageNumber;
340 ext_page_req->header.PageType = hdr->PageType;
341 ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
342 ext_page_req->header.ExtPageType = hdr->ExtPageType;
343 }
344
345 return (0);
346 }
347
348 static int
349 mpr_user_read_extcfg_page(struct mpr_softc *sc,
350 struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
351 {
352 MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
353 struct mpr_config_params params;
354 int error;
355
356 reqhdr = buf;
357 hdr = ¶ms.hdr.Ext;
358 params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
359 params.page_address = le32toh(ext_page_req->page_address);
360 hdr->PageVersion = reqhdr->PageVersion;
361 hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
362 hdr->PageNumber = reqhdr->PageNumber;
363 hdr->ExtPageType = reqhdr->ExtPageType;
364 hdr->ExtPageLength = reqhdr->ExtPageLength;
365 params.buffer = buf;
366 params.length = le32toh(ext_page_req->len);
367 params.callback = NULL;
368
369 if ((error = mpr_read_config_page(sc, ¶ms)) != 0) {
370 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
371 return (ETIMEDOUT);
372 }
373
374 ext_page_req->ioc_status = htole16(params.status);
375 return (0);
376 }
377
378 static int
379 mpr_user_write_cfg_page(struct mpr_softc *sc,
380 struct mpr_cfg_page_req *page_req, void *buf)
381 {
382 MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
383 struct mpr_config_params params;
384 u_int hdr_attr;
385 int error;
386
387 reqhdr = buf;
388 hdr = ¶ms.hdr.Struct;
389 hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
390 if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
391 hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
392 mpr_printf(sc, "page type 0x%x not changeable\n",
393 reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
394 return (EINVAL);
395 }
396
397 /*
398 * There isn't any point in restoring stripped out attributes
399 * if you then mask them going down to issue the request.
400 */
401
402 hdr->PageVersion = reqhdr->PageVersion;
403 hdr->PageLength = reqhdr->PageLength;
404 hdr->PageNumber = reqhdr->PageNumber;
405 hdr->PageType = reqhdr->PageType;
406 params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
407 params.page_address = le32toh(page_req->page_address);
408 params.buffer = buf;
409 params.length = le32toh(page_req->len);
410 params.callback = NULL;
411
412 if ((error = mpr_write_config_page(sc, ¶ms)) != 0) {
413 mpr_printf(sc, "mpr_write_cfg_page timed out\n");
414 return (ETIMEDOUT);
415 }
416
417 page_req->ioc_status = htole16(params.status);
418 return (0);
419 }
420
421 void
422 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
423 {
424 int off, space;
425
426 space = (int)cm->cm_sc->reqframesz;
427 off = (uintptr_t)sge - (uintptr_t)req;
428
429 KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
430 req, sge, off, space));
431
432 cm->cm_sge = sge;
433 cm->cm_sglsize = space - off;
434 }
435
436 /*
437 * Prepare the mpr_command for an IOC_FACTS request.
438 */
439 static int
440 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
441 {
442 MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
443 MPI2_IOC_FACTS_REPLY *rpl;
444
445 if (cmd->req_len != sizeof *req)
446 return (EINVAL);
447 if (cmd->rpl_len != sizeof *rpl)
448 return (EINVAL);
449
450 cm->cm_sge = NULL;
451 cm->cm_sglsize = 0;
452 return (0);
453 }
454
455 /*
456 * Prepare the mpr_command for a PORT_FACTS request.
457 */
458 static int
459 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
460 {
461 MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
462 MPI2_PORT_FACTS_REPLY *rpl;
463
464 if (cmd->req_len != sizeof *req)
465 return (EINVAL);
466 if (cmd->rpl_len != sizeof *rpl)
467 return (EINVAL);
468
469 cm->cm_sge = NULL;
470 cm->cm_sglsize = 0;
471 return (0);
472 }
473
474 /*
475 * Prepare the mpr_command for a FW_DOWNLOAD request.
476 */
477 static int
478 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
479 {
480 MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
481 MPI2_FW_DOWNLOAD_REPLY *rpl;
482 int error;
483
484 if (cmd->req_len != sizeof *req)
485 return (EINVAL);
486 if (cmd->rpl_len != sizeof *rpl)
487 return (EINVAL);
488
489 if (cmd->len == 0)
490 return (EINVAL);
491
492 error = copyin(cmd->buf, cm->cm_data, cmd->len);
493 if (error != 0)
494 return (error);
495
496 mpr_init_sge(cm, req, &req->SGL);
497
498 /*
499 * For now, the F/W image must be provided in a single request.
500 */
501 if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
502 return (EINVAL);
503 if (req->TotalImageSize != cmd->len)
504 return (EINVAL);
505
506 req->ImageOffset = 0;
507 req->ImageSize = cmd->len;
508
509 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
510
511 return (mpr_push_ieee_sge(cm, &req->SGL, 0));
512 }
513
514 /*
515 * Prepare the mpr_command for a FW_UPLOAD request.
516 */
517 static int
518 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
519 {
520 MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
521 MPI2_FW_UPLOAD_REPLY *rpl;
522
523 if (cmd->req_len != sizeof *req)
524 return (EINVAL);
525 if (cmd->rpl_len != sizeof *rpl)
526 return (EINVAL);
527
528 mpr_init_sge(cm, req, &req->SGL);
529 if (cmd->len == 0) {
530 /* Perhaps just asking what the size of the fw is? */
531 return (0);
532 }
533
534 req->ImageOffset = 0;
535 req->ImageSize = cmd->len;
536
537 cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
538
539 return (mpr_push_ieee_sge(cm, &req->SGL, 0));
540 }
541
542 /*
543 * Prepare the mpr_command for a SATA_PASSTHROUGH request.
544 */
545 static int
546 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
547 {
548 MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
549 MPI2_SATA_PASSTHROUGH_REPLY *rpl;
550
551 if (cmd->req_len != sizeof *req)
552 return (EINVAL);
553 if (cmd->rpl_len != sizeof *rpl)
554 return (EINVAL);
555
556 mpr_init_sge(cm, req, &req->SGL);
557 return (0);
558 }
559
560 /*
561 * Prepare the mpr_command for a SMP_PASSTHROUGH request.
562 */
563 static int
564 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
565 {
566 MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
567 MPI2_SMP_PASSTHROUGH_REPLY *rpl;
568
569 if (cmd->req_len != sizeof *req)
570 return (EINVAL);
571 if (cmd->rpl_len != sizeof *rpl)
572 return (EINVAL);
573
574 mpr_init_sge(cm, req, &req->SGL);
575 return (0);
576 }
577
578 /*
579 * Prepare the mpr_command for a CONFIG request.
580 */
581 static int
582 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
583 {
584 MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
585 MPI2_CONFIG_REPLY *rpl;
586
587 if (cmd->req_len != sizeof *req)
588 return (EINVAL);
589 if (cmd->rpl_len != sizeof *rpl)
590 return (EINVAL);
591
592 mpr_init_sge(cm, req, &req->PageBufferSGE);
593 return (0);
594 }
595
596 /*
597 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
598 */
599 static int
600 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
601 struct mpr_usr_command *cmd)
602 {
603
604 cm->cm_sge = NULL;
605 cm->cm_sglsize = 0;
606 return (0);
607 }
608
609 /*
610 * A set of functions to prepare an mpr_command for the various
611 * supported requests.
612 */
613 struct mpr_user_func {
614 U8 Function;
615 mpr_user_f *f_pre;
616 } mpr_user_func_list[] = {
617 { MPI2_FUNCTION_IOC_FACTS, mpi_pre_ioc_facts },
618 { MPI2_FUNCTION_PORT_FACTS, mpi_pre_port_facts },
619 { MPI2_FUNCTION_FW_DOWNLOAD, mpi_pre_fw_download },
620 { MPI2_FUNCTION_FW_UPLOAD, mpi_pre_fw_upload },
621 { MPI2_FUNCTION_SATA_PASSTHROUGH, mpi_pre_sata_passthrough },
622 { MPI2_FUNCTION_SMP_PASSTHROUGH, mpi_pre_smp_passthrough},
623 { MPI2_FUNCTION_CONFIG, mpi_pre_config},
624 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, mpi_pre_sas_io_unit_control },
625 { 0xFF, NULL } /* list end */
626 };
627
628 static int
629 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
630 {
631 MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
632 struct mpr_user_func *f;
633
634 for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
635 if (hdr->Function == f->Function)
636 return (f->f_pre(cm, cmd));
637 }
638 return (EINVAL);
639 }
640
641 static int
642 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
643 {
644 MPI2_REQUEST_HEADER *hdr;
645 MPI2_DEFAULT_REPLY *rpl = NULL;
646 void *buf = NULL;
647 struct mpr_command *cm = NULL;
648 int err = 0;
649 int sz;
650
651 mpr_lock(sc);
652 cm = mpr_alloc_command(sc);
653
654 if (cm == NULL) {
655 mpr_printf(sc, "%s: no mpr requests\n", __func__);
656 err = ENOMEM;
657 goto RetFree;
658 }
659 mpr_unlock(sc);
660
661 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
662
663 mpr_dprint(sc, MPR_USER, "%s: req %p %d rpl %p %d\n", __func__,
664 cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
665
666 if (cmd->req_len > (int)sc->reqframesz) {
667 err = EINVAL;
668 goto RetFreeUnlocked;
669 }
670 err = copyin(cmd->req, hdr, cmd->req_len);
671 if (err != 0)
672 goto RetFreeUnlocked;
673
674 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
675 hdr->Function, hdr->MsgFlags);
676
677 if (cmd->len > 0) {
678 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
679 cm->cm_data = buf;
680 cm->cm_length = cmd->len;
681 } else {
682 cm->cm_data = NULL;
683 cm->cm_length = 0;
684 }
685
686 cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
687 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
688
689 err = mpr_user_setup_request(cm, cmd);
690 if (err == EINVAL) {
691 mpr_printf(sc, "%s: unsupported parameter or unsupported "
692 "function in request (function = 0x%X)\n", __func__,
693 hdr->Function);
694 }
695 if (err != 0)
696 goto RetFreeUnlocked;
697
698 mpr_lock(sc);
699 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
700
701 if (err || (cm == NULL)) {
702 mpr_printf(sc, "%s: invalid request: error %d\n",
703 __func__, err);
704 goto RetFree;
705 }
706
707 if (cm != NULL)
708 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
709 if (rpl != NULL)
710 sz = rpl->MsgLength * 4;
711 else
712 sz = 0;
713
714 if (sz > cmd->rpl_len) {
715 mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
716 "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
717 sz = cmd->rpl_len;
718 }
719
720 mpr_unlock(sc);
721 copyout(rpl, cmd->rpl, sz);
722 if (buf != NULL)
723 copyout(buf, cmd->buf, cmd->len);
724 mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
725
726 RetFreeUnlocked:
727 mpr_lock(sc);
728 RetFree:
729 if (cm != NULL)
730 mpr_free_command(sc, cm);
731 mpr_unlock(sc);
732 if (buf != NULL)
733 free(buf, M_MPRUSER);
734 return (err);
735 }
736
737 static int
738 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
739 {
740 MPI2_REQUEST_HEADER *hdr, *tmphdr;
741 MPI2_DEFAULT_REPLY *rpl;
742 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
743 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
744 struct mpr_command *cm = NULL;
745 void *req = NULL;
746 int i, err = 0, dir = 0, sz;
747 uint8_t tool, function = 0;
748 u_int sense_len;
749 struct mprsas_target *targ = NULL;
750
751 /*
752 * Only allow one passthru command at a time. Use the MPR_FLAGS_BUSY
753 * bit to denote that a passthru is being processed.
754 */
755 mpr_lock(sc);
756 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
757 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
758 "allowed at a single time.", __func__);
759 mpr_unlock(sc);
760 return (EBUSY);
761 }
762 sc->mpr_flags |= MPR_FLAGS_BUSY;
763 mpr_unlock(sc);
764
765 /*
766 * Do some validation on data direction. Valid cases are:
767 * 1) DataSize is 0 and direction is NONE
768 * 2) DataSize is non-zero and one of:
769 * a) direction is READ or
770 * b) direction is WRITE or
771 * c) direction is BOTH and DataOutSize is non-zero
772 * If valid and the direction is BOTH, change the direction to READ.
773 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
774 */
775 if (((data->DataSize == 0) &&
776 (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
777 ((data->DataSize != 0) &&
778 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
779 (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
780 ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
781 (data->DataOutSize != 0))))) {
782 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
783 data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
784 else
785 data->DataOutSize = 0;
786 } else {
787 err = EINVAL;
788 goto RetFreeUnlocked;
789 }
790
791 mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d rpl 0x%jx %d "
792 "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
793 data->PtrRequest, data->RequestSize, data->PtrReply,
794 data->ReplySize, data->PtrData, data->DataSize,
795 data->PtrDataOut, data->DataOutSize, data->DataDirection);
796
797 if (data->RequestSize > sc->reqframesz) {
798 err = EINVAL;
799 goto RetFreeUnlocked;
800 }
801
802 req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO);
803 tmphdr = (MPI2_REQUEST_HEADER *)req;
804
805 err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize);
806 if (err != 0)
807 goto RetFreeUnlocked;
808
809 function = tmphdr->Function;
810 mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
811 function, tmphdr->MsgFlags);
812
813 /*
814 * Handle a passthru TM request.
815 */
816 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
817 MPI2_SCSI_TASK_MANAGE_REQUEST *task;
818
819 mpr_lock(sc);
820 cm = mprsas_alloc_tm(sc);
821 if (cm == NULL) {
822 err = EINVAL;
823 goto Ret;
824 }
825
826 /* Copy the header in. Only a small fixup is needed. */
827 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
828 memcpy(task, req, data->RequestSize);
829 task->TaskMID = cm->cm_desc.Default.SMID;
830
831 cm->cm_data = NULL;
832 cm->cm_complete = NULL;
833 cm->cm_complete_data = NULL;
834
835 targ = mprsas_find_target_by_handle(sc->sassc, 0,
836 task->DevHandle);
837 if (targ == NULL) {
838 mpr_dprint(sc, MPR_INFO,
839 "%s %d : invalid handle for requested TM 0x%x \n",
840 __func__, __LINE__, task->DevHandle);
841 err = 1;
842 } else {
843 mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
844 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
845 }
846
847 if (err != 0) {
848 err = EIO;
849 mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
850 __func__);
851 }
852 /*
853 * Copy the reply data and sense data to user space.
854 */
855 if ((cm != NULL) && (cm->cm_reply != NULL)) {
856 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
857 sz = rpl->MsgLength * 4;
858
859 if (sz > data->ReplySize) {
860 mpr_printf(sc, "%s: user reply buffer (%d) "
861 "smaller than returned buffer (%d)\n",
862 __func__, data->ReplySize, sz);
863 }
864 mpr_unlock(sc);
865 copyout(cm->cm_reply, PTRIN(data->PtrReply),
866 data->ReplySize);
867 mpr_lock(sc);
868 }
869 mprsas_free_tm(sc, cm);
870 goto Ret;
871 }
872
873 mpr_lock(sc);
874 cm = mpr_alloc_command(sc);
875 if (cm == NULL) {
876 mpr_printf(sc, "%s: no mpr requests\n", __func__);
877 err = ENOMEM;
878 goto Ret;
879 }
880 mpr_unlock(sc);
881
882 hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
883 memcpy(hdr, req, data->RequestSize);
884
885 /*
886 * Do some checking to make sure the IOCTL request contains a valid
887 * request. Then set the SGL info.
888 */
889 mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
890
891 /*
892 * Set up for read, write or both. From check above, DataOutSize will
893 * be 0 if direction is READ or WRITE, but it will have some non-zero
894 * value if the direction is BOTH. So, just use the biggest size to get
895 * the cm_data buffer size. If direction is BOTH, 2 SGLs need to be set
896 * up; the first is for the request and the second will contain the
897 * response data. cm_out_len needs to be set here and this will be used
898 * when the SGLs are set up.
899 */
900 cm->cm_data = NULL;
901 cm->cm_length = MAX(data->DataSize, data->DataOutSize);
902 cm->cm_out_len = data->DataOutSize;
903 cm->cm_flags = 0;
904 if (cm->cm_length != 0) {
905 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
906 M_ZERO);
907 cm->cm_flags = MPR_CM_FLAGS_DATAIN;
908 if (data->DataOutSize) {
909 cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
910 err = copyin(PTRIN(data->PtrDataOut),
911 cm->cm_data, data->DataOutSize);
912 } else if (data->DataDirection ==
913 MPR_PASS_THRU_DIRECTION_WRITE) {
914 cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
915 err = copyin(PTRIN(data->PtrData),
916 cm->cm_data, data->DataSize);
917 }
918 if (err != 0)
919 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
920 "data from user space\n", __func__);
921 }
922 /*
923 * Set this flag only if processing a command that does not need an
924 * IEEE SGL. The CLI Tool within the Toolbox uses IEEE SGLs, so clear
925 * the flag only for that tool if processing a Toolbox function.
926 */
927 cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
928 for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
929 if (function == ieee_sgl_func_list[i]) {
930 if (function == MPI2_FUNCTION_TOOLBOX)
931 {
932 tool = (uint8_t)hdr->FunctionDependent1;
933 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
934 break;
935 }
936 cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
937 break;
938 }
939 }
940 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
941
942 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
943 nvme_encap_request =
944 (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
945 cm->cm_desc.Default.RequestFlags =
946 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
947
948 /*
949 * Get the Physical Address of the sense buffer.
950 * Save the user's Error Response buffer address and use that
951 * field to hold the sense buffer address.
952 * Clear the internal sense buffer, which will potentially hold
953 * the Completion Queue Entry on return, or 0 if no Entry.
954 * Build the PRPs and set direction bits.
955 * Send the request.
956 */
957 cm->nvme_error_response =
958 (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
959 ErrorResponseBaseAddress.High << 32) |
960 (uint64_t)nvme_encap_request->
961 ErrorResponseBaseAddress.Low);
962 nvme_encap_request->ErrorResponseBaseAddress.High =
963 htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
964 nvme_encap_request->ErrorResponseBaseAddress.Low =
965 htole32(cm->cm_sense_busaddr);
966 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
967 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
968 data->DataSize, data->DataOutSize);
969 }
970
971 /*
972 * Set up Sense buffer and SGL offset for IO passthru. SCSI IO request
973 * uses SCSI IO or Fast Path SCSI IO descriptor.
974 */
975 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
976 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
977 MPI2_SCSI_IO_REQUEST *scsi_io_req;
978
979 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
980 /*
981 * Put SGE for data and data_out buffer at the end of
982 * scsi_io_request message header (64 bytes in total).
983 * Following above SGEs, the residual space will be used by
984 * sense data.
985 */
986 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
987 64);
988 scsi_io_req->SenseBufferLowAddress =
989 htole32(cm->cm_sense_busaddr);
990
991 /*
992 * Set SGLOffset0 value. This is the number of dwords that SGL
993 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
994 */
995 scsi_io_req->SGLOffset0 = 24;
996
997 /*
998 * Setup descriptor info. RAID passthrough must use the
999 * default request descriptor which is already set, so if this
1000 * is a SCSI IO request, change the descriptor to SCSI IO or
1001 * Fast Path SCSI IO. Also, if this is a SCSI IO request,
1002 * handle the reply in the mprsas_scsio_complete function.
1003 */
1004 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1005 targ = mprsas_find_target_by_handle(sc->sassc, 0,
1006 scsi_io_req->DevHandle);
1007
1008 if (!targ) {
1009 printf("No Target found for handle %d\n",
1010 scsi_io_req->DevHandle);
1011 err = EINVAL;
1012 goto RetFreeUnlocked;
1013 }
1014
1015 if (targ->scsi_req_desc_type ==
1016 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1017 cm->cm_desc.FastPathSCSIIO.RequestFlags =
1018 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1019 if (!sc->atomic_desc_capable) {
1020 cm->cm_desc.FastPathSCSIIO.DevHandle =
1021 scsi_io_req->DevHandle;
1022 }
1023 scsi_io_req->IoFlags |=
1024 MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1025 } else {
1026 cm->cm_desc.SCSIIO.RequestFlags =
1027 MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1028 if (!sc->atomic_desc_capable) {
1029 cm->cm_desc.SCSIIO.DevHandle =
1030 scsi_io_req->DevHandle;
1031 }
1032 }
1033
1034 /*
1035 * Make sure the DevHandle is not 0 because this is a
1036 * likely error.
1037 */
1038 if (scsi_io_req->DevHandle == 0) {
1039 err = EINVAL;
1040 goto RetFreeUnlocked;
1041 }
1042 }
1043 }
1044
1045 mpr_lock(sc);
1046
1047 err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1048
1049 if (err || (cm == NULL)) {
1050 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1051 err);
1052 goto RetFree;
1053 }
1054
1055 /*
1056 * Sync the DMA data, if any. Then copy the data to user space.
1057 */
1058 if (cm->cm_data != NULL) {
1059 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1060 dir = BUS_DMASYNC_POSTREAD;
1061 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1062 dir = BUS_DMASYNC_POSTWRITE;
1063 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1064 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1065
1066 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1067 mpr_unlock(sc);
1068 err = copyout(cm->cm_data,
1069 PTRIN(data->PtrData), data->DataSize);
1070 mpr_lock(sc);
1071 if (err != 0)
1072 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1073 "IOCTL data to user space\n", __func__);
1074 }
1075 }
1076
1077 /*
1078 * Copy the reply data and sense data to user space.
1079 */
1080 if (cm->cm_reply != NULL) {
1081 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1082 sz = rpl->MsgLength * 4;
1083
1084 if (sz > data->ReplySize) {
1085 mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1086 "than returned buffer (%d)\n", __func__,
1087 data->ReplySize, sz);
1088 }
1089 mpr_unlock(sc);
1090 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1091 mpr_lock(sc);
1092
1093 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1094 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1095 if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1096 MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1097 sense_len =
1098 MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1099 SenseCount)), sizeof(struct
1100 scsi_sense_data));
1101 mpr_unlock(sc);
1102 copyout(cm->cm_sense, (PTRIN(data->PtrReply +
1103 sizeof(MPI2_SCSI_IO_REPLY))), sense_len);
1104 mpr_lock(sc);
1105 }
1106 }
1107
1108 /*
1109 * Copy out the NVMe Error Reponse to user. The Error Response
1110 * buffer is given by the user, but a sense buffer is used to
1111 * get that data from the IOC. The user's
1112 * ErrorResponseBaseAddress is saved in the
1113 * 'nvme_error_response' field before the command because that
1114 * field is set to a sense buffer. When the command is
1115 * complete, the Error Response data from the IOC is copied to
1116 * that user address after it is checked for validity.
1117 * Also note that 'sense' buffers are not defined for
1118 * NVMe commands. Sense terminalogy is only used here so that
1119 * the same IOCTL structure and sense buffers can be used for
1120 * NVMe.
1121 */
1122 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1123 if (cm->nvme_error_response == NULL) {
1124 mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1125 "buffer is NULL. Response data will not be "
1126 "returned.\n");
1127 mpr_unlock(sc);
1128 goto RetFreeUnlocked;
1129 }
1130
1131 nvme_error_reply =
1132 (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1133 sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1134 NVME_ERROR_RESPONSE_SIZE);
1135 mpr_unlock(sc);
1136 copyout(cm->cm_sense,
1137 (PTRIN(data->PtrReply +
1138 sizeof(MPI2_SCSI_IO_REPLY))), sz);
1139 mpr_lock(sc);
1140 }
1141 }
1142 mpr_unlock(sc);
1143
1144 RetFreeUnlocked:
1145 mpr_lock(sc);
1146
1147 RetFree:
1148 if (cm != NULL) {
1149 if (cm->cm_data)
1150 free(cm->cm_data, M_MPRUSER);
1151 mpr_free_command(sc, cm);
1152 }
1153 Ret:
1154 sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1155 mpr_unlock(sc);
1156 free(req, M_MPRUSER);
1157
1158 return (err);
1159 }
1160
1161 static void
1162 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1163 {
1164 Mpi2ConfigReply_t mpi_reply;
1165 Mpi2BiosPage3_t config_page;
1166
1167 /*
1168 * Use the PCI interface functions to get the Bus, Device, and Function
1169 * information.
1170 */
1171 data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1172 data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1173 data->PciInformation.u.bits.FunctionNumber =
1174 pci_get_function(sc->mpr_dev);
1175
1176 /*
1177 * Get the FW version that should already be saved in IOC Facts.
1178 */
1179 data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1180
1181 /*
1182 * General device info.
1183 */
1184 if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
1185 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
1186 else
1187 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1188 data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1189 data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1190 data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1191 data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1192
1193 /*
1194 * Get the driver version.
1195 */
1196 strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1197
1198 /*
1199 * Need to get BIOS Config Page 3 for the BIOS Version.
1200 */
1201 data->BiosVersion = 0;
1202 mpr_lock(sc);
1203 if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1204 printf("%s: Error while retrieving BIOS Version\n", __func__);
1205 else
1206 data->BiosVersion = config_page.BiosVersion;
1207 mpr_unlock(sc);
1208 }
1209
1210 static void
1211 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1212 {
1213 int i;
1214
1215 /*
1216 * Use the PCI interface functions to get the Bus, Device, and Function
1217 * information.
1218 */
1219 data->BusNumber = pci_get_bus(sc->mpr_dev);
1220 data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1221 data->FunctionNumber = pci_get_function(sc->mpr_dev);
1222
1223 /*
1224 * Now get the interrupt vector and the pci header. The vector can
1225 * only be 0 right now. The header is the first 256 bytes of config
1226 * space.
1227 */
1228 data->InterruptVector = 0;
1229 for (i = 0; i < sizeof (data->PciHeader); i++) {
1230 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1231 }
1232 }
1233
1234 static uint8_t
1235 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1236 {
1237 uint8_t index;
1238
1239 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1240 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1241 return (index);
1242 }
1243 }
1244
1245 return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1246 }
1247
1248 static int
1249 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1250 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1251 {
1252 MPI2_DIAG_BUFFER_POST_REQUEST *req;
1253 MPI2_DIAG_BUFFER_POST_REPLY *reply;
1254 struct mpr_command *cm = NULL;
1255 int i, status;
1256
1257 /*
1258 * If buffer is not enabled, just leave.
1259 */
1260 *return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1261 if (!pBuffer->enabled) {
1262 return (MPR_DIAG_FAILURE);
1263 }
1264
1265 /*
1266 * Clear some flags initially.
1267 */
1268 pBuffer->force_release = FALSE;
1269 pBuffer->valid_data = FALSE;
1270 pBuffer->owned_by_firmware = FALSE;
1271
1272 /*
1273 * Get a command.
1274 */
1275 cm = mpr_alloc_command(sc);
1276 if (cm == NULL) {
1277 mpr_printf(sc, "%s: no mpr requests\n", __func__);
1278 return (MPR_DIAG_FAILURE);
1279 }
1280
1281 /*
1282 * Build the request for releasing the FW Diag Buffer and send it.
1283 */
1284 req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1285 req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1286 req->BufferType = pBuffer->buffer_type;
1287 req->ExtendedType = pBuffer->extended_type;
1288 req->BufferLength = pBuffer->size;
1289 for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1290 req->ProductSpecific[i] = pBuffer->product_specific[i];
1291 mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1292 cm->cm_data = NULL;
1293 cm->cm_length = 0;
1294 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1295 cm->cm_complete_data = NULL;
1296
1297 /*
1298 * Send command synchronously.
1299 */
1300 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1301 if (status || (cm == NULL)) {
1302 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1303 status);
1304 status = MPR_DIAG_FAILURE;
1305 goto done;
1306 }
1307
1308 /*
1309 * Process POST reply.
1310 */
1311 reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1312 if (reply == NULL) {
1313 mpr_printf(sc, "%s: reply is NULL, probably due to "
1314 "reinitialization", __func__);
1315 status = MPR_DIAG_FAILURE;
1316 goto done;
1317 }
1318
1319 if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1320 MPI2_IOCSTATUS_SUCCESS) {
1321 status = MPR_DIAG_FAILURE;
1322 mpr_dprint(sc, MPR_FAULT, "%s: post of FW Diag Buffer failed "
1323 "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1324 "TransferLength = 0x%x\n", __func__,
1325 le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1326 le32toh(reply->TransferLength));
1327 goto done;
1328 }
1329
1330 /*
1331 * Post was successful.
1332 */
1333 pBuffer->valid_data = TRUE;
1334 pBuffer->owned_by_firmware = TRUE;
1335 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1336 status = MPR_DIAG_SUCCESS;
1337
1338 done:
1339 if (cm != NULL)
1340 mpr_free_command(sc, cm);
1341 return (status);
1342 }
1343
1344 static int
1345 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1346 mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1347 uint32_t diag_type)
1348 {
1349 MPI2_DIAG_RELEASE_REQUEST *req;
1350 MPI2_DIAG_RELEASE_REPLY *reply;
1351 struct mpr_command *cm = NULL;
1352 int status;
1353
1354 /*
1355 * If buffer is not enabled, just leave.
1356 */
1357 *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1358 if (!pBuffer->enabled) {
1359 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1360 "supported by the IOC", __func__);
1361 return (MPR_DIAG_FAILURE);
1362 }
1363
1364 /*
1365 * Clear some flags initially.
1366 */
1367 pBuffer->force_release = FALSE;
1368 pBuffer->valid_data = FALSE;
1369 pBuffer->owned_by_firmware = FALSE;
1370
1371 /*
1372 * Get a command.
1373 */
1374 cm = mpr_alloc_command(sc);
1375 if (cm == NULL) {
1376 mpr_printf(sc, "%s: no mpr requests\n", __func__);
1377 return (MPR_DIAG_FAILURE);
1378 }
1379
1380 /*
1381 * Build the request for releasing the FW Diag Buffer and send it.
1382 */
1383 req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1384 req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1385 req->BufferType = pBuffer->buffer_type;
1386 cm->cm_data = NULL;
1387 cm->cm_length = 0;
1388 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1389 cm->cm_complete_data = NULL;
1390
1391 /*
1392 * Send command synchronously.
1393 */
1394 status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1395 if (status || (cm == NULL)) {
1396 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1397 status);
1398 status = MPR_DIAG_FAILURE;
1399 goto done;
1400 }
1401
1402 /*
1403 * Process RELEASE reply.
1404 */
1405 reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1406 if (reply == NULL) {
1407 mpr_printf(sc, "%s: reply is NULL, probably due to "
1408 "reinitialization", __func__);
1409 status = MPR_DIAG_FAILURE;
1410 goto done;
1411 }
1412 if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1413 MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1414 status = MPR_DIAG_FAILURE;
1415 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1416 "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1417 __func__, le16toh(reply->IOCStatus),
1418 le32toh(reply->IOCLogInfo));
1419 goto done;
1420 }
1421
1422 /*
1423 * Release was successful.
1424 */
1425 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1426 status = MPR_DIAG_SUCCESS;
1427
1428 /*
1429 * If this was for an UNREGISTER diag type command, clear the unique ID.
1430 */
1431 if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1432 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1433 }
1434
1435 done:
1436 if (cm != NULL)
1437 mpr_free_command(sc, cm);
1438
1439 return (status);
1440 }
1441
1442 static int
1443 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1444 uint32_t *return_code)
1445 {
1446 bus_dma_template_t t;
1447 mpr_fw_diagnostic_buffer_t *pBuffer;
1448 struct mpr_busdma_context *ctx;
1449 uint8_t extended_type, buffer_type, i;
1450 uint32_t buffer_size;
1451 uint32_t unique_id;
1452 int status;
1453 int error;
1454
1455 extended_type = diag_register->ExtendedType;
1456 buffer_type = diag_register->BufferType;
1457 buffer_size = diag_register->RequestedBufferSize;
1458 unique_id = diag_register->UniqueId;
1459 ctx = NULL;
1460 error = 0;
1461
1462 /*
1463 * Check for valid buffer type
1464 */
1465 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1466 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1467 return (MPR_DIAG_FAILURE);
1468 }
1469
1470 /*
1471 * Get the current buffer and look up the unique ID. The unique ID
1472 * should not be found. If it is, the ID is already in use.
1473 */
1474 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1475 pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1476 if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1477 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1478 return (MPR_DIAG_FAILURE);
1479 }
1480
1481 /*
1482 * The buffer's unique ID should not be registered yet, and the given
1483 * unique ID cannot be 0.
1484 */
1485 if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1486 (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1487 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1488 return (MPR_DIAG_FAILURE);
1489 }
1490
1491 /*
1492 * If this buffer is already posted as immediate, just change owner.
1493 */
1494 if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1495 (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1496 pBuffer->immediate = FALSE;
1497 pBuffer->unique_id = unique_id;
1498 return (MPR_DIAG_SUCCESS);
1499 }
1500
1501 /*
1502 * Post a new buffer after checking if it's enabled. The DMA buffer
1503 * that is allocated will be contiguous (nsegments = 1).
1504 */
1505 if (!pBuffer->enabled) {
1506 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1507 return (MPR_DIAG_FAILURE);
1508 }
1509 bus_dma_template_init(&t, sc->mpr_parent_dmat);
1510 BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT),
1511 BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size),
1512 BD_NSEGMENTS(1));
1513 if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) {
1514 mpr_dprint(sc, MPR_ERROR,
1515 "Cannot allocate FW diag buffer DMA tag\n");
1516 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1517 status = MPR_DIAG_FAILURE;
1518 goto bailout;
1519 }
1520 if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1521 BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1522 mpr_dprint(sc, MPR_ERROR,
1523 "Cannot allocate FW diag buffer memory\n");
1524 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1525 status = MPR_DIAG_FAILURE;
1526 goto bailout;
1527 }
1528 bzero(sc->fw_diag_buffer, buffer_size);
1529
1530 ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
1531 ctx->addr = &sc->fw_diag_busaddr;
1532 ctx->buffer_dmat = sc->fw_diag_dmat;
1533 ctx->buffer_dmamap = sc->fw_diag_map;
1534 ctx->softc = sc;
1535 error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
1536 sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
1537 ctx, 0);
1538 if (error == EINPROGRESS) {
1539 /* XXX KDM */
1540 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
1541 __func__);
1542 /*
1543 * Wait for the load to complete. If we're interrupted,
1544 * bail out.
1545 */
1546 mpr_lock(sc);
1547 if (ctx->completed == 0) {
1548 error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0);
1549 if (error != 0) {
1550 /*
1551 * We got an error from msleep(9). This is
1552 * most likely due to a signal. Tell
1553 * mpr_memaddr_wait_cb() that we've abandoned
1554 * the context, so it needs to clean up when
1555 * it is called.
1556 */
1557 ctx->abandoned = 1;
1558
1559 /* The callback will free this memory */
1560 ctx = NULL;
1561 mpr_unlock(sc);
1562
1563 device_printf(sc->mpr_dev, "Cannot "
1564 "bus_dmamap_load FW diag buffer, error = "
1565 "%d returned from msleep\n", error);
1566 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1567 status = MPR_DIAG_FAILURE;
1568 goto bailout;
1569 }
1570 }
1571 mpr_unlock(sc);
1572 }
1573
1574 if ((error != 0) || (ctx->error != 0)) {
1575 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
1576 "buffer, %serror = %d\n", error ? "" : "callback ",
1577 error ? error : ctx->error);
1578 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1579 status = MPR_DIAG_FAILURE;
1580 goto bailout;
1581 }
1582
1583 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
1584
1585 pBuffer->size = buffer_size;
1586
1587 /*
1588 * Copy the given info to the diag buffer and post the buffer.
1589 */
1590 pBuffer->buffer_type = buffer_type;
1591 pBuffer->immediate = FALSE;
1592 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1593 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1594 i++) {
1595 pBuffer->product_specific[i] =
1596 diag_register->ProductSpecific[i];
1597 }
1598 }
1599 pBuffer->extended_type = extended_type;
1600 pBuffer->unique_id = unique_id;
1601 status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1602
1603 bailout:
1604
1605 /*
1606 * In case there was a failure, free the DMA buffer.
1607 */
1608 if (status == MPR_DIAG_FAILURE) {
1609 if (sc->fw_diag_busaddr != 0) {
1610 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1611 sc->fw_diag_busaddr = 0;
1612 }
1613 if (sc->fw_diag_buffer != NULL) {
1614 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1615 sc->fw_diag_map);
1616 sc->fw_diag_buffer = NULL;
1617 }
1618 if (sc->fw_diag_dmat != NULL) {
1619 bus_dma_tag_destroy(sc->fw_diag_dmat);
1620 sc->fw_diag_dmat = NULL;
1621 }
1622 }
1623
1624 if (ctx != NULL)
1625 free(ctx, M_MPR);
1626
1627 return (status);
1628 }
1629
1630 static int
1631 mpr_diag_unregister(struct mpr_softc *sc,
1632 mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1633 {
1634 mpr_fw_diagnostic_buffer_t *pBuffer;
1635 uint8_t i;
1636 uint32_t unique_id;
1637 int status;
1638
1639 unique_id = diag_unregister->UniqueId;
1640
1641 /*
1642 * Get the current buffer and look up the unique ID. The unique ID
1643 * should be there.
1644 */
1645 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1646 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1647 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1648 return (MPR_DIAG_FAILURE);
1649 }
1650
1651 pBuffer = &sc->fw_diag_buffer_list[i];
1652
1653 /*
1654 * Try to release the buffer from FW before freeing it. If release
1655 * fails, don't free the DMA buffer in case FW tries to access it
1656 * later. If buffer is not owned by firmware, can't release it.
1657 */
1658 if (!pBuffer->owned_by_firmware) {
1659 status = MPR_DIAG_SUCCESS;
1660 } else {
1661 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1662 MPR_FW_DIAG_TYPE_UNREGISTER);
1663 }
1664
1665 /*
1666 * At this point, return the current status no matter what happens with
1667 * the DMA buffer.
1668 */
1669 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1670 if (status == MPR_DIAG_SUCCESS) {
1671 if (sc->fw_diag_busaddr != 0) {
1672 bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1673 sc->fw_diag_busaddr = 0;
1674 }
1675 if (sc->fw_diag_buffer != NULL) {
1676 bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1677 sc->fw_diag_map);
1678 sc->fw_diag_buffer = NULL;
1679 }
1680 if (sc->fw_diag_dmat != NULL) {
1681 bus_dma_tag_destroy(sc->fw_diag_dmat);
1682 sc->fw_diag_dmat = NULL;
1683 }
1684 }
1685
1686 return (status);
1687 }
1688
1689 static int
1690 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1691 uint32_t *return_code)
1692 {
1693 mpr_fw_diagnostic_buffer_t *pBuffer;
1694 uint8_t i;
1695 uint32_t unique_id;
1696
1697 unique_id = diag_query->UniqueId;
1698
1699 /*
1700 * If ID is valid, query on ID.
1701 * If ID is invalid, query on buffer type.
1702 */
1703 if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1704 i = diag_query->BufferType;
1705 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1706 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1707 return (MPR_DIAG_FAILURE);
1708 }
1709 } else {
1710 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1711 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1712 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1713 return (MPR_DIAG_FAILURE);
1714 }
1715 }
1716
1717 /*
1718 * Fill query structure with the diag buffer info.
1719 */
1720 pBuffer = &sc->fw_diag_buffer_list[i];
1721 diag_query->BufferType = pBuffer->buffer_type;
1722 diag_query->ExtendedType = pBuffer->extended_type;
1723 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1724 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1725 i++) {
1726 diag_query->ProductSpecific[i] =
1727 pBuffer->product_specific[i];
1728 }
1729 }
1730 diag_query->TotalBufferSize = pBuffer->size;
1731 diag_query->DriverAddedBufferSize = 0;
1732 diag_query->UniqueId = pBuffer->unique_id;
1733 diag_query->ApplicationFlags = 0;
1734 diag_query->DiagnosticFlags = 0;
1735
1736 /*
1737 * Set/Clear application flags
1738 */
1739 if (pBuffer->immediate) {
1740 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1741 } else {
1742 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1743 }
1744 if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1745 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1746 } else {
1747 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1748 }
1749 if (pBuffer->owned_by_firmware) {
1750 diag_query->ApplicationFlags |=
1751 MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1752 } else {
1753 diag_query->ApplicationFlags &=
1754 ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1755 }
1756
1757 return (MPR_DIAG_SUCCESS);
1758 }
1759
1760 static int
1761 mpr_diag_read_buffer(struct mpr_softc *sc,
1762 mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1763 uint32_t *return_code)
1764 {
1765 mpr_fw_diagnostic_buffer_t *pBuffer;
1766 uint8_t i, *pData;
1767 uint32_t unique_id;
1768 int status;
1769
1770 unique_id = diag_read_buffer->UniqueId;
1771
1772 /*
1773 * Get the current buffer and look up the unique ID. The unique ID
1774 * should be there.
1775 */
1776 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1777 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1778 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1779 return (MPR_DIAG_FAILURE);
1780 }
1781
1782 pBuffer = &sc->fw_diag_buffer_list[i];
1783
1784 /*
1785 * Make sure requested read is within limits
1786 */
1787 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1788 pBuffer->size) {
1789 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1790 return (MPR_DIAG_FAILURE);
1791 }
1792
1793 /* Sync the DMA map before we copy to userland. */
1794 bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
1795 BUS_DMASYNC_POSTREAD);
1796
1797 /*
1798 * Copy the requested data from DMA to the diag_read_buffer. The DMA
1799 * buffer that was allocated is one contiguous buffer.
1800 */
1801 pData = (uint8_t *)(sc->fw_diag_buffer +
1802 diag_read_buffer->StartingOffset);
1803 if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1804 return (MPR_DIAG_FAILURE);
1805 diag_read_buffer->Status = 0;
1806
1807 /*
1808 * Set or clear the Force Release flag.
1809 */
1810 if (pBuffer->force_release) {
1811 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1812 } else {
1813 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1814 }
1815
1816 /*
1817 * If buffer is to be reregistered, make sure it's not already owned by
1818 * firmware first.
1819 */
1820 status = MPR_DIAG_SUCCESS;
1821 if (!pBuffer->owned_by_firmware) {
1822 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1823 status = mpr_post_fw_diag_buffer(sc, pBuffer,
1824 return_code);
1825 }
1826 }
1827
1828 return (status);
1829 }
1830
1831 static int
1832 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1833 uint32_t *return_code)
1834 {
1835 mpr_fw_diagnostic_buffer_t *pBuffer;
1836 uint8_t i;
1837 uint32_t unique_id;
1838 int status;
1839
1840 unique_id = diag_release->UniqueId;
1841
1842 /*
1843 * Get the current buffer and look up the unique ID. The unique ID
1844 * should be there.
1845 */
1846 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1847 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1848 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1849 return (MPR_DIAG_FAILURE);
1850 }
1851
1852 pBuffer = &sc->fw_diag_buffer_list[i];
1853
1854 /*
1855 * If buffer is not owned by firmware, it's already been released.
1856 */
1857 if (!pBuffer->owned_by_firmware) {
1858 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1859 return (MPR_DIAG_FAILURE);
1860 }
1861
1862 /*
1863 * Release the buffer.
1864 */
1865 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1866 MPR_FW_DIAG_TYPE_RELEASE);
1867 return (status);
1868 }
1869
1870 static int
1871 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1872 uint32_t length, uint32_t *return_code)
1873 {
1874 mpr_fw_diag_register_t diag_register;
1875 mpr_fw_diag_unregister_t diag_unregister;
1876 mpr_fw_diag_query_t diag_query;
1877 mpr_diag_read_buffer_t diag_read_buffer;
1878 mpr_fw_diag_release_t diag_release;
1879 int status = MPR_DIAG_SUCCESS;
1880 uint32_t original_return_code;
1881
1882 original_return_code = *return_code;
1883 *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1884
1885 switch (action) {
1886 case MPR_FW_DIAG_TYPE_REGISTER:
1887 if (!length) {
1888 *return_code =
1889 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1890 status = MPR_DIAG_FAILURE;
1891 break;
1892 }
1893 if (copyin(diag_action, &diag_register,
1894 sizeof(diag_register)) != 0)
1895 return (MPR_DIAG_FAILURE);
1896 status = mpr_diag_register(sc, &diag_register,
1897 return_code);
1898 break;
1899
1900 case MPR_FW_DIAG_TYPE_UNREGISTER:
1901 if (length < sizeof(diag_unregister)) {
1902 *return_code =
1903 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1904 status = MPR_DIAG_FAILURE;
1905 break;
1906 }
1907 if (copyin(diag_action, &diag_unregister,
1908 sizeof(diag_unregister)) != 0)
1909 return (MPR_DIAG_FAILURE);
1910 status = mpr_diag_unregister(sc, &diag_unregister,
1911 return_code);
1912 break;
1913
1914 case MPR_FW_DIAG_TYPE_QUERY:
1915 if (length < sizeof (diag_query)) {
1916 *return_code =
1917 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1918 status = MPR_DIAG_FAILURE;
1919 break;
1920 }
1921 if (copyin(diag_action, &diag_query, sizeof(diag_query))
1922 != 0)
1923 return (MPR_DIAG_FAILURE);
1924 status = mpr_diag_query(sc, &diag_query, return_code);
1925 if (status == MPR_DIAG_SUCCESS)
1926 if (copyout(&diag_query, diag_action,
1927 sizeof (diag_query)) != 0)
1928 return (MPR_DIAG_FAILURE);
1929 break;
1930
1931 case MPR_FW_DIAG_TYPE_READ_BUFFER:
1932 if (copyin(diag_action, &diag_read_buffer,
1933 sizeof(diag_read_buffer)) != 0)
1934 return (MPR_DIAG_FAILURE);
1935 if (length < diag_read_buffer.BytesToRead) {
1936 *return_code =
1937 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1938 status = MPR_DIAG_FAILURE;
1939 break;
1940 }
1941 status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1942 PTRIN(diag_read_buffer.PtrDataBuffer),
1943 return_code);
1944 if (status == MPR_DIAG_SUCCESS) {
1945 if (copyout(&diag_read_buffer, diag_action,
1946 sizeof(diag_read_buffer) -
1947 sizeof(diag_read_buffer.PtrDataBuffer)) !=
1948 0)
1949 return (MPR_DIAG_FAILURE);
1950 }
1951 break;
1952
1953 case MPR_FW_DIAG_TYPE_RELEASE:
1954 if (length < sizeof(diag_release)) {
1955 *return_code =
1956 MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1957 status = MPR_DIAG_FAILURE;
1958 break;
1959 }
1960 if (copyin(diag_action, &diag_release,
1961 sizeof(diag_release)) != 0)
1962 return (MPR_DIAG_FAILURE);
1963 status = mpr_diag_release(sc, &diag_release,
1964 return_code);
1965 break;
1966
1967 default:
1968 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1969 status = MPR_DIAG_FAILURE;
1970 break;
1971 }
1972
1973 if ((status == MPR_DIAG_FAILURE) &&
1974 (original_return_code == MPR_FW_DIAG_NEW) &&
1975 (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1976 status = MPR_DIAG_SUCCESS;
1977
1978 return (status);
1979 }
1980
1981 static int
1982 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
1983 {
1984 int status;
1985
1986 /*
1987 * Only allow one diag action at one time.
1988 */
1989 if (sc->mpr_flags & MPR_FLAGS_BUSY) {
1990 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
1991 "allowed at a single time.", __func__);
1992 return (EBUSY);
1993 }
1994 sc->mpr_flags |= MPR_FLAGS_BUSY;
1995
1996 /*
1997 * Send diag action request
1998 */
1999 if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
2000 data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
2001 data->Action == MPR_FW_DIAG_TYPE_QUERY ||
2002 data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
2003 data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
2004 status = mpr_do_diag_action(sc, data->Action,
2005 PTRIN(data->PtrDiagAction), data->Length,
2006 &data->ReturnCode);
2007 } else
2008 status = EINVAL;
2009
2010 sc->mpr_flags &= ~MPR_FLAGS_BUSY;
2011 return (status);
2012 }
2013
2014 /*
2015 * Copy the event recording mask and the event queue size out. For
2016 * clarification, the event recording mask (events_to_record) is not the same
2017 * thing as the event mask (event_mask). events_to_record has a bit set for
2018 * every event type that is to be recorded by the driver, and event_mask has a
2019 * bit cleared for every event that is allowed into the driver from the IOC.
2020 * They really have nothing to do with each other.
2021 */
2022 static void
2023 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
2024 {
2025 uint8_t i;
2026
2027 mpr_lock(sc);
2028 data->Entries = MPR_EVENT_QUEUE_SIZE;
2029
2030 for (i = 0; i < 4; i++) {
2031 data->Types[i] = sc->events_to_record[i];
2032 }
2033 mpr_unlock(sc);
2034 }
2035
2036 /*
2037 * Set the driver's event mask according to what's been given. See
2038 * mpr_user_event_query for explanation of the event recording mask and the IOC
2039 * event mask. It's the app's responsibility to enable event logging by setting
2040 * the bits in events_to_record. Initially, no events will be logged.
2041 */
2042 static void
2043 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
2044 {
2045 uint8_t i;
2046
2047 mpr_lock(sc);
2048 for (i = 0; i < 4; i++) {
2049 sc->events_to_record[i] = data->Types[i];
2050 }
2051 mpr_unlock(sc);
2052 }
2053
2054 /*
2055 * Copy out the events that have been recorded, up to the max events allowed.
2056 */
2057 static int
2058 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
2059 {
2060 int status = 0;
2061 uint32_t size;
2062
2063 mpr_lock(sc);
2064 size = data->Size;
2065 if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
2066 mpr_unlock(sc);
2067 if (copyout((void *)sc->recorded_events,
2068 PTRIN(data->PtrEvents), size) != 0)
2069 status = EFAULT;
2070 mpr_lock(sc);
2071 } else {
2072 /*
2073 * data->Size value is not large enough to copy event data.
2074 */
2075 status = EFAULT;
2076 }
2077
2078 /*
2079 * Change size value to match the number of bytes that were copied.
2080 */
2081 if (status == 0)
2082 data->Size = sizeof(sc->recorded_events);
2083 mpr_unlock(sc);
2084
2085 return (status);
2086 }
2087
2088 /*
2089 * Record events into the driver from the IOC if they are not masked.
2090 */
2091 void
2092 mprsas_record_event(struct mpr_softc *sc,
2093 MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2094 {
2095 uint32_t event;
2096 int i, j;
2097 uint16_t event_data_len;
2098 boolean_t sendAEN = FALSE;
2099
2100 event = event_reply->Event;
2101
2102 /*
2103 * Generate a system event to let anyone who cares know that a
2104 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the
2105 * event mask is set to.
2106 */
2107 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2108 sendAEN = TRUE;
2109 }
2110
2111 /*
2112 * Record the event only if its corresponding bit is set in
2113 * events_to_record. event_index is the index into recorded_events and
2114 * event_number is the overall number of an event being recorded since
2115 * start-of-day. event_index will roll over; event_number will never
2116 * roll over.
2117 */
2118 i = (uint8_t)(event / 32);
2119 j = (uint8_t)(event % 32);
2120 if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2121 i = sc->event_index;
2122 sc->recorded_events[i].Type = event;
2123 sc->recorded_events[i].Number = ++sc->event_number;
2124 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2125 4);
2126 event_data_len = event_reply->EventDataLength;
2127
2128 if (event_data_len > 0) {
2129 /*
2130 * Limit data to size in m_event entry
2131 */
2132 if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2133 event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2134 }
2135 for (j = 0; j < event_data_len; j++) {
2136 sc->recorded_events[i].Data[j] =
2137 event_reply->EventData[j];
2138 }
2139
2140 /*
2141 * check for index wrap-around
2142 */
2143 if (++i == MPR_EVENT_QUEUE_SIZE) {
2144 i = 0;
2145 }
2146 sc->event_index = (uint8_t)i;
2147
2148 /*
2149 * Set flag to send the event.
2150 */
2151 sendAEN = TRUE;
2152 }
2153 }
2154
2155 /*
2156 * Generate a system event if flag is set to let anyone who cares know
2157 * that an event has occurred.
2158 */
2159 if (sendAEN) {
2160 //SLM-how to send a system event (see kqueue, kevent)
2161 // (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2162 // "SAS", NULL, NULL, DDI_NOSLEEP);
2163 }
2164 }
2165
2166 static int
2167 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2168 {
2169 int status = 0;
2170
2171 switch (data->Command) {
2172 /*
2173 * IO access is not supported.
2174 */
2175 case REG_IO_READ:
2176 case REG_IO_WRITE:
2177 mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2178 "Use memory access.");
2179 status = EINVAL;
2180 break;
2181
2182 case REG_MEM_READ:
2183 data->RegData = mpr_regread(sc, data->RegOffset);
2184 break;
2185
2186 case REG_MEM_WRITE:
2187 mpr_regwrite(sc, data->RegOffset, data->RegData);
2188 break;
2189
2190 default:
2191 status = EINVAL;
2192 break;
2193 }
2194
2195 return (status);
2196 }
2197
2198 static int
2199 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2200 {
2201 uint8_t bt2dh = FALSE;
2202 uint8_t dh2bt = FALSE;
2203 uint16_t dev_handle, bus, target;
2204
2205 bus = data->Bus;
2206 target = data->TargetID;
2207 dev_handle = data->DevHandle;
2208
2209 /*
2210 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2211 * Target to get DevHandle. When Bus/Target are 0xFFFF and DevHandle is
2212 * not 0xFFFF, use DevHandle to get Bus/Target. Anything else is
2213 * invalid.
2214 */
2215 if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2216 dh2bt = TRUE;
2217 if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2218 bt2dh = TRUE;
2219 if (!dh2bt && !bt2dh)
2220 return (EINVAL);
2221
2222 /*
2223 * Only handle bus of 0. Make sure target is within range.
2224 */
2225 if (bt2dh) {
2226 if (bus != 0)
2227 return (EINVAL);
2228
2229 if (target >= sc->max_devices) {
2230 mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2231 "for Bus/Target to DevHandle mapping.");
2232 return (EINVAL);
2233 }
2234 dev_handle = sc->mapping_table[target].dev_handle;
2235 if (dev_handle)
2236 data->DevHandle = dev_handle;
2237 } else {
2238 bus = 0;
2239 target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2240 data->Bus = bus;
2241 data->TargetID = target;
2242 }
2243
2244 return (0);
2245 }
2246
2247 static int
2248 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2249 struct thread *td)
2250 {
2251 struct mpr_softc *sc;
2252 struct mpr_cfg_page_req *page_req;
2253 struct mpr_ext_cfg_page_req *ext_page_req;
2254 void *mpr_page;
2255 int error, msleep_ret;
2256
2257 mpr_page = NULL;
2258 sc = dev->si_drv1;
2259 page_req = (void *)arg;
2260 ext_page_req = (void *)arg;
2261
2262 switch (cmd) {
2263 case MPRIO_READ_CFG_HEADER:
2264 mpr_lock(sc);
2265 error = mpr_user_read_cfg_header(sc, page_req);
2266 mpr_unlock(sc);
2267 break;
2268 case MPRIO_READ_CFG_PAGE:
2269 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) {
2270 error = EINVAL;
2271 break;
2272 }
2273 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2274 error = copyin(page_req->buf, mpr_page,
2275 sizeof(MPI2_CONFIG_PAGE_HEADER));
2276 if (error)
2277 break;
2278 mpr_lock(sc);
2279 error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2280 mpr_unlock(sc);
2281 if (error)
2282 break;
2283 error = copyout(mpr_page, page_req->buf, page_req->len);
2284 break;
2285 case MPRIO_READ_EXT_CFG_HEADER:
2286 mpr_lock(sc);
2287 error = mpr_user_read_extcfg_header(sc, ext_page_req);
2288 mpr_unlock(sc);
2289 break;
2290 case MPRIO_READ_EXT_CFG_PAGE:
2291 if (ext_page_req->len <
2292 (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) {
2293 error = EINVAL;
2294 break;
2295 }
2296 mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2297 M_WAITOK | M_ZERO);
2298 error = copyin(ext_page_req->buf, mpr_page,
2299 sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2300 if (error)
2301 break;
2302 mpr_lock(sc);
2303 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2304 mpr_unlock(sc);
2305 if (error)
2306 break;
2307 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2308 break;
2309 case MPRIO_WRITE_CFG_PAGE:
2310 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) {
2311 error = EINVAL;
2312 break;
2313 }
2314 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2315 error = copyin(page_req->buf, mpr_page, page_req->len);
2316 if (error)
2317 break;
2318 mpr_lock(sc);
2319 error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2320 mpr_unlock(sc);
2321 break;
2322 case MPRIO_MPR_COMMAND:
2323 error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2324 break;
2325 case MPTIOCTL_PASS_THRU:
2326 /*
2327 * The user has requested to pass through a command to be
2328 * executed by the MPT firmware. Call our routine which does
2329 * this. Only allow one passthru IOCTL at one time.
2330 */
2331 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2332 break;
2333 case MPTIOCTL_GET_ADAPTER_DATA:
2334 /*
2335 * The user has requested to read adapter data. Call our
2336 * routine which does this.
2337 */
2338 error = 0;
2339 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2340 break;
2341 case MPTIOCTL_GET_PCI_INFO:
2342 /*
2343 * The user has requested to read pci info. Call
2344 * our routine which does this.
2345 */
2346 mpr_lock(sc);
2347 error = 0;
2348 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2349 mpr_unlock(sc);
2350 break;
2351 case MPTIOCTL_RESET_ADAPTER:
2352 mpr_lock(sc);
2353 sc->port_enable_complete = 0;
2354 uint32_t reinit_start = time_uptime;
2355 error = mpr_reinit(sc);
2356 /* Sleep for 300 second. */
2357 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2358 PRIBIO, "mpr_porten", 300 * hz);
2359 mpr_unlock(sc);
2360 if (msleep_ret)
2361 printf("Port Enable did not complete after Diag "
2362 "Reset msleep error %d.\n", msleep_ret);
2363 else
2364 mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2365 "completed in %d seconds.\n",
2366 (uint32_t)(time_uptime - reinit_start));
2367 break;
2368 case MPTIOCTL_DIAG_ACTION:
2369 /*
2370 * The user has done a diag buffer action. Call our routine
2371 * which does this. Only allow one diag action at one time.
2372 */
2373 mpr_lock(sc);
2374 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2375 mpr_unlock(sc);
2376 break;
2377 case MPTIOCTL_EVENT_QUERY:
2378 /*
2379 * The user has done an event query. Call our routine which does
2380 * this.
2381 */
2382 error = 0;
2383 mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2384 break;
2385 case MPTIOCTL_EVENT_ENABLE:
2386 /*
2387 * The user has done an event enable. Call our routine which
2388 * does this.
2389 */
2390 error = 0;
2391 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2392 break;
2393 case MPTIOCTL_EVENT_REPORT:
2394 /*
2395 * The user has done an event report. Call our routine which
2396 * does this.
2397 */
2398 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2399 break;
2400 case MPTIOCTL_REG_ACCESS:
2401 /*
2402 * The user has requested register access. Call our routine
2403 * which does this.
2404 */
2405 mpr_lock(sc);
2406 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2407 mpr_unlock(sc);
2408 break;
2409 case MPTIOCTL_BTDH_MAPPING:
2410 /*
2411 * The user has requested to translate a bus/target to a
2412 * DevHandle or a DevHandle to a bus/target. Call our routine
2413 * which does this.
2414 */
2415 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2416 break;
2417 default:
2418 error = ENOIOCTL;
2419 break;
2420 }
2421
2422 if (mpr_page != NULL)
2423 free(mpr_page, M_MPRUSER);
2424
2425 return (error);
2426 }
2427
2428 #ifdef COMPAT_FREEBSD32
2429
2430 struct mpr_cfg_page_req32 {
2431 MPI2_CONFIG_PAGE_HEADER header;
2432 uint32_t page_address;
2433 uint32_t buf;
2434 int len;
2435 uint16_t ioc_status;
2436 };
2437
2438 struct mpr_ext_cfg_page_req32 {
2439 MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2440 uint32_t page_address;
2441 uint32_t buf;
2442 int len;
2443 uint16_t ioc_status;
2444 };
2445
2446 struct mpr_raid_action32 {
2447 uint8_t action;
2448 uint8_t volume_bus;
2449 uint8_t volume_id;
2450 uint8_t phys_disk_num;
2451 uint32_t action_data_word;
2452 uint32_t buf;
2453 int len;
2454 uint32_t volume_status;
2455 uint32_t action_data[4];
2456 uint16_t action_status;
2457 uint16_t ioc_status;
2458 uint8_t write;
2459 };
2460
2461 struct mpr_usr_command32 {
2462 uint32_t req;
2463 uint32_t req_len;
2464 uint32_t rpl;
2465 uint32_t rpl_len;
2466 uint32_t buf;
2467 int len;
2468 uint32_t flags;
2469 };
2470
2471 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32)
2472 #define MPRIO_READ_CFG_PAGE32 _IOWR('M', 201, struct mpr_cfg_page_req32)
2473 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2474 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2475 #define MPRIO_WRITE_CFG_PAGE32 _IOWR('M', 204, struct mpr_cfg_page_req32)
2476 #define MPRIO_RAID_ACTION32 _IOWR('M', 205, struct mpr_raid_action32)
2477 #define MPRIO_MPR_COMMAND32 _IOWR('M', 210, struct mpr_usr_command32)
2478
2479 static int
2480 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2481 struct thread *td)
2482 {
2483 struct mpr_cfg_page_req32 *page32 = _arg;
2484 struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2485 struct mpr_raid_action32 *raid32 = _arg;
2486 struct mpr_usr_command32 *user32 = _arg;
2487 union {
2488 struct mpr_cfg_page_req page;
2489 struct mpr_ext_cfg_page_req ext;
2490 struct mpr_raid_action raid;
2491 struct mpr_usr_command user;
2492 } arg;
2493 u_long cmd;
2494 int error;
2495
2496 switch (cmd32) {
2497 case MPRIO_READ_CFG_HEADER32:
2498 case MPRIO_READ_CFG_PAGE32:
2499 case MPRIO_WRITE_CFG_PAGE32:
2500 if (cmd32 == MPRIO_READ_CFG_HEADER32)
2501 cmd = MPRIO_READ_CFG_HEADER;
2502 else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2503 cmd = MPRIO_READ_CFG_PAGE;
2504 else
2505 cmd = MPRIO_WRITE_CFG_PAGE;
2506 CP(*page32, arg.page, header);
2507 CP(*page32, arg.page, page_address);
2508 PTRIN_CP(*page32, arg.page, buf);
2509 CP(*page32, arg.page, len);
2510 CP(*page32, arg.page, ioc_status);
2511 break;
2512
2513 case MPRIO_READ_EXT_CFG_HEADER32:
2514 case MPRIO_READ_EXT_CFG_PAGE32:
2515 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2516 cmd = MPRIO_READ_EXT_CFG_HEADER;
2517 else
2518 cmd = MPRIO_READ_EXT_CFG_PAGE;
2519 CP(*ext32, arg.ext, header);
2520 CP(*ext32, arg.ext, page_address);
2521 PTRIN_CP(*ext32, arg.ext, buf);
2522 CP(*ext32, arg.ext, len);
2523 CP(*ext32, arg.ext, ioc_status);
2524 break;
2525
2526 case MPRIO_RAID_ACTION32:
2527 cmd = MPRIO_RAID_ACTION;
2528 CP(*raid32, arg.raid, action);
2529 CP(*raid32, arg.raid, volume_bus);
2530 CP(*raid32, arg.raid, volume_id);
2531 CP(*raid32, arg.raid, phys_disk_num);
2532 CP(*raid32, arg.raid, action_data_word);
2533 PTRIN_CP(*raid32, arg.raid, buf);
2534 CP(*raid32, arg.raid, len);
2535 CP(*raid32, arg.raid, volume_status);
2536 bcopy(raid32->action_data, arg.raid.action_data,
2537 sizeof arg.raid.action_data);
2538 CP(*raid32, arg.raid, ioc_status);
2539 CP(*raid32, arg.raid, write);
2540 break;
2541
2542 case MPRIO_MPR_COMMAND32:
2543 cmd = MPRIO_MPR_COMMAND;
2544 PTRIN_CP(*user32, arg.user, req);
2545 CP(*user32, arg.user, req_len);
2546 PTRIN_CP(*user32, arg.user, rpl);
2547 CP(*user32, arg.user, rpl_len);
2548 PTRIN_CP(*user32, arg.user, buf);
2549 CP(*user32, arg.user, len);
2550 CP(*user32, arg.user, flags);
2551 break;
2552 default:
2553 return (ENOIOCTL);
2554 }
2555
2556 error = mpr_ioctl(dev, cmd, &arg, flag, td);
2557 if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2558 switch (cmd32) {
2559 case MPRIO_READ_CFG_HEADER32:
2560 case MPRIO_READ_CFG_PAGE32:
2561 case MPRIO_WRITE_CFG_PAGE32:
2562 CP(arg.page, *page32, header);
2563 CP(arg.page, *page32, page_address);
2564 PTROUT_CP(arg.page, *page32, buf);
2565 CP(arg.page, *page32, len);
2566 CP(arg.page, *page32, ioc_status);
2567 break;
2568
2569 case MPRIO_READ_EXT_CFG_HEADER32:
2570 case MPRIO_READ_EXT_CFG_PAGE32:
2571 CP(arg.ext, *ext32, header);
2572 CP(arg.ext, *ext32, page_address);
2573 PTROUT_CP(arg.ext, *ext32, buf);
2574 CP(arg.ext, *ext32, len);
2575 CP(arg.ext, *ext32, ioc_status);
2576 break;
2577
2578 case MPRIO_RAID_ACTION32:
2579 CP(arg.raid, *raid32, action);
2580 CP(arg.raid, *raid32, volume_bus);
2581 CP(arg.raid, *raid32, volume_id);
2582 CP(arg.raid, *raid32, phys_disk_num);
2583 CP(arg.raid, *raid32, action_data_word);
2584 PTROUT_CP(arg.raid, *raid32, buf);
2585 CP(arg.raid, *raid32, len);
2586 CP(arg.raid, *raid32, volume_status);
2587 bcopy(arg.raid.action_data, raid32->action_data,
2588 sizeof arg.raid.action_data);
2589 CP(arg.raid, *raid32, ioc_status);
2590 CP(arg.raid, *raid32, write);
2591 break;
2592
2593 case MPRIO_MPR_COMMAND32:
2594 PTROUT_CP(arg.user, *user32, req);
2595 CP(arg.user, *user32, req_len);
2596 PTROUT_CP(arg.user, *user32, rpl);
2597 CP(arg.user, *user32, rpl_len);
2598 PTROUT_CP(arg.user, *user32, buf);
2599 CP(arg.user, *user32, len);
2600 CP(arg.user, *user32, flags);
2601 break;
2602 }
2603 }
2604
2605 return (error);
2606 }
2607 #endif /* COMPAT_FREEBSD32 */
2608
2609 static int
2610 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2611 struct thread *td)
2612 {
2613 #ifdef COMPAT_FREEBSD32
2614 if (SV_CURPROC_FLAG(SV_ILP32))
2615 return (mpr_ioctl32(dev, com, arg, flag, td));
2616 #endif
2617 return (mpr_ioctl(dev, com, arg, flag, td));
2618 }
Cache object: ce28db311ba96f0d247bf6f5cb2a836b
|