FreeBSD/Linux Kernel Cross Reference
sys/dev/mpt/mpt.c
1 /*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-3-Clause
6 *
7 * Copyright (c) 2000, 2001 by Greg Ansley
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice immediately at the beginning of the file, without modification,
14 * this list of conditions, and the following disclaimer.
15 * 2. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30 /*-
31 * Copyright (c) 2002, 2006 by Matthew Jacob
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions are
36 * met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
40 * substantially similar to the "NO WARRANTY" disclaimer below
41 * ("Disclaimer") and any redistribution must be conditioned upon including
42 * a substantially similar Disclaimer requirement for further binary
43 * redistribution.
44 * 3. Neither the names of the above listed copyright holders nor the names
45 * of any contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
49 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
52 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
58 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 *
60 * Support from Chris Ellsworth in order to make SAS adapters work
61 * is gratefully acknowledged.
62 *
63 *
64 * Support from LSI-Logic has also gone a great deal toward making this a
65 * workable subsystem and is gratefully acknowledged.
66 */
67 /*-
68 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
69 * Copyright (c) 2005, WHEEL Sp. z o.o.
70 * Copyright (c) 2004, 2005 Justin T. Gibbs
71 * All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions are
75 * met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
79 * substantially similar to the "NO WARRANTY" disclaimer below
80 * ("Disclaimer") and any redistribution must be conditioned upon including
81 * a substantially similar Disclaimer requirement for further binary
82 * redistribution.
83 * 3. Neither the names of the above listed copyright holders nor the names
84 * of any contributors may be used to endorse or promote products derived
85 * from this software without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
88 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
91 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
92 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
93 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
94 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
95 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
96 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
97 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
98 */
99
100 #include <sys/cdefs.h>
101 __FBSDID("$FreeBSD$");
102
103 #include <dev/mpt/mpt.h>
104 #include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
105 #include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
106
107 #include <dev/mpt/mpilib/mpi.h>
108 #include <dev/mpt/mpilib/mpi_ioc.h>
109 #include <dev/mpt/mpilib/mpi_fc.h>
110 #include <dev/mpt/mpilib/mpi_targ.h>
111
112 #include <sys/sysctl.h>
113
114 #define MPT_MAX_TRYS 3
115 #define MPT_MAX_WAIT 300000
116
117 static int maxwait_ack = 0;
118 static int maxwait_int = 0;
119 static int maxwait_state = 0;
120
121 static TAILQ_HEAD(, mpt_softc) mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
122 mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
123
124 static mpt_reply_handler_t mpt_default_reply_handler;
125 static mpt_reply_handler_t mpt_config_reply_handler;
126 static mpt_reply_handler_t mpt_handshake_reply_handler;
127 static mpt_reply_handler_t mpt_event_reply_handler;
128 static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
129 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
130 static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
131 static int mpt_soft_reset(struct mpt_softc *mpt);
132 static void mpt_hard_reset(struct mpt_softc *mpt);
133 static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
134 static void mpt_dma_buf_free(struct mpt_softc *mpt);
135 static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
136 static int mpt_enable_ioc(struct mpt_softc *mpt, int);
137
138 /************************* Personality Module Support *************************/
139 /*
140 * We include one extra entry that is guaranteed to be NULL
141 * to simplify our itterator.
142 */
143 static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
144 static __inline struct mpt_personality*
145 mpt_pers_find(struct mpt_softc *, u_int);
146 static __inline struct mpt_personality*
147 mpt_pers_find_reverse(struct mpt_softc *, u_int);
148
149 static __inline struct mpt_personality *
150 mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
151 {
152 KASSERT(start_at <= MPT_MAX_PERSONALITIES,
153 ("mpt_pers_find: starting position out of range"));
154
155 while (start_at < MPT_MAX_PERSONALITIES
156 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
157 start_at++;
158 }
159 return (mpt_personalities[start_at]);
160 }
161
162 /*
163 * Used infrequently, so no need to optimize like a forward
164 * traversal where we use the MAX+1 is guaranteed to be NULL
165 * trick.
166 */
167 static __inline struct mpt_personality *
168 mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
169 {
170 while (start_at < MPT_MAX_PERSONALITIES
171 && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
172 start_at--;
173 }
174 if (start_at < MPT_MAX_PERSONALITIES)
175 return (mpt_personalities[start_at]);
176 return (NULL);
177 }
178
179 #define MPT_PERS_FOREACH(mpt, pers) \
180 for (pers = mpt_pers_find(mpt, /*start_at*/0); \
181 pers != NULL; \
182 pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
183
184 #define MPT_PERS_FOREACH_REVERSE(mpt, pers) \
185 for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
186 pers != NULL; \
187 pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
188
189 static mpt_load_handler_t mpt_stdload;
190 static mpt_probe_handler_t mpt_stdprobe;
191 static mpt_attach_handler_t mpt_stdattach;
192 static mpt_enable_handler_t mpt_stdenable;
193 static mpt_ready_handler_t mpt_stdready;
194 static mpt_event_handler_t mpt_stdevent;
195 static mpt_reset_handler_t mpt_stdreset;
196 static mpt_shutdown_handler_t mpt_stdshutdown;
197 static mpt_detach_handler_t mpt_stddetach;
198 static mpt_unload_handler_t mpt_stdunload;
199 static struct mpt_personality mpt_default_personality =
200 {
201 .load = mpt_stdload,
202 .probe = mpt_stdprobe,
203 .attach = mpt_stdattach,
204 .enable = mpt_stdenable,
205 .ready = mpt_stdready,
206 .event = mpt_stdevent,
207 .reset = mpt_stdreset,
208 .shutdown = mpt_stdshutdown,
209 .detach = mpt_stddetach,
210 .unload = mpt_stdunload
211 };
212
213 static mpt_load_handler_t mpt_core_load;
214 static mpt_attach_handler_t mpt_core_attach;
215 static mpt_enable_handler_t mpt_core_enable;
216 static mpt_reset_handler_t mpt_core_ioc_reset;
217 static mpt_event_handler_t mpt_core_event;
218 static mpt_shutdown_handler_t mpt_core_shutdown;
219 static mpt_shutdown_handler_t mpt_core_detach;
220 static mpt_unload_handler_t mpt_core_unload;
221 static struct mpt_personality mpt_core_personality =
222 {
223 .name = "mpt_core",
224 .load = mpt_core_load,
225 // .attach = mpt_core_attach,
226 // .enable = mpt_core_enable,
227 .event = mpt_core_event,
228 .reset = mpt_core_ioc_reset,
229 .shutdown = mpt_core_shutdown,
230 .detach = mpt_core_detach,
231 .unload = mpt_core_unload,
232 };
233
234 /*
235 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
236 * ordering information. We want the core to always register FIRST.
237 * other modules are set to SI_ORDER_SECOND.
238 */
239 static moduledata_t mpt_core_mod = {
240 "mpt_core", mpt_modevent, &mpt_core_personality
241 };
242 DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
243 MODULE_VERSION(mpt_core, 1);
244
245 #define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
246
247 int
248 mpt_modevent(module_t mod, int type, void *data)
249 {
250 struct mpt_personality *pers;
251 int error;
252
253 pers = (struct mpt_personality *)data;
254
255 error = 0;
256 switch (type) {
257 case MOD_LOAD:
258 {
259 mpt_load_handler_t **def_handler;
260 mpt_load_handler_t **pers_handler;
261 int i;
262
263 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
264 if (mpt_personalities[i] == NULL)
265 break;
266 }
267 if (i >= MPT_MAX_PERSONALITIES) {
268 error = ENOMEM;
269 break;
270 }
271 pers->id = i;
272 mpt_personalities[i] = pers;
273
274 /* Install standard/noop handlers for any NULL entries. */
275 def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
276 pers_handler = MPT_PERS_FIRST_HANDLER(pers);
277 while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
278 if (*pers_handler == NULL)
279 *pers_handler = *def_handler;
280 pers_handler++;
281 def_handler++;
282 }
283
284 error = (pers->load(pers));
285 if (error != 0)
286 mpt_personalities[i] = NULL;
287 break;
288 }
289 case MOD_SHUTDOWN:
290 break;
291 case MOD_QUIESCE:
292 break;
293 case MOD_UNLOAD:
294 error = pers->unload(pers);
295 mpt_personalities[pers->id] = NULL;
296 break;
297 default:
298 error = EINVAL;
299 break;
300 }
301 return (error);
302 }
303
304 static int
305 mpt_stdload(struct mpt_personality *pers)
306 {
307
308 /* Load is always successful. */
309 return (0);
310 }
311
312 static int
313 mpt_stdprobe(struct mpt_softc *mpt)
314 {
315
316 /* Probe is always successful. */
317 return (0);
318 }
319
320 static int
321 mpt_stdattach(struct mpt_softc *mpt)
322 {
323
324 /* Attach is always successful. */
325 return (0);
326 }
327
328 static int
329 mpt_stdenable(struct mpt_softc *mpt)
330 {
331
332 /* Enable is always successful. */
333 return (0);
334 }
335
336 static void
337 mpt_stdready(struct mpt_softc *mpt)
338 {
339
340 }
341
342 static int
343 mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344 {
345
346 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347 /* Event was not for us. */
348 return (0);
349 }
350
351 static void
352 mpt_stdreset(struct mpt_softc *mpt, int type)
353 {
354
355 }
356
357 static void
358 mpt_stdshutdown(struct mpt_softc *mpt)
359 {
360
361 }
362
363 static void
364 mpt_stddetach(struct mpt_softc *mpt)
365 {
366
367 }
368
369 static int
370 mpt_stdunload(struct mpt_personality *pers)
371 {
372
373 /* Unload is always successful. */
374 return (0);
375 }
376
377 /*
378 * Post driver attachment, we may want to perform some global actions.
379 * Here is the hook to do so.
380 */
381
382 static void
383 mpt_postattach(void *unused)
384 {
385 struct mpt_softc *mpt;
386 struct mpt_personality *pers;
387
388 TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389 MPT_PERS_FOREACH(mpt, pers)
390 pers->ready(mpt);
391 }
392 }
393 SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394
395 /******************************* Bus DMA Support ******************************/
396 void
397 mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398 {
399 struct mpt_map_info *map_info;
400
401 map_info = (struct mpt_map_info *)arg;
402 map_info->error = error;
403 map_info->phys = segs->ds_addr;
404 }
405
406 /**************************** Reply/Event Handling ****************************/
407 int
408 mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409 mpt_handler_t handler, uint32_t *phandler_id)
410 {
411
412 switch (type) {
413 case MPT_HANDLER_REPLY:
414 {
415 u_int cbi;
416 u_int free_cbi;
417
418 if (phandler_id == NULL)
419 return (EINVAL);
420
421 free_cbi = MPT_HANDLER_ID_NONE;
422 for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423 /*
424 * If the same handler is registered multiple
425 * times, don't error out. Just return the
426 * index of the original registration.
427 */
428 if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429 *phandler_id = MPT_CBI_TO_HID(cbi);
430 return (0);
431 }
432
433 /*
434 * Fill from the front in the hope that
435 * all registered handlers consume only a
436 * single cache line.
437 *
438 * We don't break on the first empty slot so
439 * that the full table is checked to see if
440 * this handler was previously registered.
441 */
442 if (free_cbi == MPT_HANDLER_ID_NONE &&
443 (mpt_reply_handlers[cbi]
444 == mpt_default_reply_handler))
445 free_cbi = cbi;
446 }
447 if (free_cbi == MPT_HANDLER_ID_NONE) {
448 return (ENOMEM);
449 }
450 mpt_reply_handlers[free_cbi] = handler.reply_handler;
451 *phandler_id = MPT_CBI_TO_HID(free_cbi);
452 break;
453 }
454 default:
455 mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456 return (EINVAL);
457 }
458 return (0);
459 }
460
461 int
462 mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463 mpt_handler_t handler, uint32_t handler_id)
464 {
465
466 switch (type) {
467 case MPT_HANDLER_REPLY:
468 {
469 u_int cbi;
470
471 cbi = MPT_CBI(handler_id);
472 if (cbi >= MPT_NUM_REPLY_HANDLERS
473 || mpt_reply_handlers[cbi] != handler.reply_handler)
474 return (ENOENT);
475 mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476 break;
477 }
478 default:
479 mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480 return (EINVAL);
481 }
482 return (0);
483 }
484
485 static int
486 mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488 {
489
490 mpt_prt(mpt,
491 "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492 req, req->serno, reply_desc, reply_frame);
493
494 if (reply_frame != NULL)
495 mpt_dump_reply_frame(mpt, reply_frame);
496
497 mpt_prt(mpt, "Reply Frame Ignored\n");
498
499 return (/*free_reply*/TRUE);
500 }
501
502 static int
503 mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505 {
506
507 if (req != NULL) {
508 if (reply_frame != NULL) {
509 MSG_CONFIG *cfgp;
510 MSG_CONFIG_REPLY *reply;
511
512 cfgp = (MSG_CONFIG *)req->req_vbuf;
513 reply = (MSG_CONFIG_REPLY *)reply_frame;
514 req->IOCStatus = le16toh(reply_frame->IOCStatus);
515 bcopy(&reply->Header, &cfgp->Header,
516 sizeof(cfgp->Header));
517 cfgp->ExtPageLength = reply->ExtPageLength;
518 cfgp->ExtPageType = reply->ExtPageType;
519 }
520 req->state &= ~REQ_STATE_QUEUED;
521 req->state |= REQ_STATE_DONE;
522 TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523 if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524 wakeup(req);
525 } else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526 /*
527 * Whew- we can free this request (late completion)
528 */
529 mpt_free_request(mpt, req);
530 }
531 }
532
533 return (TRUE);
534 }
535
536 static int
537 mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539 {
540
541 /* Nothing to be done. */
542 return (TRUE);
543 }
544
545 static int
546 mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548 {
549 int free_reply;
550
551 KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552 KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553
554 free_reply = TRUE;
555 switch (reply_frame->Function) {
556 case MPI_FUNCTION_EVENT_NOTIFICATION:
557 {
558 MSG_EVENT_NOTIFY_REPLY *msg;
559 struct mpt_personality *pers;
560 u_int handled;
561
562 handled = 0;
563 msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564 msg->EventDataLength = le16toh(msg->EventDataLength);
565 msg->IOCStatus = le16toh(msg->IOCStatus);
566 msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567 msg->Event = le32toh(msg->Event);
568 MPT_PERS_FOREACH(mpt, pers)
569 handled += pers->event(mpt, req, msg);
570
571 if (handled == 0 && mpt->mpt_pers_mask == 0) {
572 mpt_lprt(mpt, MPT_PRT_INFO,
573 "No Handlers For Any Event Notify Frames. "
574 "Event %#x (ACK %sequired).\n",
575 msg->Event, msg->AckRequired? "r" : "not r");
576 } else if (handled == 0) {
577 mpt_lprt(mpt,
578 msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579 "Unhandled Event Notify Frame. Event %#x "
580 "(ACK %sequired).\n",
581 msg->Event, msg->AckRequired? "r" : "not r");
582 }
583
584 if (msg->AckRequired) {
585 request_t *ack_req;
586 uint32_t context;
587
588 context = req->index | MPT_REPLY_HANDLER_EVENTS;
589 ack_req = mpt_get_request(mpt, FALSE);
590 if (ack_req == NULL) {
591 struct mpt_evtf_record *evtf;
592
593 evtf = (struct mpt_evtf_record *)reply_frame;
594 evtf->context = context;
595 LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596 free_reply = FALSE;
597 break;
598 }
599 mpt_send_event_ack(mpt, ack_req, msg, context);
600 /*
601 * Don't check for CONTINUATION_REPLY here
602 */
603 return (free_reply);
604 }
605 break;
606 }
607 case MPI_FUNCTION_PORT_ENABLE:
608 mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609 break;
610 case MPI_FUNCTION_EVENT_ACK:
611 break;
612 default:
613 mpt_prt(mpt, "unknown event function: %x\n",
614 reply_frame->Function);
615 break;
616 }
617
618 /*
619 * I'm not sure that this continuation stuff works as it should.
620 *
621 * I've had FC async events occur that free the frame up because
622 * the continuation bit isn't set, and then additional async events
623 * then occur using the same context. As you might imagine, this
624 * leads to Very Bad Thing.
625 *
626 * Let's just be safe for now and not free them up until we figure
627 * out what's actually happening here.
628 */
629 #if 0
630 if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631 TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632 mpt_free_request(mpt, req);
633 mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634 reply_frame->Function, req, req->serno);
635 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636 MSG_EVENT_NOTIFY_REPLY *msg =
637 (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638 mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639 msg->Event, msg->AckRequired);
640 }
641 } else {
642 mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643 reply_frame->Function, req, req->serno);
644 if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645 MSG_EVENT_NOTIFY_REPLY *msg =
646 (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647 mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648 msg->Event, msg->AckRequired);
649 }
650 mpt_prtc(mpt, "\n");
651 }
652 #endif
653 return (free_reply);
654 }
655
656 /*
657 * Process an asynchronous event from the IOC.
658 */
659 static int
660 mpt_core_event(struct mpt_softc *mpt, request_t *req,
661 MSG_EVENT_NOTIFY_REPLY *msg)
662 {
663
664 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665 msg->Event & 0xFF);
666 switch(msg->Event & 0xFF) {
667 case MPI_EVENT_NONE:
668 break;
669 case MPI_EVENT_LOG_DATA:
670 {
671 int i;
672
673 /* Some error occurred that LSI wants logged */
674 mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675 msg->IOCLogInfo);
676 mpt_prt(mpt, "\tEvtLogData: Event Data:");
677 for (i = 0; i < msg->EventDataLength; i++)
678 mpt_prtc(mpt, " %08x", msg->Data[i]);
679 mpt_prtc(mpt, "\n");
680 break;
681 }
682 case MPI_EVENT_EVENT_CHANGE:
683 /*
684 * This is just an acknowledgement
685 * of our mpt_send_event_request.
686 */
687 break;
688 case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689 break;
690 default:
691 return (0);
692 break;
693 }
694 return (1);
695 }
696
697 static void
698 mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699 MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700 {
701 MSG_EVENT_ACK *ackp;
702
703 ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704 memset(ackp, 0, sizeof (*ackp));
705 ackp->Function = MPI_FUNCTION_EVENT_ACK;
706 ackp->Event = htole32(msg->Event);
707 ackp->EventContext = htole32(msg->EventContext);
708 ackp->MsgContext = htole32(context);
709 mpt_check_doorbell(mpt);
710 mpt_send_cmd(mpt, ack_req);
711 }
712
713 /***************************** Interrupt Handling *****************************/
714 void
715 mpt_intr(void *arg)
716 {
717 struct mpt_softc *mpt;
718 uint32_t reply_desc;
719 int ntrips = 0;
720
721 mpt = (struct mpt_softc *)arg;
722 mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723 MPT_LOCK_ASSERT(mpt);
724
725 while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726 request_t *req;
727 MSG_DEFAULT_REPLY *reply_frame;
728 uint32_t reply_baddr;
729 uint32_t ctxt_idx;
730 u_int cb_index;
731 u_int req_index;
732 u_int offset;
733 int free_rf;
734
735 req = NULL;
736 reply_frame = NULL;
737 reply_baddr = 0;
738 offset = 0;
739 if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740 /*
741 * Ensure that the reply frame is coherent.
742 */
743 reply_baddr = MPT_REPLY_BADDR(reply_desc);
744 offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745 bus_dmamap_sync_range(mpt->reply_dmat,
746 mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747 BUS_DMASYNC_POSTREAD);
748 reply_frame = MPT_REPLY_OTOV(mpt, offset);
749 ctxt_idx = le32toh(reply_frame->MsgContext);
750 } else {
751 uint32_t type;
752
753 type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754 ctxt_idx = reply_desc;
755 mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756 reply_desc);
757
758 switch (type) {
759 case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760 ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761 break;
762 case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763 ctxt_idx = GET_IO_INDEX(reply_desc);
764 if (mpt->tgt_cmd_ptrs == NULL) {
765 mpt_prt(mpt,
766 "mpt_intr: no target cmd ptrs\n");
767 reply_desc = MPT_REPLY_EMPTY;
768 break;
769 }
770 if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771 mpt_prt(mpt,
772 "mpt_intr: bad tgt cmd ctxt %u\n",
773 ctxt_idx);
774 reply_desc = MPT_REPLY_EMPTY;
775 ntrips = 1000;
776 break;
777 }
778 req = mpt->tgt_cmd_ptrs[ctxt_idx];
779 if (req == NULL) {
780 mpt_prt(mpt, "no request backpointer "
781 "at index %u", ctxt_idx);
782 reply_desc = MPT_REPLY_EMPTY;
783 ntrips = 1000;
784 break;
785 }
786 /*
787 * Reformulate ctxt_idx to be just as if
788 * it were another type of context reply
789 * so the code below will find the request
790 * via indexing into the pool.
791 */
792 ctxt_idx =
793 req->index | mpt->scsi_tgt_handler_id;
794 req = NULL;
795 break;
796 case MPI_CONTEXT_REPLY_TYPE_LAN:
797 mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798 reply_desc);
799 reply_desc = MPT_REPLY_EMPTY;
800 break;
801 default:
802 mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803 reply_desc = MPT_REPLY_EMPTY;
804 break;
805 }
806 if (reply_desc == MPT_REPLY_EMPTY) {
807 if (ntrips++ > 1000) {
808 break;
809 }
810 continue;
811 }
812 }
813
814 cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815 req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816 if (req_index < MPT_MAX_REQUESTS(mpt)) {
817 req = &mpt->request_pool[req_index];
818 } else {
819 mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820 " 0x%x)\n", req_index, reply_desc);
821 }
822
823 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825 free_rf = mpt_reply_handlers[cb_index](mpt, req,
826 reply_desc, reply_frame);
827
828 if (reply_frame != NULL && free_rf) {
829 bus_dmamap_sync_range(mpt->reply_dmat,
830 mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831 BUS_DMASYNC_PREREAD);
832 mpt_free_reply(mpt, reply_baddr);
833 }
834
835 /*
836 * If we got ourselves disabled, don't get stuck in a loop
837 */
838 if (mpt->disabled) {
839 mpt_disable_ints(mpt);
840 break;
841 }
842 if (ntrips++ > 1000) {
843 break;
844 }
845 }
846 mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847 }
848
849 /******************************* Error Recovery *******************************/
850 void
851 mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852 u_int iocstatus)
853 {
854 MSG_DEFAULT_REPLY ioc_status_frame;
855 request_t *req;
856
857 memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858 ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859 ioc_status_frame.IOCStatus = iocstatus;
860 while((req = TAILQ_FIRST(chain)) != NULL) {
861 MSG_REQUEST_HEADER *msg_hdr;
862 u_int cb_index;
863
864 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866 msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867 ioc_status_frame.Function = msg_hdr->Function;
868 ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869 cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870 mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871 &ioc_status_frame);
872 if (mpt_req_on_pending_list(mpt, req) != 0)
873 TAILQ_REMOVE(chain, req, links);
874 }
875 }
876
877 /********************************* Diagnostics ********************************/
878 /*
879 * Perform a diagnostic dump of a reply frame.
880 */
881 void
882 mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883 {
884
885 mpt_prt(mpt, "Address Reply:\n");
886 mpt_print_reply(reply_frame);
887 }
888
889 /******************************* Doorbell Access ******************************/
890 static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891 static __inline uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892
893 static __inline uint32_t
894 mpt_rd_db(struct mpt_softc *mpt)
895 {
896
897 return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898 }
899
900 static __inline uint32_t
901 mpt_rd_intr(struct mpt_softc *mpt)
902 {
903
904 return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905 }
906
907 /* Busy wait for a door bell to be read by IOC */
908 static int
909 mpt_wait_db_ack(struct mpt_softc *mpt)
910 {
911 int i;
912
913 for (i=0; i < MPT_MAX_WAIT; i++) {
914 if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915 maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916 return (MPT_OK);
917 }
918 DELAY(200);
919 }
920 return (MPT_FAIL);
921 }
922
923 /* Busy wait for a door bell interrupt */
924 static int
925 mpt_wait_db_int(struct mpt_softc *mpt)
926 {
927 int i;
928
929 for (i = 0; i < MPT_MAX_WAIT; i++) {
930 if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931 maxwait_int = i > maxwait_int ? i : maxwait_int;
932 return MPT_OK;
933 }
934 DELAY(100);
935 }
936 return (MPT_FAIL);
937 }
938
939 /* Wait for IOC to transition to a give state */
940 void
941 mpt_check_doorbell(struct mpt_softc *mpt)
942 {
943 uint32_t db = mpt_rd_db(mpt);
944
945 if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946 mpt_prt(mpt, "Device not running\n");
947 mpt_print_db(db);
948 }
949 }
950
951 /* Wait for IOC to transition to a give state */
952 static int
953 mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954 {
955 int i;
956
957 for (i = 0; i < MPT_MAX_WAIT; i++) {
958 uint32_t db = mpt_rd_db(mpt);
959 if (MPT_STATE(db) == state) {
960 maxwait_state = i > maxwait_state ? i : maxwait_state;
961 return (MPT_OK);
962 }
963 DELAY(100);
964 }
965 return (MPT_FAIL);
966 }
967
968 /************************* Initialization/Configuration ************************/
969 static int mpt_download_fw(struct mpt_softc *mpt);
970
971 /* Issue the reset COMMAND to the IOC */
972 static int
973 mpt_soft_reset(struct mpt_softc *mpt)
974 {
975
976 mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
977
978 /* Have to use hard reset if we are not in Running state */
979 if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
980 mpt_prt(mpt, "soft reset failed: device not running\n");
981 return (MPT_FAIL);
982 }
983
984 /* If door bell is in use we don't have a chance of getting
985 * a word in since the IOC probably crashed in message
986 * processing. So don't waste our time.
987 */
988 if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
989 mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
990 return (MPT_FAIL);
991 }
992
993 /* Send the reset request to the IOC */
994 mpt_write(mpt, MPT_OFFSET_DOORBELL,
995 MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
996 if (mpt_wait_db_ack(mpt) != MPT_OK) {
997 mpt_prt(mpt, "soft reset failed: ack timeout\n");
998 return (MPT_FAIL);
999 }
1000
1001 /* Wait for the IOC to reload and come out of reset state */
1002 if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1003 mpt_prt(mpt, "soft reset failed: device did not restart\n");
1004 return (MPT_FAIL);
1005 }
1006
1007 return MPT_OK;
1008 }
1009
1010 static int
1011 mpt_enable_diag_mode(struct mpt_softc *mpt)
1012 {
1013 int try;
1014
1015 try = 20;
1016 while (--try) {
1017 if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1018 break;
1019
1020 /* Enable diagnostic registers */
1021 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1022 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1023 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1024 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1025 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1026 mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1027
1028 DELAY(100000);
1029 }
1030 if (try == 0)
1031 return (EIO);
1032 return (0);
1033 }
1034
1035 static void
1036 mpt_disable_diag_mode(struct mpt_softc *mpt)
1037 {
1038
1039 mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1040 }
1041
1042 /* This is a magic diagnostic reset that resets all the ARM
1043 * processors in the chip.
1044 */
1045 static void
1046 mpt_hard_reset(struct mpt_softc *mpt)
1047 {
1048 int error;
1049 int wait;
1050 uint32_t diagreg;
1051
1052 mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1053
1054 if (mpt->is_1078) {
1055 mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1056 DELAY(1000);
1057 return;
1058 }
1059
1060 error = mpt_enable_diag_mode(mpt);
1061 if (error) {
1062 mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1063 mpt_prt(mpt, "Trying to reset anyway.\n");
1064 }
1065
1066 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1067
1068 /*
1069 * This appears to be a workaround required for some
1070 * firmware or hardware revs.
1071 */
1072 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1073 DELAY(1000);
1074
1075 /* Diag. port is now active so we can now hit the reset bit */
1076 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1077
1078 /*
1079 * Ensure that the reset has finished. We delay 1ms
1080 * prior to reading the register to make sure the chip
1081 * has sufficiently completed its reset to handle register
1082 * accesses.
1083 */
1084 wait = 5000;
1085 do {
1086 DELAY(1000);
1087 diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1088 } while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1089
1090 if (wait == 0) {
1091 mpt_prt(mpt, "WARNING - Failed hard reset! "
1092 "Trying to initialize anyway.\n");
1093 }
1094
1095 /*
1096 * If we have firmware to download, it must be loaded before
1097 * the controller will become operational. Do so now.
1098 */
1099 if (mpt->fw_image != NULL) {
1100 error = mpt_download_fw(mpt);
1101
1102 if (error) {
1103 mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1104 mpt_prt(mpt, "Trying to initialize anyway.\n");
1105 }
1106 }
1107
1108 /*
1109 * Reseting the controller should have disabled write
1110 * access to the diagnostic registers, but disable
1111 * manually to be sure.
1112 */
1113 mpt_disable_diag_mode(mpt);
1114 }
1115
1116 static void
1117 mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1118 {
1119
1120 /*
1121 * Complete all pending requests with a status
1122 * appropriate for an IOC reset.
1123 */
1124 mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1125 MPI_IOCSTATUS_INVALID_STATE);
1126 }
1127
1128 /*
1129 * Reset the IOC when needed. Try software command first then if needed
1130 * poke at the magic diagnostic reset. Note that a hard reset resets
1131 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1132 * fouls up the PCI configuration registers.
1133 */
1134 int
1135 mpt_reset(struct mpt_softc *mpt, int reinit)
1136 {
1137 struct mpt_personality *pers;
1138 int ret;
1139 int retry_cnt = 0;
1140
1141 /*
1142 * Try a soft reset. If that fails, get out the big hammer.
1143 */
1144 again:
1145 if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1146 int cnt;
1147 for (cnt = 0; cnt < 5; cnt++) {
1148 /* Failed; do a hard reset */
1149 mpt_hard_reset(mpt);
1150
1151 /*
1152 * Wait for the IOC to reload
1153 * and come out of reset state
1154 */
1155 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1156 if (ret == MPT_OK) {
1157 break;
1158 }
1159 /*
1160 * Okay- try to check again...
1161 */
1162 ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1163 if (ret == MPT_OK) {
1164 break;
1165 }
1166 mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1167 retry_cnt, cnt);
1168 }
1169 }
1170
1171 if (retry_cnt == 0) {
1172 /*
1173 * Invoke reset handlers. We bump the reset count so
1174 * that mpt_wait_req() understands that regardless of
1175 * the specified wait condition, it should stop its wait.
1176 */
1177 mpt->reset_cnt++;
1178 MPT_PERS_FOREACH(mpt, pers)
1179 pers->reset(mpt, ret);
1180 }
1181
1182 if (reinit) {
1183 ret = mpt_enable_ioc(mpt, 1);
1184 if (ret == MPT_OK) {
1185 mpt_enable_ints(mpt);
1186 }
1187 }
1188 if (ret != MPT_OK && retry_cnt++ < 2) {
1189 goto again;
1190 }
1191 return ret;
1192 }
1193
1194 /* Return a command buffer to the free queue */
1195 void
1196 mpt_free_request(struct mpt_softc *mpt, request_t *req)
1197 {
1198 request_t *nxt;
1199 struct mpt_evtf_record *record;
1200 uint32_t offset, reply_baddr;
1201
1202 if (req == NULL || req != &mpt->request_pool[req->index]) {
1203 panic("mpt_free_request: bad req ptr");
1204 }
1205 if ((nxt = req->chain) != NULL) {
1206 req->chain = NULL;
1207 mpt_free_request(mpt, nxt); /* NB: recursion */
1208 }
1209 KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1210 KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1211 MPT_LOCK_ASSERT(mpt);
1212 KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1213 ("mpt_free_request: req %p:%u func %x already on freelist",
1214 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1215 KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1216 ("mpt_free_request: req %p:%u func %x on pending list",
1217 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1218 #ifdef INVARIANTS
1219 mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1220 #endif
1221
1222 req->ccb = NULL;
1223 if (LIST_EMPTY(&mpt->ack_frames)) {
1224 /*
1225 * Insert free ones at the tail
1226 */
1227 req->serno = 0;
1228 req->state = REQ_STATE_FREE;
1229 #ifdef INVARIANTS
1230 memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1231 #endif
1232 TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1233 if (mpt->getreqwaiter != 0) {
1234 mpt->getreqwaiter = 0;
1235 wakeup(&mpt->request_free_list);
1236 }
1237 return;
1238 }
1239
1240 /*
1241 * Process an ack frame deferred due to resource shortage.
1242 */
1243 record = LIST_FIRST(&mpt->ack_frames);
1244 LIST_REMOVE(record, links);
1245 req->state = REQ_STATE_ALLOCATED;
1246 mpt_assign_serno(mpt, req);
1247 mpt_send_event_ack(mpt, req, &record->reply, record->context);
1248 offset = (uint32_t)((uint8_t *)record - mpt->reply);
1249 reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1250 bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1251 MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1252 mpt_free_reply(mpt, reply_baddr);
1253 }
1254
1255 /* Get a command buffer from the free queue */
1256 request_t *
1257 mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1258 {
1259 request_t *req;
1260
1261 retry:
1262 MPT_LOCK_ASSERT(mpt);
1263 req = TAILQ_FIRST(&mpt->request_free_list);
1264 if (req != NULL) {
1265 KASSERT(req == &mpt->request_pool[req->index],
1266 ("mpt_get_request: corrupted request free list"));
1267 KASSERT(req->state == REQ_STATE_FREE,
1268 ("req %p:%u not free on free list %x index %d function %x",
1269 req, req->serno, req->state, req->index,
1270 ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1271 TAILQ_REMOVE(&mpt->request_free_list, req, links);
1272 req->state = REQ_STATE_ALLOCATED;
1273 req->chain = NULL;
1274 mpt_assign_serno(mpt, req);
1275 } else if (sleep_ok != 0) {
1276 mpt->getreqwaiter = 1;
1277 mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1278 goto retry;
1279 }
1280 return (req);
1281 }
1282
1283 /* Pass the command to the IOC */
1284 void
1285 mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1286 {
1287
1288 if (mpt->verbose > MPT_PRT_DEBUG2) {
1289 mpt_dump_request(mpt, req);
1290 }
1291 bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1292 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1293 req->state |= REQ_STATE_QUEUED;
1294 KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1295 ("req %p:%u func %x on freelist list in mpt_send_cmd",
1296 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1297 KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1298 ("req %p:%u func %x already on pending list in mpt_send_cmd",
1299 req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1300 TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1301 mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1302 }
1303
1304 /*
1305 * Wait for a request to complete.
1306 *
1307 * Inputs:
1308 * mpt softc of controller executing request
1309 * req request to wait for
1310 * sleep_ok nonzero implies may sleep in this context
1311 * time_ms timeout in ms. 0 implies no timeout.
1312 *
1313 * Return Values:
1314 * 0 Request completed
1315 * non-0 Timeout fired before request completion.
1316 */
1317 int
1318 mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1319 mpt_req_state_t state, mpt_req_state_t mask,
1320 int sleep_ok, int time_ms)
1321 {
1322 int timeout;
1323 u_int saved_cnt;
1324 sbintime_t sbt;
1325
1326 /*
1327 * time_ms is in ms, 0 indicates infinite wait.
1328 * Convert to sbintime_t or 500us units depending on
1329 * our sleep mode.
1330 */
1331 if (sleep_ok != 0) {
1332 sbt = SBT_1MS * time_ms;
1333 /* Set timeout as well so final timeout check works. */
1334 timeout = time_ms;
1335 } else {
1336 sbt = 0; /* Squelch bogus gcc warning. */
1337 timeout = time_ms * 2;
1338 }
1339 req->state |= REQ_STATE_NEED_WAKEUP;
1340 mask &= ~REQ_STATE_NEED_WAKEUP;
1341 saved_cnt = mpt->reset_cnt;
1342 while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1343 if (sleep_ok != 0) {
1344 if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) ==
1345 EWOULDBLOCK) {
1346 timeout = 0;
1347 break;
1348 }
1349 } else {
1350 if (time_ms != 0 && --timeout == 0) {
1351 break;
1352 }
1353 DELAY(500);
1354 mpt_intr(mpt);
1355 }
1356 }
1357 req->state &= ~REQ_STATE_NEED_WAKEUP;
1358 if (mpt->reset_cnt != saved_cnt) {
1359 return (EIO);
1360 }
1361 if (time_ms && timeout <= 0) {
1362 MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1363 req->state |= REQ_STATE_TIMEDOUT;
1364 mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1365 return (ETIMEDOUT);
1366 }
1367 return (0);
1368 }
1369
1370 /*
1371 * Send a command to the IOC via the handshake register.
1372 *
1373 * Only done at initialization time and for certain unusual
1374 * commands such as device/bus reset as specified by LSI.
1375 */
1376 int
1377 mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1378 {
1379 int i;
1380 uint32_t data, *data32;
1381
1382 /* Check condition of the IOC */
1383 data = mpt_rd_db(mpt);
1384 if ((MPT_STATE(data) != MPT_DB_STATE_READY
1385 && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1386 && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1387 || MPT_DB_IS_IN_USE(data)) {
1388 mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1389 mpt_print_db(data);
1390 return (EBUSY);
1391 }
1392
1393 /* We move things in 32 bit chunks */
1394 len = (len + 3) >> 2;
1395 data32 = cmd;
1396
1397 /* Clear any left over pending doorbell interrupts */
1398 if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1399 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1400
1401 /*
1402 * Tell the handshake reg. we are going to send a command
1403 * and how long it is going to be.
1404 */
1405 data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1406 (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1407 mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1408
1409 /* Wait for the chip to notice */
1410 if (mpt_wait_db_int(mpt) != MPT_OK) {
1411 mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1412 return (ETIMEDOUT);
1413 }
1414
1415 /* Clear the interrupt */
1416 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1417
1418 if (mpt_wait_db_ack(mpt) != MPT_OK) {
1419 mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1420 return (ETIMEDOUT);
1421 }
1422
1423 /* Send the command */
1424 for (i = 0; i < len; i++) {
1425 mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++);
1426 if (mpt_wait_db_ack(mpt) != MPT_OK) {
1427 mpt_prt(mpt,
1428 "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1429 return (ETIMEDOUT);
1430 }
1431 }
1432 return MPT_OK;
1433 }
1434
1435 /* Get the response from the handshake register */
1436 int
1437 mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1438 {
1439 int left, reply_left;
1440 u_int16_t *data16;
1441 uint32_t data;
1442 MSG_DEFAULT_REPLY *hdr;
1443
1444 /* We move things out in 16 bit chunks */
1445 reply_len >>= 1;
1446 data16 = (u_int16_t *)reply;
1447
1448 hdr = (MSG_DEFAULT_REPLY *)reply;
1449
1450 /* Get first word */
1451 if (mpt_wait_db_int(mpt) != MPT_OK) {
1452 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1453 return ETIMEDOUT;
1454 }
1455 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1456 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1457 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1458
1459 /* Get second word */
1460 if (mpt_wait_db_int(mpt) != MPT_OK) {
1461 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1462 return ETIMEDOUT;
1463 }
1464 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1465 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1466 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1467
1468 /*
1469 * With the second word, we can now look at the length.
1470 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1471 */
1472 if ((reply_len >> 1) != hdr->MsgLength &&
1473 (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1474 mpt_prt(mpt, "reply length does not match message length: "
1475 "got %x; expected %zx for function %x\n",
1476 hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1477 }
1478
1479 /* Get rest of the reply; but don't overflow the provided buffer */
1480 left = (hdr->MsgLength << 1) - 2;
1481 reply_left = reply_len - 2;
1482 while (left--) {
1483 if (mpt_wait_db_int(mpt) != MPT_OK) {
1484 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1485 return ETIMEDOUT;
1486 }
1487 data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1488 if (reply_left-- > 0)
1489 *data16++ = le16toh(data & MPT_DB_DATA_MASK);
1490 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1491 }
1492
1493 /* One more wait & clear at the end */
1494 if (mpt_wait_db_int(mpt) != MPT_OK) {
1495 mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1496 return ETIMEDOUT;
1497 }
1498 mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1499
1500 if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1501 if (mpt->verbose >= MPT_PRT_TRACE)
1502 mpt_print_reply(hdr);
1503 return (MPT_FAIL | hdr->IOCStatus);
1504 }
1505
1506 return (0);
1507 }
1508
1509 static int
1510 mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1511 {
1512 MSG_IOC_FACTS f_req;
1513 int error;
1514
1515 memset(&f_req, 0, sizeof f_req);
1516 f_req.Function = MPI_FUNCTION_IOC_FACTS;
1517 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1518 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1519 if (error) {
1520 return(error);
1521 }
1522 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1523 return (error);
1524 }
1525
1526 static int
1527 mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1528 {
1529 MSG_PORT_FACTS f_req;
1530 int error;
1531
1532 memset(&f_req, 0, sizeof f_req);
1533 f_req.Function = MPI_FUNCTION_PORT_FACTS;
1534 f_req.PortNumber = port;
1535 f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1536 error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1537 if (error) {
1538 return(error);
1539 }
1540 error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1541 return (error);
1542 }
1543
1544 /*
1545 * Send the initialization request. This is where we specify how many
1546 * SCSI buses and how many devices per bus we wish to emulate.
1547 * This is also the command that specifies the max size of the reply
1548 * frames from the IOC that we will be allocating.
1549 */
1550 static int
1551 mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1552 {
1553 int error = 0;
1554 MSG_IOC_INIT init;
1555 MSG_IOC_INIT_REPLY reply;
1556
1557 memset(&init, 0, sizeof init);
1558 init.WhoInit = who;
1559 init.Function = MPI_FUNCTION_IOC_INIT;
1560 init.MaxDevices = 0; /* at least 256 devices per bus */
1561 init.MaxBuses = 16; /* at least 16 buses */
1562
1563 init.MsgVersion = htole16(MPI_VERSION);
1564 init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1565 init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1566 init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1567
1568 if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1569 return(error);
1570 }
1571
1572 error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1573 return (error);
1574 }
1575
1576 /*
1577 * Utiltity routine to read configuration headers and pages
1578 */
1579 int
1580 mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1581 bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1582 {
1583 MSG_CONFIG *cfgp;
1584 SGE_SIMPLE32 *se;
1585
1586 cfgp = req->req_vbuf;
1587 memset(cfgp, 0, sizeof *cfgp);
1588 cfgp->Action = params->Action;
1589 cfgp->Function = MPI_FUNCTION_CONFIG;
1590 cfgp->Header.PageVersion = params->PageVersion;
1591 cfgp->Header.PageNumber = params->PageNumber;
1592 cfgp->PageAddress = htole32(params->PageAddress);
1593 if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1594 MPI_CONFIG_PAGETYPE_EXTENDED) {
1595 cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1596 cfgp->Header.PageLength = 0;
1597 cfgp->ExtPageLength = htole16(params->ExtPageLength);
1598 cfgp->ExtPageType = params->ExtPageType;
1599 } else {
1600 cfgp->Header.PageType = params->PageType;
1601 cfgp->Header.PageLength = params->PageLength;
1602 }
1603 se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1604 se->Address = htole32(addr);
1605 MPI_pSGE_SET_LENGTH(se, len);
1606 MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1607 MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1608 MPI_SGE_FLAGS_END_OF_LIST |
1609 ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1610 || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1611 ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1612 se->FlagsLength = htole32(se->FlagsLength);
1613 cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1614
1615 mpt_check_doorbell(mpt);
1616 mpt_send_cmd(mpt, req);
1617 return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1618 sleep_ok, timeout_ms));
1619 }
1620
1621 int
1622 mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1623 uint32_t PageAddress, int ExtPageType,
1624 CONFIG_EXTENDED_PAGE_HEADER *rslt,
1625 int sleep_ok, int timeout_ms)
1626 {
1627 request_t *req;
1628 cfgparms_t params;
1629 MSG_CONFIG_REPLY *cfgp;
1630 int error;
1631
1632 req = mpt_get_request(mpt, sleep_ok);
1633 if (req == NULL) {
1634 mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1635 return (ENOMEM);
1636 }
1637
1638 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1639 params.PageVersion = PageVersion;
1640 params.PageLength = 0;
1641 params.PageNumber = PageNumber;
1642 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1643 params.PageAddress = PageAddress;
1644 params.ExtPageType = ExtPageType;
1645 params.ExtPageLength = 0;
1646 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0,
1647 sleep_ok, timeout_ms);
1648 if (error != 0) {
1649 /*
1650 * Leave the request. Without resetting the chip, it's
1651 * still owned by it and we'll just get into trouble
1652 * freeing it now. Mark it as abandoned so that if it
1653 * shows up later it can be freed.
1654 */
1655 mpt_prt(mpt, "read_extcfg_header timed out\n");
1656 return (ETIMEDOUT);
1657 }
1658
1659 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1660 case MPI_IOCSTATUS_SUCCESS:
1661 cfgp = req->req_vbuf;
1662 rslt->PageVersion = cfgp->Header.PageVersion;
1663 rslt->PageNumber = cfgp->Header.PageNumber;
1664 rslt->PageType = cfgp->Header.PageType;
1665 rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1666 rslt->ExtPageType = cfgp->ExtPageType;
1667 error = 0;
1668 break;
1669 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1670 mpt_lprt(mpt, MPT_PRT_DEBUG,
1671 "Invalid Page Type %d Number %d Addr 0x%0x\n",
1672 MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1673 error = EINVAL;
1674 break;
1675 default:
1676 mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1677 req->IOCStatus);
1678 error = EIO;
1679 break;
1680 }
1681 mpt_free_request(mpt, req);
1682 return (error);
1683 }
1684
1685 int
1686 mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1687 CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1688 int sleep_ok, int timeout_ms)
1689 {
1690 request_t *req;
1691 cfgparms_t params;
1692 int error;
1693
1694 req = mpt_get_request(mpt, sleep_ok);
1695 if (req == NULL) {
1696 mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1697 return (-1);
1698 }
1699
1700 params.Action = Action;
1701 params.PageVersion = hdr->PageVersion;
1702 params.PageLength = 0;
1703 params.PageNumber = hdr->PageNumber;
1704 params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1705 params.PageAddress = PageAddress;
1706 params.ExtPageType = hdr->ExtPageType;
1707 params.ExtPageLength = hdr->ExtPageLength;
1708 error = mpt_issue_cfg_req(mpt, req, ¶ms,
1709 req->req_pbuf + MPT_RQSL(mpt),
1710 len, sleep_ok, timeout_ms);
1711 if (error != 0) {
1712 mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1713 return (-1);
1714 }
1715
1716 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1717 mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1718 req->IOCStatus);
1719 mpt_free_request(mpt, req);
1720 return (-1);
1721 }
1722 memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1723 mpt_free_request(mpt, req);
1724 return (0);
1725 }
1726
1727 int
1728 mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1729 uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1730 int sleep_ok, int timeout_ms)
1731 {
1732 request_t *req;
1733 cfgparms_t params;
1734 MSG_CONFIG *cfgp;
1735 int error;
1736
1737 req = mpt_get_request(mpt, sleep_ok);
1738 if (req == NULL) {
1739 mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1740 return (ENOMEM);
1741 }
1742
1743 params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1744 params.PageVersion = 0;
1745 params.PageLength = 0;
1746 params.PageNumber = PageNumber;
1747 params.PageType = PageType;
1748 params.PageAddress = PageAddress;
1749 error = mpt_issue_cfg_req(mpt, req, ¶ms, /*addr*/0, /*len*/0,
1750 sleep_ok, timeout_ms);
1751 if (error != 0) {
1752 /*
1753 * Leave the request. Without resetting the chip, it's
1754 * still owned by it and we'll just get into trouble
1755 * freeing it now. Mark it as abandoned so that if it
1756 * shows up later it can be freed.
1757 */
1758 mpt_prt(mpt, "read_cfg_header timed out\n");
1759 return (ETIMEDOUT);
1760 }
1761
1762 switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1763 case MPI_IOCSTATUS_SUCCESS:
1764 cfgp = req->req_vbuf;
1765 bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1766 error = 0;
1767 break;
1768 case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1769 mpt_lprt(mpt, MPT_PRT_DEBUG,
1770 "Invalid Page Type %d Number %d Addr 0x%0x\n",
1771 PageType, PageNumber, PageAddress);
1772 error = EINVAL;
1773 break;
1774 default:
1775 mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1776 req->IOCStatus);
1777 error = EIO;
1778 break;
1779 }
1780 mpt_free_request(mpt, req);
1781 return (error);
1782 }
1783
1784 int
1785 mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1786 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1787 int timeout_ms)
1788 {
1789 request_t *req;
1790 cfgparms_t params;
1791 int error;
1792
1793 req = mpt_get_request(mpt, sleep_ok);
1794 if (req == NULL) {
1795 mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1796 return (-1);
1797 }
1798
1799 params.Action = Action;
1800 params.PageVersion = hdr->PageVersion;
1801 params.PageLength = hdr->PageLength;
1802 params.PageNumber = hdr->PageNumber;
1803 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1804 params.PageAddress = PageAddress;
1805 error = mpt_issue_cfg_req(mpt, req, ¶ms,
1806 req->req_pbuf + MPT_RQSL(mpt),
1807 len, sleep_ok, timeout_ms);
1808 if (error != 0) {
1809 mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1810 return (-1);
1811 }
1812
1813 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1814 mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1815 req->IOCStatus);
1816 mpt_free_request(mpt, req);
1817 return (-1);
1818 }
1819 memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1820 mpt_free_request(mpt, req);
1821 return (0);
1822 }
1823
1824 int
1825 mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1826 CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1827 int timeout_ms)
1828 {
1829 request_t *req;
1830 cfgparms_t params;
1831 u_int hdr_attr;
1832 int error;
1833
1834 hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1835 if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1836 hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1837 mpt_prt(mpt, "page type 0x%x not changeable\n",
1838 hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1839 return (-1);
1840 }
1841
1842 #if 0
1843 /*
1844 * We shouldn't mask off other bits here.
1845 */
1846 hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1847 #endif
1848
1849 req = mpt_get_request(mpt, sleep_ok);
1850 if (req == NULL)
1851 return (-1);
1852
1853 memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1854
1855 /*
1856 * There isn't any point in restoring stripped out attributes
1857 * if you then mask them going down to issue the request.
1858 */
1859
1860 params.Action = Action;
1861 params.PageVersion = hdr->PageVersion;
1862 params.PageLength = hdr->PageLength;
1863 params.PageNumber = hdr->PageNumber;
1864 params.PageAddress = PageAddress;
1865 #if 0
1866 /* Restore stripped out attributes */
1867 hdr->PageType |= hdr_attr;
1868 params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1869 #else
1870 params.PageType = hdr->PageType;
1871 #endif
1872 error = mpt_issue_cfg_req(mpt, req, ¶ms,
1873 req->req_pbuf + MPT_RQSL(mpt),
1874 len, sleep_ok, timeout_ms);
1875 if (error != 0) {
1876 mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1877 return (-1);
1878 }
1879
1880 if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1881 mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1882 req->IOCStatus);
1883 mpt_free_request(mpt, req);
1884 return (-1);
1885 }
1886 mpt_free_request(mpt, req);
1887 return (0);
1888 }
1889
1890 /*
1891 * Read IOC configuration information
1892 */
1893 static int
1894 mpt_read_config_info_ioc(struct mpt_softc *mpt)
1895 {
1896 CONFIG_PAGE_HEADER hdr;
1897 struct mpt_raid_volume *mpt_raid;
1898 int rv;
1899 int i;
1900 size_t len;
1901
1902 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1903 2, 0, &hdr, FALSE, 5000);
1904 /*
1905 * If it's an invalid page, so what? Not a supported function....
1906 */
1907 if (rv == EINVAL) {
1908 return (0);
1909 }
1910 if (rv) {
1911 return (rv);
1912 }
1913
1914 mpt_lprt(mpt, MPT_PRT_DEBUG,
1915 "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1916 hdr.PageVersion, hdr.PageLength << 2,
1917 hdr.PageNumber, hdr.PageType);
1918
1919 len = hdr.PageLength * sizeof(uint32_t);
1920 mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1921 if (mpt->ioc_page2 == NULL) {
1922 mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1923 mpt_raid_free_mem(mpt);
1924 return (ENOMEM);
1925 }
1926 memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1927 rv = mpt_read_cur_cfg_page(mpt, 0,
1928 &mpt->ioc_page2->Header, len, FALSE, 5000);
1929 if (rv) {
1930 mpt_prt(mpt, "failed to read IOC Page 2\n");
1931 mpt_raid_free_mem(mpt);
1932 return (EIO);
1933 }
1934 mpt2host_config_page_ioc2(mpt->ioc_page2);
1935
1936 if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1937 uint32_t mask;
1938
1939 mpt_prt(mpt, "Capabilities: (");
1940 for (mask = 1; mask != 0; mask <<= 1) {
1941 if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1942 continue;
1943 }
1944 switch (mask) {
1945 case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1946 mpt_prtc(mpt, " RAID-0");
1947 break;
1948 case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1949 mpt_prtc(mpt, " RAID-1E");
1950 break;
1951 case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1952 mpt_prtc(mpt, " RAID-1");
1953 break;
1954 case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1955 mpt_prtc(mpt, " SES");
1956 break;
1957 case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1958 mpt_prtc(mpt, " SAFTE");
1959 break;
1960 case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1961 mpt_prtc(mpt, " Multi-Channel-Arrays");
1962 default:
1963 break;
1964 }
1965 }
1966 mpt_prtc(mpt, " )\n");
1967 if ((mpt->ioc_page2->CapabilitiesFlags
1968 & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1969 | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1970 | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1971 mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1972 mpt->ioc_page2->NumActiveVolumes,
1973 mpt->ioc_page2->NumActiveVolumes != 1
1974 ? "s " : " ",
1975 mpt->ioc_page2->MaxVolumes);
1976 mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1977 mpt->ioc_page2->NumActivePhysDisks,
1978 mpt->ioc_page2->NumActivePhysDisks != 1
1979 ? "s " : " ",
1980 mpt->ioc_page2->MaxPhysDisks);
1981 }
1982 }
1983
1984 len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1985 mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1986 if (mpt->raid_volumes == NULL) {
1987 mpt_prt(mpt, "Could not allocate RAID volume data\n");
1988 mpt_raid_free_mem(mpt);
1989 return (ENOMEM);
1990 }
1991
1992 /*
1993 * Copy critical data out of ioc_page2 so that we can
1994 * safely refresh the page without windows of unreliable
1995 * data.
1996 */
1997 mpt->raid_max_volumes = mpt->ioc_page2->MaxVolumes;
1998
1999 len = sizeof(*mpt->raid_volumes->config_page) +
2000 (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2001 for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2002 mpt_raid = &mpt->raid_volumes[i];
2003 mpt_raid->config_page =
2004 malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2005 if (mpt_raid->config_page == NULL) {
2006 mpt_prt(mpt, "Could not allocate RAID page data\n");
2007 mpt_raid_free_mem(mpt);
2008 return (ENOMEM);
2009 }
2010 }
2011 mpt->raid_page0_len = len;
2012
2013 len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2014 mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2015 if (mpt->raid_disks == NULL) {
2016 mpt_prt(mpt, "Could not allocate RAID disk data\n");
2017 mpt_raid_free_mem(mpt);
2018 return (ENOMEM);
2019 }
2020 mpt->raid_max_disks = mpt->ioc_page2->MaxPhysDisks;
2021
2022 /*
2023 * Load page 3.
2024 */
2025 rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2026 3, 0, &hdr, FALSE, 5000);
2027 if (rv) {
2028 mpt_raid_free_mem(mpt);
2029 return (EIO);
2030 }
2031
2032 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2033 hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2034
2035 len = hdr.PageLength * sizeof(uint32_t);
2036 mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2037 if (mpt->ioc_page3 == NULL) {
2038 mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2039 mpt_raid_free_mem(mpt);
2040 return (ENOMEM);
2041 }
2042 memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2043 rv = mpt_read_cur_cfg_page(mpt, 0,
2044 &mpt->ioc_page3->Header, len, FALSE, 5000);
2045 if (rv) {
2046 mpt_raid_free_mem(mpt);
2047 return (EIO);
2048 }
2049 mpt2host_config_page_ioc3(mpt->ioc_page3);
2050 mpt_raid_wakeup(mpt);
2051 return (0);
2052 }
2053
2054 /*
2055 * Enable IOC port
2056 */
2057 static int
2058 mpt_send_port_enable(struct mpt_softc *mpt, int port)
2059 {
2060 request_t *req;
2061 MSG_PORT_ENABLE *enable_req;
2062 int error;
2063
2064 req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2065 if (req == NULL)
2066 return (-1);
2067
2068 enable_req = req->req_vbuf;
2069 memset(enable_req, 0, MPT_RQSL(mpt));
2070
2071 enable_req->Function = MPI_FUNCTION_PORT_ENABLE;
2072 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2073 enable_req->PortNumber = port;
2074
2075 mpt_check_doorbell(mpt);
2076 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2077
2078 mpt_send_cmd(mpt, req);
2079 error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2080 FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2081 if (error != 0) {
2082 mpt_prt(mpt, "port %d enable timed out\n", port);
2083 return (-1);
2084 }
2085 mpt_free_request(mpt, req);
2086 mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2087 return (0);
2088 }
2089
2090 /*
2091 * Enable/Disable asynchronous event reporting.
2092 */
2093 static int
2094 mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2095 {
2096 request_t *req;
2097 MSG_EVENT_NOTIFY *enable_req;
2098
2099 req = mpt_get_request(mpt, FALSE);
2100 if (req == NULL) {
2101 return (ENOMEM);
2102 }
2103 enable_req = req->req_vbuf;
2104 memset(enable_req, 0, sizeof *enable_req);
2105
2106 enable_req->Function = MPI_FUNCTION_EVENT_NOTIFICATION;
2107 enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2108 enable_req->Switch = onoff;
2109
2110 mpt_check_doorbell(mpt);
2111 mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2112 onoff ? "en" : "dis");
2113 /*
2114 * Send the command off, but don't wait for it.
2115 */
2116 mpt_send_cmd(mpt, req);
2117 return (0);
2118 }
2119
2120 /*
2121 * Un-mask the interrupts on the chip.
2122 */
2123 void
2124 mpt_enable_ints(struct mpt_softc *mpt)
2125 {
2126
2127 /* Unmask every thing except door bell int */
2128 mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2129 }
2130
2131 /*
2132 * Mask the interrupts on the chip.
2133 */
2134 void
2135 mpt_disable_ints(struct mpt_softc *mpt)
2136 {
2137
2138 /* Mask all interrupts */
2139 mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2140 MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2141 }
2142
2143 static void
2144 mpt_sysctl_attach(struct mpt_softc *mpt)
2145 {
2146 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2147 struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2148
2149 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2150 "debug", CTLFLAG_RW, &mpt->verbose, 0,
2151 "Debugging/Verbose level");
2152 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2153 "role", CTLFLAG_RD, &mpt->role, 0,
2154 "HBA role");
2155 #ifdef MPT_TEST_MULTIPATH
2156 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2157 "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2158 "Next Target to Fail");
2159 #endif
2160 }
2161
2162 int
2163 mpt_attach(struct mpt_softc *mpt)
2164 {
2165 struct mpt_personality *pers;
2166 int i;
2167 int error;
2168
2169 mpt_core_attach(mpt);
2170 mpt_core_enable(mpt);
2171
2172 TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2173 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2174 pers = mpt_personalities[i];
2175 if (pers == NULL) {
2176 continue;
2177 }
2178 if (pers->probe(mpt) == 0) {
2179 error = pers->attach(mpt);
2180 if (error != 0) {
2181 mpt_detach(mpt);
2182 return (error);
2183 }
2184 mpt->mpt_pers_mask |= (0x1 << pers->id);
2185 pers->use_count++;
2186 }
2187 }
2188
2189 /*
2190 * Now that we've attached everything, do the enable function
2191 * for all of the personalities. This allows the personalities
2192 * to do setups that are appropriate for them prior to enabling
2193 * any ports.
2194 */
2195 for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2196 pers = mpt_personalities[i];
2197 if (pers != NULL && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2198 error = pers->enable(mpt);
2199 if (error != 0) {
2200 mpt_prt(mpt, "personality %s attached but would"
2201 " not enable (%d)\n", pers->name, error);
2202 mpt_detach(mpt);
2203 return (error);
2204 }
2205 }
2206 }
2207 return (0);
2208 }
2209
2210 int
2211 mpt_shutdown(struct mpt_softc *mpt)
2212 {
2213 struct mpt_personality *pers;
2214
2215 MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2216 pers->shutdown(mpt);
2217 }
2218 return (0);
2219 }
2220
2221 int
2222 mpt_detach(struct mpt_softc *mpt)
2223 {
2224 struct mpt_personality *pers;
2225
2226 MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2227 pers->detach(mpt);
2228 mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2229 pers->use_count--;
2230 }
2231 TAILQ_REMOVE(&mpt_tailq, mpt, links);
2232 return (0);
2233 }
2234
2235 static int
2236 mpt_core_load(struct mpt_personality *pers)
2237 {
2238 int i;
2239
2240 /*
2241 * Setup core handlers and insert the default handler
2242 * into all "empty slots".
2243 */
2244 for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2245 mpt_reply_handlers[i] = mpt_default_reply_handler;
2246 }
2247
2248 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2249 mpt_event_reply_handler;
2250 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2251 mpt_config_reply_handler;
2252 mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2253 mpt_handshake_reply_handler;
2254 return (0);
2255 }
2256
2257 /*
2258 * Initialize per-instance driver data and perform
2259 * initial controller configuration.
2260 */
2261 static int
2262 mpt_core_attach(struct mpt_softc *mpt)
2263 {
2264 int val, error;
2265
2266 LIST_INIT(&mpt->ack_frames);
2267 /* Put all request buffers on the free list */
2268 TAILQ_INIT(&mpt->request_pending_list);
2269 TAILQ_INIT(&mpt->request_free_list);
2270 TAILQ_INIT(&mpt->request_timeout_list);
2271 for (val = 0; val < MPT_MAX_LUNS; val++) {
2272 STAILQ_INIT(&mpt->trt[val].atios);
2273 STAILQ_INIT(&mpt->trt[val].inots);
2274 }
2275 STAILQ_INIT(&mpt->trt_wildcard.atios);
2276 STAILQ_INIT(&mpt->trt_wildcard.inots);
2277 #ifdef MPT_TEST_MULTIPATH
2278 mpt->failure_id = -1;
2279 #endif
2280 mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2281 mpt_sysctl_attach(mpt);
2282 mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2283 mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2284
2285 MPT_LOCK(mpt);
2286 error = mpt_configure_ioc(mpt, 0, 0);
2287 MPT_UNLOCK(mpt);
2288
2289 return (error);
2290 }
2291
2292 static int
2293 mpt_core_enable(struct mpt_softc *mpt)
2294 {
2295
2296 /*
2297 * We enter with the IOC enabled, but async events
2298 * not enabled, ports not enabled and interrupts
2299 * not enabled.
2300 */
2301 MPT_LOCK(mpt);
2302
2303 /*
2304 * Enable asynchronous event reporting- all personalities
2305 * have attached so that they should be able to now field
2306 * async events.
2307 */
2308 mpt_send_event_request(mpt, 1);
2309
2310 /*
2311 * Catch any pending interrupts
2312 *
2313 * This seems to be crucial- otherwise
2314 * the portenable below times out.
2315 */
2316 mpt_intr(mpt);
2317
2318 /*
2319 * Enable Interrupts
2320 */
2321 mpt_enable_ints(mpt);
2322
2323 /*
2324 * Catch any pending interrupts
2325 *
2326 * This seems to be crucial- otherwise
2327 * the portenable below times out.
2328 */
2329 mpt_intr(mpt);
2330
2331 /*
2332 * Enable the port.
2333 */
2334 if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2335 mpt_prt(mpt, "failed to enable port 0\n");
2336 MPT_UNLOCK(mpt);
2337 return (ENXIO);
2338 }
2339 MPT_UNLOCK(mpt);
2340 return (0);
2341 }
2342
2343 static void
2344 mpt_core_shutdown(struct mpt_softc *mpt)
2345 {
2346
2347 mpt_disable_ints(mpt);
2348 }
2349
2350 static void
2351 mpt_core_detach(struct mpt_softc *mpt)
2352 {
2353 int val;
2354
2355 /*
2356 * XXX: FREE MEMORY
2357 */
2358 mpt_disable_ints(mpt);
2359
2360 /* Make sure no request has pending timeouts. */
2361 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2362 request_t *req = &mpt->request_pool[val];
2363 mpt_callout_drain(mpt, &req->callout);
2364 }
2365
2366 mpt_dma_buf_free(mpt);
2367 }
2368
2369 static int
2370 mpt_core_unload(struct mpt_personality *pers)
2371 {
2372
2373 /* Unload is always successful. */
2374 return (0);
2375 }
2376
2377 #define FW_UPLOAD_REQ_SIZE \
2378 (sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION) \
2379 + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2380
2381 static int
2382 mpt_upload_fw(struct mpt_softc *mpt)
2383 {
2384 uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2385 MSG_FW_UPLOAD_REPLY fw_reply;
2386 MSG_FW_UPLOAD *fw_req;
2387 FW_UPLOAD_TCSGE *tsge;
2388 SGE_SIMPLE32 *sge;
2389 uint32_t flags;
2390 int error;
2391
2392 memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2393 fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2394 fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2395 fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2396 fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2397 tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2398 tsge->DetailsLength = 12;
2399 tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2400 tsge->ImageSize = htole32(mpt->fw_image_size);
2401 sge = (SGE_SIMPLE32 *)(tsge + 1);
2402 flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2403 | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2404 | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2405 flags <<= MPI_SGE_FLAGS_SHIFT;
2406 sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2407 sge->Address = htole32(mpt->fw_phys);
2408 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2409 error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2410 if (error)
2411 return(error);
2412 error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2413 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2414 return (error);
2415 }
2416
2417 static void
2418 mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2419 uint32_t *data, bus_size_t len)
2420 {
2421 uint32_t *data_end;
2422
2423 data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2424 if (mpt->is_sas) {
2425 pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2426 }
2427 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2428 while (data != data_end) {
2429 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2430 data++;
2431 }
2432 if (mpt->is_sas) {
2433 pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2434 }
2435 }
2436
2437 static int
2438 mpt_download_fw(struct mpt_softc *mpt)
2439 {
2440 MpiFwHeader_t *fw_hdr;
2441 int error;
2442 uint32_t ext_offset;
2443 uint32_t data;
2444
2445 if (mpt->pci_pio_reg == NULL) {
2446 mpt_prt(mpt, "No PIO resource!\n");
2447 return (ENXIO);
2448 }
2449
2450 mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2451 mpt->fw_image_size);
2452
2453 error = mpt_enable_diag_mode(mpt);
2454 if (error != 0) {
2455 mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2456 return (EIO);
2457 }
2458
2459 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2460 MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2461
2462 fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2463 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2464 mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2465 fw_hdr->ImageSize);
2466 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2467
2468 ext_offset = fw_hdr->NextImageHeaderOffset;
2469 while (ext_offset != 0) {
2470 MpiExtImageHeader_t *ext;
2471
2472 ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2473 ext_offset = ext->NextImageHeaderOffset;
2474 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2475 BUS_DMASYNC_PREWRITE);
2476 mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2477 ext->ImageSize);
2478 bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2479 BUS_DMASYNC_POSTWRITE);
2480 }
2481
2482 if (mpt->is_sas) {
2483 pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2484 }
2485 /* Setup the address to jump to on reset. */
2486 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2487 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2488
2489 /*
2490 * The controller sets the "flash bad" status after attempting
2491 * to auto-boot from flash. Clear the status so that the controller
2492 * will continue the boot process with our newly installed firmware.
2493 */
2494 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2495 data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2496 mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2497 mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2498
2499 if (mpt->is_sas) {
2500 pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2501 }
2502
2503 /*
2504 * Re-enable the processor and clear the boot halt flag.
2505 */
2506 data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2507 data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2508 mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2509
2510 mpt_disable_diag_mode(mpt);
2511 return (0);
2512 }
2513
2514 static int
2515 mpt_dma_buf_alloc(struct mpt_softc *mpt)
2516 {
2517 struct mpt_map_info mi;
2518 uint8_t *vptr;
2519 uint32_t pptr, end;
2520 int i, error;
2521
2522 /* Create a child tag for data buffers */
2523 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2524 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2525 NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2526 mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2527 &mpt->buffer_dmat) != 0) {
2528 mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2529 return (1);
2530 }
2531
2532 /* Create a child tag for request buffers */
2533 if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2534 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2535 NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2536 &mpt->request_dmat) != 0) {
2537 mpt_prt(mpt, "cannot create a dma tag for requests\n");
2538 return (1);
2539 }
2540
2541 /* Allocate some DMA accessible memory for requests */
2542 if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2543 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2544 mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2545 MPT_REQ_MEM_SIZE(mpt));
2546 return (1);
2547 }
2548
2549 mi.mpt = mpt;
2550 mi.error = 0;
2551
2552 /* Load and lock it into "bus space" */
2553 bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2554 MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2555
2556 if (mi.error) {
2557 mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2558 mi.error);
2559 return (1);
2560 }
2561 mpt->request_phys = mi.phys;
2562
2563 /*
2564 * Now create per-request dma maps
2565 */
2566 i = 0;
2567 pptr = mpt->request_phys;
2568 vptr = mpt->request;
2569 end = pptr + MPT_REQ_MEM_SIZE(mpt);
2570 while(pptr < end) {
2571 request_t *req = &mpt->request_pool[i];
2572 req->index = i++;
2573
2574 /* Store location of Request Data */
2575 req->req_pbuf = pptr;
2576 req->req_vbuf = vptr;
2577
2578 pptr += MPT_REQUEST_AREA;
2579 vptr += MPT_REQUEST_AREA;
2580
2581 req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2582 req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2583
2584 error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2585 if (error) {
2586 mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2587 error);
2588 return (1);
2589 }
2590 }
2591
2592 return (0);
2593 }
2594
2595 static void
2596 mpt_dma_buf_free(struct mpt_softc *mpt)
2597 {
2598 int i;
2599
2600 if (mpt->request_dmat == 0) {
2601 mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2602 return;
2603 }
2604 for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2605 bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2606 }
2607 bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2608 bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2609 bus_dma_tag_destroy(mpt->request_dmat);
2610 mpt->request_dmat = 0;
2611 bus_dma_tag_destroy(mpt->buffer_dmat);
2612 }
2613
2614 /*
2615 * Allocate/Initialize data structures for the controller. Called
2616 * once at instance startup.
2617 */
2618 static int
2619 mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2620 {
2621 PTR_MSG_PORT_FACTS_REPLY pfp;
2622 int error, port, val;
2623 size_t len;
2624
2625 if (tn == MPT_MAX_TRYS) {
2626 return (-1);
2627 }
2628
2629 /*
2630 * No need to reset if the IOC is already in the READY state.
2631 *
2632 * Force reset if initialization failed previously.
2633 * Note that a hard_reset of the second channel of a '929
2634 * will stop operation of the first channel. Hopefully, if the
2635 * first channel is ok, the second will not require a hard
2636 * reset.
2637 */
2638 if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2639 if (mpt_reset(mpt, FALSE) != MPT_OK) {
2640 return (mpt_configure_ioc(mpt, tn++, 1));
2641 }
2642 needreset = 0;
2643 }
2644
2645 if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2646 mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2647 return (mpt_configure_ioc(mpt, tn++, 1));
2648 }
2649 mpt2host_iocfacts_reply(&mpt->ioc_facts);
2650
2651 mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2652 mpt->ioc_facts.MsgVersion >> 8,
2653 mpt->ioc_facts.MsgVersion & 0xFF,
2654 mpt->ioc_facts.HeaderVersion >> 8,
2655 mpt->ioc_facts.HeaderVersion & 0xFF);
2656
2657 /*
2658 * Now that we know request frame size, we can calculate
2659 * the actual (reasonable) segment limit for read/write I/O.
2660 *
2661 * This limit is constrained by:
2662 *
2663 * + The size of each area we allocate per command (and how
2664 * many chain segments we can fit into it).
2665 * + The total number of areas we've set up.
2666 * + The actual chain depth the card will allow.
2667 *
2668 * The first area's segment count is limited by the I/O request
2669 * at the head of it. We cannot allocate realistically more
2670 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2671 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2672 *
2673 */
2674 /* total number of request areas we (can) allocate */
2675 mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2676
2677 /* converted to the number of chain areas possible */
2678 mpt->max_seg_cnt *= MPT_NRFM(mpt);
2679
2680 /* limited by the number of chain areas the card will support */
2681 if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2682 mpt_lprt(mpt, MPT_PRT_INFO,
2683 "chain depth limited to %u (from %u)\n",
2684 mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2685 mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2686 }
2687
2688 /* converted to the number of simple sges in chain segments. */
2689 mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2690
2691 /*
2692 * Use this as the basis for reporting the maximum I/O size to CAM.
2693 */
2694 mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, btoc(maxphys) + 1);
2695
2696 /* XXX Lame Locking! */
2697 MPT_UNLOCK(mpt);
2698 error = mpt_dma_buf_alloc(mpt);
2699 MPT_LOCK(mpt);
2700
2701 if (error != 0) {
2702 mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2703 return (EIO);
2704 }
2705
2706 for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2707 request_t *req = &mpt->request_pool[val];
2708 req->state = REQ_STATE_ALLOCATED;
2709 mpt_callout_init(mpt, &req->callout);
2710 mpt_free_request(mpt, req);
2711 }
2712
2713 mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2714 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2715 mpt->max_cam_seg_cnt);
2716
2717 mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2718 mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2719 mpt_lprt(mpt, MPT_PRT_INFO,
2720 "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2721 "Request Frame Size %u bytes Max Chain Depth %u\n",
2722 mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2723 mpt->ioc_facts.RequestFrameSize << 2,
2724 mpt->ioc_facts.MaxChainDepth);
2725 mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2726 "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2727 mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2728
2729 len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2730 mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2731 if (mpt->port_facts == NULL) {
2732 mpt_prt(mpt, "unable to allocate memory for port facts\n");
2733 return (ENOMEM);
2734 }
2735
2736 if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2737 (mpt->fw_uploaded == 0)) {
2738 struct mpt_map_info mi;
2739
2740 /*
2741 * In some configurations, the IOC's firmware is
2742 * stored in a shared piece of system NVRAM that
2743 * is only accessible via the BIOS. In this
2744 * case, the firmware keeps a copy of firmware in
2745 * RAM until the OS driver retrieves it. Once
2746 * retrieved, we are responsible for re-downloading
2747 * the firmware after any hard-reset.
2748 */
2749 MPT_UNLOCK(mpt);
2750 mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2751 error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2752 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2753 mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2754 &mpt->fw_dmat);
2755 if (error != 0) {
2756 mpt_prt(mpt, "cannot create firmware dma tag\n");
2757 MPT_LOCK(mpt);
2758 return (ENOMEM);
2759 }
2760 error = bus_dmamem_alloc(mpt->fw_dmat,
2761 (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2762 BUS_DMA_COHERENT, &mpt->fw_dmap);
2763 if (error != 0) {
2764 mpt_prt(mpt, "cannot allocate firmware memory\n");
2765 bus_dma_tag_destroy(mpt->fw_dmat);
2766 MPT_LOCK(mpt);
2767 return (ENOMEM);
2768 }
2769 mi.mpt = mpt;
2770 mi.error = 0;
2771 bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2772 mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2773 mpt->fw_phys = mi.phys;
2774
2775 MPT_LOCK(mpt);
2776 error = mpt_upload_fw(mpt);
2777 if (error != 0) {
2778 mpt_prt(mpt, "firmware upload failed.\n");
2779 bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2780 bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2781 mpt->fw_dmap);
2782 bus_dma_tag_destroy(mpt->fw_dmat);
2783 mpt->fw_image = NULL;
2784 return (EIO);
2785 }
2786 mpt->fw_uploaded = 1;
2787 }
2788
2789 for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2790 pfp = &mpt->port_facts[port];
2791 error = mpt_get_portfacts(mpt, 0, pfp);
2792 if (error != MPT_OK) {
2793 mpt_prt(mpt,
2794 "mpt_get_portfacts on port %d failed\n", port);
2795 free(mpt->port_facts, M_DEVBUF);
2796 mpt->port_facts = NULL;
2797 return (mpt_configure_ioc(mpt, tn++, 1));
2798 }
2799 mpt2host_portfacts_reply(pfp);
2800
2801 if (port > 0) {
2802 error = MPT_PRT_INFO;
2803 } else {
2804 error = MPT_PRT_DEBUG;
2805 }
2806 mpt_lprt(mpt, error,
2807 "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2808 port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2809 pfp->MaxDevices);
2810 }
2811
2812 /*
2813 * XXX: Not yet supporting more than port 0
2814 */
2815 pfp = &mpt->port_facts[0];
2816 if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2817 mpt->is_fc = 1;
2818 mpt->is_sas = 0;
2819 mpt->is_spi = 0;
2820 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2821 mpt->is_fc = 0;
2822 mpt->is_sas = 1;
2823 mpt->is_spi = 0;
2824 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2825 mpt->is_fc = 0;
2826 mpt->is_sas = 0;
2827 mpt->is_spi = 1;
2828 if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2829 mpt->mpt_ini_id = pfp->PortSCSIID;
2830 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2831 mpt_prt(mpt, "iSCSI not supported yet\n");
2832 return (ENXIO);
2833 } else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2834 mpt_prt(mpt, "Inactive Port\n");
2835 return (ENXIO);
2836 } else {
2837 mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2838 return (ENXIO);
2839 }
2840
2841 /*
2842 * Set our role with what this port supports.
2843 *
2844 * Note this might be changed later in different modules
2845 * if this is different from what is wanted.
2846 */
2847 mpt->role = MPT_ROLE_NONE;
2848 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2849 mpt->role |= MPT_ROLE_INITIATOR;
2850 }
2851 if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2852 mpt->role |= MPT_ROLE_TARGET;
2853 }
2854
2855 /*
2856 * Enable the IOC
2857 */
2858 if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2859 mpt_prt(mpt, "unable to initialize IOC\n");
2860 return (ENXIO);
2861 }
2862
2863 /*
2864 * Read IOC configuration information.
2865 *
2866 * We need this to determine whether or not we have certain
2867 * settings for Integrated Mirroring (e.g.).
2868 */
2869 mpt_read_config_info_ioc(mpt);
2870
2871 return (0);
2872 }
2873
2874 static int
2875 mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2876 {
2877 uint32_t pptr;
2878 int val;
2879
2880 if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2881 mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2882 return (EIO);
2883 }
2884
2885 mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2886
2887 if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2888 mpt_prt(mpt, "IOC failed to go to run state\n");
2889 return (ENXIO);
2890 }
2891 mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2892
2893 /*
2894 * Give it reply buffers
2895 *
2896 * Do *not* exceed global credits.
2897 */
2898 for (val = 0, pptr = mpt->reply_phys;
2899 (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2900 pptr += MPT_REPLY_SIZE) {
2901 mpt_free_reply(mpt, pptr);
2902 if (++val == mpt->ioc_facts.GlobalCredits - 1)
2903 break;
2904 }
2905
2906 /*
2907 * Enable the port if asked. This is only done if we're resetting
2908 * the IOC after initial startup.
2909 */
2910 if (portenable) {
2911 /*
2912 * Enable asynchronous event reporting
2913 */
2914 mpt_send_event_request(mpt, 1);
2915
2916 if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2917 mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2918 return (ENXIO);
2919 }
2920 }
2921 return (MPT_OK);
2922 }
2923
2924 /*
2925 * Endian Conversion Functions- only used on Big Endian machines
2926 */
2927 #if _BYTE_ORDER == _BIG_ENDIAN
2928 void
2929 mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2930 {
2931
2932 MPT_2_HOST32(sge, FlagsLength);
2933 MPT_2_HOST32(sge, u.Address64.Low);
2934 MPT_2_HOST32(sge, u.Address64.High);
2935 }
2936
2937 void
2938 mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2939 {
2940
2941 MPT_2_HOST16(rp, MsgVersion);
2942 MPT_2_HOST16(rp, HeaderVersion);
2943 MPT_2_HOST32(rp, MsgContext);
2944 MPT_2_HOST16(rp, IOCExceptions);
2945 MPT_2_HOST16(rp, IOCStatus);
2946 MPT_2_HOST32(rp, IOCLogInfo);
2947 MPT_2_HOST16(rp, ReplyQueueDepth);
2948 MPT_2_HOST16(rp, RequestFrameSize);
2949 MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2950 MPT_2_HOST16(rp, ProductID);
2951 MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2952 MPT_2_HOST16(rp, GlobalCredits);
2953 MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2954 MPT_2_HOST16(rp, CurReplyFrameSize);
2955 MPT_2_HOST32(rp, FWImageSize);
2956 MPT_2_HOST32(rp, IOCCapabilities);
2957 MPT_2_HOST32(rp, FWVersion.Word);
2958 MPT_2_HOST16(rp, HighPriorityQueueDepth);
2959 MPT_2_HOST16(rp, Reserved2);
2960 mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2961 MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2962 }
2963
2964 void
2965 mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2966 {
2967
2968 MPT_2_HOST16(pfp, Reserved);
2969 MPT_2_HOST16(pfp, Reserved1);
2970 MPT_2_HOST32(pfp, MsgContext);
2971 MPT_2_HOST16(pfp, Reserved2);
2972 MPT_2_HOST16(pfp, IOCStatus);
2973 MPT_2_HOST32(pfp, IOCLogInfo);
2974 MPT_2_HOST16(pfp, MaxDevices);
2975 MPT_2_HOST16(pfp, PortSCSIID);
2976 MPT_2_HOST16(pfp, ProtocolFlags);
2977 MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2978 MPT_2_HOST16(pfp, MaxPersistentIDs);
2979 MPT_2_HOST16(pfp, MaxLanBuckets);
2980 MPT_2_HOST16(pfp, Reserved4);
2981 MPT_2_HOST32(pfp, Reserved5);
2982 }
2983
2984 void
2985 mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2986 {
2987 int i;
2988
2989 MPT_2_HOST32(ioc2, CapabilitiesFlags);
2990 for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2991 MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2992 }
2993 }
2994
2995 void
2996 mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2997 {
2998
2999 MPT_2_HOST16(ioc3, Reserved2);
3000 }
3001
3002 void
3003 mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3004 {
3005
3006 MPT_2_HOST32(sp0, Capabilities);
3007 MPT_2_HOST32(sp0, PhysicalInterface);
3008 }
3009
3010 void
3011 mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3012 {
3013
3014 MPT_2_HOST32(sp1, Configuration);
3015 MPT_2_HOST32(sp1, OnBusTimerValue);
3016 MPT_2_HOST16(sp1, IDConfig);
3017 }
3018
3019 void
3020 host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3021 {
3022
3023 HOST_2_MPT32(sp1, Configuration);
3024 HOST_2_MPT32(sp1, OnBusTimerValue);
3025 HOST_2_MPT16(sp1, IDConfig);
3026 }
3027
3028 void
3029 mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3030 {
3031 int i;
3032
3033 MPT_2_HOST32(sp2, PortFlags);
3034 MPT_2_HOST32(sp2, PortSettings);
3035 for (i = 0; i < sizeof(sp2->DeviceSettings) /
3036 sizeof(*sp2->DeviceSettings); i++) {
3037 MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3038 }
3039 }
3040
3041 void
3042 mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3043 {
3044
3045 MPT_2_HOST32(sd0, NegotiatedParameters);
3046 MPT_2_HOST32(sd0, Information);
3047 }
3048
3049 void
3050 mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3051 {
3052
3053 MPT_2_HOST32(sd1, RequestedParameters);
3054 MPT_2_HOST32(sd1, Reserved);
3055 MPT_2_HOST32(sd1, Configuration);
3056 }
3057
3058 void
3059 host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3060 {
3061
3062 HOST_2_MPT32(sd1, RequestedParameters);
3063 HOST_2_MPT32(sd1, Reserved);
3064 HOST_2_MPT32(sd1, Configuration);
3065 }
3066
3067 void
3068 mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3069 {
3070
3071 MPT_2_HOST32(fp0, Flags);
3072 MPT_2_HOST32(fp0, PortIdentifier);
3073 MPT_2_HOST32(fp0, WWNN.Low);
3074 MPT_2_HOST32(fp0, WWNN.High);
3075 MPT_2_HOST32(fp0, WWPN.Low);
3076 MPT_2_HOST32(fp0, WWPN.High);
3077 MPT_2_HOST32(fp0, SupportedServiceClass);
3078 MPT_2_HOST32(fp0, SupportedSpeeds);
3079 MPT_2_HOST32(fp0, CurrentSpeed);
3080 MPT_2_HOST32(fp0, MaxFrameSize);
3081 MPT_2_HOST32(fp0, FabricWWNN.Low);
3082 MPT_2_HOST32(fp0, FabricWWNN.High);
3083 MPT_2_HOST32(fp0, FabricWWPN.Low);
3084 MPT_2_HOST32(fp0, FabricWWPN.High);
3085 MPT_2_HOST32(fp0, DiscoveredPortsCount);
3086 MPT_2_HOST32(fp0, MaxInitiators);
3087 }
3088
3089 void
3090 mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3091 {
3092
3093 MPT_2_HOST32(fp1, Flags);
3094 MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3095 MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3096 MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3097 MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3098 }
3099
3100 void
3101 host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3102 {
3103
3104 HOST_2_MPT32(fp1, Flags);
3105 HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3106 HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3107 HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3108 HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3109 }
3110
3111 void
3112 mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3113 {
3114 int i;
3115
3116 MPT_2_HOST16(volp, VolumeStatus.Reserved);
3117 MPT_2_HOST16(volp, VolumeSettings.Settings);
3118 MPT_2_HOST32(volp, MaxLBA);
3119 MPT_2_HOST32(volp, MaxLBAHigh);
3120 MPT_2_HOST32(volp, StripeSize);
3121 MPT_2_HOST32(volp, Reserved2);
3122 MPT_2_HOST32(volp, Reserved3);
3123 for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3124 MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3125 }
3126 }
3127
3128 void
3129 mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3130 {
3131
3132 MPT_2_HOST32(rpd0, Reserved1);
3133 MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3134 MPT_2_HOST32(rpd0, MaxLBA);
3135 MPT_2_HOST16(rpd0, ErrorData.Reserved);
3136 MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3137 MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3138 }
3139
3140 void
3141 mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3142 {
3143
3144 MPT_2_HOST16(vi, TotalBlocks.High);
3145 MPT_2_HOST16(vi, TotalBlocks.Low);
3146 MPT_2_HOST16(vi, BlocksRemaining.High);
3147 MPT_2_HOST16(vi, BlocksRemaining.Low);
3148 }
3149 #endif
Cache object: a6fde2ab8c7779a2d778506ba2ac894c
|