The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/mpr/mpr_user.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008 Yahoo!, Inc.
    3  * All rights reserved.
    4  * Written by: John Baldwin <jhb@FreeBSD.org>
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. Neither the name of the author nor the names of any co-contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
   31  */
   32 /*-
   33  * Copyright (c) 2011-2015 LSI Corp.
   34  * Copyright (c) 2013-2016 Avago Technologies
   35  * Copyright 2000-2020 Broadcom Inc.
   36  * All rights reserved.
   37  *
   38  * Redistribution and use in source and binary forms, with or without
   39  * modification, are permitted provided that the following conditions
   40  * are met:
   41  * 1. Redistributions of source code must retain the above copyright
   42  *    notice, this list of conditions and the following disclaimer.
   43  * 2. Redistributions in binary form must reproduce the above copyright
   44  *    notice, this list of conditions and the following disclaimer in the
   45  *    documentation and/or other materials provided with the distribution.
   46  *
   47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   57  * SUCH DAMAGE.
   58  *
   59  * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD
   60  *
   61  * $FreeBSD$
   62  */
   63 
   64 #include <sys/cdefs.h>
   65 __FBSDID("$FreeBSD$");
   66 
   67 /* TODO Move headers to mprvar */
   68 #include <sys/types.h>
   69 #include <sys/param.h>
   70 #include <sys/systm.h>
   71 #include <sys/kernel.h>
   72 #include <sys/selinfo.h>
   73 #include <sys/module.h>
   74 #include <sys/bus.h>
   75 #include <sys/conf.h>
   76 #include <sys/bio.h>
   77 #include <sys/abi_compat.h>
   78 #include <sys/malloc.h>
   79 #include <sys/uio.h>
   80 #include <sys/sysctl.h>
   81 #include <sys/ioccom.h>
   82 #include <sys/endian.h>
   83 #include <sys/queue.h>
   84 #include <sys/kthread.h>
   85 #include <sys/taskqueue.h>
   86 #include <sys/proc.h>
   87 #include <sys/sysent.h>
   88 
   89 #include <machine/bus.h>
   90 #include <machine/resource.h>
   91 #include <sys/rman.h>
   92 
   93 #include <cam/cam.h>
   94 #include <cam/cam_ccb.h>
   95 
   96 #include <dev/mpr/mpi/mpi2_type.h>
   97 #include <dev/mpr/mpi/mpi2.h>
   98 #include <dev/mpr/mpi/mpi2_ioc.h>
   99 #include <dev/mpr/mpi/mpi2_cnfg.h>
  100 #include <dev/mpr/mpi/mpi2_init.h>
  101 #include <dev/mpr/mpi/mpi2_tool.h>
  102 #include <dev/mpr/mpi/mpi2_pci.h>
  103 #include <dev/mpr/mpr_ioctl.h>
  104 #include <dev/mpr/mprvar.h>
  105 #include <dev/mpr/mpr_table.h>
  106 #include <dev/mpr/mpr_sas.h>
  107 #include <dev/pci/pcivar.h>
  108 #include <dev/pci/pcireg.h>
  109 
  110 static d_open_t         mpr_open;
  111 static d_close_t        mpr_close;
  112 static d_ioctl_t        mpr_ioctl_devsw;
  113 
  114 static struct cdevsw mpr_cdevsw = {
  115         .d_version =    D_VERSION,
  116         .d_flags =      0,
  117         .d_open =       mpr_open,
  118         .d_close =      mpr_close,
  119         .d_ioctl =      mpr_ioctl_devsw,
  120         .d_name =       "mpr",
  121 };
  122 
  123 typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
  124 static mpr_user_f       mpi_pre_ioc_facts;
  125 static mpr_user_f       mpi_pre_port_facts;
  126 static mpr_user_f       mpi_pre_fw_download;
  127 static mpr_user_f       mpi_pre_fw_upload;
  128 static mpr_user_f       mpi_pre_sata_passthrough;
  129 static mpr_user_f       mpi_pre_smp_passthrough;
  130 static mpr_user_f       mpi_pre_config;
  131 static mpr_user_f       mpi_pre_sas_io_unit_control;
  132 
  133 static int mpr_user_read_cfg_header(struct mpr_softc *,
  134     struct mpr_cfg_page_req *);
  135 static int mpr_user_read_cfg_page(struct mpr_softc *,
  136     struct mpr_cfg_page_req *, void *);
  137 static int mpr_user_read_extcfg_header(struct mpr_softc *,
  138     struct mpr_ext_cfg_page_req *);
  139 static int mpr_user_read_extcfg_page(struct mpr_softc *,
  140     struct mpr_ext_cfg_page_req *, void *);
  141 static int mpr_user_write_cfg_page(struct mpr_softc *,
  142     struct mpr_cfg_page_req *, void *);
  143 static int mpr_user_setup_request(struct mpr_command *,
  144     struct mpr_usr_command *);
  145 static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
  146 
  147 static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
  148 static void mpr_user_get_adapter_data(struct mpr_softc *sc,
  149     mpr_adapter_data_t *data);
  150 static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
  151 static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
  152     uint32_t unique_id);
  153 static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
  154     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
  155 static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
  156     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
  157     uint32_t diag_type);
  158 static int mpr_diag_register(struct mpr_softc *sc,
  159     mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
  160 static int mpr_diag_unregister(struct mpr_softc *sc,
  161     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
  162 static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
  163     uint32_t *return_code);
  164 static int mpr_diag_read_buffer(struct mpr_softc *sc,
  165     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
  166     uint32_t *return_code);
  167 static int mpr_diag_release(struct mpr_softc *sc,
  168     mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
  169 static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
  170     uint8_t *diag_action, uint32_t length, uint32_t *return_code);
  171 static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
  172 static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
  173 static void mpr_user_event_enable(struct mpr_softc *sc,
  174     mpr_event_enable_t *data);
  175 static int mpr_user_event_report(struct mpr_softc *sc,
  176     mpr_event_report_t *data);
  177 static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
  178 static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
  179 
  180 static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
  181 
  182 /*
  183  * MPI functions that support IEEE SGLs for SAS3.
  184  */
  185 static uint8_t ieee_sgl_func_list[] = {
  186         MPI2_FUNCTION_SCSI_IO_REQUEST,
  187         MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
  188         MPI2_FUNCTION_SMP_PASSTHROUGH,
  189         MPI2_FUNCTION_SATA_PASSTHROUGH,
  190         MPI2_FUNCTION_FW_UPLOAD,
  191         MPI2_FUNCTION_FW_DOWNLOAD,
  192         MPI2_FUNCTION_TARGET_ASSIST,
  193         MPI2_FUNCTION_TARGET_STATUS_SEND,
  194         MPI2_FUNCTION_TOOLBOX
  195 };
  196 
  197 int
  198 mpr_attach_user(struct mpr_softc *sc)
  199 {
  200         int unit;
  201 
  202         unit = device_get_unit(sc->mpr_dev);
  203         sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
  204             "mpr%d", unit);
  205 
  206         if (sc->mpr_cdev == NULL)
  207                 return (ENOMEM);
  208 
  209         sc->mpr_cdev->si_drv1 = sc;
  210         return (0);
  211 }
  212 
  213 void
  214 mpr_detach_user(struct mpr_softc *sc)
  215 {
  216 
  217         /* XXX: do a purge of pending requests? */
  218         if (sc->mpr_cdev != NULL)
  219                 destroy_dev(sc->mpr_cdev);
  220 }
  221 
  222 static int
  223 mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
  224 {
  225 
  226         return (0);
  227 }
  228 
  229 static int
  230 mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
  231 {
  232 
  233         return (0);
  234 }
  235 
  236 static int
  237 mpr_user_read_cfg_header(struct mpr_softc *sc,
  238     struct mpr_cfg_page_req *page_req)
  239 {
  240         MPI2_CONFIG_PAGE_HEADER *hdr;
  241         struct mpr_config_params params;
  242         int         error;
  243 
  244         hdr = &params.hdr.Struct;
  245         params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
  246         params.page_address = le32toh(page_req->page_address);
  247         hdr->PageVersion = 0;
  248         hdr->PageLength = 0;
  249         hdr->PageNumber = page_req->header.PageNumber;
  250         hdr->PageType = page_req->header.PageType;
  251         params.buffer = NULL;
  252         params.length = 0;
  253         params.callback = NULL;
  254 
  255         if ((error = mpr_read_config_page(sc, &params)) != 0) {
  256                 /*
  257                  * Leave the request. Without resetting the chip, it's
  258                  * still owned by it and we'll just get into trouble
  259                  * freeing it now. Mark it as abandoned so that if it
  260                  * shows up later it can be freed.
  261                  */
  262                 mpr_printf(sc, "read_cfg_header timed out\n");
  263                 return (ETIMEDOUT);
  264         }
  265 
  266         page_req->ioc_status = htole16(params.status);
  267         if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
  268             MPI2_IOCSTATUS_SUCCESS) {
  269                 bcopy(hdr, &page_req->header, sizeof(page_req->header));
  270         }
  271 
  272         return (0);
  273 }
  274 
  275 static int
  276 mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
  277     void *buf)
  278 {
  279         MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
  280         struct mpr_config_params params;
  281         int           error;
  282 
  283         reqhdr = buf;
  284         hdr = &params.hdr.Struct;
  285         hdr->PageVersion = reqhdr->PageVersion;
  286         hdr->PageLength = reqhdr->PageLength;
  287         hdr->PageNumber = reqhdr->PageNumber;
  288         hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
  289         params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
  290         params.page_address = le32toh(page_req->page_address);
  291         params.buffer = buf;
  292         params.length = le32toh(page_req->len);
  293         params.callback = NULL;
  294 
  295         if ((error = mpr_read_config_page(sc, &params)) != 0) {
  296                 mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
  297                 return (ETIMEDOUT);
  298         }
  299 
  300         page_req->ioc_status = htole16(params.status);
  301         return (0);
  302 }
  303 
  304 static int
  305 mpr_user_read_extcfg_header(struct mpr_softc *sc,
  306     struct mpr_ext_cfg_page_req *ext_page_req)
  307 {
  308         MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
  309         struct mpr_config_params params;
  310         int         error;
  311 
  312         hdr = &params.hdr.Ext;
  313         params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
  314         hdr->PageVersion = ext_page_req->header.PageVersion;
  315         hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
  316         hdr->ExtPageLength = 0;
  317         hdr->PageNumber = ext_page_req->header.PageNumber;
  318         hdr->ExtPageType = ext_page_req->header.ExtPageType;
  319         params.page_address = le32toh(ext_page_req->page_address);
  320         params.buffer = NULL;
  321         params.length = 0;
  322         params.callback = NULL;
  323 
  324         if ((error = mpr_read_config_page(sc, &params)) != 0) {
  325                 /*
  326                  * Leave the request. Without resetting the chip, it's
  327                  * still owned by it and we'll just get into trouble
  328                  * freeing it now. Mark it as abandoned so that if it
  329                  * shows up later it can be freed.
  330                  */
  331                 mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
  332                 return (ETIMEDOUT);
  333         }
  334 
  335         ext_page_req->ioc_status = htole16(params.status);
  336         if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
  337             MPI2_IOCSTATUS_SUCCESS) {
  338                 ext_page_req->header.PageVersion = hdr->PageVersion;
  339                 ext_page_req->header.PageNumber = hdr->PageNumber;
  340                 ext_page_req->header.PageType = hdr->PageType;
  341                 ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
  342                 ext_page_req->header.ExtPageType = hdr->ExtPageType;
  343         }
  344 
  345         return (0);
  346 }
  347 
  348 static int
  349 mpr_user_read_extcfg_page(struct mpr_softc *sc,
  350     struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
  351 {
  352         MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
  353         struct mpr_config_params params;
  354         int error;
  355 
  356         reqhdr = buf;
  357         hdr = &params.hdr.Ext;
  358         params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
  359         params.page_address = le32toh(ext_page_req->page_address);
  360         hdr->PageVersion = reqhdr->PageVersion;
  361         hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
  362         hdr->PageNumber = reqhdr->PageNumber;
  363         hdr->ExtPageType = reqhdr->ExtPageType;
  364         hdr->ExtPageLength = reqhdr->ExtPageLength;
  365         params.buffer = buf;
  366         params.length = le32toh(ext_page_req->len);
  367         params.callback = NULL;
  368 
  369         if ((error = mpr_read_config_page(sc, &params)) != 0) {
  370                 mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
  371                 return (ETIMEDOUT);
  372         }
  373 
  374         ext_page_req->ioc_status = htole16(params.status);
  375         return (0);
  376 }
  377 
  378 static int
  379 mpr_user_write_cfg_page(struct mpr_softc *sc,
  380     struct mpr_cfg_page_req *page_req, void *buf)
  381 {
  382         MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
  383         struct mpr_config_params params;
  384         u_int         hdr_attr;
  385         int           error;
  386 
  387         reqhdr = buf;
  388         hdr = &params.hdr.Struct;
  389         hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
  390         if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
  391             hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
  392                 mpr_printf(sc, "page type 0x%x not changeable\n",
  393                         reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
  394                 return (EINVAL);
  395         }
  396 
  397         /*
  398          * There isn't any point in restoring stripped out attributes
  399          * if you then mask them going down to issue the request.
  400          */
  401 
  402         hdr->PageVersion = reqhdr->PageVersion;
  403         hdr->PageLength = reqhdr->PageLength;
  404         hdr->PageNumber = reqhdr->PageNumber;
  405         hdr->PageType = reqhdr->PageType;
  406         params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
  407         params.page_address = le32toh(page_req->page_address);
  408         params.buffer = buf;
  409         params.length = le32toh(page_req->len);
  410         params.callback = NULL;
  411 
  412         if ((error = mpr_write_config_page(sc, &params)) != 0) {
  413                 mpr_printf(sc, "mpr_write_cfg_page timed out\n");
  414                 return (ETIMEDOUT);
  415         }
  416 
  417         page_req->ioc_status = htole16(params.status);
  418         return (0);
  419 }
  420 
  421 void
  422 mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
  423 {
  424         int off, space;
  425 
  426         space = (int)cm->cm_sc->reqframesz;
  427         off = (uintptr_t)sge - (uintptr_t)req;
  428 
  429         KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
  430             req, sge, off, space));
  431 
  432         cm->cm_sge = sge;
  433         cm->cm_sglsize = space - off;
  434 }
  435 
  436 /*
  437  * Prepare the mpr_command for an IOC_FACTS request.
  438  */
  439 static int
  440 mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
  441 {
  442         MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
  443         MPI2_IOC_FACTS_REPLY *rpl;
  444 
  445         if (cmd->req_len != sizeof *req)
  446                 return (EINVAL);
  447         if (cmd->rpl_len != sizeof *rpl)
  448                 return (EINVAL);
  449 
  450         cm->cm_sge = NULL;
  451         cm->cm_sglsize = 0;
  452         return (0);
  453 }
  454 
  455 /*
  456  * Prepare the mpr_command for a PORT_FACTS request.
  457  */
  458 static int
  459 mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
  460 {
  461         MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
  462         MPI2_PORT_FACTS_REPLY *rpl;
  463 
  464         if (cmd->req_len != sizeof *req)
  465                 return (EINVAL);
  466         if (cmd->rpl_len != sizeof *rpl)
  467                 return (EINVAL);
  468 
  469         cm->cm_sge = NULL;
  470         cm->cm_sglsize = 0;
  471         return (0);
  472 }
  473 
  474 /*
  475  * Prepare the mpr_command for a FW_DOWNLOAD request.
  476  */
  477 static int
  478 mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
  479 {
  480         MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
  481         MPI2_FW_DOWNLOAD_REPLY *rpl;
  482         int error;
  483 
  484         if (cmd->req_len != sizeof *req)
  485                 return (EINVAL);
  486         if (cmd->rpl_len != sizeof *rpl)
  487                 return (EINVAL);
  488 
  489         if (cmd->len == 0)
  490                 return (EINVAL);
  491 
  492         error = copyin(cmd->buf, cm->cm_data, cmd->len);
  493         if (error != 0)
  494                 return (error);
  495 
  496         mpr_init_sge(cm, req, &req->SGL);
  497 
  498         /*
  499          * For now, the F/W image must be provided in a single request.
  500          */
  501         if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
  502                 return (EINVAL);
  503         if (req->TotalImageSize != cmd->len)
  504                 return (EINVAL);
  505 
  506         req->ImageOffset = 0;
  507         req->ImageSize = cmd->len;
  508 
  509         cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
  510 
  511         return (mpr_push_ieee_sge(cm, &req->SGL, 0));
  512 }
  513 
  514 /*
  515  * Prepare the mpr_command for a FW_UPLOAD request.
  516  */
  517 static int
  518 mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
  519 {
  520         MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
  521         MPI2_FW_UPLOAD_REPLY *rpl;
  522 
  523         if (cmd->req_len != sizeof *req)
  524                 return (EINVAL);
  525         if (cmd->rpl_len != sizeof *rpl)
  526                 return (EINVAL);
  527 
  528         mpr_init_sge(cm, req, &req->SGL);
  529         if (cmd->len == 0) {
  530                 /* Perhaps just asking what the size of the fw is? */
  531                 return (0);
  532         }
  533 
  534         req->ImageOffset = 0;
  535         req->ImageSize = cmd->len;
  536 
  537         cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
  538 
  539         return (mpr_push_ieee_sge(cm, &req->SGL, 0));
  540 }
  541 
  542 /*
  543  * Prepare the mpr_command for a SATA_PASSTHROUGH request.
  544  */
  545 static int
  546 mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
  547 {
  548         MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
  549         MPI2_SATA_PASSTHROUGH_REPLY *rpl;
  550 
  551         if (cmd->req_len != sizeof *req)
  552                 return (EINVAL);
  553         if (cmd->rpl_len != sizeof *rpl)
  554                 return (EINVAL);
  555 
  556         mpr_init_sge(cm, req, &req->SGL);
  557         return (0);
  558 }
  559 
  560 /*
  561  * Prepare the mpr_command for a SMP_PASSTHROUGH request.
  562  */
  563 static int
  564 mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
  565 {
  566         MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
  567         MPI2_SMP_PASSTHROUGH_REPLY *rpl;
  568 
  569         if (cmd->req_len != sizeof *req)
  570                 return (EINVAL);
  571         if (cmd->rpl_len != sizeof *rpl)
  572                 return (EINVAL);
  573 
  574         mpr_init_sge(cm, req, &req->SGL);
  575         return (0);
  576 }
  577 
  578 /*
  579  * Prepare the mpr_command for a CONFIG request.
  580  */
  581 static int
  582 mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
  583 {
  584         MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
  585         MPI2_CONFIG_REPLY *rpl;
  586 
  587         if (cmd->req_len != sizeof *req)
  588                 return (EINVAL);
  589         if (cmd->rpl_len != sizeof *rpl)
  590                 return (EINVAL);
  591 
  592         mpr_init_sge(cm, req, &req->PageBufferSGE);
  593         return (0);
  594 }
  595 
  596 /*
  597  * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
  598  */
  599 static int
  600 mpi_pre_sas_io_unit_control(struct mpr_command *cm,
  601                              struct mpr_usr_command *cmd)
  602 {
  603 
  604         cm->cm_sge = NULL;
  605         cm->cm_sglsize = 0;
  606         return (0);
  607 }
  608 
  609 /*
  610  * A set of functions to prepare an mpr_command for the various
  611  * supported requests.
  612  */
  613 struct mpr_user_func {
  614         U8              Function;
  615         mpr_user_f      *f_pre;
  616 } mpr_user_func_list[] = {
  617         { MPI2_FUNCTION_IOC_FACTS,              mpi_pre_ioc_facts },
  618         { MPI2_FUNCTION_PORT_FACTS,             mpi_pre_port_facts },
  619         { MPI2_FUNCTION_FW_DOWNLOAD,            mpi_pre_fw_download },
  620         { MPI2_FUNCTION_FW_UPLOAD,              mpi_pre_fw_upload },
  621         { MPI2_FUNCTION_SATA_PASSTHROUGH,       mpi_pre_sata_passthrough },
  622         { MPI2_FUNCTION_SMP_PASSTHROUGH,        mpi_pre_smp_passthrough},
  623         { MPI2_FUNCTION_CONFIG,                 mpi_pre_config},
  624         { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,    mpi_pre_sas_io_unit_control },
  625         { 0xFF,                                 NULL } /* list end */
  626 };
  627 
  628 static int
  629 mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
  630 {
  631         MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;   
  632         struct mpr_user_func *f;
  633 
  634         for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
  635                 if (hdr->Function == f->Function)
  636                         return (f->f_pre(cm, cmd));
  637         }
  638         return (EINVAL);
  639 }       
  640 
  641 static int
  642 mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
  643 {
  644         MPI2_REQUEST_HEADER *hdr;       
  645         MPI2_DEFAULT_REPLY *rpl = NULL;
  646         void *buf = NULL;
  647         struct mpr_command *cm = NULL;
  648         int err = 0;
  649         int sz;
  650 
  651         mpr_lock(sc);
  652         cm = mpr_alloc_command(sc);
  653 
  654         if (cm == NULL) {
  655                 mpr_printf(sc, "%s: no mpr requests\n", __func__);
  656                 err = ENOMEM;
  657                 goto RetFree;
  658         }
  659         mpr_unlock(sc);
  660 
  661         hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
  662 
  663         mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
  664             cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
  665 
  666         if (cmd->req_len > (int)sc->reqframesz) {
  667                 err = EINVAL;
  668                 goto RetFreeUnlocked;
  669         }
  670         err = copyin(cmd->req, hdr, cmd->req_len);
  671         if (err != 0)
  672                 goto RetFreeUnlocked;
  673 
  674         mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
  675             hdr->Function, hdr->MsgFlags);
  676 
  677         if (cmd->len > 0) {
  678                 buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
  679                 cm->cm_data = buf;
  680                 cm->cm_length = cmd->len;
  681         } else {
  682                 cm->cm_data = NULL;
  683                 cm->cm_length = 0;
  684         }
  685 
  686         cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
  687         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
  688 
  689         err = mpr_user_setup_request(cm, cmd);
  690         if (err == EINVAL) {
  691                 mpr_printf(sc, "%s: unsupported parameter or unsupported "
  692                     "function in request (function = 0x%X)\n", __func__,
  693                     hdr->Function);
  694         }
  695         if (err != 0)
  696                 goto RetFreeUnlocked;
  697 
  698         mpr_lock(sc);
  699         err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
  700 
  701         if (err || (cm == NULL)) {
  702                 mpr_printf(sc, "%s: invalid request: error %d\n",
  703                     __func__, err);
  704                 goto RetFree;
  705         }
  706 
  707         if (cm != NULL)
  708                 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
  709         if (rpl != NULL)
  710                 sz = rpl->MsgLength * 4;
  711         else
  712                 sz = 0;
  713 
  714         if (sz > cmd->rpl_len) {
  715                 mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
  716                     "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
  717                 sz = cmd->rpl_len;
  718         }       
  719 
  720         mpr_unlock(sc);
  721         copyout(rpl, cmd->rpl, sz);
  722         if (buf != NULL)
  723                 copyout(buf, cmd->buf, cmd->len);
  724         mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
  725 
  726 RetFreeUnlocked:
  727         mpr_lock(sc);
  728 RetFree:
  729         if (cm != NULL)
  730                 mpr_free_command(sc, cm);
  731         mpr_unlock(sc);
  732         if (buf != NULL)
  733                 free(buf, M_MPRUSER);
  734         return (err);
  735 }
  736 
  737 static int
  738 mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
  739 {
  740         MPI2_REQUEST_HEADER     *hdr, *tmphdr;
  741         MPI2_DEFAULT_REPLY      *rpl;
  742         Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
  743         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
  744         struct mpr_command      *cm = NULL;
  745         void                    *req = NULL;
  746         int                     i, err = 0, dir = 0, sz;
  747         uint8_t                 tool, function = 0;
  748         u_int                   sense_len;
  749         struct mprsas_target    *targ = NULL;
  750 
  751         /*
  752          * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
  753          * bit to denote that a passthru is being processed.
  754          */
  755         mpr_lock(sc);
  756         if (sc->mpr_flags & MPR_FLAGS_BUSY) {
  757                 mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
  758                     "allowed at a single time.", __func__);
  759                 mpr_unlock(sc);
  760                 return (EBUSY);
  761         }
  762         sc->mpr_flags |= MPR_FLAGS_BUSY;
  763         mpr_unlock(sc);
  764 
  765         /*
  766          * Do some validation on data direction.  Valid cases are:
  767          *    1) DataSize is 0 and direction is NONE
  768          *    2) DataSize is non-zero and one of:
  769          *        a) direction is READ or
  770          *        b) direction is WRITE or
  771          *        c) direction is BOTH and DataOutSize is non-zero
  772          * If valid and the direction is BOTH, change the direction to READ.
  773          * if valid and the direction is not BOTH, make sure DataOutSize is 0.
  774          */
  775         if (((data->DataSize == 0) &&
  776             (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
  777             ((data->DataSize != 0) &&
  778             ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
  779             (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
  780             ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
  781             (data->DataOutSize != 0))))) {
  782                 if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
  783                         data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
  784                 else
  785                         data->DataOutSize = 0;
  786         } else {
  787                 err = EINVAL;
  788                 goto RetFreeUnlocked;
  789         }
  790 
  791         mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
  792             "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
  793             data->PtrRequest, data->RequestSize, data->PtrReply,
  794             data->ReplySize, data->PtrData, data->DataSize,
  795             data->PtrDataOut, data->DataOutSize, data->DataDirection);
  796 
  797         if (data->RequestSize > sc->reqframesz) {
  798                 err = EINVAL;
  799                 goto RetFreeUnlocked;
  800         }
  801 
  802         req = malloc(data->RequestSize, M_MPRUSER, M_WAITOK | M_ZERO);
  803         tmphdr = (MPI2_REQUEST_HEADER *)req;
  804 
  805         err = copyin(PTRIN(data->PtrRequest), req, data->RequestSize);
  806         if (err != 0)
  807                 goto RetFreeUnlocked;
  808 
  809         function = tmphdr->Function;
  810         mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
  811             function, tmphdr->MsgFlags);
  812 
  813         /*
  814          * Handle a passthru TM request.
  815          */
  816         if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
  817                 MPI2_SCSI_TASK_MANAGE_REQUEST   *task;
  818 
  819                 mpr_lock(sc);
  820                 cm = mprsas_alloc_tm(sc);
  821                 if (cm == NULL) {
  822                         err = EINVAL;
  823                         goto Ret;
  824                 }
  825 
  826                 /* Copy the header in.  Only a small fixup is needed. */
  827                 task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
  828                 memcpy(task, req, data->RequestSize);
  829                 task->TaskMID = cm->cm_desc.Default.SMID;
  830 
  831                 cm->cm_data = NULL;
  832                 cm->cm_complete = NULL;
  833                 cm->cm_complete_data = NULL;
  834 
  835                 targ = mprsas_find_target_by_handle(sc->sassc, 0,
  836                     task->DevHandle);
  837                 if (targ == NULL) {
  838                         mpr_dprint(sc, MPR_INFO,
  839                            "%s %d : invalid handle for requested TM 0x%x \n",
  840                            __func__, __LINE__, task->DevHandle);
  841                         err = 1;
  842                 } else {
  843                         mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
  844                         err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
  845                 }
  846 
  847                 if (err != 0) {
  848                         err = EIO;
  849                         mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
  850                             __func__);
  851                 }
  852                 /*
  853                  * Copy the reply data and sense data to user space.
  854                  */
  855                 if ((cm != NULL) && (cm->cm_reply != NULL)) {
  856                         rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
  857                         sz = rpl->MsgLength * 4;
  858 
  859                         if (sz > data->ReplySize) {
  860                                 mpr_printf(sc, "%s: user reply buffer (%d) "
  861                                     "smaller than returned buffer (%d)\n",
  862                                     __func__, data->ReplySize, sz);
  863                         }
  864                         mpr_unlock(sc);
  865                         copyout(cm->cm_reply, PTRIN(data->PtrReply),
  866                             data->ReplySize);
  867                         mpr_lock(sc);
  868                 }
  869                 mprsas_free_tm(sc, cm);
  870                 goto Ret;
  871         }
  872 
  873         mpr_lock(sc);
  874         cm = mpr_alloc_command(sc);
  875         if (cm == NULL) {
  876                 mpr_printf(sc, "%s: no mpr requests\n", __func__);
  877                 err = ENOMEM;
  878                 goto Ret;
  879         }
  880         mpr_unlock(sc);
  881 
  882         hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
  883         memcpy(hdr, req, data->RequestSize);
  884 
  885         /*
  886          * Do some checking to make sure the IOCTL request contains a valid
  887          * request.  Then set the SGL info.
  888          */
  889         mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
  890 
  891         /*
  892          * Set up for read, write or both.  From check above, DataOutSize will
  893          * be 0 if direction is READ or WRITE, but it will have some non-zero
  894          * value if the direction is BOTH.  So, just use the biggest size to get
  895          * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
  896          * up; the first is for the request and the second will contain the
  897          * response data. cm_out_len needs to be set here and this will be used
  898          * when the SGLs are set up.
  899          */
  900         cm->cm_data = NULL;
  901         cm->cm_length = MAX(data->DataSize, data->DataOutSize);
  902         cm->cm_out_len = data->DataOutSize;
  903         cm->cm_flags = 0;
  904         if (cm->cm_length != 0) {
  905                 cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
  906                     M_ZERO);
  907                 cm->cm_flags = MPR_CM_FLAGS_DATAIN;
  908                 if (data->DataOutSize) {
  909                         cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
  910                         err = copyin(PTRIN(data->PtrDataOut),
  911                             cm->cm_data, data->DataOutSize);
  912                 } else if (data->DataDirection ==
  913                     MPR_PASS_THRU_DIRECTION_WRITE) {
  914                         cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
  915                         err = copyin(PTRIN(data->PtrData),
  916                             cm->cm_data, data->DataSize);
  917                 }
  918                 if (err != 0)
  919                         mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
  920                             "data from user space\n", __func__);
  921         }
  922         /*
  923          * Set this flag only if processing a command that does not need an
  924          * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
  925          * the flag only for that tool if processing a Toolbox function.
  926          */
  927         cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
  928         for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
  929                 if (function == ieee_sgl_func_list[i]) {
  930                         if (function == MPI2_FUNCTION_TOOLBOX)
  931                         {
  932                                 tool = (uint8_t)hdr->FunctionDependent1;
  933                                 if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
  934                                         break;
  935                         }
  936                         cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
  937                         break;
  938                 }
  939         }
  940         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
  941 
  942         if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
  943                 nvme_encap_request =
  944                     (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
  945                 cm->cm_desc.Default.RequestFlags =
  946                     MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
  947 
  948                 /*
  949                  * Get the Physical Address of the sense buffer.
  950                  * Save the user's Error Response buffer address and use that
  951                  *   field to hold the sense buffer address.
  952                  * Clear the internal sense buffer, which will potentially hold
  953                  *   the Completion Queue Entry on return, or 0 if no Entry.
  954                  * Build the PRPs and set direction bits.
  955                  * Send the request.
  956                  */
  957                 cm->nvme_error_response =
  958                     (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
  959                     ErrorResponseBaseAddress.High << 32) |
  960                     (uint64_t)nvme_encap_request->
  961                     ErrorResponseBaseAddress.Low);
  962                 nvme_encap_request->ErrorResponseBaseAddress.High =
  963                     htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
  964                 nvme_encap_request->ErrorResponseBaseAddress.Low =
  965                     htole32(cm->cm_sense_busaddr);
  966                 memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
  967                 mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
  968                     data->DataSize, data->DataOutSize);
  969         }
  970 
  971         /*
  972          * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
  973          * uses SCSI IO or Fast Path SCSI IO descriptor.
  974          */
  975         if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
  976             (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
  977                 MPI2_SCSI_IO_REQUEST    *scsi_io_req;
  978 
  979                 scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
  980                 /*
  981                  * Put SGE for data and data_out buffer at the end of
  982                  * scsi_io_request message header (64 bytes in total).
  983                  * Following above SGEs, the residual space will be used by
  984                  * sense data.
  985                  */
  986                 scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
  987                     64);
  988                 scsi_io_req->SenseBufferLowAddress =
  989                     htole32(cm->cm_sense_busaddr);
  990 
  991                 /*
  992                  * Set SGLOffset0 value.  This is the number of dwords that SGL
  993                  * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
  994                  */
  995                 scsi_io_req->SGLOffset0 = 24;
  996 
  997                 /*
  998                  * Setup descriptor info.  RAID passthrough must use the
  999                  * default request descriptor which is already set, so if this
 1000                  * is a SCSI IO request, change the descriptor to SCSI IO or
 1001                  * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
 1002                  * handle the reply in the mprsas_scsio_complete function.
 1003                  */
 1004                 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
 1005                         targ = mprsas_find_target_by_handle(sc->sassc, 0,
 1006                             scsi_io_req->DevHandle);
 1007 
 1008                         if (!targ) {
 1009                                 printf("No Target found for handle %d\n",
 1010                                     scsi_io_req->DevHandle);
 1011                                 err = EINVAL;
 1012                                 goto RetFreeUnlocked;
 1013                         }
 1014 
 1015                         if (targ->scsi_req_desc_type ==
 1016                             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
 1017                                 cm->cm_desc.FastPathSCSIIO.RequestFlags =
 1018                                     MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
 1019                                 if (!sc->atomic_desc_capable) {
 1020                                         cm->cm_desc.FastPathSCSIIO.DevHandle =
 1021                                             scsi_io_req->DevHandle;
 1022                                 }
 1023                                 scsi_io_req->IoFlags |=
 1024                                     MPI25_SCSIIO_IOFLAGS_FAST_PATH;
 1025                         } else {
 1026                                 cm->cm_desc.SCSIIO.RequestFlags =
 1027                                     MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
 1028                                 if (!sc->atomic_desc_capable) {
 1029                                         cm->cm_desc.SCSIIO.DevHandle =
 1030                                             scsi_io_req->DevHandle;
 1031                                 }
 1032                         }
 1033 
 1034                         /*
 1035                          * Make sure the DevHandle is not 0 because this is a
 1036                          * likely error.
 1037                          */
 1038                         if (scsi_io_req->DevHandle == 0) {
 1039                                 err = EINVAL;
 1040                                 goto RetFreeUnlocked;
 1041                         }
 1042                 }
 1043         }
 1044 
 1045         mpr_lock(sc);
 1046 
 1047         err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
 1048 
 1049         if (err || (cm == NULL)) {
 1050                 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
 1051                     err);
 1052                 goto RetFree;
 1053         }
 1054 
 1055         /*
 1056          * Sync the DMA data, if any.  Then copy the data to user space.
 1057          */
 1058         if (cm->cm_data != NULL) {
 1059                 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
 1060                         dir = BUS_DMASYNC_POSTREAD;
 1061                 else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
 1062                         dir = BUS_DMASYNC_POSTWRITE;
 1063                 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
 1064                 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
 1065 
 1066                 if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
 1067                         mpr_unlock(sc);
 1068                         err = copyout(cm->cm_data,
 1069                             PTRIN(data->PtrData), data->DataSize);
 1070                         mpr_lock(sc);
 1071                         if (err != 0)
 1072                                 mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
 1073                                     "IOCTL data to user space\n", __func__);
 1074                 }
 1075         }
 1076 
 1077         /*
 1078          * Copy the reply data and sense data to user space.
 1079          */
 1080         if (cm->cm_reply != NULL) {
 1081                 rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
 1082                 sz = rpl->MsgLength * 4;
 1083 
 1084                 if (sz > data->ReplySize) {
 1085                         mpr_printf(sc, "%s: user reply buffer (%d) smaller "
 1086                             "than returned buffer (%d)\n", __func__,
 1087                             data->ReplySize, sz);
 1088                 }
 1089                 mpr_unlock(sc);
 1090                 copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
 1091                 mpr_lock(sc);
 1092 
 1093                 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
 1094                     (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
 1095                         if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
 1096                             MPI2_SCSI_STATE_AUTOSENSE_VALID) {
 1097                                 sense_len =
 1098                                     MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
 1099                                     SenseCount)), sizeof(struct
 1100                                     scsi_sense_data));
 1101                                 mpr_unlock(sc);
 1102                                 copyout(cm->cm_sense, (PTRIN(data->PtrReply +
 1103                                     sizeof(MPI2_SCSI_IO_REPLY))), sense_len);
 1104                                 mpr_lock(sc);
 1105                         }
 1106                 }
 1107 
 1108                 /*
 1109                  * Copy out the NVMe Error Reponse to user. The Error Response
 1110                  * buffer is given by the user, but a sense buffer is used to
 1111                  * get that data from the IOC. The user's
 1112                  * ErrorResponseBaseAddress is saved in the
 1113                  * 'nvme_error_response' field before the command because that
 1114                  * field is set to a sense buffer. When the command is
 1115                  * complete, the Error Response data from the IOC is copied to
 1116                  * that user address after it is checked for validity.
 1117                  * Also note that 'sense' buffers are not defined for
 1118                  * NVMe commands. Sense terminalogy is only used here so that
 1119                  * the same IOCTL structure and sense buffers can be used for
 1120                  * NVMe.
 1121                  */
 1122                 if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
 1123                         if (cm->nvme_error_response == NULL) {
 1124                                 mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
 1125                                     "buffer is NULL. Response data will not be "
 1126                                     "returned.\n");
 1127                                 mpr_unlock(sc);
 1128                                 goto RetFreeUnlocked;
 1129                         }
 1130 
 1131                         nvme_error_reply =
 1132                             (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
 1133                         sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
 1134                             NVME_ERROR_RESPONSE_SIZE);
 1135                         mpr_unlock(sc);
 1136                         copyout(cm->cm_sense,
 1137                             (PTRIN(data->PtrReply +
 1138                             sizeof(MPI2_SCSI_IO_REPLY))), sz);
 1139                         mpr_lock(sc);
 1140                 }
 1141         }
 1142         mpr_unlock(sc);
 1143 
 1144 RetFreeUnlocked:
 1145         mpr_lock(sc);
 1146 
 1147 RetFree:
 1148         if (cm != NULL) {
 1149                 if (cm->cm_data)
 1150                         free(cm->cm_data, M_MPRUSER);
 1151                 mpr_free_command(sc, cm);
 1152         }
 1153 Ret:
 1154         sc->mpr_flags &= ~MPR_FLAGS_BUSY;
 1155         mpr_unlock(sc);
 1156         free(req, M_MPRUSER);
 1157 
 1158         return (err);
 1159 }
 1160 
 1161 static void
 1162 mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
 1163 {
 1164         Mpi2ConfigReply_t       mpi_reply;
 1165         Mpi2BiosPage3_t         config_page;
 1166 
 1167         /*
 1168          * Use the PCI interface functions to get the Bus, Device, and Function
 1169          * information.
 1170          */
 1171         data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
 1172         data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
 1173         data->PciInformation.u.bits.FunctionNumber =
 1174             pci_get_function(sc->mpr_dev);
 1175 
 1176         /*
 1177          * Get the FW version that should already be saved in IOC Facts.
 1178          */
 1179         data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
 1180 
 1181         /*
 1182          * General device info.
 1183          */
 1184         if (sc->mpr_flags & MPR_FLAGS_GEN35_IOC)
 1185                 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS35;
 1186         else
 1187                 data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
 1188         data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
 1189         data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
 1190         data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
 1191         data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
 1192 
 1193         /*
 1194          * Get the driver version.
 1195          */
 1196         strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
 1197 
 1198         /*
 1199          * Need to get BIOS Config Page 3 for the BIOS Version.
 1200          */
 1201         data->BiosVersion = 0;
 1202         mpr_lock(sc);
 1203         if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
 1204                 printf("%s: Error while retrieving BIOS Version\n", __func__);
 1205         else
 1206                 data->BiosVersion = config_page.BiosVersion;
 1207         mpr_unlock(sc);
 1208 }
 1209 
 1210 static void
 1211 mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
 1212 {
 1213         int     i;
 1214 
 1215         /*
 1216          * Use the PCI interface functions to get the Bus, Device, and Function
 1217          * information.
 1218          */
 1219         data->BusNumber = pci_get_bus(sc->mpr_dev);
 1220         data->DeviceNumber = pci_get_slot(sc->mpr_dev);
 1221         data->FunctionNumber = pci_get_function(sc->mpr_dev);
 1222 
 1223         /*
 1224          * Now get the interrupt vector and the pci header.  The vector can
 1225          * only be 0 right now.  The header is the first 256 bytes of config
 1226          * space.
 1227          */
 1228         data->InterruptVector = 0;
 1229         for (i = 0; i < sizeof (data->PciHeader); i++) {
 1230                 data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
 1231         }
 1232 }
 1233 
 1234 static uint8_t
 1235 mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
 1236 {
 1237         uint8_t index;
 1238 
 1239         for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
 1240                 if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
 1241                         return (index);
 1242                 }
 1243         }
 1244 
 1245         return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
 1246 }
 1247 
 1248 static int
 1249 mpr_post_fw_diag_buffer(struct mpr_softc *sc,
 1250     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
 1251 {
 1252         MPI2_DIAG_BUFFER_POST_REQUEST   *req;
 1253         MPI2_DIAG_BUFFER_POST_REPLY     *reply;
 1254         struct mpr_command              *cm = NULL;
 1255         int                             i, status;
 1256 
 1257         /*
 1258          * If buffer is not enabled, just leave.
 1259          */
 1260         *return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
 1261         if (!pBuffer->enabled) {
 1262                 return (MPR_DIAG_FAILURE);
 1263         }
 1264 
 1265         /*
 1266          * Clear some flags initially.
 1267          */
 1268         pBuffer->force_release = FALSE;
 1269         pBuffer->valid_data = FALSE;
 1270         pBuffer->owned_by_firmware = FALSE;
 1271 
 1272         /*
 1273          * Get a command.
 1274          */
 1275         cm = mpr_alloc_command(sc);
 1276         if (cm == NULL) {
 1277                 mpr_printf(sc, "%s: no mpr requests\n", __func__);
 1278                 return (MPR_DIAG_FAILURE);
 1279         }
 1280 
 1281         /*
 1282          * Build the request for releasing the FW Diag Buffer and send it.
 1283          */
 1284         req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
 1285         req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
 1286         req->BufferType = pBuffer->buffer_type;
 1287         req->ExtendedType = pBuffer->extended_type;
 1288         req->BufferLength = pBuffer->size;
 1289         for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
 1290                 req->ProductSpecific[i] = pBuffer->product_specific[i];
 1291         mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
 1292         cm->cm_data = NULL;
 1293         cm->cm_length = 0;
 1294         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 1295         cm->cm_complete_data = NULL;
 1296 
 1297         /*
 1298          * Send command synchronously.
 1299          */
 1300         status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
 1301         if (status || (cm == NULL)) {
 1302                 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
 1303                     status);
 1304                 status = MPR_DIAG_FAILURE;
 1305                 goto done;
 1306         }
 1307 
 1308         /*
 1309          * Process POST reply.
 1310          */
 1311         reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
 1312         if (reply == NULL) {
 1313                 mpr_printf(sc, "%s: reply is NULL, probably due to "
 1314                     "reinitialization", __func__);
 1315                 status = MPR_DIAG_FAILURE;
 1316                 goto done;
 1317         }
 1318 
 1319         if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
 1320             MPI2_IOCSTATUS_SUCCESS) {
 1321                 status = MPR_DIAG_FAILURE;
 1322                 mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
 1323                     "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
 1324                     "TransferLength = 0x%x\n", __func__,
 1325                     le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
 1326                     le32toh(reply->TransferLength));
 1327                 goto done;
 1328         }
 1329 
 1330         /*
 1331          * Post was successful.
 1332          */
 1333         pBuffer->valid_data = TRUE;
 1334         pBuffer->owned_by_firmware = TRUE;
 1335         *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
 1336         status = MPR_DIAG_SUCCESS;
 1337 
 1338 done:
 1339         if (cm != NULL)
 1340                 mpr_free_command(sc, cm);
 1341         return (status);
 1342 }
 1343 
 1344 static int
 1345 mpr_release_fw_diag_buffer(struct mpr_softc *sc,
 1346     mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
 1347     uint32_t diag_type)
 1348 {
 1349         MPI2_DIAG_RELEASE_REQUEST       *req;
 1350         MPI2_DIAG_RELEASE_REPLY         *reply;
 1351         struct mpr_command              *cm = NULL;
 1352         int                             status;
 1353 
 1354         /*
 1355          * If buffer is not enabled, just leave.
 1356          */
 1357         *return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
 1358         if (!pBuffer->enabled) {
 1359                 mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
 1360                     "supported by the IOC", __func__);
 1361                 return (MPR_DIAG_FAILURE);
 1362         }
 1363 
 1364         /*
 1365          * Clear some flags initially.
 1366          */
 1367         pBuffer->force_release = FALSE;
 1368         pBuffer->valid_data = FALSE;
 1369         pBuffer->owned_by_firmware = FALSE;
 1370 
 1371         /*
 1372          * Get a command.
 1373          */
 1374         cm = mpr_alloc_command(sc);
 1375         if (cm == NULL) {
 1376                 mpr_printf(sc, "%s: no mpr requests\n", __func__);
 1377                 return (MPR_DIAG_FAILURE);
 1378         }
 1379 
 1380         /*
 1381          * Build the request for releasing the FW Diag Buffer and send it.
 1382          */
 1383         req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
 1384         req->Function = MPI2_FUNCTION_DIAG_RELEASE;
 1385         req->BufferType = pBuffer->buffer_type;
 1386         cm->cm_data = NULL;
 1387         cm->cm_length = 0;
 1388         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 1389         cm->cm_complete_data = NULL;
 1390 
 1391         /*
 1392          * Send command synchronously.
 1393          */
 1394         status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
 1395         if (status || (cm == NULL)) {
 1396                 mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
 1397                     status);
 1398                 status = MPR_DIAG_FAILURE;
 1399                 goto done;
 1400         }
 1401 
 1402         /*
 1403          * Process RELEASE reply.
 1404          */
 1405         reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
 1406         if (reply == NULL) {
 1407                 mpr_printf(sc, "%s: reply is NULL, probably due to "
 1408                     "reinitialization", __func__);
 1409                 status = MPR_DIAG_FAILURE;
 1410                 goto done;
 1411         }
 1412         if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
 1413             MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
 1414                 status = MPR_DIAG_FAILURE;
 1415                 mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
 1416                     "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
 1417                     __func__, le16toh(reply->IOCStatus),
 1418                     le32toh(reply->IOCLogInfo));
 1419                 goto done;
 1420         }
 1421 
 1422         /*
 1423          * Release was successful.
 1424          */
 1425         *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
 1426         status = MPR_DIAG_SUCCESS;
 1427 
 1428         /*
 1429          * If this was for an UNREGISTER diag type command, clear the unique ID.
 1430          */
 1431         if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
 1432                 pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
 1433         }
 1434 
 1435 done:
 1436         if (cm != NULL)
 1437                 mpr_free_command(sc, cm);
 1438 
 1439         return (status);
 1440 }
 1441 
 1442 static int
 1443 mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
 1444     uint32_t *return_code)
 1445 {
 1446         bus_dma_template_t              t;
 1447         mpr_fw_diagnostic_buffer_t      *pBuffer;
 1448         struct mpr_busdma_context       *ctx;
 1449         uint8_t                         extended_type, buffer_type, i;
 1450         uint32_t                        buffer_size;
 1451         uint32_t                        unique_id;
 1452         int                             status;
 1453         int                             error;
 1454 
 1455         extended_type = diag_register->ExtendedType;
 1456         buffer_type = diag_register->BufferType;
 1457         buffer_size = diag_register->RequestedBufferSize;
 1458         unique_id = diag_register->UniqueId;
 1459         ctx = NULL;
 1460         error = 0;
 1461 
 1462         /*
 1463          * Check for valid buffer type
 1464          */
 1465         if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
 1466                 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
 1467                 return (MPR_DIAG_FAILURE);
 1468         }
 1469 
 1470         /*
 1471          * Get the current buffer and look up the unique ID.  The unique ID
 1472          * should not be found.  If it is, the ID is already in use.
 1473          */
 1474         i = mpr_get_fw_diag_buffer_number(sc, unique_id);
 1475         pBuffer = &sc->fw_diag_buffer_list[buffer_type];
 1476         if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
 1477                 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
 1478                 return (MPR_DIAG_FAILURE);
 1479         }
 1480 
 1481         /*
 1482          * The buffer's unique ID should not be registered yet, and the given
 1483          * unique ID cannot be 0.
 1484          */
 1485         if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
 1486             (unique_id == MPR_FW_DIAG_INVALID_UID)) {
 1487                 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
 1488                 return (MPR_DIAG_FAILURE);
 1489         }
 1490 
 1491         /*
 1492          * If this buffer is already posted as immediate, just change owner.
 1493          */
 1494         if (pBuffer->immediate && pBuffer->owned_by_firmware &&
 1495             (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
 1496                 pBuffer->immediate = FALSE;
 1497                 pBuffer->unique_id = unique_id;
 1498                 return (MPR_DIAG_SUCCESS);
 1499         }
 1500 
 1501         /*
 1502          * Post a new buffer after checking if it's enabled.  The DMA buffer
 1503          * that is allocated will be contiguous (nsegments = 1).
 1504          */
 1505         if (!pBuffer->enabled) {
 1506                 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
 1507                 return (MPR_DIAG_FAILURE);
 1508         }
 1509         bus_dma_template_init(&t, sc->mpr_parent_dmat);
 1510         BUS_DMA_TEMPLATE_FILL(&t, BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT),
 1511             BD_MAXSIZE(buffer_size), BD_MAXSEGSIZE(buffer_size),
 1512             BD_NSEGMENTS(1));
 1513         if (bus_dma_template_tag(&t, &sc->fw_diag_dmat)) {
 1514                 mpr_dprint(sc, MPR_ERROR,
 1515                     "Cannot allocate FW diag buffer DMA tag\n");
 1516                 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
 1517                 status = MPR_DIAG_FAILURE;
 1518                 goto bailout;
 1519         }
 1520         if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
 1521             BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
 1522                 mpr_dprint(sc, MPR_ERROR,
 1523                     "Cannot allocate FW diag buffer memory\n");
 1524                 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
 1525                 status = MPR_DIAG_FAILURE;
 1526                 goto bailout;
 1527         }
 1528         bzero(sc->fw_diag_buffer, buffer_size);
 1529 
 1530         ctx = malloc(sizeof(*ctx), M_MPR, M_WAITOK | M_ZERO);
 1531         ctx->addr = &sc->fw_diag_busaddr;
 1532         ctx->buffer_dmat = sc->fw_diag_dmat;
 1533         ctx->buffer_dmamap = sc->fw_diag_map;
 1534         ctx->softc = sc;
 1535         error = bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map,
 1536             sc->fw_diag_buffer, buffer_size, mpr_memaddr_wait_cb,
 1537             ctx, 0);
 1538         if (error == EINPROGRESS) {
 1539                 /* XXX KDM */
 1540                 device_printf(sc->mpr_dev, "%s: Deferred bus_dmamap_load\n",
 1541                     __func__);
 1542                 /*
 1543                  * Wait for the load to complete.  If we're interrupted,
 1544                  * bail out.
 1545                  */
 1546                 mpr_lock(sc);
 1547                 if (ctx->completed == 0) {
 1548                         error = msleep(ctx, &sc->mpr_mtx, PCATCH, "mprwait", 0);
 1549                         if (error != 0) {
 1550                                 /*
 1551                                  * We got an error from msleep(9).  This is
 1552                                  * most likely due to a signal.  Tell
 1553                                  * mpr_memaddr_wait_cb() that we've abandoned
 1554                                  * the context, so it needs to clean up when
 1555                                  * it is called.
 1556                                  */
 1557                                 ctx->abandoned = 1;
 1558 
 1559                                 /* The callback will free this memory */
 1560                                 ctx = NULL;
 1561                                 mpr_unlock(sc);
 1562 
 1563                                 device_printf(sc->mpr_dev, "Cannot "
 1564                                     "bus_dmamap_load FW diag buffer, error = "
 1565                                     "%d returned from msleep\n", error);
 1566                                 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
 1567                                 status = MPR_DIAG_FAILURE;
 1568                                 goto bailout;
 1569                         }
 1570                 }
 1571                 mpr_unlock(sc);
 1572         } 
 1573 
 1574         if ((error != 0) || (ctx->error != 0)) {
 1575                 device_printf(sc->mpr_dev, "Cannot bus_dmamap_load FW diag "
 1576                     "buffer, %serror = %d\n", error ? "" : "callback ",
 1577                     error ? error : ctx->error);
 1578                 *return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
 1579                 status = MPR_DIAG_FAILURE;
 1580                 goto bailout;
 1581         }
 1582 
 1583         bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map, BUS_DMASYNC_PREREAD);
 1584 
 1585         pBuffer->size = buffer_size;
 1586 
 1587         /*
 1588          * Copy the given info to the diag buffer and post the buffer.
 1589          */
 1590         pBuffer->buffer_type = buffer_type;
 1591         pBuffer->immediate = FALSE;
 1592         if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
 1593                 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
 1594                     i++) {
 1595                         pBuffer->product_specific[i] =
 1596                             diag_register->ProductSpecific[i];
 1597                 }
 1598         }
 1599         pBuffer->extended_type = extended_type;
 1600         pBuffer->unique_id = unique_id;
 1601         status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
 1602 
 1603 bailout:
 1604 
 1605         /*
 1606          * In case there was a failure, free the DMA buffer.
 1607          */
 1608         if (status == MPR_DIAG_FAILURE) {
 1609                 if (sc->fw_diag_busaddr != 0) {
 1610                         bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
 1611                         sc->fw_diag_busaddr = 0;
 1612                 }
 1613                 if (sc->fw_diag_buffer != NULL) {
 1614                         bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
 1615                             sc->fw_diag_map);
 1616                         sc->fw_diag_buffer = NULL;
 1617                 }
 1618                 if (sc->fw_diag_dmat != NULL) {
 1619                         bus_dma_tag_destroy(sc->fw_diag_dmat);
 1620                         sc->fw_diag_dmat = NULL;
 1621                 }
 1622         }
 1623 
 1624         if (ctx != NULL)
 1625                 free(ctx, M_MPR);
 1626 
 1627         return (status);
 1628 }
 1629 
 1630 static int
 1631 mpr_diag_unregister(struct mpr_softc *sc,
 1632     mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
 1633 {
 1634         mpr_fw_diagnostic_buffer_t      *pBuffer;
 1635         uint8_t                         i;
 1636         uint32_t                        unique_id;
 1637         int                             status;
 1638 
 1639         unique_id = diag_unregister->UniqueId;
 1640 
 1641         /*
 1642          * Get the current buffer and look up the unique ID.  The unique ID
 1643          * should be there.
 1644          */
 1645         i = mpr_get_fw_diag_buffer_number(sc, unique_id);
 1646         if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
 1647                 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
 1648                 return (MPR_DIAG_FAILURE);
 1649         }
 1650 
 1651         pBuffer = &sc->fw_diag_buffer_list[i];
 1652 
 1653         /*
 1654          * Try to release the buffer from FW before freeing it.  If release
 1655          * fails, don't free the DMA buffer in case FW tries to access it
 1656          * later.  If buffer is not owned by firmware, can't release it.
 1657          */
 1658         if (!pBuffer->owned_by_firmware) {
 1659                 status = MPR_DIAG_SUCCESS;
 1660         } else {
 1661                 status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
 1662                     MPR_FW_DIAG_TYPE_UNREGISTER);
 1663         }
 1664 
 1665         /*
 1666          * At this point, return the current status no matter what happens with
 1667          * the DMA buffer.
 1668          */
 1669         pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
 1670         if (status == MPR_DIAG_SUCCESS) {
 1671                 if (sc->fw_diag_busaddr != 0) {
 1672                         bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
 1673                         sc->fw_diag_busaddr = 0;
 1674                 }
 1675                 if (sc->fw_diag_buffer != NULL) {
 1676                         bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
 1677                             sc->fw_diag_map);
 1678                         sc->fw_diag_buffer = NULL;
 1679                 }
 1680                 if (sc->fw_diag_dmat != NULL) {
 1681                         bus_dma_tag_destroy(sc->fw_diag_dmat);
 1682                         sc->fw_diag_dmat = NULL;
 1683                 }
 1684         }
 1685 
 1686         return (status);
 1687 }
 1688 
 1689 static int
 1690 mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
 1691     uint32_t *return_code)
 1692 {
 1693         mpr_fw_diagnostic_buffer_t      *pBuffer;
 1694         uint8_t                         i;
 1695         uint32_t                        unique_id;
 1696 
 1697         unique_id = diag_query->UniqueId;
 1698 
 1699         /*
 1700          * If ID is valid, query on ID.
 1701          * If ID is invalid, query on buffer type.
 1702          */
 1703         if (unique_id == MPR_FW_DIAG_INVALID_UID) {
 1704                 i = diag_query->BufferType;
 1705                 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
 1706                         *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
 1707                         return (MPR_DIAG_FAILURE);
 1708                 }
 1709         } else {
 1710                 i = mpr_get_fw_diag_buffer_number(sc, unique_id);
 1711                 if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
 1712                         *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
 1713                         return (MPR_DIAG_FAILURE);
 1714                 }
 1715         }
 1716 
 1717         /*
 1718          * Fill query structure with the diag buffer info.
 1719          */
 1720         pBuffer = &sc->fw_diag_buffer_list[i];
 1721         diag_query->BufferType = pBuffer->buffer_type;
 1722         diag_query->ExtendedType = pBuffer->extended_type;
 1723         if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
 1724                 for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
 1725                     i++) {
 1726                         diag_query->ProductSpecific[i] =
 1727                             pBuffer->product_specific[i];
 1728                 }
 1729         }
 1730         diag_query->TotalBufferSize = pBuffer->size;
 1731         diag_query->DriverAddedBufferSize = 0;
 1732         diag_query->UniqueId = pBuffer->unique_id;
 1733         diag_query->ApplicationFlags = 0;
 1734         diag_query->DiagnosticFlags = 0;
 1735 
 1736         /*
 1737          * Set/Clear application flags
 1738          */
 1739         if (pBuffer->immediate) {
 1740                 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
 1741         } else {
 1742                 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
 1743         }
 1744         if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
 1745                 diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
 1746         } else {
 1747                 diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
 1748         }
 1749         if (pBuffer->owned_by_firmware) {
 1750                 diag_query->ApplicationFlags |=
 1751                     MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
 1752         } else {
 1753                 diag_query->ApplicationFlags &=
 1754                     ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
 1755         }
 1756 
 1757         return (MPR_DIAG_SUCCESS);
 1758 }
 1759 
 1760 static int
 1761 mpr_diag_read_buffer(struct mpr_softc *sc,
 1762     mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
 1763     uint32_t *return_code)
 1764 {
 1765         mpr_fw_diagnostic_buffer_t      *pBuffer;
 1766         uint8_t                         i, *pData;
 1767         uint32_t                        unique_id;
 1768         int                             status;
 1769 
 1770         unique_id = diag_read_buffer->UniqueId;
 1771 
 1772         /*
 1773          * Get the current buffer and look up the unique ID.  The unique ID
 1774          * should be there.
 1775          */
 1776         i = mpr_get_fw_diag_buffer_number(sc, unique_id);
 1777         if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
 1778                 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
 1779                 return (MPR_DIAG_FAILURE);
 1780         }
 1781 
 1782         pBuffer = &sc->fw_diag_buffer_list[i];
 1783 
 1784         /*
 1785          * Make sure requested read is within limits
 1786          */
 1787         if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
 1788             pBuffer->size) {
 1789                 *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
 1790                 return (MPR_DIAG_FAILURE);
 1791         }
 1792 
 1793         /* Sync the DMA map before we copy to userland. */
 1794         bus_dmamap_sync(sc->fw_diag_dmat, sc->fw_diag_map,
 1795             BUS_DMASYNC_POSTREAD);
 1796 
 1797         /*
 1798          * Copy the requested data from DMA to the diag_read_buffer.  The DMA
 1799          * buffer that was allocated is one contiguous buffer.
 1800          */
 1801         pData = (uint8_t *)(sc->fw_diag_buffer +
 1802             diag_read_buffer->StartingOffset);
 1803         if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
 1804                 return (MPR_DIAG_FAILURE);
 1805         diag_read_buffer->Status = 0;
 1806 
 1807         /*
 1808          * Set or clear the Force Release flag.
 1809          */
 1810         if (pBuffer->force_release) {
 1811                 diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
 1812         } else {
 1813                 diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
 1814         }
 1815 
 1816         /*
 1817          * If buffer is to be reregistered, make sure it's not already owned by
 1818          * firmware first.
 1819          */
 1820         status = MPR_DIAG_SUCCESS;
 1821         if (!pBuffer->owned_by_firmware) {
 1822                 if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
 1823                         status = mpr_post_fw_diag_buffer(sc, pBuffer,
 1824                             return_code);
 1825                 }
 1826         }
 1827 
 1828         return (status);
 1829 }
 1830 
 1831 static int
 1832 mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
 1833     uint32_t *return_code)
 1834 {
 1835         mpr_fw_diagnostic_buffer_t      *pBuffer;
 1836         uint8_t                         i;
 1837         uint32_t                        unique_id;
 1838         int                             status;
 1839 
 1840         unique_id = diag_release->UniqueId;
 1841 
 1842         /*
 1843          * Get the current buffer and look up the unique ID.  The unique ID
 1844          * should be there.
 1845          */
 1846         i = mpr_get_fw_diag_buffer_number(sc, unique_id);
 1847         if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
 1848                 *return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
 1849                 return (MPR_DIAG_FAILURE);
 1850         }
 1851 
 1852         pBuffer = &sc->fw_diag_buffer_list[i];
 1853 
 1854         /*
 1855          * If buffer is not owned by firmware, it's already been released.
 1856          */
 1857         if (!pBuffer->owned_by_firmware) {
 1858                 *return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
 1859                 return (MPR_DIAG_FAILURE);
 1860         }
 1861 
 1862         /*
 1863          * Release the buffer.
 1864          */
 1865         status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
 1866             MPR_FW_DIAG_TYPE_RELEASE);
 1867         return (status);
 1868 }
 1869 
 1870 static int
 1871 mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
 1872     uint32_t length, uint32_t *return_code)
 1873 {
 1874         mpr_fw_diag_register_t          diag_register;
 1875         mpr_fw_diag_unregister_t        diag_unregister;
 1876         mpr_fw_diag_query_t             diag_query;
 1877         mpr_diag_read_buffer_t          diag_read_buffer;
 1878         mpr_fw_diag_release_t           diag_release;
 1879         int                             status = MPR_DIAG_SUCCESS;
 1880         uint32_t                        original_return_code;
 1881 
 1882         original_return_code = *return_code;
 1883         *return_code = MPR_FW_DIAG_ERROR_SUCCESS;
 1884 
 1885         switch (action) {
 1886                 case MPR_FW_DIAG_TYPE_REGISTER:
 1887                         if (!length) {
 1888                                 *return_code =
 1889                                     MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
 1890                                 status = MPR_DIAG_FAILURE;
 1891                                 break;
 1892                         }
 1893                         if (copyin(diag_action, &diag_register,
 1894                             sizeof(diag_register)) != 0)
 1895                                 return (MPR_DIAG_FAILURE);
 1896                         status = mpr_diag_register(sc, &diag_register,
 1897                             return_code);
 1898                         break;
 1899 
 1900                 case MPR_FW_DIAG_TYPE_UNREGISTER:
 1901                         if (length < sizeof(diag_unregister)) {
 1902                                 *return_code =
 1903                                     MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
 1904                                 status = MPR_DIAG_FAILURE;
 1905                                 break;
 1906                         }
 1907                         if (copyin(diag_action, &diag_unregister,
 1908                             sizeof(diag_unregister)) != 0)
 1909                                 return (MPR_DIAG_FAILURE);
 1910                         status = mpr_diag_unregister(sc, &diag_unregister,
 1911                             return_code);
 1912                         break;
 1913 
 1914                 case MPR_FW_DIAG_TYPE_QUERY:
 1915                         if (length < sizeof (diag_query)) {
 1916                                 *return_code =
 1917                                     MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
 1918                                 status = MPR_DIAG_FAILURE;
 1919                                 break;
 1920                         }
 1921                         if (copyin(diag_action, &diag_query, sizeof(diag_query))
 1922                             != 0)
 1923                                 return (MPR_DIAG_FAILURE);
 1924                         status = mpr_diag_query(sc, &diag_query, return_code);
 1925                         if (status == MPR_DIAG_SUCCESS)
 1926                                 if (copyout(&diag_query, diag_action,
 1927                                     sizeof (diag_query)) != 0)
 1928                                         return (MPR_DIAG_FAILURE);
 1929                         break;
 1930 
 1931                 case MPR_FW_DIAG_TYPE_READ_BUFFER:
 1932                         if (copyin(diag_action, &diag_read_buffer,
 1933                             sizeof(diag_read_buffer)) != 0)
 1934                                 return (MPR_DIAG_FAILURE);
 1935                         if (length < diag_read_buffer.BytesToRead) {
 1936                                 *return_code =
 1937                                     MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
 1938                                 status = MPR_DIAG_FAILURE;
 1939                                 break;
 1940                         }
 1941                         status = mpr_diag_read_buffer(sc, &diag_read_buffer,
 1942                             PTRIN(diag_read_buffer.PtrDataBuffer),
 1943                             return_code);
 1944                         if (status == MPR_DIAG_SUCCESS) {
 1945                                 if (copyout(&diag_read_buffer, diag_action,
 1946                                     sizeof(diag_read_buffer) -
 1947                                     sizeof(diag_read_buffer.PtrDataBuffer)) !=
 1948                                     0)
 1949                                         return (MPR_DIAG_FAILURE);
 1950                         }
 1951                         break;
 1952 
 1953                 case MPR_FW_DIAG_TYPE_RELEASE:
 1954                         if (length < sizeof(diag_release)) {
 1955                                 *return_code =
 1956                                     MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
 1957                                 status = MPR_DIAG_FAILURE;
 1958                                 break;
 1959                         }
 1960                         if (copyin(diag_action, &diag_release,
 1961                             sizeof(diag_release)) != 0)
 1962                                 return (MPR_DIAG_FAILURE);
 1963                         status = mpr_diag_release(sc, &diag_release,
 1964                             return_code);
 1965                         break;
 1966 
 1967                 default:
 1968                         *return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
 1969                         status = MPR_DIAG_FAILURE;
 1970                         break;
 1971         }
 1972 
 1973         if ((status == MPR_DIAG_FAILURE) &&
 1974             (original_return_code == MPR_FW_DIAG_NEW) &&
 1975             (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
 1976                 status = MPR_DIAG_SUCCESS;
 1977 
 1978         return (status);
 1979 }
 1980 
 1981 static int
 1982 mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
 1983 {
 1984         int                     status;
 1985 
 1986         /*
 1987          * Only allow one diag action at one time.
 1988          */
 1989         if (sc->mpr_flags & MPR_FLAGS_BUSY) {
 1990                 mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
 1991                     "allowed at a single time.", __func__);
 1992                 return (EBUSY);
 1993         }
 1994         sc->mpr_flags |= MPR_FLAGS_BUSY;
 1995 
 1996         /*
 1997          * Send diag action request
 1998          */
 1999         if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
 2000             data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
 2001             data->Action == MPR_FW_DIAG_TYPE_QUERY ||
 2002             data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
 2003             data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
 2004                 status = mpr_do_diag_action(sc, data->Action,
 2005                     PTRIN(data->PtrDiagAction), data->Length,
 2006                     &data->ReturnCode);
 2007         } else
 2008                 status = EINVAL;
 2009 
 2010         sc->mpr_flags &= ~MPR_FLAGS_BUSY;
 2011         return (status);
 2012 }
 2013 
 2014 /*
 2015  * Copy the event recording mask and the event queue size out.  For
 2016  * clarification, the event recording mask (events_to_record) is not the same
 2017  * thing as the event mask (event_mask).  events_to_record has a bit set for
 2018  * every event type that is to be recorded by the driver, and event_mask has a
 2019  * bit cleared for every event that is allowed into the driver from the IOC.
 2020  * They really have nothing to do with each other.
 2021  */
 2022 static void
 2023 mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
 2024 {
 2025         uint8_t i;
 2026 
 2027         mpr_lock(sc);
 2028         data->Entries = MPR_EVENT_QUEUE_SIZE;
 2029 
 2030         for (i = 0; i < 4; i++) {
 2031                 data->Types[i] = sc->events_to_record[i];
 2032         }
 2033         mpr_unlock(sc);
 2034 }
 2035 
 2036 /*
 2037  * Set the driver's event mask according to what's been given.  See
 2038  * mpr_user_event_query for explanation of the event recording mask and the IOC
 2039  * event mask.  It's the app's responsibility to enable event logging by setting
 2040  * the bits in events_to_record.  Initially, no events will be logged.
 2041  */
 2042 static void
 2043 mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
 2044 {
 2045         uint8_t i;
 2046 
 2047         mpr_lock(sc);
 2048         for (i = 0; i < 4; i++) {
 2049                 sc->events_to_record[i] = data->Types[i];
 2050         }
 2051         mpr_unlock(sc);
 2052 }
 2053 
 2054 /*
 2055  * Copy out the events that have been recorded, up to the max events allowed.
 2056  */
 2057 static int
 2058 mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
 2059 {
 2060         int             status = 0;
 2061         uint32_t        size;
 2062 
 2063         mpr_lock(sc);
 2064         size = data->Size;
 2065         if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
 2066                 mpr_unlock(sc);
 2067                 if (copyout((void *)sc->recorded_events,
 2068                     PTRIN(data->PtrEvents), size) != 0)
 2069                         status = EFAULT;
 2070                 mpr_lock(sc);
 2071         } else {
 2072                 /*
 2073                  * data->Size value is not large enough to copy event data.
 2074                  */
 2075                 status = EFAULT;
 2076         }
 2077 
 2078         /*
 2079          * Change size value to match the number of bytes that were copied.
 2080          */
 2081         if (status == 0)
 2082                 data->Size = sizeof(sc->recorded_events);
 2083         mpr_unlock(sc);
 2084 
 2085         return (status);
 2086 }
 2087 
 2088 /*
 2089  * Record events into the driver from the IOC if they are not masked.
 2090  */
 2091 void
 2092 mprsas_record_event(struct mpr_softc *sc,
 2093     MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
 2094 {
 2095         uint32_t        event;
 2096         int             i, j;
 2097         uint16_t        event_data_len;
 2098         boolean_t       sendAEN = FALSE;
 2099 
 2100         event = event_reply->Event;
 2101 
 2102         /*
 2103          * Generate a system event to let anyone who cares know that a
 2104          * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
 2105          * event mask is set to.
 2106          */
 2107         if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
 2108                 sendAEN = TRUE;
 2109         }
 2110 
 2111         /*
 2112          * Record the event only if its corresponding bit is set in
 2113          * events_to_record.  event_index is the index into recorded_events and
 2114          * event_number is the overall number of an event being recorded since
 2115          * start-of-day.  event_index will roll over; event_number will never
 2116          * roll over.
 2117          */
 2118         i = (uint8_t)(event / 32);
 2119         j = (uint8_t)(event % 32);
 2120         if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
 2121                 i = sc->event_index;
 2122                 sc->recorded_events[i].Type = event;
 2123                 sc->recorded_events[i].Number = ++sc->event_number;
 2124                 bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
 2125                     4);
 2126                 event_data_len = event_reply->EventDataLength;
 2127 
 2128                 if (event_data_len > 0) {
 2129                         /*
 2130                          * Limit data to size in m_event entry
 2131                          */
 2132                         if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
 2133                                 event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
 2134                         }
 2135                         for (j = 0; j < event_data_len; j++) {
 2136                                 sc->recorded_events[i].Data[j] =
 2137                                     event_reply->EventData[j];
 2138                         }
 2139 
 2140                         /*
 2141                          * check for index wrap-around
 2142                          */
 2143                         if (++i == MPR_EVENT_QUEUE_SIZE) {
 2144                                 i = 0;
 2145                         }
 2146                         sc->event_index = (uint8_t)i;
 2147 
 2148                         /*
 2149                          * Set flag to send the event.
 2150                          */
 2151                         sendAEN = TRUE;
 2152                 }
 2153         }
 2154 
 2155         /*
 2156          * Generate a system event if flag is set to let anyone who cares know
 2157          * that an event has occurred.
 2158          */
 2159         if (sendAEN) {
 2160 //SLM-how to send a system event (see kqueue, kevent)
 2161 //              (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
 2162 //                  "SAS", NULL, NULL, DDI_NOSLEEP);
 2163         }
 2164 }
 2165 
 2166 static int
 2167 mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
 2168 {
 2169         int     status = 0;
 2170 
 2171         switch (data->Command) {
 2172                 /*
 2173                  * IO access is not supported.
 2174                  */
 2175                 case REG_IO_READ:
 2176                 case REG_IO_WRITE:
 2177                         mpr_dprint(sc, MPR_USER, "IO access is not supported. "
 2178                             "Use memory access.");
 2179                         status = EINVAL;
 2180                         break;
 2181 
 2182                 case REG_MEM_READ:
 2183                         data->RegData = mpr_regread(sc, data->RegOffset);
 2184                         break;
 2185 
 2186                 case REG_MEM_WRITE:
 2187                         mpr_regwrite(sc, data->RegOffset, data->RegData);
 2188                         break;
 2189 
 2190                 default:
 2191                         status = EINVAL;
 2192                         break;
 2193         }
 2194 
 2195         return (status);
 2196 }
 2197 
 2198 static int
 2199 mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
 2200 {
 2201         uint8_t         bt2dh = FALSE;
 2202         uint8_t         dh2bt = FALSE;
 2203         uint16_t        dev_handle, bus, target;
 2204 
 2205         bus = data->Bus;
 2206         target = data->TargetID;
 2207         dev_handle = data->DevHandle;
 2208 
 2209         /*
 2210          * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
 2211          * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
 2212          * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
 2213          * invalid.
 2214          */
 2215         if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
 2216                 dh2bt = TRUE;
 2217         if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
 2218                 bt2dh = TRUE;
 2219         if (!dh2bt && !bt2dh)
 2220                 return (EINVAL);
 2221 
 2222         /*
 2223          * Only handle bus of 0.  Make sure target is within range.
 2224          */
 2225         if (bt2dh) {
 2226                 if (bus != 0)
 2227                         return (EINVAL);
 2228 
 2229                 if (target >= sc->max_devices) {
 2230                         mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
 2231                            "for Bus/Target to DevHandle mapping.");
 2232                         return (EINVAL);
 2233                 }
 2234                 dev_handle = sc->mapping_table[target].dev_handle;
 2235                 if (dev_handle)
 2236                         data->DevHandle = dev_handle;
 2237         } else {
 2238                 bus = 0;
 2239                 target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
 2240                 data->Bus = bus;
 2241                 data->TargetID = target;
 2242         }
 2243 
 2244         return (0);
 2245 }
 2246 
 2247 static int
 2248 mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
 2249     struct thread *td)
 2250 {
 2251         struct mpr_softc *sc;
 2252         struct mpr_cfg_page_req *page_req;
 2253         struct mpr_ext_cfg_page_req *ext_page_req;
 2254         void *mpr_page;
 2255         int error, msleep_ret;
 2256 
 2257         mpr_page = NULL;
 2258         sc = dev->si_drv1;
 2259         page_req = (void *)arg;
 2260         ext_page_req = (void *)arg;
 2261 
 2262         switch (cmd) {
 2263         case MPRIO_READ_CFG_HEADER:
 2264                 mpr_lock(sc);
 2265                 error = mpr_user_read_cfg_header(sc, page_req);
 2266                 mpr_unlock(sc);
 2267                 break;
 2268         case MPRIO_READ_CFG_PAGE:
 2269                 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) {
 2270                         error = EINVAL;
 2271                         break;
 2272                 }
 2273                 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
 2274                 error = copyin(page_req->buf, mpr_page,
 2275                     sizeof(MPI2_CONFIG_PAGE_HEADER));
 2276                 if (error)
 2277                         break;
 2278                 mpr_lock(sc);
 2279                 error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
 2280                 mpr_unlock(sc);
 2281                 if (error)
 2282                         break;
 2283                 error = copyout(mpr_page, page_req->buf, page_req->len);
 2284                 break;
 2285         case MPRIO_READ_EXT_CFG_HEADER:
 2286                 mpr_lock(sc);
 2287                 error = mpr_user_read_extcfg_header(sc, ext_page_req);
 2288                 mpr_unlock(sc);
 2289                 break;
 2290         case MPRIO_READ_EXT_CFG_PAGE:
 2291                 if (ext_page_req->len <
 2292                     (int)sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER)) {
 2293                         error = EINVAL;
 2294                         break;
 2295                 }
 2296                 mpr_page = malloc(ext_page_req->len, M_MPRUSER,
 2297                     M_WAITOK | M_ZERO);
 2298                 error = copyin(ext_page_req->buf, mpr_page,
 2299                     sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
 2300                 if (error)
 2301                         break;
 2302                 mpr_lock(sc);
 2303                 error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
 2304                 mpr_unlock(sc);
 2305                 if (error)
 2306                         break;
 2307                 error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
 2308                 break;
 2309         case MPRIO_WRITE_CFG_PAGE:
 2310                 if (page_req->len < (int)sizeof(MPI2_CONFIG_PAGE_HEADER)) {
 2311                         error = EINVAL;
 2312                         break;
 2313                 }
 2314                 mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
 2315                 error = copyin(page_req->buf, mpr_page, page_req->len);
 2316                 if (error)
 2317                         break;
 2318                 mpr_lock(sc);
 2319                 error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
 2320                 mpr_unlock(sc);
 2321                 break;
 2322         case MPRIO_MPR_COMMAND:
 2323                 error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
 2324                 break;
 2325         case MPTIOCTL_PASS_THRU:
 2326                 /*
 2327                  * The user has requested to pass through a command to be
 2328                  * executed by the MPT firmware.  Call our routine which does
 2329                  * this.  Only allow one passthru IOCTL at one time.
 2330                  */
 2331                 error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
 2332                 break;
 2333         case MPTIOCTL_GET_ADAPTER_DATA:
 2334                 /*
 2335                  * The user has requested to read adapter data.  Call our
 2336                  * routine which does this.
 2337                  */
 2338                 error = 0;
 2339                 mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
 2340                 break;
 2341         case MPTIOCTL_GET_PCI_INFO:
 2342                 /*
 2343                  * The user has requested to read pci info.  Call
 2344                  * our routine which does this.
 2345                  */
 2346                 mpr_lock(sc);
 2347                 error = 0;
 2348                 mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
 2349                 mpr_unlock(sc);
 2350                 break;
 2351         case MPTIOCTL_RESET_ADAPTER:
 2352                 mpr_lock(sc);
 2353                 sc->port_enable_complete = 0;
 2354                 uint32_t reinit_start = time_uptime;
 2355                 error = mpr_reinit(sc);
 2356                 /* Sleep for 300 second. */
 2357                 msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
 2358                     PRIBIO, "mpr_porten", 300 * hz);
 2359                 mpr_unlock(sc);
 2360                 if (msleep_ret)
 2361                         printf("Port Enable did not complete after Diag "
 2362                             "Reset msleep error %d.\n", msleep_ret);
 2363                 else
 2364                         mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
 2365                             "completed in %d seconds.\n",
 2366                             (uint32_t)(time_uptime - reinit_start));
 2367                 break;
 2368         case MPTIOCTL_DIAG_ACTION:
 2369                 /*
 2370                  * The user has done a diag buffer action.  Call our routine
 2371                  * which does this.  Only allow one diag action at one time.
 2372                  */
 2373                 mpr_lock(sc);
 2374                 error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
 2375                 mpr_unlock(sc);
 2376                 break;
 2377         case MPTIOCTL_EVENT_QUERY:
 2378                 /*
 2379                  * The user has done an event query. Call our routine which does
 2380                  * this.
 2381                  */
 2382                 error = 0;
 2383                 mpr_user_event_query(sc, (mpr_event_query_t *)arg);
 2384                 break;
 2385         case MPTIOCTL_EVENT_ENABLE:
 2386                 /*
 2387                  * The user has done an event enable. Call our routine which
 2388                  * does this.
 2389                  */
 2390                 error = 0;
 2391                 mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
 2392                 break;
 2393         case MPTIOCTL_EVENT_REPORT:
 2394                 /*
 2395                  * The user has done an event report. Call our routine which
 2396                  * does this.
 2397                  */
 2398                 error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
 2399                 break;
 2400         case MPTIOCTL_REG_ACCESS:
 2401                 /*
 2402                  * The user has requested register access.  Call our routine
 2403                  * which does this.
 2404                  */
 2405                 mpr_lock(sc);
 2406                 error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
 2407                 mpr_unlock(sc);
 2408                 break;
 2409         case MPTIOCTL_BTDH_MAPPING:
 2410                 /*
 2411                  * The user has requested to translate a bus/target to a
 2412                  * DevHandle or a DevHandle to a bus/target.  Call our routine
 2413                  * which does this.
 2414                  */
 2415                 error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
 2416                 break;
 2417         default:
 2418                 error = ENOIOCTL;
 2419                 break;
 2420         }
 2421 
 2422         if (mpr_page != NULL)
 2423                 free(mpr_page, M_MPRUSER);
 2424 
 2425         return (error);
 2426 }
 2427 
 2428 #ifdef COMPAT_FREEBSD32
 2429 
 2430 struct mpr_cfg_page_req32 {
 2431         MPI2_CONFIG_PAGE_HEADER header;
 2432         uint32_t page_address;
 2433         uint32_t buf;
 2434         int     len;    
 2435         uint16_t ioc_status;
 2436 };
 2437 
 2438 struct mpr_ext_cfg_page_req32 {
 2439         MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
 2440         uint32_t page_address;
 2441         uint32_t buf;
 2442         int     len;
 2443         uint16_t ioc_status;
 2444 };
 2445 
 2446 struct mpr_raid_action32 {
 2447         uint8_t action;
 2448         uint8_t volume_bus;
 2449         uint8_t volume_id;
 2450         uint8_t phys_disk_num;
 2451         uint32_t action_data_word;
 2452         uint32_t buf;
 2453         int len;
 2454         uint32_t volume_status;
 2455         uint32_t action_data[4];
 2456         uint16_t action_status;
 2457         uint16_t ioc_status;
 2458         uint8_t write;
 2459 };
 2460 
 2461 struct mpr_usr_command32 {
 2462         uint32_t req;
 2463         uint32_t req_len;
 2464         uint32_t rpl;
 2465         uint32_t rpl_len;
 2466         uint32_t buf;
 2467         int len;
 2468         uint32_t flags;
 2469 };
 2470 
 2471 #define MPRIO_READ_CFG_HEADER32 _IOWR('M', 200, struct mpr_cfg_page_req32)
 2472 #define MPRIO_READ_CFG_PAGE32   _IOWR('M', 201, struct mpr_cfg_page_req32)
 2473 #define MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
 2474 #define MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
 2475 #define MPRIO_WRITE_CFG_PAGE32  _IOWR('M', 204, struct mpr_cfg_page_req32)
 2476 #define MPRIO_RAID_ACTION32     _IOWR('M', 205, struct mpr_raid_action32)
 2477 #define MPRIO_MPR_COMMAND32     _IOWR('M', 210, struct mpr_usr_command32)
 2478 
 2479 static int
 2480 mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
 2481     struct thread *td)
 2482 {
 2483         struct mpr_cfg_page_req32 *page32 = _arg;
 2484         struct mpr_ext_cfg_page_req32 *ext32 = _arg;
 2485         struct mpr_raid_action32 *raid32 = _arg;
 2486         struct mpr_usr_command32 *user32 = _arg;
 2487         union {
 2488                 struct mpr_cfg_page_req page;
 2489                 struct mpr_ext_cfg_page_req ext;
 2490                 struct mpr_raid_action raid;
 2491                 struct mpr_usr_command user;
 2492         } arg;
 2493         u_long cmd;
 2494         int error;
 2495 
 2496         switch (cmd32) {
 2497         case MPRIO_READ_CFG_HEADER32:
 2498         case MPRIO_READ_CFG_PAGE32:
 2499         case MPRIO_WRITE_CFG_PAGE32:
 2500                 if (cmd32 == MPRIO_READ_CFG_HEADER32)
 2501                         cmd = MPRIO_READ_CFG_HEADER;
 2502                 else if (cmd32 == MPRIO_READ_CFG_PAGE32)
 2503                         cmd = MPRIO_READ_CFG_PAGE;
 2504                 else
 2505                         cmd = MPRIO_WRITE_CFG_PAGE;
 2506                 CP(*page32, arg.page, header);
 2507                 CP(*page32, arg.page, page_address);
 2508                 PTRIN_CP(*page32, arg.page, buf);
 2509                 CP(*page32, arg.page, len);
 2510                 CP(*page32, arg.page, ioc_status);
 2511                 break;
 2512 
 2513         case MPRIO_READ_EXT_CFG_HEADER32:
 2514         case MPRIO_READ_EXT_CFG_PAGE32:
 2515                 if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
 2516                         cmd = MPRIO_READ_EXT_CFG_HEADER;
 2517                 else
 2518                         cmd = MPRIO_READ_EXT_CFG_PAGE;
 2519                 CP(*ext32, arg.ext, header);
 2520                 CP(*ext32, arg.ext, page_address);
 2521                 PTRIN_CP(*ext32, arg.ext, buf);
 2522                 CP(*ext32, arg.ext, len);
 2523                 CP(*ext32, arg.ext, ioc_status);
 2524                 break;
 2525 
 2526         case MPRIO_RAID_ACTION32:
 2527                 cmd = MPRIO_RAID_ACTION;
 2528                 CP(*raid32, arg.raid, action);
 2529                 CP(*raid32, arg.raid, volume_bus);
 2530                 CP(*raid32, arg.raid, volume_id);
 2531                 CP(*raid32, arg.raid, phys_disk_num);
 2532                 CP(*raid32, arg.raid, action_data_word);
 2533                 PTRIN_CP(*raid32, arg.raid, buf);
 2534                 CP(*raid32, arg.raid, len);
 2535                 CP(*raid32, arg.raid, volume_status);
 2536                 bcopy(raid32->action_data, arg.raid.action_data,
 2537                     sizeof arg.raid.action_data);
 2538                 CP(*raid32, arg.raid, ioc_status);
 2539                 CP(*raid32, arg.raid, write);
 2540                 break;
 2541 
 2542         case MPRIO_MPR_COMMAND32:
 2543                 cmd = MPRIO_MPR_COMMAND;
 2544                 PTRIN_CP(*user32, arg.user, req);
 2545                 CP(*user32, arg.user, req_len);
 2546                 PTRIN_CP(*user32, arg.user, rpl);
 2547                 CP(*user32, arg.user, rpl_len);
 2548                 PTRIN_CP(*user32, arg.user, buf);
 2549                 CP(*user32, arg.user, len);
 2550                 CP(*user32, arg.user, flags);
 2551                 break;
 2552         default:
 2553                 return (ENOIOCTL);
 2554         }
 2555 
 2556         error = mpr_ioctl(dev, cmd, &arg, flag, td);
 2557         if (error == 0 && (cmd32 & IOC_OUT) != 0) {
 2558                 switch (cmd32) {
 2559                 case MPRIO_READ_CFG_HEADER32:
 2560                 case MPRIO_READ_CFG_PAGE32:
 2561                 case MPRIO_WRITE_CFG_PAGE32:
 2562                         CP(arg.page, *page32, header);
 2563                         CP(arg.page, *page32, page_address);
 2564                         PTROUT_CP(arg.page, *page32, buf);
 2565                         CP(arg.page, *page32, len);
 2566                         CP(arg.page, *page32, ioc_status);
 2567                         break;
 2568 
 2569                 case MPRIO_READ_EXT_CFG_HEADER32:
 2570                 case MPRIO_READ_EXT_CFG_PAGE32:
 2571                         CP(arg.ext, *ext32, header);
 2572                         CP(arg.ext, *ext32, page_address);
 2573                         PTROUT_CP(arg.ext, *ext32, buf);
 2574                         CP(arg.ext, *ext32, len);
 2575                         CP(arg.ext, *ext32, ioc_status);
 2576                         break;
 2577 
 2578                 case MPRIO_RAID_ACTION32:
 2579                         CP(arg.raid, *raid32, action);
 2580                         CP(arg.raid, *raid32, volume_bus);
 2581                         CP(arg.raid, *raid32, volume_id);
 2582                         CP(arg.raid, *raid32, phys_disk_num);
 2583                         CP(arg.raid, *raid32, action_data_word);
 2584                         PTROUT_CP(arg.raid, *raid32, buf);
 2585                         CP(arg.raid, *raid32, len);
 2586                         CP(arg.raid, *raid32, volume_status);
 2587                         bcopy(arg.raid.action_data, raid32->action_data,
 2588                             sizeof arg.raid.action_data);
 2589                         CP(arg.raid, *raid32, ioc_status);
 2590                         CP(arg.raid, *raid32, write);
 2591                         break;
 2592 
 2593                 case MPRIO_MPR_COMMAND32:
 2594                         PTROUT_CP(arg.user, *user32, req);
 2595                         CP(arg.user, *user32, req_len);
 2596                         PTROUT_CP(arg.user, *user32, rpl);
 2597                         CP(arg.user, *user32, rpl_len);
 2598                         PTROUT_CP(arg.user, *user32, buf);
 2599                         CP(arg.user, *user32, len);
 2600                         CP(arg.user, *user32, flags);
 2601                         break;
 2602                 }
 2603         }
 2604 
 2605         return (error);
 2606 }
 2607 #endif /* COMPAT_FREEBSD32 */
 2608 
 2609 static int
 2610 mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
 2611     struct thread *td)
 2612 {
 2613 #ifdef COMPAT_FREEBSD32
 2614         if (SV_CURPROC_FLAG(SV_ILP32))
 2615                 return (mpr_ioctl32(dev, com, arg, flag, td));
 2616 #endif
 2617         return (mpr_ioctl(dev, com, arg, flag, td));
 2618 }

Cache object: ce28db311ba96f0d247bf6f5cb2a836b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.