The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/mps/mps.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2009 Yahoo! Inc.
    5  * Copyright (c) 2011-2015 LSI Corp.
    6  * Copyright (c) 2013-2015 Avago Technologies
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
   31  *
   32  * $FreeBSD$
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 /* Communications core for Avago Technologies (LSI) MPT2 */
   39 
   40 /* TODO Move headers to mpsvar */
   41 #include <sys/types.h>
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/kernel.h>
   45 #include <sys/selinfo.h>
   46 #include <sys/lock.h>
   47 #include <sys/mutex.h>
   48 #include <sys/module.h>
   49 #include <sys/bus.h>
   50 #include <sys/conf.h>
   51 #include <sys/bio.h>
   52 #include <sys/malloc.h>
   53 #include <sys/uio.h>
   54 #include <sys/sysctl.h>
   55 #include <sys/smp.h>
   56 #include <sys/queue.h>
   57 #include <sys/kthread.h>
   58 #include <sys/taskqueue.h>
   59 #include <sys/endian.h>
   60 #include <sys/eventhandler.h>
   61 #include <sys/sbuf.h>
   62 #include <sys/priv.h>
   63 
   64 #include <machine/bus.h>
   65 #include <machine/resource.h>
   66 #include <sys/rman.h>
   67 #include <sys/proc.h>
   68 
   69 #include <dev/pci/pcivar.h>
   70 
   71 #include <cam/cam.h>
   72 #include <cam/scsi/scsi_all.h>
   73 
   74 #include <dev/mps/mpi/mpi2_type.h>
   75 #include <dev/mps/mpi/mpi2.h>
   76 #include <dev/mps/mpi/mpi2_ioc.h>
   77 #include <dev/mps/mpi/mpi2_sas.h>
   78 #include <dev/mps/mpi/mpi2_cnfg.h>
   79 #include <dev/mps/mpi/mpi2_init.h>
   80 #include <dev/mps/mpi/mpi2_tool.h>
   81 #include <dev/mps/mps_ioctl.h>
   82 #include <dev/mps/mpsvar.h>
   83 #include <dev/mps/mps_table.h>
   84 
   85 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag);
   86 static int mps_init_queues(struct mps_softc *sc);
   87 static void mps_resize_queues(struct mps_softc *sc);
   88 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag);
   89 static int mps_transition_operational(struct mps_softc *sc);
   90 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching);
   91 static void mps_iocfacts_free(struct mps_softc *sc);
   92 static void mps_startup(void *arg);
   93 static int mps_send_iocinit(struct mps_softc *sc);
   94 static int mps_alloc_queues(struct mps_softc *sc);
   95 static int mps_alloc_hw_queues(struct mps_softc *sc);
   96 static int mps_alloc_replies(struct mps_softc *sc);
   97 static int mps_alloc_requests(struct mps_softc *sc);
   98 static int mps_attach_log(struct mps_softc *sc);
   99 static __inline void mps_complete_command(struct mps_softc *sc,
  100     struct mps_command *cm);
  101 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
  102     MPI2_EVENT_NOTIFICATION_REPLY *reply);
  103 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
  104 static void mps_periodic(void *);
  105 static int mps_reregister_events(struct mps_softc *sc);
  106 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
  107 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
  108 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag);
  109 static int mps_debug_sysctl(SYSCTL_HANDLER_ARGS);
  110 static int mps_dump_reqs(SYSCTL_HANDLER_ARGS);
  111 static void mps_parse_debug(struct mps_softc *sc, char *list);
  112 
  113 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  114     "MPS Driver Parameters");
  115 
  116 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
  117 MALLOC_DECLARE(M_MPSUSER);
  118 
  119 /*
  120  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
  121  * any state and back to its initialization state machine.
  122  */
  123 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
  124 
  125 /* Added this union to smoothly convert le64toh cm->cm_desc.Words.
  126  * Compiler only support unint64_t to be passed as argument.
  127  * Otherwise it will throw below error
  128  * "aggregate value used where an integer was expected"
  129  */
  130 
  131 typedef union {
  132         u64 word;
  133         struct {
  134                 u32 low;
  135                 u32 high;
  136         } u;
  137 } request_descriptor_t;
  138 
  139 /* Rate limit chain-fail messages to 1 per minute */
  140 static struct timeval mps_chainfail_interval = { 60, 0 };
  141 
  142 /* 
  143  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
  144  * If this function is called from process context, it can sleep
  145  * and there is no harm to sleep, in case if this fuction is called
  146  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
  147  * based on sleep flags driver will call either msleep, pause or DELAY.
  148  * msleep and pause are of same variant, but pause is used when mps_mtx
  149  * is not hold by driver.
  150  *
  151  */
  152 static int
  153 mps_diag_reset(struct mps_softc *sc,int sleep_flag)
  154 {
  155         uint32_t reg;
  156         int i, error, tries = 0;
  157         uint8_t first_wait_done = FALSE;
  158 
  159         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
  160 
  161         /* Clear any pending interrupts */
  162         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  163 
  164         /*
  165          * Force NO_SLEEP for threads prohibited to sleep
  166          * e.a Thread from interrupt handler are prohibited to sleep.
  167          */
  168         if (curthread->td_no_sleeping != 0)
  169                 sleep_flag = NO_SLEEP;
  170 
  171         mps_dprint(sc, MPS_INIT, "sequence start, sleep_flag= %d\n", sleep_flag);
  172 
  173         /* Push the magic sequence */
  174         error = ETIMEDOUT;
  175         while (tries++ < 20) {
  176                 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
  177                         mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
  178                             mpt2_reset_magic[i]);
  179                 /* wait 100 msec */
  180                 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
  181                         msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
  182                             "mpsdiag", hz/10);
  183                 else if (sleep_flag == CAN_SLEEP)
  184                         pause("mpsdiag", hz/10);
  185                 else
  186                         DELAY(100 * 1000);
  187 
  188                 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
  189                 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
  190                         error = 0;
  191                         break;
  192                 }
  193         }
  194         if (error) {
  195                 mps_dprint(sc, MPS_INIT, "sequence failed, error=%d, exit\n",
  196                     error);
  197                 return (error);
  198         }
  199 
  200         /* Send the actual reset.  XXX need to refresh the reg? */
  201         reg |= MPI2_DIAG_RESET_ADAPTER;
  202         mps_dprint(sc, MPS_INIT, "sequence success, sending reset, reg= 0x%x\n",
  203                 reg);
  204         mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
  205 
  206         /* Wait up to 300 seconds in 50ms intervals */
  207         error = ETIMEDOUT;
  208         for (i = 0; i < 6000; i++) {
  209                 /*
  210                  * Wait 50 msec. If this is the first time through, wait 256
  211                  * msec to satisfy Diag Reset timing requirements.
  212                  */
  213                 if (first_wait_done) {
  214                         if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
  215                                 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
  216                                     "mpsdiag", hz/20);
  217                         else if (sleep_flag == CAN_SLEEP)
  218                                 pause("mpsdiag", hz/20);
  219                         else
  220                                 DELAY(50 * 1000);
  221                 } else {
  222                         DELAY(256 * 1000);
  223                         first_wait_done = TRUE;
  224                 }
  225                 /*
  226                  * Check for the RESET_ADAPTER bit to be cleared first, then
  227                  * wait for the RESET state to be cleared, which takes a little
  228                  * longer.
  229                  */
  230                 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
  231                 if (reg & MPI2_DIAG_RESET_ADAPTER) {
  232                         continue;
  233                 }
  234                 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
  235                 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
  236                         error = 0;
  237                         break;
  238                 }
  239         }
  240         if (error) {
  241                 mps_dprint(sc, MPS_INIT, "reset failed, error= %d, exit\n",
  242                     error);
  243                 return (error);
  244         }
  245 
  246         mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
  247         mps_dprint(sc, MPS_INIT, "diag reset success, exit\n");
  248 
  249         return (0);
  250 }
  251 
  252 static int
  253 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag)
  254 {
  255         int error;
  256 
  257         MPS_FUNCTRACE(sc);
  258 
  259         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
  260 
  261         error = 0;
  262         mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
  263             MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
  264             MPI2_DOORBELL_FUNCTION_SHIFT);
  265 
  266         if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) {
  267                 mps_dprint(sc, MPS_INIT|MPS_FAULT,
  268                     "Doorbell handshake failed\n");
  269                 error = ETIMEDOUT;
  270         }
  271 
  272         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
  273         return (error);
  274 }
  275 
  276 static int
  277 mps_transition_ready(struct mps_softc *sc)
  278 {
  279         uint32_t reg, state;
  280         int error, tries = 0;
  281         int sleep_flags;
  282 
  283         MPS_FUNCTRACE(sc);
  284         /* If we are in attach call, do not sleep */
  285         sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
  286                                         ? CAN_SLEEP:NO_SLEEP;
  287         error = 0;
  288 
  289         mps_dprint(sc, MPS_INIT, "%s entered, sleep_flags= %d\n",
  290            __func__, sleep_flags);
  291 
  292         while (tries++ < 1200) {
  293                 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
  294                 mps_dprint(sc, MPS_INIT, "  Doorbell= 0x%x\n", reg);
  295 
  296                 /*
  297                  * Ensure the IOC is ready to talk.  If it's not, try
  298                  * resetting it.
  299                  */
  300                 if (reg & MPI2_DOORBELL_USED) {
  301                         mps_dprint(sc, MPS_INIT, "  Not ready, sending diag "
  302                             "reset\n");
  303                         mps_diag_reset(sc, sleep_flags);
  304                         DELAY(50000);
  305                         continue;
  306                 }
  307 
  308                 /* Is the adapter owned by another peer? */
  309                 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
  310                     (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
  311                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC is under the "
  312                             "control of another peer host, aborting "
  313                             "initialization.\n");
  314                         error = ENXIO;
  315                         break;
  316                 }
  317                 
  318                 state = reg & MPI2_IOC_STATE_MASK;
  319                 if (state == MPI2_IOC_STATE_READY) {
  320                         /* Ready to go! */
  321                         error = 0;
  322                         break;
  323                 } else if (state == MPI2_IOC_STATE_FAULT) {
  324                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC in fault "
  325                             "state 0x%x, resetting\n",
  326                             state & MPI2_DOORBELL_FAULT_CODE_MASK);
  327                         mps_diag_reset(sc, sleep_flags);
  328                 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
  329                         /* Need to take ownership */
  330                         mps_message_unit_reset(sc, sleep_flags);
  331                 } else if (state == MPI2_IOC_STATE_RESET) {
  332                         /* Wait a bit, IOC might be in transition */
  333                         mps_dprint(sc, MPS_INIT|MPS_FAULT,
  334                             "IOC in unexpected reset state\n");
  335                 } else {
  336                         mps_dprint(sc, MPS_INIT|MPS_FAULT,
  337                             "IOC in unknown state 0x%x\n", state);
  338                         error = EINVAL;
  339                         break;
  340                 }
  341 
  342                 /* Wait 50ms for things to settle down. */
  343                 DELAY(50000);
  344         }
  345 
  346         if (error)
  347                 mps_dprint(sc, MPS_INIT|MPS_FAULT,
  348                     "Cannot transition IOC to ready\n");
  349         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
  350 
  351         return (error);
  352 }
  353 
  354 static int
  355 mps_transition_operational(struct mps_softc *sc)
  356 {
  357         uint32_t reg, state;
  358         int error;
  359 
  360         MPS_FUNCTRACE(sc);
  361 
  362         error = 0;
  363         reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
  364         mps_dprint(sc, MPS_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
  365 
  366         state = reg & MPI2_IOC_STATE_MASK;
  367         if (state != MPI2_IOC_STATE_READY) {
  368                 mps_dprint(sc, MPS_INIT, "IOC not ready\n");
  369                 if ((error = mps_transition_ready(sc)) != 0) {
  370                         mps_dprint(sc, MPS_INIT|MPS_FAULT, 
  371                             "failed to transition ready, exit\n");
  372                         return (error);
  373                 }
  374         }
  375 
  376         error = mps_send_iocinit(sc);
  377         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
  378 
  379         return (error);
  380 }
  381 
  382 static void
  383 mps_resize_queues(struct mps_softc *sc)
  384 {
  385         u_int reqcr, prireqcr, maxio, sges_per_frame;
  386 
  387         /*
  388          * Size the queues. Since the reply queues always need one free
  389          * entry, we'll deduct one reply message here.  The LSI documents
  390          * suggest instead to add a count to the request queue, but I think
  391          * that it's better to deduct from reply queue.
  392          */
  393         prireqcr = MAX(1, sc->max_prireqframes);
  394         prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
  395 
  396         reqcr = MAX(2, sc->max_reqframes);
  397         reqcr = MIN(reqcr, sc->facts->RequestCredit);
  398 
  399         sc->num_reqs = prireqcr + reqcr;
  400         sc->num_prireqs = prireqcr;
  401         sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
  402             sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
  403 
  404         /* Store the request frame size in bytes rather than as 32bit words */
  405         sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
  406 
  407         /*
  408          * Max IO Size is Page Size * the following:
  409          * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
  410          * + 1 for no chain needed in last frame
  411          *
  412          * If user suggests a Max IO size to use, use the smaller of the
  413          * user's value and the calculated value as long as the user's
  414          * value is larger than 0. The user's value is in pages.
  415          */
  416         sges_per_frame = sc->reqframesz / sizeof(MPI2_SGE_SIMPLE64) - 1;
  417         maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
  418 
  419         /*
  420          * If I/O size limitation requested, then use it and pass up to CAM.
  421          * If not, use maxphys as an optimization hint, but report HW limit.
  422          */
  423         if (sc->max_io_pages > 0) {
  424                 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
  425                 sc->maxio = maxio;
  426         } else {
  427                 sc->maxio = maxio;
  428                 maxio = min(maxio, maxphys);
  429         }
  430 
  431         sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
  432             sges_per_frame * reqcr;
  433         if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
  434                 sc->num_chains = sc->max_chains;
  435 
  436         /*
  437          * Figure out the number of MSIx-based queues.  If the firmware or
  438          * user has done something crazy and not allowed enough credit for
  439          * the queues to be useful then don't enable multi-queue.
  440          */
  441         if (sc->facts->MaxMSIxVectors < 2)
  442                 sc->msi_msgs = 1;
  443 
  444         if (sc->msi_msgs > 1) {
  445                 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
  446                 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
  447                 if (sc->num_reqs / sc->msi_msgs < 2)
  448                         sc->msi_msgs = 1;
  449         }
  450 
  451         mps_dprint(sc, MPS_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
  452             sc->msi_msgs, sc->num_reqs, sc->num_replies);
  453 }
  454 
  455 /*
  456  * This is called during attach and when re-initializing due to a Diag Reset.
  457  * IOC Facts is used to allocate many of the structures needed by the driver.
  458  * If called from attach, de-allocation is not required because the driver has
  459  * not allocated any structures yet, but if called from a Diag Reset, previously
  460  * allocated structures based on IOC Facts will need to be freed and re-
  461  * allocated bases on the latest IOC Facts.
  462  */
  463 static int
  464 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching)
  465 {
  466         int error;
  467         Mpi2IOCFactsReply_t saved_facts;
  468         uint8_t saved_mode, reallocating;
  469 
  470         mps_dprint(sc, MPS_INIT|MPS_TRACE, "%s entered\n", __func__);
  471 
  472         /* Save old IOC Facts and then only reallocate if Facts have changed */
  473         if (!attaching) {
  474                 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
  475         }
  476 
  477         /*
  478          * Get IOC Facts.  In all cases throughout this function, panic if doing
  479          * a re-initialization and only return the error if attaching so the OS
  480          * can handle it.
  481          */
  482         if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) {
  483                 if (attaching) {
  484                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to get "
  485                             "IOC Facts with error %d, exit\n", error);
  486                         return (error);
  487                 } else {
  488                         panic("%s failed to get IOC Facts with error %d\n",
  489                             __func__, error);
  490                 }
  491         }
  492 
  493         MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts);
  494 
  495         snprintf(sc->fw_version, sizeof(sc->fw_version), 
  496             "%02d.%02d.%02d.%02d", 
  497             sc->facts->FWVersion.Struct.Major,
  498             sc->facts->FWVersion.Struct.Minor,
  499             sc->facts->FWVersion.Struct.Unit,
  500             sc->facts->FWVersion.Struct.Dev);
  501 
  502         snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
  503             (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
  504             MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT, 
  505             (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
  506             MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
  507 
  508         mps_dprint(sc, MPS_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
  509             MPS_DRIVER_VERSION);
  510         mps_dprint(sc, MPS_INFO, "IOCCapabilities: %b\n",
  511              sc->facts->IOCCapabilities,
  512             "\2" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
  513             "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
  514             "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
  515 
  516         /*
  517          * If the chip doesn't support event replay then a hard reset will be
  518          * required to trigger a full discovery.  Do the reset here then
  519          * retransition to Ready.  A hard reset might have already been done,
  520          * but it doesn't hurt to do it again.  Only do this if attaching, not
  521          * for a Diag Reset.
  522          */
  523         if (attaching && ((sc->facts->IOCCapabilities &
  524             MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
  525                 mps_dprint(sc, MPS_INIT, "No event replay, reseting\n");
  526                 mps_diag_reset(sc, NO_SLEEP);
  527                 if ((error = mps_transition_ready(sc)) != 0) {
  528                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
  529                             "transition to ready with error %d, exit\n",
  530                             error);
  531                         return (error);
  532                 }
  533         }
  534 
  535         /*
  536          * Set flag if IR Firmware is loaded.  If the RAID Capability has
  537          * changed from the previous IOC Facts, log a warning, but only if
  538          * checking this after a Diag Reset and not during attach.
  539          */
  540         saved_mode = sc->ir_firmware;
  541         if (sc->facts->IOCCapabilities &
  542             MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
  543                 sc->ir_firmware = 1;
  544         if (!attaching) {
  545                 if (sc->ir_firmware != saved_mode) {
  546                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "new IR/IT mode "
  547                             "in IOC Facts does not match previous mode\n");
  548                 }
  549         }
  550 
  551         /* Only deallocate and reallocate if relevant IOC Facts have changed */
  552         reallocating = FALSE;
  553         sc->mps_flags &= ~MPS_FLAGS_REALLOCATED;
  554 
  555         if ((!attaching) &&
  556             ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
  557             (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
  558             (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
  559             (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
  560             (saved_facts.ProductID != sc->facts->ProductID) ||
  561             (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
  562             (saved_facts.IOCRequestFrameSize !=
  563             sc->facts->IOCRequestFrameSize) ||
  564             (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
  565             (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
  566             (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
  567             (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
  568             (saved_facts.MaxReplyDescriptorPostQueueDepth !=
  569             sc->facts->MaxReplyDescriptorPostQueueDepth) ||
  570             (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
  571             (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
  572             (saved_facts.MaxPersistentEntries !=
  573             sc->facts->MaxPersistentEntries))) {
  574                 reallocating = TRUE;
  575 
  576                 /* Record that we reallocated everything */
  577                 sc->mps_flags |= MPS_FLAGS_REALLOCATED;
  578         }
  579 
  580         /*
  581          * Some things should be done if attaching or re-allocating after a Diag
  582          * Reset, but are not needed after a Diag Reset if the FW has not
  583          * changed.
  584          */
  585         if (attaching || reallocating) {
  586                 /*
  587                  * Check if controller supports FW diag buffers and set flag to
  588                  * enable each type.
  589                  */
  590                 if (sc->facts->IOCCapabilities &
  591                     MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
  592                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
  593                             enabled = TRUE;
  594                 if (sc->facts->IOCCapabilities &
  595                     MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
  596                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
  597                             enabled = TRUE;
  598                 if (sc->facts->IOCCapabilities &
  599                     MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
  600                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
  601                             enabled = TRUE;
  602 
  603                 /*
  604                  * Set flag if EEDP is supported and if TLR is supported.
  605                  */
  606                 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
  607                         sc->eedp_enabled = TRUE;
  608                 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
  609                         sc->control_TLR = TRUE;
  610 
  611                 mps_resize_queues(sc);
  612 
  613                 /*
  614                  * Initialize all Tail Queues
  615                  */
  616                 TAILQ_INIT(&sc->req_list);
  617                 TAILQ_INIT(&sc->high_priority_req_list);
  618                 TAILQ_INIT(&sc->chain_list);
  619                 TAILQ_INIT(&sc->tm_list);
  620         }
  621 
  622         /*
  623          * If doing a Diag Reset and the FW is significantly different
  624          * (reallocating will be set above in IOC Facts comparison), then all
  625          * buffers based on the IOC Facts will need to be freed before they are
  626          * reallocated.
  627          */
  628         if (reallocating) {
  629                 mps_iocfacts_free(sc);
  630                 mpssas_realloc_targets(sc, saved_facts.MaxTargets +
  631                     saved_facts.MaxVolumes);
  632         }
  633 
  634         /*
  635          * Any deallocation has been completed.  Now start reallocating
  636          * if needed.  Will only need to reallocate if attaching or if the new
  637          * IOC Facts are different from the previous IOC Facts after a Diag
  638          * Reset. Targets have already been allocated above if needed.
  639          */
  640         error = 0;
  641         while (attaching || reallocating) {
  642                 if ((error = mps_alloc_hw_queues(sc)) != 0)
  643                         break;
  644                 if ((error = mps_alloc_replies(sc)) != 0)
  645                         break;
  646                 if ((error = mps_alloc_requests(sc)) != 0)
  647                         break;
  648                 if ((error = mps_alloc_queues(sc)) != 0)
  649                         break;
  650 
  651                 break;
  652         }
  653         if (error) {
  654                 mps_dprint(sc, MPS_INIT|MPS_FAULT,
  655                     "Failed to alloc queues with error %d\n", error);
  656                 mps_free(sc);
  657                 return (error);
  658         }
  659 
  660         /* Always initialize the queues */
  661         bzero(sc->free_queue, sc->fqdepth * 4);
  662         mps_init_queues(sc);
  663 
  664         /*
  665          * Always get the chip out of the reset state, but only panic if not
  666          * attaching.  If attaching and there is an error, that is handled by
  667          * the OS.
  668          */
  669         error = mps_transition_operational(sc);
  670         if (error != 0) {
  671                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
  672                     "transition to operational with error %d\n", error);
  673                 mps_free(sc);
  674                 return (error);
  675         }
  676 
  677         /*
  678          * Finish the queue initialization.
  679          * These are set here instead of in mps_init_queues() because the
  680          * IOC resets these values during the state transition in
  681          * mps_transition_operational().  The free index is set to 1
  682          * because the corresponding index in the IOC is set to 0, and the
  683          * IOC treats the queues as full if both are set to the same value.
  684          * Hence the reason that the queue can't hold all of the possible
  685          * replies.
  686          */
  687         sc->replypostindex = 0;
  688         mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
  689         mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
  690 
  691         /*
  692          * Attach the subsystems so they can prepare their event masks.
  693          * XXX Should be dynamic so that IM/IR and user modules can attach
  694          */
  695         error = 0;
  696         while (attaching) {
  697                 mps_dprint(sc, MPS_INIT, "Attaching subsystems\n");
  698                 if ((error = mps_attach_log(sc)) != 0)
  699                         break;
  700                 if ((error = mps_attach_sas(sc)) != 0)
  701                         break;
  702                 if ((error = mps_attach_user(sc)) != 0)
  703                         break;
  704                 break;
  705         }
  706         if (error) {
  707                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to attach all "
  708                     "subsystems: error %d\n", error);
  709                 mps_free(sc);
  710                 return (error);
  711         }
  712 
  713         /*
  714          * XXX If the number of MSI-X vectors changes during re-init, this
  715          * won't see it and adjust.
  716          */
  717         if (attaching && (error = mps_pci_setup_interrupts(sc)) != 0) {
  718                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to setup "
  719                     "interrupts\n");
  720                 mps_free(sc);
  721                 return (error);
  722         }
  723 
  724         /*
  725          * Set flag if this is a WD controller.  This shouldn't ever change, but
  726          * reset it after a Diag Reset, just in case.
  727          */
  728         sc->WD_available = FALSE;
  729         if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200)
  730                 sc->WD_available = TRUE;
  731 
  732         return (error);
  733 }
  734 
  735 /*
  736  * This is called if memory is being free (during detach for example) and when
  737  * buffers need to be reallocated due to a Diag Reset.
  738  */
  739 static void
  740 mps_iocfacts_free(struct mps_softc *sc)
  741 {
  742         struct mps_command *cm;
  743         int i;
  744 
  745         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
  746 
  747         if (sc->free_busaddr != 0)
  748                 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
  749         if (sc->free_queue != NULL)
  750                 bus_dmamem_free(sc->queues_dmat, sc->free_queue,
  751                     sc->queues_map);
  752         if (sc->queues_dmat != NULL)
  753                 bus_dma_tag_destroy(sc->queues_dmat);
  754 
  755         if (sc->chain_frames != NULL) {
  756                 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
  757                 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
  758                     sc->chain_map);
  759         }
  760         if (sc->chain_dmat != NULL)
  761                 bus_dma_tag_destroy(sc->chain_dmat);
  762 
  763         if (sc->sense_busaddr != 0)
  764                 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
  765         if (sc->sense_frames != NULL)
  766                 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
  767                     sc->sense_map);
  768         if (sc->sense_dmat != NULL)
  769                 bus_dma_tag_destroy(sc->sense_dmat);
  770 
  771         if (sc->reply_busaddr != 0)
  772                 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
  773         if (sc->reply_frames != NULL)
  774                 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
  775                     sc->reply_map);
  776         if (sc->reply_dmat != NULL)
  777                 bus_dma_tag_destroy(sc->reply_dmat);
  778 
  779         if (sc->req_busaddr != 0)
  780                 bus_dmamap_unload(sc->req_dmat, sc->req_map);
  781         if (sc->req_frames != NULL)
  782                 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
  783         if (sc->req_dmat != NULL)
  784                 bus_dma_tag_destroy(sc->req_dmat);
  785 
  786         if (sc->chains != NULL)
  787                 free(sc->chains, M_MPT2);
  788         if (sc->commands != NULL) {
  789                 for (i = 1; i < sc->num_reqs; i++) {
  790                         cm = &sc->commands[i];
  791                         bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
  792                 }
  793                 free(sc->commands, M_MPT2);
  794         }
  795         if (sc->buffer_dmat != NULL)
  796                 bus_dma_tag_destroy(sc->buffer_dmat);
  797 
  798         mps_pci_free_interrupts(sc);
  799         free(sc->queues, M_MPT2);
  800         sc->queues = NULL;
  801 }
  802 
  803 /* 
  804  * The terms diag reset and hard reset are used interchangeably in the MPI
  805  * docs to mean resetting the controller chip.  In this code diag reset
  806  * cleans everything up, and the hard reset function just sends the reset
  807  * sequence to the chip.  This should probably be refactored so that every
  808  * subsystem gets a reset notification of some sort, and can clean up
  809  * appropriately.
  810  */
  811 int
  812 mps_reinit(struct mps_softc *sc)
  813 {
  814         int error;
  815         struct mpssas_softc *sassc;
  816 
  817         sassc = sc->sassc;
  818 
  819         MPS_FUNCTRACE(sc);
  820 
  821         mtx_assert(&sc->mps_mtx, MA_OWNED);
  822 
  823         mps_dprint(sc, MPS_INIT|MPS_INFO, "Reinitializing controller\n");
  824         if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
  825                 mps_dprint(sc, MPS_INIT, "Reset already in progress\n");
  826                 return 0;
  827         }
  828 
  829         /* make sure the completion callbacks can recognize they're getting
  830          * a NULL cm_reply due to a reset.
  831          */
  832         sc->mps_flags |= MPS_FLAGS_DIAGRESET;
  833 
  834         /*
  835          * Mask interrupts here.
  836          */
  837         mps_dprint(sc, MPS_INIT, "masking interrupts and resetting\n");
  838         mps_mask_intr(sc);
  839 
  840         error = mps_diag_reset(sc, CAN_SLEEP);
  841         if (error != 0) {
  842                 /* XXXSL No need to panic here */
  843                 panic("%s hard reset failed with error %d\n",
  844                     __func__, error);
  845         }
  846 
  847         /* Restore the PCI state, including the MSI-X registers */
  848         mps_pci_restore(sc);
  849 
  850         /* Give the I/O subsystem special priority to get itself prepared */
  851         mpssas_handle_reinit(sc);
  852 
  853         /*
  854          * Get IOC Facts and allocate all structures based on this information.
  855          * The attach function will also call mps_iocfacts_allocate at startup.
  856          * If relevant values have changed in IOC Facts, this function will free
  857          * all of the memory based on IOC Facts and reallocate that memory.
  858          */
  859         if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) {
  860                 panic("%s IOC Facts based allocation failed with error %d\n",
  861                     __func__, error);
  862         }
  863 
  864         /*
  865          * Mapping structures will be re-allocated after getting IOC Page8, so
  866          * free these structures here.
  867          */
  868         mps_mapping_exit(sc);
  869 
  870         /*
  871          * The static page function currently read is IOC Page8.  Others can be
  872          * added in future.  It's possible that the values in IOC Page8 have
  873          * changed after a Diag Reset due to user modification, so always read
  874          * these.  Interrupts are masked, so unmask them before getting config
  875          * pages.
  876          */
  877         mps_unmask_intr(sc);
  878         sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
  879         mps_base_static_config_pages(sc);
  880 
  881         /*
  882          * Some mapping info is based in IOC Page8 data, so re-initialize the
  883          * mapping tables.
  884          */
  885         mps_mapping_initialize(sc);
  886 
  887         /*
  888          * Restart will reload the event masks clobbered by the reset, and
  889          * then enable the port.
  890          */
  891         mps_reregister_events(sc);
  892 
  893         /* the end of discovery will release the simq, so we're done. */
  894         mps_dprint(sc, MPS_INIT|MPS_XINFO, "Finished sc %p post %u free %u\n", 
  895             sc, sc->replypostindex, sc->replyfreeindex);
  896 
  897         mpssas_release_simq_reinit(sassc);
  898         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
  899 
  900         return 0;
  901 }
  902 
  903 /* Wait for the chip to ACK a word that we've put into its FIFO 
  904  * Wait for <timeout> seconds. In single loop wait for busy loop
  905  * for 500 microseconds.
  906  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
  907  * */
  908 static int
  909 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag)
  910 {
  911 
  912         u32 cntdn, count;
  913         u32 int_status;
  914         u32 doorbell;
  915 
  916         count = 0;
  917         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
  918         do {
  919                 int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
  920                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
  921                         mps_dprint(sc, MPS_TRACE, 
  922                         "%s: successful count(%d), timeout(%d)\n",
  923                         __func__, count, timeout);
  924                 return 0;
  925                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
  926                         doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET);
  927                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
  928                                 MPI2_IOC_STATE_FAULT) {
  929                                 mps_dprint(sc, MPS_FAULT, 
  930                                         "fault_state(0x%04x)!\n", doorbell);
  931                                 return (EFAULT);
  932                         }
  933                 } else if (int_status == 0xFFFFFFFF)
  934                         goto out;
  935 
  936                 /* If it can sleep, sleep for 1 milisecond, else busy loop for 
  937                 * 0.5 milisecond */
  938                 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
  939                         msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 
  940                         "mpsdba", hz/1000);
  941                 else if (sleep_flag == CAN_SLEEP)
  942                         pause("mpsdba", hz/1000);
  943                 else
  944                         DELAY(500);
  945                 count++;
  946         } while (--cntdn);
  947 
  948         out:
  949         mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), "
  950                 "int_status(%x)!\n", __func__, count, int_status);
  951         return (ETIMEDOUT);
  952 
  953 }
  954 
  955 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
  956 static int
  957 mps_wait_db_int(struct mps_softc *sc)
  958 {
  959         int retry;
  960 
  961         for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
  962                 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
  963                     MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
  964                         return (0);
  965                 DELAY(2000);
  966         }
  967         return (ETIMEDOUT);
  968 }
  969 
  970 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
  971 static int
  972 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
  973     int req_sz, int reply_sz, int timeout)
  974 {
  975         uint32_t *data32;
  976         uint16_t *data16;
  977         int i, count, ioc_sz, residual;
  978         int sleep_flags = CAN_SLEEP;
  979 
  980         if (curthread->td_no_sleeping != 0)
  981                 sleep_flags = NO_SLEEP;
  982 
  983         /* Step 1 */
  984         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
  985 
  986         /* Step 2 */
  987         if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
  988                 return (EBUSY);
  989 
  990         /* Step 3
  991          * Announce that a message is coming through the doorbell.  Messages
  992          * are pushed at 32bit words, so round up if needed.
  993          */
  994         count = (req_sz + 3) / 4;
  995         mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
  996             (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
  997             (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
  998 
  999         /* Step 4 */
 1000         if (mps_wait_db_int(sc) ||
 1001             (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
 1002                 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
 1003                 return (ENXIO);
 1004         }
 1005         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1006         if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
 1007                 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
 1008                 return (ENXIO);
 1009         }
 1010 
 1011         /* Step 5 */
 1012         /* Clock out the message data synchronously in 32-bit dwords*/
 1013         data32 = (uint32_t *)req;
 1014         for (i = 0; i < count; i++) {
 1015                 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
 1016                 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
 1017                         mps_dprint(sc, MPS_FAULT,
 1018                             "Timeout while writing doorbell\n");
 1019                         return (ENXIO);
 1020                 }
 1021         }
 1022 
 1023         /* Step 6 */
 1024         /* Clock in the reply in 16-bit words.  The total length of the
 1025          * message is always in the 4th byte, so clock out the first 2 words
 1026          * manually, then loop the rest.
 1027          */
 1028         data16 = (uint16_t *)reply;
 1029         if (mps_wait_db_int(sc) != 0) {
 1030                 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
 1031                 return (ENXIO);
 1032         }
 1033         data16[0] =
 1034             mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
 1035         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1036         if (mps_wait_db_int(sc) != 0) {
 1037                 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
 1038                 return (ENXIO);
 1039         }
 1040         data16[1] =
 1041             mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
 1042         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1043 
 1044         /* Number of 32bit words in the message */
 1045         ioc_sz = reply->MsgLength;
 1046 
 1047         /*
 1048          * Figure out how many 16bit words to clock in without overrunning.
 1049          * The precision loss with dividing reply_sz can safely be
 1050          * ignored because the messages can only be multiples of 32bits.
 1051          */
 1052         residual = 0;
 1053         count = MIN((reply_sz / 4), ioc_sz) * 2;
 1054         if (count < ioc_sz * 2) {
 1055                 residual = ioc_sz * 2 - count;
 1056                 mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d "
 1057                     "residual message words\n", residual);
 1058         }
 1059 
 1060         for (i = 2; i < count; i++) {
 1061                 if (mps_wait_db_int(sc) != 0) {
 1062                         mps_dprint(sc, MPS_FAULT,
 1063                             "Timeout reading doorbell %d\n", i);
 1064                         return (ENXIO);
 1065                 }
 1066                 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
 1067                     MPI2_DOORBELL_DATA_MASK;
 1068                 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1069         }
 1070 
 1071         /*
 1072          * Pull out residual words that won't fit into the provided buffer.
 1073          * This keeps the chip from hanging due to a driver programming
 1074          * error.
 1075          */
 1076         while (residual--) {
 1077                 if (mps_wait_db_int(sc) != 0) {
 1078                         mps_dprint(sc, MPS_FAULT,
 1079                             "Timeout reading doorbell\n");
 1080                         return (ENXIO);
 1081                 }
 1082                 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
 1083                 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1084         }
 1085 
 1086         /* Step 7 */
 1087         if (mps_wait_db_int(sc) != 0) {
 1088                 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
 1089                 return (ENXIO);
 1090         }
 1091         if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
 1092                 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
 1093         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
 1094 
 1095         return (0);
 1096 }
 1097 
 1098 static void
 1099 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
 1100 {
 1101         request_descriptor_t rd;
 1102         MPS_FUNCTRACE(sc);
 1103         mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n",
 1104             cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
 1105 
 1106         if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN))
 1107                 mtx_assert(&sc->mps_mtx, MA_OWNED);
 1108 
 1109         if (++sc->io_cmds_active > sc->io_cmds_highwater)
 1110                 sc->io_cmds_highwater++;
 1111         rd.u.low = cm->cm_desc.Words.Low;
 1112         rd.u.high = cm->cm_desc.Words.High;
 1113         rd.word = htole64(rd.word);
 1114 
 1115         KASSERT(cm->cm_state == MPS_CM_STATE_BUSY,
 1116             ("command not busy, state = %u\n", cm->cm_state));
 1117         cm->cm_state = MPS_CM_STATE_INQUEUE;
 1118 
 1119         /* TODO-We may need to make below regwrite atomic */
 1120         mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
 1121             rd.u.low);
 1122         mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
 1123             rd.u.high);
 1124 }
 1125 
 1126 /*
 1127  * Just the FACTS, ma'am.
 1128  */
 1129 static int
 1130 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
 1131 {
 1132         MPI2_DEFAULT_REPLY *reply;
 1133         MPI2_IOC_FACTS_REQUEST request;
 1134         int error, req_sz, reply_sz;
 1135 
 1136         MPS_FUNCTRACE(sc);
 1137         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
 1138 
 1139         req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
 1140         reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
 1141         reply = (MPI2_DEFAULT_REPLY *)facts;
 1142 
 1143         bzero(&request, req_sz);
 1144         request.Function = MPI2_FUNCTION_IOC_FACTS;
 1145         error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
 1146         mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
 1147 
 1148         return (error);
 1149 }
 1150 
 1151 static int
 1152 mps_send_iocinit(struct mps_softc *sc)
 1153 {
 1154         MPI2_IOC_INIT_REQUEST   init;
 1155         MPI2_DEFAULT_REPLY      reply;
 1156         int req_sz, reply_sz, error;
 1157         struct timeval now;
 1158         uint64_t time_in_msec;
 1159 
 1160         MPS_FUNCTRACE(sc);
 1161         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
 1162 
 1163         /* Do a quick sanity check on proper initialization */
 1164         if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
 1165             || (sc->replyframesz == 0)) {
 1166                 mps_dprint(sc, MPS_INIT|MPS_ERROR,
 1167                     "Driver not fully initialized for IOCInit\n");
 1168                 return (EINVAL);
 1169         }
 1170 
 1171         req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
 1172         reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
 1173         bzero(&init, req_sz);
 1174         bzero(&reply, reply_sz);
 1175 
 1176         /*
 1177          * Fill in the init block.  Note that most addresses are
 1178          * deliberately in the lower 32bits of memory.  This is a micro-
 1179          * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
 1180          */
 1181         init.Function = MPI2_FUNCTION_IOC_INIT;
 1182         init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
 1183         init.MsgVersion = htole16(MPI2_VERSION);
 1184         init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
 1185         init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
 1186         init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
 1187         init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
 1188         init.SenseBufferAddressHigh = 0;
 1189         init.SystemReplyAddressHigh = 0;
 1190         init.SystemRequestFrameBaseAddress.High = 0;
 1191         init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr);
 1192         init.ReplyDescriptorPostQueueAddress.High = 0;
 1193         init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr);
 1194         init.ReplyFreeQueueAddress.High = 0;
 1195         init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
 1196         getmicrotime(&now);
 1197         time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
 1198         init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
 1199         init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
 1200 
 1201         error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
 1202         if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
 1203                 error = ENXIO;
 1204 
 1205         mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
 1206         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
 1207         return (error);
 1208 }
 1209 
 1210 void
 1211 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1212 {
 1213         bus_addr_t *addr;
 1214 
 1215         addr = arg;
 1216         *addr = segs[0].ds_addr;
 1217 }
 1218 
 1219 void
 1220 mps_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1221 {
 1222         struct mps_busdma_context *ctx;
 1223         int need_unload, need_free;
 1224 
 1225         ctx = (struct mps_busdma_context *)arg;
 1226         need_unload = 0;
 1227         need_free = 0;
 1228 
 1229         mps_lock(ctx->softc);
 1230         ctx->error = error;
 1231         ctx->completed = 1;
 1232         if ((error == 0) && (ctx->abandoned == 0)) {
 1233                 *ctx->addr = segs[0].ds_addr;
 1234         } else {
 1235                 if (nsegs != 0)
 1236                         need_unload = 1;
 1237                 if (ctx->abandoned != 0)
 1238                         need_free = 1;
 1239         }
 1240         if (need_free == 0)
 1241                 wakeup(ctx);
 1242 
 1243         mps_unlock(ctx->softc);
 1244 
 1245         if (need_unload != 0) {
 1246                 bus_dmamap_unload(ctx->buffer_dmat,
 1247                                   ctx->buffer_dmamap);
 1248                 *ctx->addr = 0;
 1249         }
 1250 
 1251         if (need_free != 0)
 1252                 free(ctx, M_MPSUSER);
 1253 }
 1254 
 1255 static int
 1256 mps_alloc_queues(struct mps_softc *sc)
 1257 {
 1258         struct mps_queue *q;
 1259         u_int nq, i;
 1260 
 1261         nq = sc->msi_msgs;
 1262         mps_dprint(sc, MPS_INIT|MPS_XINFO, "Allocating %d I/O queues\n", nq);
 1263 
 1264         sc->queues = malloc(sizeof(struct mps_queue) * nq, M_MPT2,
 1265             M_NOWAIT|M_ZERO);
 1266         if (sc->queues == NULL)
 1267                 return (ENOMEM);
 1268 
 1269         for (i = 0; i < nq; i++) {
 1270                 q = &sc->queues[i];
 1271                 mps_dprint(sc, MPS_INIT, "Configuring queue %d %p\n", i, q);
 1272                 q->sc = sc;
 1273                 q->qnum = i;
 1274         }
 1275 
 1276         return (0);
 1277 }
 1278 
 1279 static int
 1280 mps_alloc_hw_queues(struct mps_softc *sc)
 1281 {
 1282         bus_dma_template_t t;
 1283         bus_addr_t queues_busaddr;
 1284         uint8_t *queues;
 1285         int qsize, fqsize, pqsize;
 1286 
 1287         /*
 1288          * The reply free queue contains 4 byte entries in multiples of 16 and
 1289          * aligned on a 16 byte boundary. There must always be an unused entry.
 1290          * This queue supplies fresh reply frames for the firmware to use.
 1291          *
 1292          * The reply descriptor post queue contains 8 byte entries in
 1293          * multiples of 16 and aligned on a 16 byte boundary.  This queue
 1294          * contains filled-in reply frames sent from the firmware to the host.
 1295          *
 1296          * These two queues are allocated together for simplicity.
 1297          */
 1298         sc->fqdepth = roundup2(sc->num_replies + 1, 16);
 1299         sc->pqdepth = roundup2(sc->num_replies + 1, 16);
 1300         fqsize= sc->fqdepth * 4;
 1301         pqsize = sc->pqdepth * 8;
 1302         qsize = fqsize + pqsize;
 1303 
 1304         bus_dma_template_init(&t, sc->mps_parent_dmat);
 1305         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize),
 1306             BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1),
 1307             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
 1308         if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
 1309                 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues DMA tag\n");
 1310                 return (ENOMEM);
 1311         }
 1312         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
 1313             &sc->queues_map)) {
 1314                 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues memory\n");
 1315                 return (ENOMEM);
 1316         }
 1317         bzero(queues, qsize);
 1318         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
 1319             mps_memaddr_cb, &queues_busaddr, 0);
 1320 
 1321         sc->free_queue = (uint32_t *)queues;
 1322         sc->free_busaddr = queues_busaddr;
 1323         sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
 1324         sc->post_busaddr = queues_busaddr + fqsize;
 1325         mps_dprint(sc, MPS_INIT, "free queue busaddr= %#016jx size= %d\n",
 1326             (uintmax_t)sc->free_busaddr, fqsize);
 1327         mps_dprint(sc, MPS_INIT, "reply queue busaddr= %#016jx size= %d\n",
 1328             (uintmax_t)sc->post_busaddr, pqsize);
 1329 
 1330         return (0);
 1331 }
 1332 
 1333 static int
 1334 mps_alloc_replies(struct mps_softc *sc)
 1335 {
 1336         bus_dma_template_t t;
 1337         int rsize, num_replies;
 1338 
 1339         /* Store the reply frame size in bytes rather than as 32bit words */
 1340         sc->replyframesz = sc->facts->ReplyFrameSize * 4;
 1341 
 1342         /*
 1343          * sc->num_replies should be one less than sc->fqdepth.  We need to
 1344          * allocate space for sc->fqdepth replies, but only sc->num_replies
 1345          * replies can be used at once.
 1346          */
 1347         num_replies = max(sc->fqdepth, sc->num_replies);
 1348 
 1349         rsize = sc->replyframesz * num_replies; 
 1350         bus_dma_template_init(&t, sc->mps_parent_dmat);
 1351         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
 1352             BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
 1353             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
 1354         if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
 1355                 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies DMA tag\n");
 1356                 return (ENOMEM);
 1357         }
 1358         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
 1359             BUS_DMA_NOWAIT, &sc->reply_map)) {
 1360                 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies memory\n");
 1361                 return (ENOMEM);
 1362         }
 1363         bzero(sc->reply_frames, rsize);
 1364         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
 1365             mps_memaddr_cb, &sc->reply_busaddr, 0);
 1366 
 1367         mps_dprint(sc, MPS_INIT, "reply frames busaddr= %#016jx size= %d\n",
 1368             (uintmax_t)sc->reply_busaddr, rsize);
 1369 
 1370         return (0);
 1371 }
 1372 
 1373 static void
 1374 mps_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 1375 {
 1376         struct mps_softc *sc = arg;
 1377         struct mps_chain *chain;
 1378         bus_size_t bo;
 1379         int i, o, s;
 1380 
 1381         if (error != 0)
 1382                 return;
 1383 
 1384         for (i = 0, o = 0, s = 0; s < nsegs; s++) {
 1385                 KASSERT(segs[s].ds_addr + segs[s].ds_len - 1 <= BUS_SPACE_MAXADDR_32BIT,
 1386                     ("mps: Bad segment address %#jx len %#jx\n", (uintmax_t)segs[s].ds_addr,
 1387                         (uintmax_t)segs[s].ds_len));
 1388                 for (bo = 0; bo + sc->reqframesz <= segs[s].ds_len;
 1389                     bo += sc->reqframesz) {
 1390                         chain = &sc->chains[i++];
 1391                         chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
 1392                         chain->chain_busaddr = segs[s].ds_addr + bo;
 1393                         o += sc->reqframesz;
 1394                         mps_free_chain(sc, chain);
 1395                 }
 1396                 if (bo != segs[s].ds_len)
 1397                         o += segs[s].ds_len - bo;
 1398         }
 1399         sc->chain_free_lowwater = i;
 1400 }
 1401 
 1402 static int
 1403 mps_alloc_requests(struct mps_softc *sc)
 1404 {
 1405         bus_dma_template_t t;
 1406         struct mps_command *cm;
 1407         int i, rsize, nsegs;
 1408 
 1409         rsize = sc->reqframesz * sc->num_reqs;
 1410         bus_dma_template_init(&t, sc->mps_parent_dmat);
 1411         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
 1412             BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
 1413             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
 1414         if (bus_dma_template_tag(&t, &sc->req_dmat)) {
 1415                 mps_dprint(sc, MPS_ERROR, "Cannot allocate request DMA tag\n");
 1416                 return (ENOMEM);
 1417         }
 1418         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
 1419             BUS_DMA_NOWAIT, &sc->req_map)) {
 1420                 mps_dprint(sc, MPS_ERROR, "Cannot allocate request memory\n");
 1421                 return (ENOMEM);
 1422         }
 1423         bzero(sc->req_frames, rsize);
 1424         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
 1425             mps_memaddr_cb, &sc->req_busaddr, 0);
 1426         mps_dprint(sc, MPS_INIT, "request frames busaddr= %#016jx size= %d\n",
 1427             (uintmax_t)sc->req_busaddr, rsize);
 1428 
 1429         sc->chains = malloc(sizeof(struct mps_chain) * sc->num_chains, M_MPT2,
 1430             M_NOWAIT | M_ZERO);
 1431         if (!sc->chains) {
 1432                 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
 1433                 return (ENOMEM);
 1434         }
 1435         rsize = sc->reqframesz * sc->num_chains;
 1436         bus_dma_template_clone(&t, sc->req_dmat);
 1437         BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(rsize), BD_MAXSEGSIZE(rsize),
 1438             BD_NSEGMENTS(howmany(rsize, PAGE_SIZE)));
 1439         if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
 1440                 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain DMA tag\n");
 1441                 return (ENOMEM);
 1442         }
 1443         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
 1444             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
 1445                 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
 1446                 return (ENOMEM);
 1447         }
 1448         if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
 1449             rsize, mps_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
 1450                 mps_dprint(sc, MPS_ERROR, "Cannot load chain memory\n");
 1451                 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
 1452                     sc->chain_map);
 1453                 return (ENOMEM);
 1454         }
 1455 
 1456         rsize = MPS_SENSE_LEN * sc->num_reqs;
 1457         bus_dma_template_clone(&t, sc->req_dmat);
 1458         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize),
 1459             BD_MAXSEGSIZE(rsize));
 1460         if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
 1461                 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense DMA tag\n");
 1462                 return (ENOMEM);
 1463         }
 1464         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
 1465             BUS_DMA_NOWAIT, &sc->sense_map)) {
 1466                 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense memory\n");
 1467                 return (ENOMEM);
 1468         }
 1469         bzero(sc->sense_frames, rsize);
 1470         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
 1471             mps_memaddr_cb, &sc->sense_busaddr, 0);
 1472         mps_dprint(sc, MPS_INIT, "sense frames busaddr= %#016jx size= %d\n",
 1473             (uintmax_t)sc->sense_busaddr, rsize);
 1474 
 1475         nsegs = (sc->maxio / PAGE_SIZE) + 1;
 1476         bus_dma_template_init(&t, sc->mps_parent_dmat);
 1477         BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT),
 1478             BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_24BIT),
 1479             BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex),
 1480             BD_LOCKFUNCARG(&sc->mps_mtx));
 1481         if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
 1482                 mps_dprint(sc, MPS_ERROR, "Cannot allocate buffer DMA tag\n");
 1483                 return (ENOMEM);
 1484         }
 1485 
 1486         /*
 1487          * SMID 0 cannot be used as a free command per the firmware spec.
 1488          * Just drop that command instead of risking accounting bugs.
 1489          */
 1490         sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
 1491             M_MPT2, M_WAITOK | M_ZERO);
 1492         for (i = 1; i < sc->num_reqs; i++) {
 1493                 cm = &sc->commands[i];
 1494                 cm->cm_req = sc->req_frames + i * sc->reqframesz;
 1495                 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
 1496                 cm->cm_sense = &sc->sense_frames[i];
 1497                 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
 1498                 cm->cm_desc.Default.SMID = i;
 1499                 cm->cm_sc = sc;
 1500                 cm->cm_state = MPS_CM_STATE_BUSY;
 1501                 TAILQ_INIT(&cm->cm_chain_list);
 1502                 callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0);
 1503 
 1504                 /* XXX Is a failure here a critical problem? */
 1505                 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
 1506                         if (i <= sc->num_prireqs)
 1507                                 mps_free_high_priority_command(sc, cm);
 1508                         else
 1509                                 mps_free_command(sc, cm);
 1510                 else {
 1511                         panic("failed to allocate command %d\n", i);
 1512                         sc->num_reqs = i;
 1513                         break;
 1514                 }
 1515         }
 1516 
 1517         return (0);
 1518 }
 1519 
 1520 static int
 1521 mps_init_queues(struct mps_softc *sc)
 1522 {
 1523         int i;
 1524 
 1525         memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
 1526 
 1527         /*
 1528          * According to the spec, we need to use one less reply than we
 1529          * have space for on the queue.  So sc->num_replies (the number we
 1530          * use) should be less than sc->fqdepth (allocated size).
 1531          */
 1532         if (sc->num_replies >= sc->fqdepth)
 1533                 return (EINVAL);
 1534 
 1535         /*
 1536          * Initialize all of the free queue entries.
 1537          */
 1538         for (i = 0; i < sc->fqdepth; i++)
 1539                 sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
 1540         sc->replyfreeindex = sc->num_replies;
 1541 
 1542         return (0);
 1543 }
 1544 
 1545 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
 1546  * Next are the global settings, if they exist.  Highest are the per-unit
 1547  * settings, if they exist.
 1548  */
 1549 void
 1550 mps_get_tunables(struct mps_softc *sc)
 1551 {
 1552         char tmpstr[80], mps_debug[80];
 1553 
 1554         /* XXX default to some debugging for now */
 1555         sc->mps_debug = MPS_INFO|MPS_FAULT;
 1556         sc->disable_msix = 0;
 1557         sc->disable_msi = 0;
 1558         sc->max_msix = MPS_MSIX_MAX;
 1559         sc->max_chains = MPS_CHAIN_FRAMES;
 1560         sc->max_io_pages = MPS_MAXIO_PAGES;
 1561         sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD;
 1562         sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
 1563         sc->use_phynum = 1;
 1564         sc->max_reqframes = MPS_REQ_FRAMES;
 1565         sc->max_prireqframes = MPS_PRI_REQ_FRAMES;
 1566         sc->max_replyframes = MPS_REPLY_FRAMES;
 1567         sc->max_evtframes = MPS_EVT_REPLY_FRAMES;
 1568 
 1569         /*
 1570          * Grab the global variables.
 1571          */
 1572         bzero(mps_debug, 80);
 1573         if (TUNABLE_STR_FETCH("hw.mps.debug_level", mps_debug, 80) != 0)
 1574                 mps_parse_debug(sc, mps_debug);
 1575         TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
 1576         TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi);
 1577         TUNABLE_INT_FETCH("hw.mps.max_msix", &sc->max_msix);
 1578         TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
 1579         TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages);
 1580         TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu);
 1581         TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time);
 1582         TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum);
 1583         TUNABLE_INT_FETCH("hw.mps.max_reqframes", &sc->max_reqframes);
 1584         TUNABLE_INT_FETCH("hw.mps.max_prireqframes", &sc->max_prireqframes);
 1585         TUNABLE_INT_FETCH("hw.mps.max_replyframes", &sc->max_replyframes);
 1586         TUNABLE_INT_FETCH("hw.mps.max_evtframes", &sc->max_evtframes);
 1587 
 1588         /* Grab the unit-instance variables */
 1589         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
 1590             device_get_unit(sc->mps_dev));
 1591         bzero(mps_debug, 80);
 1592         if (TUNABLE_STR_FETCH(tmpstr, mps_debug, 80) != 0)
 1593                 mps_parse_debug(sc, mps_debug);
 1594 
 1595         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
 1596             device_get_unit(sc->mps_dev));
 1597         TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
 1598 
 1599         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi",
 1600             device_get_unit(sc->mps_dev));
 1601         TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
 1602 
 1603         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_msix",
 1604             device_get_unit(sc->mps_dev));
 1605         TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
 1606 
 1607         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
 1608             device_get_unit(sc->mps_dev));
 1609         TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
 1610 
 1611         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages",
 1612             device_get_unit(sc->mps_dev));
 1613         TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
 1614 
 1615         bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
 1616         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids",
 1617             device_get_unit(sc->mps_dev));
 1618         TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
 1619 
 1620         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu",
 1621             device_get_unit(sc->mps_dev));
 1622         TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
 1623 
 1624         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time",
 1625             device_get_unit(sc->mps_dev));
 1626         TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
 1627 
 1628         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num",
 1629             device_get_unit(sc->mps_dev));
 1630         TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
 1631 
 1632         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_reqframes",
 1633             device_get_unit(sc->mps_dev));
 1634         TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
 1635 
 1636         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_prireqframes",
 1637             device_get_unit(sc->mps_dev));
 1638         TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
 1639 
 1640         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_replyframes",
 1641             device_get_unit(sc->mps_dev));
 1642         TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
 1643 
 1644         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_evtframes",
 1645             device_get_unit(sc->mps_dev));
 1646         TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
 1647 
 1648 }
 1649 
 1650 static void
 1651 mps_setup_sysctl(struct mps_softc *sc)
 1652 {
 1653         struct sysctl_ctx_list  *sysctl_ctx = NULL;
 1654         struct sysctl_oid       *sysctl_tree = NULL;
 1655         char tmpstr[80], tmpstr2[80];
 1656 
 1657         /*
 1658          * Setup the sysctl variable so the user can change the debug level
 1659          * on the fly.
 1660          */
 1661         snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
 1662             device_get_unit(sc->mps_dev));
 1663         snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
 1664 
 1665         sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev);
 1666         if (sysctl_ctx != NULL)
 1667                 sysctl_tree = device_get_sysctl_tree(sc->mps_dev);
 1668 
 1669         if (sysctl_tree == NULL) {
 1670                 sysctl_ctx_init(&sc->sysctl_ctx);
 1671                 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
 1672                     SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
 1673                     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr);
 1674                 if (sc->sysctl_tree == NULL)
 1675                         return;
 1676                 sysctl_ctx = &sc->sysctl_ctx;
 1677                 sysctl_tree = sc->sysctl_tree;
 1678         }
 1679 
 1680         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1681             OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW |CTLFLAG_MPSAFE,
 1682             sc, 0, mps_debug_sysctl, "A", "mps debug level");
 1683 
 1684         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1685             OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
 1686             "Disable the use of MSI-X interrupts");
 1687 
 1688         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1689             OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
 1690             "Disable the use of MSI interrupts");
 1691 
 1692         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1693             OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
 1694             "User-defined maximum number of MSIX queues");
 1695 
 1696         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1697             OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
 1698             "Negotiated number of MSIX queues");
 1699 
 1700         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1701             OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
 1702             "Total number of allocated request frames");
 1703 
 1704         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1705             OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
 1706             "Total number of allocated high priority request frames");
 1707 
 1708         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1709             OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
 1710             "Total number of allocated reply frames");
 1711 
 1712         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1713             OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
 1714             "Total number of event frames allocated");
 1715 
 1716         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1717             OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
 1718             strlen(sc->fw_version), "firmware version");
 1719 
 1720         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1721             OID_AUTO, "driver_version", CTLFLAG_RD, MPS_DRIVER_VERSION,
 1722             strlen(MPS_DRIVER_VERSION), "driver version");
 1723 
 1724         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1725             OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
 1726             strlen(sc->msg_version), "message interface version");
 1727 
 1728         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1729             OID_AUTO, "io_cmds_active", CTLFLAG_RD,
 1730             &sc->io_cmds_active, 0, "number of currently active commands");
 1731 
 1732         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1733             OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
 1734             &sc->io_cmds_highwater, 0, "maximum active commands seen");
 1735 
 1736         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1737             OID_AUTO, "chain_free", CTLFLAG_RD,
 1738             &sc->chain_free, 0, "number of free chain elements");
 1739 
 1740         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1741             OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
 1742             &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
 1743 
 1744         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1745             OID_AUTO, "max_chains", CTLFLAG_RD,
 1746             &sc->max_chains, 0,"maximum chain frames that will be allocated");
 1747 
 1748         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1749             OID_AUTO, "max_io_pages", CTLFLAG_RD,
 1750             &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
 1751             "IOCFacts)");
 1752 
 1753         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1754             OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
 1755             "enable SSU to SATA SSD/HDD at shutdown");
 1756 
 1757         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1758             OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
 1759             &sc->chain_alloc_fail, "chain allocation failures");
 1760 
 1761         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1762             OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
 1763             &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
 1764             "spinup after SATA ID error");
 1765 
 1766         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1767             OID_AUTO, "mapping_table_dump",
 1768             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
 1769             mps_mapping_dump, "A", "Mapping Table Dump");
 1770 
 1771         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1772             OID_AUTO, "encl_table_dump",
 1773             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
 1774             mps_mapping_encl_dump, "A", "Enclosure Table Dump");
 1775 
 1776         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1777             OID_AUTO, "dump_reqs",
 1778             CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE,
 1779             sc, 0, mps_dump_reqs, "I", "Dump Active Requests");
 1780 
 1781         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1782             OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW,
 1783             &sc->dump_reqs_alltypes, 0,
 1784             "dump all request types not just inqueue");
 1785 
 1786         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
 1787             OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
 1788             "Use the phy number for enumeration");
 1789 }
 1790 
 1791 static struct mps_debug_string {
 1792         char    *name;
 1793         int     flag;
 1794 } mps_debug_strings[] = {
 1795         {"info", MPS_INFO},
 1796         {"fault", MPS_FAULT},
 1797         {"event", MPS_EVENT},
 1798         {"log", MPS_LOG},
 1799         {"recovery", MPS_RECOVERY},
 1800         {"error", MPS_ERROR},
 1801         {"init", MPS_INIT},
 1802         {"xinfo", MPS_XINFO},
 1803         {"user", MPS_USER},
 1804         {"mapping", MPS_MAPPING},
 1805         {"trace", MPS_TRACE}
 1806 };
 1807 
 1808 enum mps_debug_level_combiner {
 1809         COMB_NONE,
 1810         COMB_ADD,
 1811         COMB_SUB
 1812 };
 1813 
 1814 static int
 1815 mps_debug_sysctl(SYSCTL_HANDLER_ARGS)
 1816 {
 1817         struct mps_softc *sc;
 1818         struct mps_debug_string *string;
 1819         struct sbuf *sbuf;
 1820         char *buffer;
 1821         size_t sz;
 1822         int i, len, debug, error;
 1823 
 1824         sc = (struct mps_softc *)arg1;
 1825 
 1826         error = sysctl_wire_old_buffer(req, 0);
 1827         if (error != 0)
 1828                 return (error);
 1829 
 1830         sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
 1831         debug = sc->mps_debug;
 1832 
 1833         sbuf_printf(sbuf, "%#x", debug);
 1834 
 1835         sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
 1836         for (i = 0; i < sz; i++) {
 1837                 string = &mps_debug_strings[i];
 1838                 if (debug & string->flag)
 1839                         sbuf_printf(sbuf, ",%s", string->name);
 1840         }
 1841 
 1842         error = sbuf_finish(sbuf);
 1843         sbuf_delete(sbuf);
 1844 
 1845         if (error || req->newptr == NULL)
 1846                 return (error);
 1847 
 1848         len = req->newlen - req->newidx;
 1849         if (len == 0)
 1850                 return (0);
 1851 
 1852         buffer = malloc(len, M_MPT2, M_ZERO|M_WAITOK);
 1853         error = SYSCTL_IN(req, buffer, len);
 1854 
 1855         mps_parse_debug(sc, buffer);
 1856 
 1857         free(buffer, M_MPT2);
 1858         return (error);
 1859 }
 1860 
 1861 static void
 1862 mps_parse_debug(struct mps_softc *sc, char *list)
 1863 {
 1864         struct mps_debug_string *string;
 1865         enum mps_debug_level_combiner op;
 1866         char *token, *endtoken;
 1867         size_t sz;
 1868         int flags, i;
 1869 
 1870         if (list == NULL || *list == '\0')
 1871                 return;
 1872 
 1873         if (*list == '+') {
 1874                 op = COMB_ADD;
 1875                 list++;
 1876         } else if (*list == '-') {
 1877                 op = COMB_SUB;
 1878                 list++;
 1879         } else
 1880                 op = COMB_NONE;
 1881         if (*list == '\0')
 1882                 return;
 1883 
 1884         flags = 0;
 1885         sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
 1886         while ((token = strsep(&list, ":,")) != NULL) {
 1887                 /* Handle integer flags */
 1888                 flags |= strtol(token, &endtoken, 0);
 1889                 if (token != endtoken)
 1890                         continue;
 1891 
 1892                 /* Handle text flags */
 1893                 for (i = 0; i < sz; i++) {
 1894                         string = &mps_debug_strings[i];
 1895                         if (strcasecmp(token, string->name) == 0) {
 1896                                 flags |= string->flag;
 1897                                 break;
 1898                         }
 1899                 }
 1900         }
 1901 
 1902         switch (op) {
 1903         case COMB_NONE:
 1904                 sc->mps_debug = flags;
 1905                 break;
 1906         case COMB_ADD:
 1907                 sc->mps_debug |= flags;
 1908                 break;
 1909         case COMB_SUB:
 1910                 sc->mps_debug &= (~flags);
 1911                 break;
 1912         }
 1913 
 1914         return;
 1915 }
 1916 
 1917 struct mps_dumpreq_hdr {
 1918         uint32_t        smid;
 1919         uint32_t        state;
 1920         uint32_t        numframes;
 1921         uint32_t        deschi;
 1922         uint32_t        desclo;
 1923 };
 1924 
 1925 static int
 1926 mps_dump_reqs(SYSCTL_HANDLER_ARGS)
 1927 {
 1928         struct mps_softc *sc;
 1929         struct mps_chain *chain, *chain1;
 1930         struct mps_command *cm;
 1931         struct mps_dumpreq_hdr hdr;
 1932         struct sbuf *sb;
 1933         uint32_t smid, state;
 1934         int i, numreqs, error = 0;
 1935 
 1936         sc = (struct mps_softc *)arg1;
 1937 
 1938         if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
 1939                 printf("priv check error %d\n", error);
 1940                 return (error);
 1941         }
 1942 
 1943         state = MPS_CM_STATE_INQUEUE;
 1944         smid = 1;
 1945         numreqs = sc->num_reqs;
 1946 
 1947         if (req->newptr != NULL)
 1948                 return (EINVAL);
 1949 
 1950         if (smid == 0 || smid > sc->num_reqs)
 1951                 return (EINVAL);
 1952         if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
 1953                 numreqs = sc->num_reqs;
 1954         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
 1955 
 1956         /* Best effort, no locking */
 1957         for (i = smid; i < numreqs; i++) {
 1958                 cm = &sc->commands[i];
 1959                 if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state))
 1960                         continue;
 1961                 hdr.smid = i;
 1962                 hdr.state = cm->cm_state;
 1963                 hdr.numframes = 1;
 1964                 hdr.deschi = cm->cm_desc.Words.High;
 1965                 hdr.desclo = cm->cm_desc.Words.Low;
 1966                 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
 1967                    chain1)
 1968                         hdr.numframes++;
 1969                 sbuf_bcat(sb, &hdr, sizeof(hdr));
 1970                 sbuf_bcat(sb, cm->cm_req, 128);
 1971                 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
 1972                     chain1)
 1973                         sbuf_bcat(sb, chain->chain, 128);
 1974         }
 1975 
 1976         error = sbuf_finish(sb);
 1977         sbuf_delete(sb);
 1978         return (error);
 1979 }
 1980 
 1981 int
 1982 mps_attach(struct mps_softc *sc)
 1983 {
 1984         int error;
 1985 
 1986         MPS_FUNCTRACE(sc);
 1987         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
 1988 
 1989         mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
 1990         callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
 1991         callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0);
 1992         TAILQ_INIT(&sc->event_list);
 1993         timevalclear(&sc->lastfail);
 1994 
 1995         if ((error = mps_transition_ready(sc)) != 0) {
 1996                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to transition "
 1997                     "ready\n");
 1998                 return (error);
 1999         }
 2000 
 2001         sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
 2002             M_ZERO|M_NOWAIT);
 2003         if(!sc->facts) {
 2004                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Cannot allocate memory, "
 2005                     "exit\n");
 2006                 return (ENOMEM);
 2007         }
 2008 
 2009         /*
 2010          * Get IOC Facts and allocate all structures based on this information.
 2011          * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC
 2012          * Facts. If relevant values have changed in IOC Facts, this function
 2013          * will free all of the memory based on IOC Facts and reallocate that
 2014          * memory.  If this fails, any allocated memory should already be freed.
 2015          */
 2016         if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) {
 2017                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC Facts based allocation "
 2018                     "failed with error %d, exit\n", error);
 2019                 return (error);
 2020         }
 2021 
 2022         /* Start the periodic watchdog check on the IOC Doorbell */
 2023         mps_periodic(sc);
 2024 
 2025         /*
 2026          * The portenable will kick off discovery events that will drive the
 2027          * rest of the initialization process.  The CAM/SAS module will
 2028          * hold up the boot sequence until discovery is complete.
 2029          */
 2030         sc->mps_ich.ich_func = mps_startup;
 2031         sc->mps_ich.ich_arg = sc;
 2032         if (config_intrhook_establish(&sc->mps_ich) != 0) {
 2033                 mps_dprint(sc, MPS_INIT|MPS_ERROR,
 2034                     "Cannot establish MPS config hook\n");
 2035                 error = EINVAL;
 2036         }
 2037 
 2038         /*
 2039          * Allow IR to shutdown gracefully when shutdown occurs.
 2040          */
 2041         sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
 2042             mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
 2043 
 2044         if (sc->shutdown_eh == NULL)
 2045                 mps_dprint(sc, MPS_INIT|MPS_ERROR,
 2046                     "shutdown event registration failed\n");
 2047 
 2048         mps_setup_sysctl(sc);
 2049 
 2050         sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
 2051         mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
 2052 
 2053         return (error);
 2054 }
 2055 
 2056 /* Run through any late-start handlers. */
 2057 static void
 2058 mps_startup(void *arg)
 2059 {
 2060         struct mps_softc *sc;
 2061 
 2062         sc = (struct mps_softc *)arg;
 2063         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
 2064 
 2065         mps_lock(sc);
 2066         mps_unmask_intr(sc);
 2067 
 2068         /* initialize device mapping tables */
 2069         mps_base_static_config_pages(sc);
 2070         mps_mapping_initialize(sc);
 2071         mpssas_startup(sc);
 2072         mps_unlock(sc);
 2073 
 2074         mps_dprint(sc, MPS_INIT, "disestablish config intrhook\n");
 2075         config_intrhook_disestablish(&sc->mps_ich);
 2076         sc->mps_ich.ich_arg = NULL;
 2077 
 2078         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
 2079 }
 2080 
 2081 /* Periodic watchdog.  Is called with the driver lock already held. */
 2082 static void
 2083 mps_periodic(void *arg)
 2084 {
 2085         struct mps_softc *sc;
 2086         uint32_t db;
 2087 
 2088         sc = (struct mps_softc *)arg;
 2089         if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
 2090                 return;
 2091 
 2092         db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
 2093         if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
 2094                 mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
 2095                 mps_reinit(sc);
 2096         }
 2097 
 2098         callout_reset_sbt(&sc->periodic, MPS_PERIODIC_DELAY * SBT_1S, 0,
 2099             mps_periodic, sc, C_PREL(1));
 2100 }
 2101 
 2102 static void
 2103 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
 2104     MPI2_EVENT_NOTIFICATION_REPLY *event)
 2105 {
 2106         MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
 2107 
 2108         MPS_DPRINT_EVENT(sc, generic, event);
 2109 
 2110         switch (event->Event) {
 2111         case MPI2_EVENT_LOG_DATA:
 2112                 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n");
 2113                 if (sc->mps_debug & MPS_EVENT)
 2114                         hexdump(event->EventData, event->EventDataLength, NULL, 0);
 2115                 break;
 2116         case MPI2_EVENT_LOG_ENTRY_ADDED:
 2117                 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
 2118                 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
 2119                     "0x%x Sequence %d:\n", entry->LogEntryQualifier,
 2120                      entry->LogSequence);
 2121                 break;
 2122         default:
 2123                 break;
 2124         }
 2125         return;
 2126 }
 2127 
 2128 static int
 2129 mps_attach_log(struct mps_softc *sc)
 2130 {
 2131         u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
 2132 
 2133         bzero(events, 16);
 2134         setbit(events, MPI2_EVENT_LOG_DATA);
 2135         setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
 2136 
 2137         mps_register_events(sc, events, mps_log_evt_handler, NULL,
 2138             &sc->mps_log_eh);
 2139 
 2140         return (0);
 2141 }
 2142 
 2143 static int
 2144 mps_detach_log(struct mps_softc *sc)
 2145 {
 2146 
 2147         if (sc->mps_log_eh != NULL)
 2148                 mps_deregister_events(sc, sc->mps_log_eh);
 2149         return (0);
 2150 }
 2151 
 2152 /*
 2153  * Free all of the driver resources and detach submodules.  Should be called
 2154  * without the lock held.
 2155  */
 2156 int
 2157 mps_free(struct mps_softc *sc)
 2158 {
 2159         int error;
 2160 
 2161         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
 2162         /* Turn off the watchdog */
 2163         mps_lock(sc);
 2164         sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
 2165         mps_unlock(sc);
 2166         /* Lock must not be held for this */
 2167         callout_drain(&sc->periodic);
 2168         callout_drain(&sc->device_check_callout);
 2169 
 2170         if (((error = mps_detach_log(sc)) != 0) ||
 2171             ((error = mps_detach_sas(sc)) != 0)) {
 2172                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to detach "
 2173                     "subsystems, exit\n");
 2174                 return (error);
 2175         }
 2176 
 2177         mps_detach_user(sc);
 2178 
 2179         /* Put the IOC back in the READY state. */
 2180         mps_lock(sc);
 2181         if ((error = mps_transition_ready(sc)) != 0) {
 2182                 mps_unlock(sc);
 2183                 return (error);
 2184         }
 2185         mps_unlock(sc);
 2186 
 2187         if (sc->facts != NULL)
 2188                 free(sc->facts, M_MPT2);
 2189 
 2190         /*
 2191          * Free all buffers that are based on IOC Facts.  A Diag Reset may need
 2192          * to free these buffers too.
 2193          */
 2194         mps_iocfacts_free(sc);
 2195 
 2196         if (sc->sysctl_tree != NULL)
 2197                 sysctl_ctx_free(&sc->sysctl_ctx);
 2198 
 2199         /* Deregister the shutdown function */
 2200         if (sc->shutdown_eh != NULL)
 2201                 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
 2202 
 2203         mtx_destroy(&sc->mps_mtx);
 2204         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
 2205 
 2206         return (0);
 2207 }
 2208 
 2209 static __inline void
 2210 mps_complete_command(struct mps_softc *sc, struct mps_command *cm)
 2211 {
 2212         MPS_FUNCTRACE(sc);
 2213 
 2214         if (cm == NULL) {
 2215                 mps_dprint(sc, MPS_ERROR, "Completing NULL command\n");
 2216                 return;
 2217         }
 2218 
 2219         KASSERT(cm->cm_state == MPS_CM_STATE_INQUEUE,
 2220             ("command not inqueue, state = %u\n", cm->cm_state));
 2221         cm->cm_state = MPS_CM_STATE_BUSY; 
 2222         if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
 2223                 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
 2224 
 2225         if (cm->cm_complete != NULL) {
 2226                 mps_dprint(sc, MPS_TRACE,
 2227                            "%s cm %p calling cm_complete %p data %p reply %p\n",
 2228                            __func__, cm, cm->cm_complete, cm->cm_complete_data,
 2229                            cm->cm_reply);
 2230                 cm->cm_complete(sc, cm);
 2231         }
 2232 
 2233         if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
 2234                 mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm);
 2235                 wakeup(cm);
 2236         }
 2237 
 2238         if (cm->cm_sc->io_cmds_active != 0) {
 2239                 cm->cm_sc->io_cmds_active--;
 2240         } else {
 2241                 mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is "
 2242                     "out of sync - resynching to 0\n");
 2243         }
 2244 }
 2245 
 2246 static void
 2247 mps_sas_log_info(struct mps_softc *sc , u32 log_info)
 2248 {
 2249         union loginfo_type {
 2250                 u32     loginfo;
 2251                 struct {
 2252                         u32     subcode:16;
 2253                         u32     code:8;
 2254                         u32     originator:4;
 2255                         u32     bus_type:4;
 2256                 } dw;
 2257         };
 2258         union loginfo_type sas_loginfo;
 2259         char *originator_str = NULL;
 2260 
 2261         sas_loginfo.loginfo = log_info;
 2262         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
 2263                 return;
 2264 
 2265         /* each nexus loss loginfo */
 2266         if (log_info == 0x31170000)
 2267                 return;
 2268 
 2269         /* eat the loginfos associated with task aborts */
 2270         if ((log_info == 30050000 || log_info ==
 2271             0x31140000 || log_info == 0x31130000))
 2272                 return;
 2273 
 2274         switch (sas_loginfo.dw.originator) {
 2275         case 0:
 2276                 originator_str = "IOP";
 2277                 break;
 2278         case 1:
 2279                 originator_str = "PL";
 2280                 break;
 2281         case 2:
 2282                 originator_str = "IR";
 2283                 break;
 2284 }
 2285 
 2286         mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), "
 2287         "code(0x%02x), sub_code(0x%04x)\n", log_info,
 2288         originator_str, sas_loginfo.dw.code,
 2289         sas_loginfo.dw.subcode);
 2290 }
 2291 
 2292 static void
 2293 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply)
 2294 {
 2295         MPI2DefaultReply_t *mpi_reply;
 2296         u16 sc_status;
 2297 
 2298         mpi_reply = (MPI2DefaultReply_t*)reply;
 2299         sc_status = le16toh(mpi_reply->IOCStatus);
 2300         if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
 2301                 mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
 2302 }
 2303 void
 2304 mps_intr(void *data)
 2305 {
 2306         struct mps_softc *sc;
 2307         uint32_t status;
 2308 
 2309         sc = (struct mps_softc *)data;
 2310         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 2311 
 2312         /*
 2313          * Check interrupt status register to flush the bus.  This is
 2314          * needed for both INTx interrupts and driver-driven polling
 2315          */
 2316         status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
 2317         if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
 2318                 return;
 2319 
 2320         mps_lock(sc);
 2321         mps_intr_locked(data);
 2322         mps_unlock(sc);
 2323         return;
 2324 }
 2325 
 2326 /*
 2327  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
 2328  * chip.  Hopefully this theory is correct.
 2329  */
 2330 void
 2331 mps_intr_msi(void *data)
 2332 {
 2333         struct mps_softc *sc;
 2334 
 2335         sc = (struct mps_softc *)data;
 2336         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 2337         mps_lock(sc);
 2338         mps_intr_locked(data);
 2339         mps_unlock(sc);
 2340         return;
 2341 }
 2342 
 2343 /*
 2344  * The locking is overly broad and simplistic, but easy to deal with for now.
 2345  */
 2346 void
 2347 mps_intr_locked(void *data)
 2348 {
 2349         MPI2_REPLY_DESCRIPTORS_UNION *desc;
 2350         MPI2_DIAG_RELEASE_REPLY *rel_rep;
 2351         mps_fw_diagnostic_buffer_t *pBuffer;
 2352         struct mps_softc *sc;
 2353         struct mps_command *cm = NULL;
 2354         uint64_t tdesc;
 2355         uint8_t flags;
 2356         u_int pq;
 2357 
 2358         sc = (struct mps_softc *)data;
 2359 
 2360         pq = sc->replypostindex;
 2361         mps_dprint(sc, MPS_TRACE,
 2362             "%s sc %p starting with replypostindex %u\n", 
 2363             __func__, sc, sc->replypostindex);
 2364 
 2365         for ( ;; ) {
 2366                 cm = NULL;
 2367                 desc = &sc->post_queue[sc->replypostindex];
 2368 
 2369                 /*
 2370                  * Copy and clear out the descriptor so that any reentry will
 2371                  * immediately know that this descriptor has already been
 2372                  * looked at.  There is unfortunate casting magic because the
 2373                  * MPI API doesn't have a cardinal 64bit type.
 2374                  */
 2375                 tdesc = 0xffffffffffffffff;
 2376                 tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
 2377                 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
 2378 
 2379                 flags = desc->Default.ReplyFlags &
 2380                     MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
 2381                 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
 2382                  || (le32toh(desc->Words.High) == 0xffffffff))
 2383                         break;
 2384 
 2385                 /* increment the replypostindex now, so that event handlers
 2386                  * and cm completion handlers which decide to do a diag
 2387                  * reset can zero it without it getting incremented again
 2388                  * afterwards, and we break out of this loop on the next
 2389                  * iteration since the reply post queue has been cleared to
 2390                  * 0xFF and all descriptors look unused (which they are).
 2391                  */
 2392                 if (++sc->replypostindex >= sc->pqdepth)
 2393                         sc->replypostindex = 0;
 2394 
 2395                 switch (flags) {
 2396                 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
 2397                         cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
 2398                         cm->cm_reply = NULL;
 2399                         break;
 2400                 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
 2401                 {
 2402                         uint32_t baddr;
 2403                         uint8_t *reply;
 2404 
 2405                         /*
 2406                          * Re-compose the reply address from the address
 2407                          * sent back from the chip.  The ReplyFrameAddress
 2408                          * is the lower 32 bits of the physical address of
 2409                          * particular reply frame.  Convert that address to
 2410                          * host format, and then use that to provide the
 2411                          * offset against the virtual address base
 2412                          * (sc->reply_frames).
 2413                          */
 2414                         baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
 2415                         reply = sc->reply_frames +
 2416                                 (baddr - ((uint32_t)sc->reply_busaddr));
 2417                         /*
 2418                          * Make sure the reply we got back is in a valid
 2419                          * range.  If not, go ahead and panic here, since
 2420                          * we'll probably panic as soon as we deference the
 2421                          * reply pointer anyway.
 2422                          */
 2423                         if ((reply < sc->reply_frames)
 2424                          || (reply > (sc->reply_frames +
 2425                              (sc->fqdepth * sc->replyframesz)))) {
 2426                                 printf("%s: WARNING: reply %p out of range!\n",
 2427                                        __func__, reply);
 2428                                 printf("%s: reply_frames %p, fqdepth %d, "
 2429                                        "frame size %d\n", __func__,
 2430                                        sc->reply_frames, sc->fqdepth,
 2431                                        sc->replyframesz);
 2432                                 printf("%s: baddr %#x,\n", __func__, baddr);
 2433                                 /* LSI-TODO. See Linux Code for Graceful exit */
 2434                                 panic("Reply address out of range");
 2435                         }
 2436                         if (le16toh(desc->AddressReply.SMID) == 0) {
 2437                                 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
 2438                                     MPI2_FUNCTION_DIAG_BUFFER_POST) {
 2439                                         /*
 2440                                          * If SMID is 0 for Diag Buffer Post,
 2441                                          * this implies that the reply is due to
 2442                                          * a release function with a status that
 2443                                          * the buffer has been released.  Set
 2444                                          * the buffer flags accordingly.
 2445                                          */
 2446                                         rel_rep =
 2447                                             (MPI2_DIAG_RELEASE_REPLY *)reply;
 2448                                         if ((le16toh(rel_rep->IOCStatus) &
 2449                                             MPI2_IOCSTATUS_MASK) ==
 2450                                             MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
 2451                                         {
 2452                                                 pBuffer =
 2453                                                     &sc->fw_diag_buffer_list[
 2454                                                     rel_rep->BufferType];
 2455                                                 pBuffer->valid_data = TRUE;
 2456                                                 pBuffer->owned_by_firmware =
 2457                                                     FALSE;
 2458                                                 pBuffer->immediate = FALSE;
 2459                                         }
 2460                                 } else
 2461                                         mps_dispatch_event(sc, baddr,
 2462                                             (MPI2_EVENT_NOTIFICATION_REPLY *)
 2463                                             reply);
 2464                         } else {
 2465                                 /*
 2466                                  * Ignore commands not in INQUEUE state
 2467                                  * since they've already been completed
 2468                                  * via another path.
 2469                                  */
 2470                                 cm = &sc->commands[
 2471                                     le16toh(desc->AddressReply.SMID)];
 2472                                 if (cm->cm_state == MPS_CM_STATE_INQUEUE) {
 2473                                         cm->cm_reply = reply;
 2474                                         cm->cm_reply_data = le32toh(
 2475                                             desc->AddressReply.ReplyFrameAddress);
 2476                                 } else {
 2477                                         mps_dprint(sc, MPS_RECOVERY,
 2478                                             "Bad state for ADDRESS_REPLY status,"
 2479                                             " ignoring state %d cm %p\n",
 2480                                             cm->cm_state, cm);
 2481                                 }
 2482                         }
 2483                         break;
 2484                 }
 2485                 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
 2486                 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
 2487                 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
 2488                 default:
 2489                         /* Unhandled */
 2490                         mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n",
 2491                             desc->Default.ReplyFlags);
 2492                         cm = NULL;
 2493                         break;
 2494                 }
 2495                 
 2496 
 2497                 if (cm != NULL) {
 2498                         // Print Error reply frame
 2499                         if (cm->cm_reply)
 2500                                 mps_display_reply_info(sc,cm->cm_reply);
 2501                         mps_complete_command(sc, cm);
 2502                 }
 2503         }
 2504 
 2505         if (pq != sc->replypostindex) {
 2506                 mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n",
 2507                     __func__, sc, sc->replypostindex);
 2508                 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
 2509                     sc->replypostindex);
 2510         }
 2511 
 2512         return;
 2513 }
 2514 
 2515 static void
 2516 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
 2517     MPI2_EVENT_NOTIFICATION_REPLY *reply)
 2518 {
 2519         struct mps_event_handle *eh;
 2520         int event, handled = 0;
 2521 
 2522         event = le16toh(reply->Event);
 2523         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
 2524                 if (isset(eh->mask, event)) {
 2525                         eh->callback(sc, data, reply);
 2526                         handled++;
 2527                 }
 2528         }
 2529 
 2530         if (handled == 0)
 2531                 mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event));
 2532 
 2533         /*
 2534          * This is the only place that the event/reply should be freed.
 2535          * Anything wanting to hold onto the event data should have
 2536          * already copied it into their own storage.
 2537          */
 2538         mps_free_reply(sc, data);
 2539 }
 2540 
 2541 static void
 2542 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
 2543 {
 2544         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 2545 
 2546         if (cm->cm_reply)
 2547                 MPS_DPRINT_EVENT(sc, generic,
 2548                         (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
 2549 
 2550         mps_free_command(sc, cm);
 2551 
 2552         /* next, send a port enable */
 2553         mpssas_startup(sc);
 2554 }
 2555 
 2556 /*
 2557  * For both register_events and update_events, the caller supplies a bitmap
 2558  * of events that it _wants_.  These functions then turn that into a bitmask
 2559  * suitable for the controller.
 2560  */
 2561 int
 2562 mps_register_events(struct mps_softc *sc, u32 *mask,
 2563     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
 2564 {
 2565         struct mps_event_handle *eh;
 2566         int error = 0;
 2567 
 2568         eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
 2569         eh->callback = cb;
 2570         eh->data = data;
 2571         TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
 2572         if (mask != NULL)
 2573                 error = mps_update_events(sc, eh, mask);
 2574         *handle = eh;
 2575 
 2576         return (error);
 2577 }
 2578 
 2579 int
 2580 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
 2581     u32 *mask)
 2582 {
 2583         MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
 2584         MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
 2585         struct mps_command *cm;
 2586         int error, i;
 2587 
 2588         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 2589 
 2590         if ((mask != NULL) && (handle != NULL))
 2591                 bcopy(mask, &handle->mask[0], sizeof(u32) * 
 2592                                 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
 2593     
 2594         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
 2595                 sc->event_mask[i] = -1;
 2596 
 2597         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
 2598                 sc->event_mask[i] &= ~handle->mask[i];
 2599 
 2600         if ((cm = mps_alloc_command(sc)) == NULL)
 2601                 return (EBUSY);
 2602         evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
 2603         evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
 2604         evtreq->MsgFlags = 0;
 2605         evtreq->SASBroadcastPrimitiveMasks = 0;
 2606 #ifdef MPS_DEBUG_ALL_EVENTS
 2607         {
 2608                 u_char fullmask[16];
 2609                 memset(fullmask, 0x00, 16);
 2610                 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 
 2611                                 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
 2612         }
 2613 #else
 2614         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
 2615                 evtreq->EventMasks[i] =
 2616                     htole32(sc->event_mask[i]);
 2617 #endif
 2618         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 2619         cm->cm_data = NULL;
 2620 
 2621         error = mps_wait_command(sc, &cm, 60, 0);
 2622         if (cm != NULL)
 2623                 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
 2624         if ((reply == NULL) ||
 2625             (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
 2626                 error = ENXIO;
 2627 
 2628         if (reply)
 2629                 MPS_DPRINT_EVENT(sc, generic, reply);
 2630 
 2631         mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
 2632 
 2633         if (cm != NULL)
 2634                 mps_free_command(sc, cm);
 2635         return (error);
 2636 }
 2637 
 2638 static int
 2639 mps_reregister_events(struct mps_softc *sc)
 2640 {
 2641         MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
 2642         struct mps_command *cm;
 2643         struct mps_event_handle *eh;
 2644         int error, i;
 2645 
 2646         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
 2647 
 2648         /* first, reregister events */
 2649 
 2650         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
 2651                 sc->event_mask[i] = -1;
 2652 
 2653         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
 2654                 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
 2655                         sc->event_mask[i] &= ~eh->mask[i];
 2656         }
 2657 
 2658         if ((cm = mps_alloc_command(sc)) == NULL)
 2659                 return (EBUSY);
 2660         evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
 2661         evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
 2662         evtreq->MsgFlags = 0;
 2663         evtreq->SASBroadcastPrimitiveMasks = 0;
 2664 #ifdef MPS_DEBUG_ALL_EVENTS
 2665         {
 2666                 u_char fullmask[16];
 2667                 memset(fullmask, 0x00, 16);
 2668                 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
 2669                         MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
 2670         }
 2671 #else
 2672         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
 2673                 evtreq->EventMasks[i] =
 2674                     htole32(sc->event_mask[i]);
 2675 #endif
 2676         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 2677         cm->cm_data = NULL;
 2678         cm->cm_complete = mps_reregister_events_complete;
 2679 
 2680         error = mps_map_command(sc, cm);
 2681 
 2682         mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__,
 2683             error);
 2684         return (error);
 2685 }
 2686 
 2687 void
 2688 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
 2689 {
 2690 
 2691         TAILQ_REMOVE(&sc->event_list, handle, eh_list);
 2692         free(handle, M_MPT2);
 2693 }
 2694 
 2695 /*
 2696  * Add a chain element as the next SGE for the specified command.
 2697  * Reset cm_sge and cm_sgesize to indicate all the available space.
 2698  */
 2699 static int
 2700 mps_add_chain(struct mps_command *cm)
 2701 {
 2702         MPI2_SGE_CHAIN64 *sgc;
 2703         struct mps_chain *chain;
 2704         u_int space;
 2705 
 2706         if (cm->cm_sglsize < MPS_SGC_SIZE)
 2707                 panic("MPS: Need SGE Error Code\n");
 2708 
 2709         chain = mps_alloc_chain(cm->cm_sc);
 2710         if (chain == NULL)
 2711                 return (ENOBUFS);
 2712 
 2713         space = cm->cm_sc->reqframesz;
 2714 
 2715         /*
 2716          * Note: a double-linked list is used to make it easier to
 2717          * walk for debugging.
 2718          */
 2719         TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
 2720 
 2721         sgc = (MPI2_SGE_CHAIN64 *)&cm->cm_sge->MpiChain;
 2722         sgc->Length = htole16(space);
 2723         sgc->NextChainOffset = 0;
 2724         /* TODO Looks like bug in Setting sgc->Flags. 
 2725          *      sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
 2726          *                  MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT
 2727          *      This is fine.. because we are not using simple element. In case of 
 2728          *      MPI2_SGE_CHAIN64, we have separate Length and Flags feild.
 2729          */
 2730         sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
 2731         sgc->Address.High = htole32(chain->chain_busaddr >> 32);
 2732         sgc->Address.Low = htole32(chain->chain_busaddr);
 2733 
 2734         cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
 2735         cm->cm_sglsize = space;
 2736         return (0);
 2737 }
 2738 
 2739 /*
 2740  * Add one scatter-gather element (chain, simple, transaction context)
 2741  * to the scatter-gather list for a command.  Maintain cm_sglsize and
 2742  * cm_sge as the remaining size and pointer to the next SGE to fill
 2743  * in, respectively.
 2744  */
 2745 int
 2746 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
 2747 {
 2748         MPI2_SGE_TRANSACTION_UNION *tc = sgep;
 2749         MPI2_SGE_SIMPLE64 *sge = sgep;
 2750         int error, type;
 2751         uint32_t saved_buf_len, saved_address_low, saved_address_high;
 2752 
 2753         type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
 2754 
 2755 #ifdef INVARIANTS
 2756         switch (type) {
 2757         case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
 2758                 if (len != tc->DetailsLength + 4)
 2759                         panic("TC %p length %u or %zu?", tc,
 2760                             tc->DetailsLength + 4, len);
 2761                 }
 2762                 break;
 2763         case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
 2764                 /* Driver only uses 64-bit chain elements */
 2765                 if (len != MPS_SGC_SIZE)
 2766                         panic("CHAIN %p length %u or %zu?", sgep,
 2767                             MPS_SGC_SIZE, len);
 2768                 break;
 2769         case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
 2770                 /* Driver only uses 64-bit SGE simple elements */
 2771                 if (len != MPS_SGE64_SIZE)
 2772                         panic("SGE simple %p length %u or %zu?", sge,
 2773                             MPS_SGE64_SIZE, len);
 2774                 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
 2775                     MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
 2776                         panic("SGE simple %p not marked 64-bit?", sge);
 2777 
 2778                 break;
 2779         default:
 2780                 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
 2781         }
 2782 #endif
 2783 
 2784         /*
 2785          * case 1: 1 more segment, enough room for it
 2786          * case 2: 2 more segments, enough room for both
 2787          * case 3: >=2 more segments, only enough room for 1 and a chain
 2788          * case 4: >=1 more segment, enough room for only a chain
 2789          * case 5: >=1 more segment, no room for anything (error)
 2790          */
 2791 
 2792         /*
 2793          * There should be room for at least a chain element, or this
 2794          * code is buggy.  Case (5).
 2795          */
 2796         if (cm->cm_sglsize < MPS_SGC_SIZE)
 2797                 panic("MPS: Need SGE Error Code\n");
 2798 
 2799         if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
 2800                 /*
 2801                  * 1 or more segment, enough room for only a chain.
 2802                  * Hope the previous element wasn't a Simple entry
 2803                  * that needed to be marked with
 2804                  * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
 2805                  */
 2806                 if ((error = mps_add_chain(cm)) != 0)
 2807                         return (error);
 2808         }
 2809 
 2810         if (segsleft >= 2 &&
 2811             cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
 2812                 /*
 2813                  * There are 2 or more segments left to add, and only
 2814                  * enough room for 1 and a chain.  Case (3).
 2815                  *
 2816                  * Mark as last element in this chain if necessary.
 2817                  */
 2818                 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
 2819                         sge->FlagsLength |= htole32(
 2820                             MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
 2821                 }
 2822 
 2823                 /*
 2824                  * Add the item then a chain.  Do the chain now,
 2825                  * rather than on the next iteration, to simplify
 2826                  * understanding the code.
 2827                  */
 2828                 cm->cm_sglsize -= len;
 2829                 bcopy(sgep, cm->cm_sge, len);
 2830                 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
 2831                 return (mps_add_chain(cm));
 2832         }
 2833 
 2834 #ifdef INVARIANTS
 2835         /* Case 1: 1 more segment, enough room for it. */
 2836         if (segsleft == 1 && cm->cm_sglsize < len)
 2837                 panic("1 seg left and no room? %u versus %zu",
 2838                     cm->cm_sglsize, len);
 2839 
 2840         /* Case 2: 2 more segments, enough room for both */
 2841         if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
 2842                 panic("2 segs left and no room? %u versus %zu",
 2843                     cm->cm_sglsize, len);
 2844 #endif
 2845 
 2846         if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
 2847                 /*
 2848                  * If this is a bi-directional request, need to account for that
 2849                  * here.  Save the pre-filled sge values.  These will be used
 2850                  * either for the 2nd SGL or for a single direction SGL.  If
 2851                  * cm_out_len is non-zero, this is a bi-directional request, so
 2852                  * fill in the OUT SGL first, then the IN SGL, otherwise just
 2853                  * fill in the IN SGL.  Note that at this time, when filling in
 2854                  * 2 SGL's for a bi-directional request, they both use the same
 2855                  * DMA buffer (same cm command).
 2856                  */
 2857                 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
 2858                 saved_address_low = sge->Address.Low;
 2859                 saved_address_high = sge->Address.High;
 2860                 if (cm->cm_out_len) {
 2861                         sge->FlagsLength = htole32(cm->cm_out_len |
 2862                             ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 2863                             MPI2_SGE_FLAGS_END_OF_BUFFER |
 2864                             MPI2_SGE_FLAGS_HOST_TO_IOC |
 2865                             MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
 2866                             MPI2_SGE_FLAGS_SHIFT));
 2867                         cm->cm_sglsize -= len;
 2868                         bcopy(sgep, cm->cm_sge, len);
 2869                         cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
 2870                             + len);
 2871                 }
 2872                 saved_buf_len |=
 2873                     ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 2874                     MPI2_SGE_FLAGS_END_OF_BUFFER |
 2875                     MPI2_SGE_FLAGS_LAST_ELEMENT |
 2876                     MPI2_SGE_FLAGS_END_OF_LIST |
 2877                     MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
 2878                     MPI2_SGE_FLAGS_SHIFT);
 2879                 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
 2880                         saved_buf_len |=
 2881                             ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
 2882                             MPI2_SGE_FLAGS_SHIFT);
 2883                 } else {
 2884                         saved_buf_len |=
 2885                             ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
 2886                             MPI2_SGE_FLAGS_SHIFT);
 2887                 }
 2888                 sge->FlagsLength = htole32(saved_buf_len);
 2889                 sge->Address.Low = saved_address_low;
 2890                 sge->Address.High = saved_address_high;
 2891         }
 2892 
 2893         cm->cm_sglsize -= len;
 2894         bcopy(sgep, cm->cm_sge, len);
 2895         cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
 2896         return (0);
 2897 }
 2898 
 2899 /*
 2900  * Add one dma segment to the scatter-gather list for a command.
 2901  */
 2902 int
 2903 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
 2904     int segsleft)
 2905 {
 2906         MPI2_SGE_SIMPLE64 sge;
 2907 
 2908         /*
 2909          * This driver always uses 64-bit address elements for simplicity.
 2910          */
 2911         bzero(&sge, sizeof(sge));
 2912         flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
 2913             MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
 2914         sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
 2915         mps_from_u64(pa, &sge.Address);
 2916 
 2917         return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
 2918 }
 2919 
 2920 static void
 2921 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
 2922 {
 2923         struct mps_softc *sc;
 2924         struct mps_command *cm;
 2925         u_int i, dir, sflags;
 2926 
 2927         cm = (struct mps_command *)arg;
 2928         sc = cm->cm_sc;
 2929 
 2930         /*
 2931          * In this case, just print out a warning and let the chip tell the
 2932          * user they did the wrong thing.
 2933          */
 2934         if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
 2935                 mps_dprint(sc, MPS_ERROR,
 2936                            "%s: warning: busdma returned %d segments, "
 2937                            "more than the %d allowed\n", __func__, nsegs,
 2938                            cm->cm_max_segs);
 2939         }
 2940 
 2941         /*
 2942          * Set up DMA direction flags.  Bi-directional requests are also handled
 2943          * here.  In that case, both direction flags will be set.
 2944          */
 2945         sflags = 0;
 2946         if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
 2947                 /*
 2948                  * We have to add a special case for SMP passthrough, there
 2949                  * is no easy way to generically handle it.  The first
 2950                  * S/G element is used for the command (therefore the
 2951                  * direction bit needs to be set).  The second one is used
 2952                  * for the reply.  We'll leave it to the caller to make
 2953                  * sure we only have two buffers.
 2954                  */
 2955                 /*
 2956                  * Even though the busdma man page says it doesn't make
 2957                  * sense to have both direction flags, it does in this case.
 2958                  * We have one s/g element being accessed in each direction.
 2959                  */
 2960                 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
 2961 
 2962                 /*
 2963                  * Set the direction flag on the first buffer in the SMP
 2964                  * passthrough request.  We'll clear it for the second one.
 2965                  */
 2966                 sflags |= MPI2_SGE_FLAGS_DIRECTION |
 2967                           MPI2_SGE_FLAGS_END_OF_BUFFER;
 2968         } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
 2969                 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
 2970                 dir = BUS_DMASYNC_PREWRITE;
 2971         } else
 2972                 dir = BUS_DMASYNC_PREREAD;
 2973 
 2974         for (i = 0; i < nsegs; i++) {
 2975                 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
 2976                         sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
 2977                 }
 2978                 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
 2979                     sflags, nsegs - i);
 2980                 if (error != 0) {
 2981                         /* Resource shortage, roll back! */
 2982                         if (ratecheck(&sc->lastfail, &mps_chainfail_interval))
 2983                                 mps_dprint(sc, MPS_INFO, "Out of chain frames, "
 2984                                     "consider increasing hw.mps.max_chains.\n");
 2985                         cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
 2986                         /*
 2987                          * mpr_complete_command can only be called on commands
 2988                          * that are in the queue. Since this is an error path
 2989                          * which gets called before we enqueue, update the state
 2990                          * to meet this requirement before we complete it.
 2991                          */
 2992                         cm->cm_state = MPS_CM_STATE_INQUEUE;
 2993                         mps_complete_command(sc, cm);
 2994                         return;
 2995                 }
 2996         }
 2997 
 2998         bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
 2999         mps_enqueue_request(sc, cm);
 3000 
 3001         return;
 3002 }
 3003 
 3004 static void
 3005 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
 3006              int error)
 3007 {
 3008         mps_data_cb(arg, segs, nsegs, error);
 3009 }
 3010 
 3011 /*
 3012  * This is the routine to enqueue commands ansynchronously.
 3013  * Note that the only error path here is from bus_dmamap_load(), which can
 3014  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
 3015  * assumed that if you have a command in-hand, then you have enough credits
 3016  * to use it.
 3017  */
 3018 int
 3019 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
 3020 {
 3021         int error = 0;
 3022 
 3023         if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
 3024                 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
 3025                     &cm->cm_uio, mps_data_cb2, cm, 0);
 3026         } else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) {
 3027                 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
 3028                     cm->cm_data, mps_data_cb, cm, 0);
 3029         } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
 3030                 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
 3031                     cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
 3032         } else {
 3033                 /* Add a zero-length element as needed */
 3034                 if (cm->cm_sge != NULL)
 3035                         mps_add_dmaseg(cm, 0, 0, 0, 1);
 3036                 mps_enqueue_request(sc, cm);    
 3037         }
 3038 
 3039         return (error);
 3040 }
 3041 
 3042 /*
 3043  * This is the routine to enqueue commands synchronously.  An error of
 3044  * EINPROGRESS from mps_map_command() is ignored since the command will
 3045  * be executed and enqueued automatically.  Other errors come from msleep().
 3046  */
 3047 int
 3048 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout,
 3049     int sleep_flag)
 3050 {
 3051         int error, rc;
 3052         struct timeval cur_time, start_time;
 3053         struct mps_command *cm = *cmp;
 3054 
 3055         if (sc->mps_flags & MPS_FLAGS_DIAGRESET) 
 3056                 return  EBUSY;
 3057 
 3058         cm->cm_complete = NULL;
 3059         cm->cm_flags |= MPS_CM_FLAGS_POLLED;
 3060         error = mps_map_command(sc, cm);
 3061         if ((error != 0) && (error != EINPROGRESS))
 3062                 return (error);
 3063 
 3064         /*
 3065          * Check for context and wait for 50 mSec at a time until time has
 3066          * expired or the command has finished.  If msleep can't be used, need
 3067          * to poll.
 3068          */
 3069         if (curthread->td_no_sleeping != 0)
 3070                 sleep_flag = NO_SLEEP;
 3071         getmicrouptime(&start_time);
 3072         if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) {
 3073                 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
 3074                 error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz);
 3075                 if (error == EWOULDBLOCK) {
 3076                         /*
 3077                          * Record the actual elapsed time in the case of a
 3078                          * timeout for the message below.
 3079                          */
 3080                         getmicrouptime(&cur_time);
 3081                         timevalsub(&cur_time, &start_time);
 3082                 }
 3083         } else {
 3084                 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
 3085                         mps_intr_locked(sc);
 3086                         if (sleep_flag == CAN_SLEEP)
 3087                                 pause("mpswait", hz/20);
 3088                         else
 3089                                 DELAY(50000);
 3090                 
 3091                         getmicrouptime(&cur_time);
 3092                         timevalsub(&cur_time, &start_time);
 3093                         if (cur_time.tv_sec > timeout) {
 3094                                 error = EWOULDBLOCK;
 3095                                 break;
 3096                         }
 3097                 }
 3098         }
 3099 
 3100         if (error == EWOULDBLOCK) {
 3101                 if (cm->cm_timeout_handler == NULL) {
 3102                         mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d,"
 3103                             " elapsed=%jd\n", __func__, timeout,
 3104                             (intmax_t)cur_time.tv_sec);
 3105                         rc = mps_reinit(sc);
 3106                         mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
 3107                             "failed");
 3108                 } else
 3109                         cm->cm_timeout_handler(sc, cm);
 3110                 if (sc->mps_flags & MPS_FLAGS_REALLOCATED) {
 3111                         /*
 3112                          * Tell the caller that we freed the command in a
 3113                          * reinit.
 3114                          */
 3115                         *cmp = NULL;
 3116                 }
 3117                 error = ETIMEDOUT;
 3118         }
 3119         return (error);
 3120 }
 3121 
 3122 /*
 3123  * The MPT driver had a verbose interface for config pages.  In this driver,
 3124  * reduce it to much simpler terms, similar to the Linux driver.
 3125  */
 3126 int
 3127 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
 3128 {
 3129         MPI2_CONFIG_REQUEST *req;
 3130         struct mps_command *cm;
 3131         int error;
 3132 
 3133         if (sc->mps_flags & MPS_FLAGS_BUSY) {
 3134                 return (EBUSY);
 3135         }
 3136 
 3137         cm = mps_alloc_command(sc);
 3138         if (cm == NULL) {
 3139                 return (EBUSY);
 3140         }
 3141 
 3142         req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
 3143         req->Function = MPI2_FUNCTION_CONFIG;
 3144         req->Action = params->action;
 3145         req->SGLFlags = 0;
 3146         req->ChainOffset = 0;
 3147         req->PageAddress = params->page_address;
 3148         if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
 3149                 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
 3150 
 3151                 hdr = &params->hdr.Ext;
 3152                 req->ExtPageType = hdr->ExtPageType;
 3153                 req->ExtPageLength = hdr->ExtPageLength;
 3154                 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
 3155                 req->Header.PageLength = 0; /* Must be set to zero */
 3156                 req->Header.PageNumber = hdr->PageNumber;
 3157                 req->Header.PageVersion = hdr->PageVersion;
 3158         } else {
 3159                 MPI2_CONFIG_PAGE_HEADER *hdr;
 3160 
 3161                 hdr = &params->hdr.Struct;
 3162                 req->Header.PageType = hdr->PageType;
 3163                 req->Header.PageNumber = hdr->PageNumber;
 3164                 req->Header.PageLength = hdr->PageLength;
 3165                 req->Header.PageVersion = hdr->PageVersion;
 3166         }
 3167 
 3168         cm->cm_data = params->buffer;
 3169         cm->cm_length = params->length;
 3170         if (cm->cm_data != NULL) {
 3171                 cm->cm_sge = &req->PageBufferSGE;
 3172                 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
 3173                 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
 3174         } else
 3175                 cm->cm_sge = NULL;
 3176         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
 3177 
 3178         cm->cm_complete_data = params;
 3179         if (params->callback != NULL) {
 3180                 cm->cm_complete = mps_config_complete;
 3181                 return (mps_map_command(sc, cm));
 3182         } else {
 3183                 error = mps_wait_command(sc, &cm, 0, CAN_SLEEP);
 3184                 if (error) {
 3185                         mps_dprint(sc, MPS_FAULT,
 3186                             "Error %d reading config page\n", error);
 3187                         if (cm != NULL)
 3188                                 mps_free_command(sc, cm);
 3189                         return (error);
 3190                 }
 3191                 mps_config_complete(sc, cm);
 3192         }
 3193 
 3194         return (0);
 3195 }
 3196 
 3197 int
 3198 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
 3199 {
 3200         return (EINVAL);
 3201 }
 3202 
 3203 static void
 3204 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
 3205 {
 3206         MPI2_CONFIG_REPLY *reply;
 3207         struct mps_config_params *params;
 3208 
 3209         MPS_FUNCTRACE(sc);
 3210         params = cm->cm_complete_data;
 3211 
 3212         if (cm->cm_data != NULL) {
 3213                 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
 3214                     BUS_DMASYNC_POSTREAD);
 3215                 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
 3216         }
 3217 
 3218         /*
 3219          * XXX KDM need to do more error recovery?  This results in the
 3220          * device in question not getting probed.
 3221          */
 3222         if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
 3223                 params->status = MPI2_IOCSTATUS_BUSY;
 3224                 goto done;
 3225         }
 3226 
 3227         reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
 3228         if (reply == NULL) {
 3229                 params->status = MPI2_IOCSTATUS_BUSY;
 3230                 goto done;
 3231         }
 3232         params->status = reply->IOCStatus;
 3233         if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
 3234                 params->hdr.Ext.ExtPageType = reply->ExtPageType;
 3235                 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
 3236                 params->hdr.Ext.PageType = reply->Header.PageType;
 3237                 params->hdr.Ext.PageNumber = reply->Header.PageNumber;
 3238                 params->hdr.Ext.PageVersion = reply->Header.PageVersion;
 3239         } else {
 3240                 params->hdr.Struct.PageType = reply->Header.PageType;
 3241                 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
 3242                 params->hdr.Struct.PageLength = reply->Header.PageLength;
 3243                 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
 3244         }
 3245 
 3246 done:
 3247         mps_free_command(sc, cm);
 3248         if (params->callback != NULL)
 3249                 params->callback(sc, params);
 3250 
 3251         return;
 3252 }

Cache object: a50f0141d49ad162c60a7dcad36bc8fa


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.