The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/mrsas/mrsas_fp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
    3  * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
    4  * Support: freebsdraid@avagotech.com
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions are
    8  * met:
    9  *
   10  * 1. Redistributions of source code must retain the above copyright notice,
   11  * this list of conditions and the following disclaimer. 2. Redistributions
   12  * in binary form must reproduce the above copyright notice, this list of
   13  * conditions and the following disclaimer in the documentation and/or other
   14  * materials provided with the distribution. 3. Neither the name of the
   15  * <ORGANIZATION> nor the names of its contributors may be used to endorse or
   16  * promote products derived from this software without specific prior written
   17  * permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
   23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  *
   31  * The views and conclusions contained in the software and documentation are
   32  * those of the authors and should not be interpreted as representing
   33  * official policies,either expressed or implied, of the FreeBSD Project.
   34  *
   35  * Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
   36  * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
   37  *
   38  */
   39 
   40 #include <sys/cdefs.h>
   41 __FBSDID("$FreeBSD$");
   42 
   43 #include <dev/mrsas/mrsas.h>
   44 
   45 #include <cam/cam.h>
   46 #include <cam/cam_ccb.h>
   47 #include <cam/cam_sim.h>
   48 #include <cam/cam_xpt_sim.h>
   49 #include <cam/cam_debug.h>
   50 #include <cam/cam_periph.h>
   51 #include <cam/cam_xpt_periph.h>
   52 
   53 /*
   54  * Function prototypes
   55  */
   56 u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
   57 u_int8_t 
   58 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
   59     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
   60 u_int8_t
   61 MR_BuildRaidContext(struct mrsas_softc *sc,
   62     struct IO_REQUEST_INFO *io_info,
   63     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
   64 u_int8_t
   65 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
   66     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
   67     RAID_CONTEXT * pRAID_Context,
   68     MR_DRV_RAID_MAP_ALL * map);
   69 u_int8_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL *map);
   70 u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
   71 u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
   72 u_int16_t 
   73 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
   74     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
   75 u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
   76 u_int32_t
   77 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
   78     MR_DRV_RAID_MAP_ALL * map, int *div_error);
   79 u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
   80 void 
   81 mrsas_update_load_balance_params(struct mrsas_softc *sc,
   82     MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
   83 void
   84 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
   85     u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
   86     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
   87     u_int32_t ld_block_size);
   88 static u_int16_t
   89 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
   90     MR_DRV_RAID_MAP_ALL * map);
   91 static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
   92 static u_int16_t
   93 MR_ArPdGet(u_int32_t ar, u_int32_t arm,
   94     MR_DRV_RAID_MAP_ALL * map);
   95 static MR_LD_SPAN *
   96 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
   97     MR_DRV_RAID_MAP_ALL * map);
   98 static u_int8_t
   99 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
  100     MR_DRV_RAID_MAP_ALL * map);
  101 static MR_SPAN_BLOCK_INFO *
  102 MR_LdSpanInfoGet(u_int32_t ld,
  103     MR_DRV_RAID_MAP_ALL * map);
  104 MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
  105 static int MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
  106 
  107 /*
  108  * Spanset related function prototypes Added for PRL11 configuration (Uneven
  109  * span support)
  110  */
  111 void    mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
  112 static u_int8_t
  113 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
  114     u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
  115     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
  116 static u_int64_t
  117 get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
  118     u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
  119 static u_int32_t
  120 mr_spanset_get_span_block(struct mrsas_softc *sc,
  121     u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
  122     MR_DRV_RAID_MAP_ALL * map, int *div_error);
  123 static u_int8_t
  124 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
  125     u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
  126 
  127 /*
  128  * Spanset related defines Added for PRL11 configuration(Uneven span support)
  129  */
  130 #define SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
  131 #define SPAN_ROW_DATA_SIZE(map_, ld, index_)    \
  132         MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
  133 #define SPAN_INVALID    0xff
  134 #define SPAN_DEBUG              0
  135 
  136 /*
  137  * Related Defines
  138  */
  139 
  140 typedef u_int64_t REGION_KEY;
  141 typedef u_int32_t REGION_LEN;
  142 
  143 #define MR_LD_STATE_OPTIMAL             3
  144 #define FALSE                                   0
  145 #define TRUE                                    1
  146 
  147 #define LB_PENDING_CMDS_DEFAULT 4
  148 
  149 /*
  150  * Related Macros
  151  */
  152 
  153 #define ABS_DIFF(a,b)   ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
  154 
  155 #define swap32(x) \
  156   ((unsigned int)( \
  157     (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
  158     (((unsigned int)(x) & (unsigned int)0x0000ff00UL) <<  8) | \
  159     (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >>  8) | \
  160     (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
  161 
  162 /*
  163  * In-line functions for mod and divide of 64-bit dividend and 32-bit
  164  * divisor. Assumes a check for a divisor of zero is not possible.
  165  *
  166  * @param dividend:     Dividend
  167  * @param divisor:      Divisor
  168  * @return                      remainder
  169  */
  170 
  171 #define mega_mod64(dividend, divisor) ({ \
  172 int remainder; \
  173 remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
  174 remainder;})
  175 
  176 #define mega_div64_32(dividend, divisor) ({ \
  177 int quotient; \
  178 quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
  179 quotient;})
  180 
  181 /*
  182  * Various RAID map access functions.  These functions access the various
  183  * parts of the RAID map and returns the appropriate parameters.
  184  */
  185 
  186 MR_LD_RAID *
  187 MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
  188 {
  189         return (&map->raidMap.ldSpanMap[ld].ldRaid);
  190 }
  191 
  192 u_int16_t
  193 MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
  194 {
  195         return le16toh(map->raidMap.ldSpanMap[ld].ldRaid.targetId);
  196 }
  197 
  198 static u_int16_t
  199 MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
  200 {
  201         return le16toh(map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef);
  202 }
  203 
  204 static u_int8_t
  205 MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
  206 {
  207         return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
  208 }
  209 
  210 static u_int16_t
  211 MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
  212 {
  213         return map->raidMap.devHndlInfo[pd].curDevHdl;
  214 }
  215 
  216 static u_int8_t MR_PdInterfaceTypeGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL *map)
  217 {
  218     return map->raidMap.devHndlInfo[pd].interfaceType;
  219 }
  220 
  221 static u_int16_t
  222 MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
  223 {
  224         return le16toh(map->raidMap.arMapInfo[ar].pd[arm]);
  225 }
  226 
  227 static MR_LD_SPAN *
  228 MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
  229 {
  230         return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
  231 }
  232 
  233 static MR_SPAN_BLOCK_INFO *
  234 MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
  235 {
  236         return &map->raidMap.ldSpanMap[ld].spanBlock[0];
  237 }
  238 
  239 u_int8_t
  240 MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
  241 {
  242         return map->raidMap.ldTgtIdToLd[ldTgtId];
  243 }
  244 
  245 u_int32_t
  246 MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
  247 {
  248         MR_LD_RAID *raid;
  249         u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
  250 
  251         ld = MR_TargetIdToLdGet(ldTgtId, map);
  252 
  253         /*
  254          * Check if logical drive was removed.
  255          */
  256         if (ld >= MAX_LOGICAL_DRIVES)
  257                 return ldBlockSize;
  258 
  259         raid = MR_LdRaidGet(ld, map);
  260         ldBlockSize = raid->logicalBlockLength;
  261         if (!ldBlockSize)
  262                 ldBlockSize = MRSAS_SCSIBLOCKSIZE;
  263 
  264         return ldBlockSize;
  265 }
  266 
  267 /*
  268  * This function will Populate Driver Map using Dynamic firmware raid map
  269  */
  270 static int
  271 MR_PopulateDrvRaidMapVentura(struct mrsas_softc *sc)
  272 {
  273         unsigned int i, j;
  274         u_int16_t ld_count;
  275 
  276         MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn;
  277         MR_RAID_MAP_DESC_TABLE *desc_table;
  278         MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
  279         MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
  280         void *raid_map_data = NULL;
  281 
  282         fw_map_dyn = (MR_FW_RAID_MAP_DYNAMIC *) sc->raidmap_mem[(sc->map_id & 1)];
  283 
  284         if (fw_map_dyn == NULL) {
  285                 device_printf(sc->mrsas_dev,
  286                     "from %s %d map0  %p map1 %p map size %d \n", __func__, __LINE__,
  287                     sc->raidmap_mem[0], sc->raidmap_mem[1], sc->maxRaidMapSize);
  288                 return 1;
  289         }
  290 #if VD_EXT_DEBUG
  291         device_printf(sc->mrsas_dev,
  292             " raidMapSize 0x%x, descTableOffset 0x%x, "
  293             " descTableSize 0x%x, descTableNumElements 0x%x \n",
  294             fw_map_dyn->raidMapSize, le32toh(fw_map_dyn->descTableOffset),
  295             fw_map_dyn->descTableSize, fw_map_dyn->descTableNumElements);
  296 #endif
  297         desc_table = (MR_RAID_MAP_DESC_TABLE *) ((char *)fw_map_dyn +
  298             le32toh(fw_map_dyn->descTableOffset));
  299         if (desc_table != fw_map_dyn->raidMapDescTable) {
  300                 device_printf(sc->mrsas_dev,
  301                     "offsets of desc table are not matching returning "
  302                     " FW raid map has been changed: desc %p original %p\n",
  303                     desc_table, fw_map_dyn->raidMapDescTable);
  304         }
  305         memset(drv_map, 0, sc->drv_map_sz);
  306         ld_count = le16toh(fw_map_dyn->ldCount);
  307         pDrvRaidMap->ldCount = htole16(ld_count);
  308         pDrvRaidMap->fpPdIoTimeoutSec = fw_map_dyn->fpPdIoTimeoutSec;
  309         pDrvRaidMap->totalSize = htole32(sizeof(MR_DRV_RAID_MAP_ALL));
  310         /* point to actual data starting point */
  311         raid_map_data = (char *)fw_map_dyn +
  312             le32toh(fw_map_dyn->descTableOffset) +
  313             le32toh(fw_map_dyn->descTableSize);
  314 
  315         for (i = 0; i < le32toh(fw_map_dyn->descTableNumElements); ++i) {
  316                 if (!desc_table) {
  317                         device_printf(sc->mrsas_dev,
  318                             "desc table is null, coming out %p \n", desc_table);
  319                         return 1;
  320                 }
  321 #if VD_EXT_DEBUG
  322                 device_printf(sc->mrsas_dev, "raid_map_data %p \n", raid_map_data);
  323                 device_printf(sc->mrsas_dev,
  324                     "desc table %p \n", desc_table);
  325                 device_printf(sc->mrsas_dev,
  326                     "raidmap type %d, raidmapOffset 0x%x, "
  327                     " raid map number of elements 0%x, raidmapsize 0x%x\n",
  328                     le32toh(desc_table->raidMapDescType), desc_table->raidMapDescOffset,
  329                     le32toh(desc_table->raidMapDescElements), desc_table->raidMapDescBufferSize);
  330 #endif
  331                 switch (le32toh(desc_table->raidMapDescType)) {
  332                 case RAID_MAP_DESC_TYPE_DEVHDL_INFO:
  333                         fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo = (MR_DEV_HANDLE_INFO *)
  334                             ((char *)raid_map_data + le32toh(desc_table->raidMapDescOffset));
  335 #if VD_EXT_DEBUG
  336                         device_printf(sc->mrsas_dev,
  337                             "devHndlInfo address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo);
  338 #endif
  339                         memcpy(pDrvRaidMap->devHndlInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo,
  340                             sizeof(MR_DEV_HANDLE_INFO) * le32toh(desc_table->raidMapDescElements));
  341                         break;
  342                 case RAID_MAP_DESC_TYPE_TGTID_INFO:
  343                         fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd = (u_int16_t *)
  344                             ((char *)raid_map_data +
  345                              le32toh(desc_table->raidMapDescOffset));
  346 #if VD_EXT_DEBUG
  347                         device_printf(sc->mrsas_dev,
  348                             "ldTgtIdToLd  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd);
  349 #endif
  350                         for (j = 0; j < le32toh(desc_table->raidMapDescElements); j++) {
  351                                 pDrvRaidMap->ldTgtIdToLd[j] = fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd[j];
  352 #if VD_EXT_DEBUG
  353                                 device_printf(sc->mrsas_dev,
  354                                     " %d drv ldTgtIdToLd %d\n", j, pDrvRaidMap->ldTgtIdToLd[j]);
  355 #endif
  356                         }
  357                         break;
  358                 case RAID_MAP_DESC_TYPE_ARRAY_INFO:
  359                         fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo = (MR_ARRAY_INFO *) ((char *)raid_map_data +
  360                             le32toh(desc_table->raidMapDescOffset));
  361 #if VD_EXT_DEBUG
  362                         device_printf(sc->mrsas_dev,
  363                             "arMapInfo  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo);
  364 #endif
  365                         memcpy(pDrvRaidMap->arMapInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo,
  366                             sizeof(MR_ARRAY_INFO) * le32toh(desc_table->raidMapDescElements));
  367                         break;
  368                 case RAID_MAP_DESC_TYPE_SPAN_INFO:
  369                         fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap = (MR_LD_SPAN_MAP *) ((char *)raid_map_data +
  370                             le32toh(desc_table->raidMapDescOffset));
  371                         memcpy(pDrvRaidMap->ldSpanMap, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap,
  372                             sizeof(MR_LD_SPAN_MAP) *
  373                             le32toh(desc_table->raidMapDescElements));
  374 #if VD_EXT_DEBUG
  375                         device_printf(sc->mrsas_dev,
  376                             "ldSpanMap  address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap);
  377                         device_printf(sc->mrsas_dev,
  378                             "MR_LD_SPAN_MAP size 0x%lx\n", sizeof(MR_LD_SPAN_MAP));
  379                         for (j = 0; j < ld_count; j++) {
  380                                 printf("mrsas(%d) : fw_map_dyn->ldSpanMap[%d].ldRaid.targetId 0x%x "
  381                                     "fw_map_dyn->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
  382                                     j, j, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.targetId, j,
  383                                     fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.seqNum,
  384                                     (u_int32_t)fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.rowSize);
  385                                 printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
  386                                     "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
  387                                     j, j, pDrvRaidMap->ldSpanMap[j].ldRaid.targetId, j,
  388                                     pDrvRaidMap->ldSpanMap[j].ldRaid.seqNum,
  389                                     (u_int32_t)pDrvRaidMap->ldSpanMap[j].ldRaid.rowSize);
  390                                 printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
  391                                     drv_map, pDrvRaidMap, &fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid,
  392                                     &pDrvRaidMap->ldSpanMap[j].ldRaid);
  393                         }
  394 #endif
  395                         break;
  396                 default:
  397                         device_printf(sc->mrsas_dev,
  398                             "wrong number of desctableElements %d\n",
  399                             fw_map_dyn->descTableNumElements);
  400                 }
  401                 ++desc_table;
  402         }
  403         return 0;
  404 }
  405 
  406 /*
  407  * This function will Populate Driver Map using firmware raid map
  408  */
  409 static int
  410 MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
  411 {
  412         MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
  413         MR_FW_RAID_MAP_EXT *fw_map_ext;
  414         MR_FW_RAID_MAP *pFwRaidMap = NULL;
  415         unsigned int i;
  416         u_int16_t ld_count;
  417 
  418         MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
  419         MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
  420 
  421         if (sc->maxRaidMapSize) {
  422                 return MR_PopulateDrvRaidMapVentura(sc);
  423         } else if (sc->max256vdSupport) {
  424                 fw_map_ext = (MR_FW_RAID_MAP_EXT *) sc->raidmap_mem[(sc->map_id & 1)];
  425                 ld_count = (u_int16_t)le16toh(fw_map_ext->ldCount);
  426                 if (ld_count > MAX_LOGICAL_DRIVES_EXT) {
  427                         device_printf(sc->mrsas_dev,
  428                             "mrsas: LD count exposed in RAID map in not valid\n");
  429                         return 1;
  430                 }
  431 #if VD_EXT_DEBUG
  432                 for (i = 0; i < ld_count; i++) {
  433                         printf("mrsas : Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n",
  434                             i, fw_map_ext->ldSpanMap[i].ldRaid.targetId,
  435                             fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
  436                             fw_map_ext->ldSpanMap[i].ldRaid.size);
  437                 }
  438 #endif
  439                 memset(drv_map, 0, sc->drv_map_sz);
  440                 pDrvRaidMap->ldCount = htole16(ld_count);
  441                 pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec;
  442                 for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++) {
  443                         pDrvRaidMap->ldTgtIdToLd[i] = (u_int16_t)fw_map_ext->ldTgtIdToLd[i];
  444                 }
  445                 memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap, sizeof(MR_LD_SPAN_MAP) * ld_count);
  446 #if VD_EXT_DEBUG
  447                 for (i = 0; i < ld_count; i++) {
  448                         printf("mrsas(%d) : fw_map_ext->ldSpanMap[%d].ldRaid.targetId 0x%x "
  449                             "fw_map_ext->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
  450                             i, i, fw_map_ext->ldSpanMap[i].ldRaid.targetId, i,
  451                             fw_map_ext->ldSpanMap[i].ldRaid.seqNum,
  452                             (u_int32_t)fw_map_ext->ldSpanMap[i].ldRaid.rowSize);
  453                         printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
  454                             "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
  455                             pDrvRaidMap->ldSpanMap[i].ldRaid.targetId, i,
  456                             pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
  457                             (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
  458                         printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
  459                             drv_map, pDrvRaidMap, &fw_map_ext->ldSpanMap[i].ldRaid,
  460                             &pDrvRaidMap->ldSpanMap[i].ldRaid);
  461                 }
  462 #endif
  463                 memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo,
  464                     sizeof(MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT);
  465                 memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo,
  466                     sizeof(MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES);
  467 
  468                 pDrvRaidMap->totalSize = htole32(sizeof(MR_FW_RAID_MAP_EXT));
  469         } else {
  470                 fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
  471                 pFwRaidMap = &fw_map_old->raidMap;
  472 
  473 #if VD_EXT_DEBUG
  474                 for (i = 0; i < le32toh(pFwRaidMap->ldCount); i++) {
  475                         device_printf(sc->mrsas_dev,
  476                             "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
  477                             fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
  478                             fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
  479                             fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
  480                 }
  481 #endif
  482 
  483                 memset(drv_map, 0, sc->drv_map_sz);
  484                 pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
  485                 pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
  486                 pDrvRaidMap->fpPdIoTimeoutSec =
  487                     pFwRaidMap->fpPdIoTimeoutSec;
  488 
  489                 for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
  490                         pDrvRaidMap->ldTgtIdToLd[i] =
  491                             (u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
  492                 }
  493 
  494                 for (i = 0; i < pDrvRaidMap->ldCount; i++) {
  495                         pDrvRaidMap->ldSpanMap[i] =
  496                             pFwRaidMap->ldSpanMap[i];
  497 
  498 #if VD_EXT_DEBUG
  499                         device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
  500                             "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
  501                             i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
  502                             pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
  503                             (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
  504                         device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
  505                             "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
  506                             pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
  507                             pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
  508                             (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
  509                         device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
  510                             drv_map, pDrvRaidMap,
  511                             &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
  512 #endif
  513                 }
  514 
  515                 memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
  516                     sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
  517                 memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
  518                     sizeof(MR_DEV_HANDLE_INFO) *
  519                     MAX_RAIDMAP_PHYSICAL_DEVICES);
  520         }
  521         return 0;
  522 }
  523 
  524 /*
  525  * MR_ValidateMapInfo:  Validate RAID map
  526  * input:                               Adapter instance soft state
  527  *
  528  * This function checks and validates the loaded RAID map. It returns 0 if
  529  * successful, and 1 otherwise.
  530  */
  531 u_int8_t
  532 MR_ValidateMapInfo(struct mrsas_softc *sc)
  533 {
  534         if (!sc) {
  535                 return 1;
  536         }
  537         if (MR_PopulateDrvRaidMap(sc))
  538                 return 0;
  539 
  540         MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
  541         MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
  542 
  543         u_int32_t expected_map_size;
  544 
  545         drv_map = sc->ld_drv_map[(sc->map_id & 1)];
  546         pDrvRaidMap = &drv_map->raidMap;
  547         PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
  548 
  549         if (sc->maxRaidMapSize)
  550                 expected_map_size = sizeof(MR_DRV_RAID_MAP_ALL);
  551         else if (sc->max256vdSupport)
  552                 expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
  553         else
  554                 expected_map_size =
  555                     (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
  556                     (sizeof(MR_LD_SPAN_MAP) * le16toh(pDrvRaidMap->ldCount));
  557 
  558         if (le32toh(pDrvRaidMap->totalSize) != expected_map_size) {
  559                 device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
  560                 device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
  561                 device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", le32toh(pDrvRaidMap->totalSize));
  562                 return 1;
  563         }
  564         if (sc->UnevenSpanSupport) {
  565                 mr_update_span_set(drv_map, ldSpanInfo);
  566         }
  567         mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
  568 
  569         return 0;
  570 }
  571 
  572 /*
  573  *
  574  * Function to print info about span set created in driver from FW raid map
  575  *
  576  * Inputs:              map
  577  * ldSpanInfo:  ld map span info per HBA instance
  578  *
  579  *
  580  */
  581 #if SPAN_DEBUG
  582 static int
  583 getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
  584 {
  585 
  586         u_int8_t span;
  587         u_int32_t element;
  588         MR_LD_RAID *raid;
  589         LD_SPAN_SET *span_set;
  590         MR_QUAD_ELEMENT *quad;
  591         int ldCount;
  592         u_int16_t ld;
  593 
  594         for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
  595                 ld = MR_TargetIdToLdGet(ldCount, map);
  596                 if (ld >= MAX_LOGICAL_DRIVES) {
  597                         continue;
  598                 }
  599                 raid = MR_LdRaidGet(ld, map);
  600                 printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
  601                 for (span = 0; span < raid->spanDepth; span++)
  602                         printf("Span=%x, number of quads=%x\n", span,
  603                             le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
  604                             block_span_info.noElements));
  605                 for (element = 0; element < MAX_QUAD_DEPTH; element++) {
  606                         span_set = &(ldSpanInfo[ld].span_set[element]);
  607                         if (span_set->span_row_data_width == 0)
  608                                 break;
  609 
  610                         printf("Span Set %x: width=%x, diff=%x\n", element,
  611                             (unsigned int)span_set->span_row_data_width,
  612                             (unsigned int)span_set->diff);
  613                         printf("logical LBA start=0x%08lx, end=0x%08lx\n",
  614                             (long unsigned int)span_set->log_start_lba,
  615                             (long unsigned int)span_set->log_end_lba);
  616                         printf("span row start=0x%08lx, end=0x%08lx\n",
  617                             (long unsigned int)span_set->span_row_start,
  618                             (long unsigned int)span_set->span_row_end);
  619                         printf("data row start=0x%08lx, end=0x%08lx\n",
  620                             (long unsigned int)span_set->data_row_start,
  621                             (long unsigned int)span_set->data_row_end);
  622                         printf("data strip start=0x%08lx, end=0x%08lx\n",
  623                             (long unsigned int)span_set->data_strip_start,
  624                             (long unsigned int)span_set->data_strip_end);
  625 
  626                         for (span = 0; span < raid->spanDepth; span++) {
  627                                 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
  628                                     block_span_info.noElements >= element + 1) {
  629                                         quad = &map->raidMap.ldSpanMap[ld].
  630                                             spanBlock[span].block_span_info.
  631                                             quad[element];
  632                                         printf("Span=%x, Quad=%x, diff=%x\n", span,
  633                                             element, le32toh(quad->diff));
  634                                         printf("offset_in_span=0x%08lx\n",
  635                                             (long unsigned int)le64toh(quad->offsetInSpan));
  636                                         printf("logical start=0x%08lx, end=0x%08lx\n",
  637                                             (long unsigned int)le64toh(quad->logStart),
  638                                             (long unsigned int)le64toh(quad->logEnd));
  639                                 }
  640                         }
  641                 }
  642         }
  643         return 0;
  644 }
  645 
  646 #endif
  647 /*
  648  *
  649  * This routine calculates the Span block for given row using spanset.
  650  *
  651  * Inputs :     HBA instance
  652  * ld:          Logical drive number
  653  * row:         Row number
  654  * map:         LD map
  655  *
  656  * Outputs :    span    - Span number block
  657  *                                              - Absolute Block number in the physical disk
  658  *                              div_error    - Devide error code.
  659  */
  660 
  661 u_int32_t
  662 mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
  663     u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
  664 {
  665         MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
  666         LD_SPAN_SET *span_set;
  667         MR_QUAD_ELEMENT *quad;
  668         u_int32_t span, info;
  669         PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
  670 
  671         for (info = 0; info < MAX_QUAD_DEPTH; info++) {
  672                 span_set = &(ldSpanInfo[ld].span_set[info]);
  673 
  674                 if (span_set->span_row_data_width == 0)
  675                         break;
  676                 if (row > span_set->data_row_end)
  677                         continue;
  678 
  679                 for (span = 0; span < raid->spanDepth; span++)
  680                         if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
  681                             block_span_info.noElements) >= info + 1) {
  682                                 quad = &map->raidMap.ldSpanMap[ld].
  683                                     spanBlock[span].
  684                                     block_span_info.quad[info];
  685                                 if (quad->diff == 0) {
  686                                         *div_error = 1;
  687                                         return span;
  688                                 }
  689                                 if (le64toh(quad->logStart) <= row &&
  690                                     row <= le64toh(quad->logEnd) &&
  691                                     (mega_mod64(row - le64toh(quad->logStart),
  692                                     le32toh(quad->diff))) == 0) {
  693                                         if (span_blk != NULL) {
  694                                                 u_int64_t blk;
  695 
  696                                                 blk = mega_div64_32
  697                                                     ((row - le64toh(quad->logStart)),
  698                                                     le32toh(quad->diff));
  699                                                 blk = (blk + le64toh(quad->offsetInSpan))
  700                                                     << raid->stripeShift;
  701                                                 *span_blk = blk;
  702                                         }
  703                                         return span;
  704                                 }
  705                         }
  706         }
  707         return SPAN_INVALID;
  708 }
  709 
  710 /*
  711  *
  712  * This routine calculates the row for given strip using spanset.
  713  *
  714  * Inputs :     HBA instance
  715  * ld:          Logical drive number
  716  * Strip:       Strip
  717  * map:         LD map
  718  *
  719  * Outputs :    row - row associated with strip
  720  */
  721 
  722 static u_int64_t
  723 get_row_from_strip(struct mrsas_softc *sc,
  724     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
  725 {
  726         MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
  727         LD_SPAN_SET *span_set;
  728         PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
  729         u_int32_t info, strip_offset, span, span_offset;
  730         u_int64_t span_set_Strip, span_set_Row;
  731 
  732         for (info = 0; info < MAX_QUAD_DEPTH; info++) {
  733                 span_set = &(ldSpanInfo[ld].span_set[info]);
  734 
  735                 if (span_set->span_row_data_width == 0)
  736                         break;
  737                 if (strip > span_set->data_strip_end)
  738                         continue;
  739 
  740                 span_set_Strip = strip - span_set->data_strip_start;
  741                 strip_offset = mega_mod64(span_set_Strip,
  742                     span_set->span_row_data_width);
  743                 span_set_Row = mega_div64_32(span_set_Strip,
  744                     span_set->span_row_data_width) * span_set->diff;
  745                 for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
  746                         if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
  747                             block_span_info.noElements) >= info + 1) {
  748                                 if (strip_offset >=
  749                                     span_set->strip_offset[span])
  750                                         span_offset++;
  751                                 else
  752                                         break;
  753                         }
  754                 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
  755                     "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
  756                     (unsigned long long)span_set_Strip,
  757                     (unsigned long long)span_set_Row,
  758                     (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
  759                 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
  760                     (unsigned long long)span_set->data_row_start +
  761                     (unsigned long long)span_set_Row + (span_offset - 1));
  762                 return (span_set->data_row_start + span_set_Row + (span_offset - 1));
  763         }
  764         return -1LLU;
  765 }
  766 
  767 /*
  768  *
  769  * This routine calculates the Start Strip for given row using spanset.
  770  *
  771  * Inputs:      HBA instance
  772  * ld:          Logical drive number
  773  * row:         Row number
  774  * map:         LD map
  775  *
  776  * Outputs :    Strip - Start strip associated with row
  777  */
  778 
  779 static u_int64_t
  780 get_strip_from_row(struct mrsas_softc *sc,
  781     u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
  782 {
  783         MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
  784         LD_SPAN_SET *span_set;
  785         MR_QUAD_ELEMENT *quad;
  786         PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
  787         u_int32_t span, info;
  788         u_int64_t strip;
  789 
  790         for (info = 0; info < MAX_QUAD_DEPTH; info++) {
  791                 span_set = &(ldSpanInfo[ld].span_set[info]);
  792 
  793                 if (span_set->span_row_data_width == 0)
  794                         break;
  795                 if (row > span_set->data_row_end)
  796                         continue;
  797 
  798                 for (span = 0; span < raid->spanDepth; span++)
  799                         if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
  800                             block_span_info.noElements) >= info + 1) {
  801                                 quad = &map->raidMap.ldSpanMap[ld].
  802                                     spanBlock[span].block_span_info.quad[info];
  803                                 if (le64toh(quad->logStart) <= row &&
  804                                     row <= le64toh(quad->logEnd) &&
  805                                     mega_mod64((row - le64toh(quad->logStart)),
  806                                     le32toh(quad->diff)) == 0) {
  807                                         strip = mega_div64_32
  808                                             (((row - span_set->data_row_start)
  809                                             - le64toh(quad->logStart)),
  810                                             le32toh(quad->diff));
  811                                         strip *= span_set->span_row_data_width;
  812                                         strip += span_set->data_strip_start;
  813                                         strip += span_set->strip_offset[span];
  814                                         return strip;
  815                                 }
  816                         }
  817         }
  818         mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
  819             "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
  820         return -1;
  821 }
  822 
  823 /*
  824  * *****************************************************************************
  825  *
  826  *
  827  * This routine calculates the Physical Arm for given strip using spanset.
  828  *
  829  * Inputs :     HBA instance
  830  *                      Logical drive number
  831  *                      Strip
  832  *                      LD map
  833  *
  834  * Outputs :    Phys Arm - Phys Arm associated with strip
  835  */
  836 
  837 static u_int32_t
  838 get_arm_from_strip(struct mrsas_softc *sc,
  839     u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
  840 {
  841         MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
  842         LD_SPAN_SET *span_set;
  843         PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
  844         u_int32_t info, strip_offset, span, span_offset;
  845 
  846         for (info = 0; info < MAX_QUAD_DEPTH; info++) {
  847                 span_set = &(ldSpanInfo[ld].span_set[info]);
  848 
  849                 if (span_set->span_row_data_width == 0)
  850                         break;
  851                 if (strip > span_set->data_strip_end)
  852                         continue;
  853 
  854                 strip_offset = (u_int32_t)mega_mod64
  855                     ((strip - span_set->data_strip_start),
  856                     span_set->span_row_data_width);
  857 
  858                 for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
  859                         if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
  860                             block_span_info.noElements) >= info + 1) {
  861                                 if (strip_offset >= span_set->strip_offset[span])
  862                                         span_offset = span_set->strip_offset[span];
  863                                 else
  864                                         break;
  865                         }
  866                 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
  867                     "for ld=0x%x strip=0x%lx arm is  0x%x\n", ld,
  868                     (long unsigned int)strip, (strip_offset - span_offset));
  869                 return (strip_offset - span_offset);
  870         }
  871 
  872         mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
  873             " for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
  874 
  875         return -1;
  876 }
  877 
  878 /* This Function will return Phys arm */
  879 u_int8_t
  880 get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
  881     MR_DRV_RAID_MAP_ALL * map)
  882 {
  883         MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
  884 
  885         /* Need to check correct default value */
  886         u_int32_t arm = 0;
  887 
  888         switch (raid->level) {
  889         case 0:
  890         case 5:
  891         case 6:
  892                 arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
  893                 break;
  894         case 1:
  895                 /* start with logical arm */
  896                 arm = get_arm_from_strip(sc, ld, stripe, map);
  897                 arm *= 2;
  898                 break;
  899         }
  900 
  901         return arm;
  902 }
  903 
  904 /*
  905  *
  906  * This routine calculates the arm, span and block for the specified stripe and
  907  * reference in stripe using spanset
  908  *
  909  * Inputs :
  910  * sc - HBA instance
  911  * ld - Logical drive number
  912  * stripRow: Stripe number
  913  * stripRef: Reference in stripe
  914  *
  915  * Outputs :    span - Span number block - Absolute Block
  916  * number in the physical disk
  917  */
  918 static u_int8_t
  919 mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
  920     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
  921     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
  922 {
  923         MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
  924         u_int32_t pd, arRef, r1_alt_pd;
  925         u_int8_t physArm, span;
  926         u_int64_t row;
  927         u_int8_t retval = TRUE;
  928         u_int64_t *pdBlock = &io_info->pdBlock;
  929         u_int16_t *pDevHandle = &io_info->devHandle;
  930         u_int8_t  *pPdInterface = &io_info->pdInterface;
  931 
  932         u_int32_t logArm, rowMod, armQ, arm;
  933 
  934         /* Get row and span from io_info for Uneven Span IO. */
  935         row = io_info->start_row;
  936         span = io_info->start_span;
  937 
  938         if (raid->level == 6) {
  939                 logArm = get_arm_from_strip(sc, ld, stripRow, map);
  940                 rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
  941                 armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
  942                 arm = armQ + 1 + logArm;
  943                 if (arm >= SPAN_ROW_SIZE(map, ld, span))
  944                         arm -= SPAN_ROW_SIZE(map, ld, span);
  945                 physArm = (u_int8_t)arm;
  946         } else
  947                 /* Calculate the arm */
  948                 physArm = get_arm(sc, ld, span, stripRow, map);
  949 
  950         arRef = MR_LdSpanArrayGet(ld, span, map);
  951         pd = MR_ArPdGet(arRef, physArm, map);
  952 
  953         if (pd != MR_PD_INVALID) {
  954                 *pDevHandle = MR_PdDevHandleGet(pd, map);
  955                 *pPdInterface = MR_PdInterfaceTypeGet(pd, map);
  956                 /* get second pd also for raid 1/10 fast path writes */
  957                 if ((raid->level == 1) && !io_info->isRead) {
  958                         r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
  959                         if (r1_alt_pd != MR_PD_INVALID)
  960                                 io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
  961                 }
  962         } else {
  963                 *pDevHandle = htole16(MR_DEVHANDLE_INVALID);
  964                 if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
  965                         (sc->mrsas_gen3_ctrl &&
  966                         raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
  967                         pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
  968                 else if (raid->level == 1) {
  969                         pd = MR_ArPdGet(arRef, physArm + 1, map);
  970                         if (pd != MR_PD_INVALID) {
  971                                 *pDevHandle = MR_PdDevHandleGet(pd, map);
  972                                 *pPdInterface = MR_PdInterfaceTypeGet(pd, map);
  973                         }
  974                 }
  975         }
  976 
  977         *pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk);
  978         if (sc->is_ventura || sc->is_aero) {
  979                 ((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
  980                     (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
  981                 io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
  982         } else {
  983                 pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
  984                 io_info->span_arm = pRAID_Context->spanArm;
  985         }
  986         return retval;
  987 }
  988 
  989 /*
  990  * MR_BuildRaidContext: Set up Fast path RAID context
  991  *
  992  * This function will initiate command processing.  The start/end row and strip
  993  * information is calculated then the lock is acquired. This function will
  994  * return 0 if region lock was acquired OR return num strips.
  995  */
  996 u_int8_t
  997 MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
  998     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
  999 {
 1000         MR_LD_RAID *raid;
 1001         u_int32_t ld, stripSize, stripe_mask;
 1002         u_int64_t endLba, endStrip, endRow, start_row, start_strip;
 1003         REGION_KEY regStart;
 1004         REGION_LEN regSize;
 1005         u_int8_t num_strips, numRows;
 1006         u_int16_t ref_in_start_stripe, ref_in_end_stripe;
 1007         u_int64_t ldStartBlock;
 1008         u_int32_t numBlocks, ldTgtId;
 1009         u_int8_t isRead, stripIdx;
 1010         u_int8_t retval = 0;
 1011         u_int8_t startlba_span = SPAN_INVALID;
 1012         u_int64_t *pdBlock = &io_info->pdBlock;
 1013         int error_code = 0;
 1014 
 1015         ldStartBlock = io_info->ldStartBlock;
 1016         numBlocks = io_info->numBlocks;
 1017         ldTgtId = io_info->ldTgtId;
 1018         isRead = io_info->isRead;
 1019 
 1020         io_info->IoforUnevenSpan = 0;
 1021         io_info->start_span = SPAN_INVALID;
 1022 
 1023         ld = MR_TargetIdToLdGet(ldTgtId, map);
 1024         raid = MR_LdRaidGet(ld, map);
 1025 
 1026         /* check read ahead bit */
 1027         io_info->raCapable = raid->capability.raCapable;
 1028 
 1029         if (raid->rowDataSize == 0) {
 1030                 if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
 1031                         return FALSE;
 1032                 else if (sc->UnevenSpanSupport) {
 1033                         io_info->IoforUnevenSpan = 1;
 1034                 } else {
 1035                         mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
 1036                             " but there is _NO_ UnevenSpanSupport\n",
 1037                             MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
 1038                         return FALSE;
 1039                 }
 1040         }
 1041         stripSize = 1 << raid->stripeShift;
 1042         stripe_mask = stripSize - 1;
 1043         /*
 1044          * calculate starting row and stripe, and number of strips and rows
 1045          */
 1046         start_strip = ldStartBlock >> raid->stripeShift;
 1047         ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
 1048         endLba = ldStartBlock + numBlocks - 1;
 1049         ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
 1050         endStrip = endLba >> raid->stripeShift;
 1051         num_strips = (u_int8_t)(endStrip - start_strip + 1);    /* End strip */
 1052         if (io_info->IoforUnevenSpan) {
 1053                 start_row = get_row_from_strip(sc, ld, start_strip, map);
 1054                 endRow = get_row_from_strip(sc, ld, endStrip, map);
 1055                 if (raid->spanDepth == 1) {
 1056                         startlba_span = 0;
 1057                         *pdBlock = start_row << raid->stripeShift;
 1058                 } else {
 1059                         startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
 1060                             pdBlock, map, &error_code);
 1061                         if (error_code == 1) {
 1062                                 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
 1063                                     __func__, __LINE__);
 1064                                 return FALSE;
 1065                         }
 1066                 }
 1067                 if (startlba_span == SPAN_INVALID) {
 1068                         mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
 1069                             "start strip %llx endSrip %llx\n", __func__,
 1070                             __LINE__, (unsigned long long)start_row,
 1071                             (unsigned long long)start_strip,
 1072                             (unsigned long long)endStrip);
 1073                         return FALSE;
 1074                 }
 1075                 io_info->start_span = startlba_span;
 1076                 io_info->start_row = start_row;
 1077                 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
 1078                     " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
 1079                     __func__, __LINE__, (unsigned long long)start_row,
 1080                     (unsigned long long)start_strip,
 1081                     (unsigned long long)endStrip, startlba_span);
 1082                 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
 1083                     (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
 1084         } else {
 1085                 start_row = mega_div64_32(start_strip, raid->rowDataSize);
 1086                 endRow = mega_div64_32(endStrip, raid->rowDataSize);
 1087         }
 1088 
 1089         numRows = (u_int8_t)(endRow - start_row + 1);   /* get the row count */
 1090 
 1091         /*
 1092          * Calculate region info.  (Assume region at start of first row, and
 1093          * assume this IO needs the full row - will adjust if not true.)
 1094          */
 1095         regStart = start_row << raid->stripeShift;
 1096         regSize = stripSize;
 1097 
 1098         /* Check if we can send this I/O via FastPath */
 1099         if (raid->capability.fpCapable) {
 1100                 if (isRead)
 1101                         io_info->fpOkForIo = (raid->capability.fpReadCapable &&
 1102                             ((num_strips == 1) ||
 1103                             raid->capability.fpReadAcrossStripe));
 1104                 else
 1105                         io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
 1106                             ((num_strips == 1) ||
 1107                             raid->capability.fpWriteAcrossStripe));
 1108         } else
 1109                 io_info->fpOkForIo = FALSE;
 1110 
 1111         if (numRows == 1) {
 1112                 if (num_strips == 1) {
 1113                         regStart += ref_in_start_stripe;
 1114                         regSize = numBlocks;
 1115                 }
 1116         } else if (io_info->IoforUnevenSpan == 0) {
 1117                 /*
 1118                  * For Even span region lock optimization. If the start strip
 1119                  * is the last in the start row
 1120                  */
 1121                 if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
 1122                         regStart += ref_in_start_stripe;
 1123                         /*
 1124                          * initialize count to sectors from startRef to end
 1125                          * of strip
 1126                          */
 1127                         regSize = stripSize - ref_in_start_stripe;
 1128                 }
 1129                 /* add complete rows in the middle of the transfer */
 1130                 if (numRows > 2)
 1131                         regSize += (numRows - 2) << raid->stripeShift;
 1132 
 1133                 /* if IO ends within first strip of last row */
 1134                 if (endStrip == endRow * raid->rowDataSize)
 1135                         regSize += ref_in_end_stripe + 1;
 1136                 else
 1137                         regSize += stripSize;
 1138         } else {
 1139                 if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
 1140                     SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
 1141                         regStart += ref_in_start_stripe;
 1142                         /*
 1143                          * initialize count to sectors from startRef to end
 1144                          * of strip
 1145                          */
 1146                         regSize = stripSize - ref_in_start_stripe;
 1147                 }
 1148                 /* add complete rows in the middle of the transfer */
 1149                 if (numRows > 2)
 1150                         regSize += (numRows - 2) << raid->stripeShift;
 1151 
 1152                 /* if IO ends within first strip of last row */
 1153                 if (endStrip == get_strip_from_row(sc, ld, endRow, map))
 1154                         regSize += ref_in_end_stripe + 1;
 1155                 else
 1156                         regSize += stripSize;
 1157         }
 1158         pRAID_Context->timeoutValue = htole16(map->raidMap.fpPdIoTimeoutSec);
 1159         if (sc->mrsas_gen3_ctrl)
 1160                 pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
 1161         else if (sc->device_id == MRSAS_TBOLT)
 1162                 pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
 1163         pRAID_Context->VirtualDiskTgtId = raid->targetId;
 1164         pRAID_Context->regLockRowLBA = htole64(regStart);
 1165         pRAID_Context->regLockLength = htole32(regSize);
 1166         pRAID_Context->configSeqNum = raid->seqNum;
 1167 
 1168         /*
 1169          * Get Phy Params only if FP capable, or else leave it to MR firmware
 1170          * to do the calculation.
 1171          */
 1172         if (io_info->fpOkForIo) {
 1173                 retval = io_info->IoforUnevenSpan ?
 1174                     mr_spanset_get_phy_params(sc, ld, start_strip,
 1175                     ref_in_start_stripe, io_info, pRAID_Context, map) :
 1176                     MR_GetPhyParams(sc, ld, start_strip,
 1177                     ref_in_start_stripe, io_info, pRAID_Context, map);
 1178                 /* If IO on an invalid Pd, then FP is not possible */
 1179                 if (io_info->devHandle == MR_DEVHANDLE_INVALID)
 1180                         io_info->fpOkForIo = FALSE;
 1181                 /*
 1182                  * if FP possible, set the SLUD bit in regLockFlags for
 1183                  * ventura
 1184                  */
 1185                 else if ((sc->is_ventura || sc->is_aero) && !isRead &&
 1186                             (raid->writeMode == MR_RL_WRITE_BACK_MODE) && (raid->level <= 1) &&
 1187                     raid->capability.fpCacheBypassCapable) {
 1188                         ((RAID_CONTEXT_G35 *) pRAID_Context)->routingFlags.bits.sld = 1;
 1189                 }
 1190 
 1191                 return retval;
 1192         } else if (isRead) {
 1193                 for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
 1194                         retval = io_info->IoforUnevenSpan ?
 1195                             mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
 1196                             ref_in_start_stripe, io_info, pRAID_Context, map) :
 1197                             MR_GetPhyParams(sc, ld, start_strip + stripIdx,
 1198                             ref_in_start_stripe, io_info, pRAID_Context, map);
 1199                         if (!retval)
 1200                                 return TRUE;
 1201                 }
 1202         }
 1203 #if SPAN_DEBUG
 1204         /* Just for testing what arm we get for strip. */
 1205         get_arm_from_strip(sc, ld, start_strip, map);
 1206 #endif
 1207         return TRUE;
 1208 }
 1209 
 1210 /*
 1211  *
 1212  * This routine pepare spanset info from Valid Raid map and store it into local
 1213  * copy of ldSpanInfo per instance data structure.
 1214  *
 1215  * Inputs :     LD map
 1216  *                      ldSpanInfo per HBA instance
 1217  *
 1218  */
 1219 void
 1220 mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
 1221 {
 1222         u_int8_t span, count;
 1223         u_int32_t element, span_row_width;
 1224         u_int64_t span_row;
 1225         MR_LD_RAID *raid;
 1226         LD_SPAN_SET *span_set, *span_set_prev;
 1227         MR_QUAD_ELEMENT *quad;
 1228         int ldCount;
 1229         u_int16_t ld;
 1230 
 1231         for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
 1232                 ld = MR_TargetIdToLdGet(ldCount, map);
 1233                 if (ld >= MAX_LOGICAL_DRIVES)
 1234                         continue;
 1235                 raid = MR_LdRaidGet(ld, map);
 1236                 for (element = 0; element < MAX_QUAD_DEPTH; element++) {
 1237                         for (span = 0; span < raid->spanDepth; span++) {
 1238                                 if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span].
 1239                                     block_span_info.noElements) < element + 1)
 1240                                         continue;
 1241                                 /* TO-DO */
 1242                                 span_set = &(ldSpanInfo[ld].span_set[element]);
 1243                                 quad = &map->raidMap.ldSpanMap[ld].
 1244                                     spanBlock[span].block_span_info.quad[element];
 1245 
 1246                                 span_set->diff = le32toh(quad->diff);
 1247 
 1248                                 for (count = 0, span_row_width = 0;
 1249                                     count < raid->spanDepth; count++) {
 1250                                         if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[count].
 1251                                             block_span_info.noElements) >= element + 1) {
 1252                                                 span_set->strip_offset[count] = span_row_width;
 1253                                                 span_row_width +=
 1254                                                     MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
 1255 #if SPAN_DEBUG
 1256                                                 printf("AVAGO Debug span %x rowDataSize %x\n", count,
 1257                                                     MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
 1258 #endif
 1259                                         }
 1260                                 }
 1261 
 1262                                 span_set->span_row_data_width = span_row_width;
 1263                                 span_row = mega_div64_32(((le64toh(quad->logEnd) -
 1264                                     le64toh(quad->logStart)) + le32toh(quad->diff)),
 1265                                     le32toh(quad->diff));
 1266 
 1267                                 if (element == 0) {
 1268                                         span_set->log_start_lba = 0;
 1269                                         span_set->log_end_lba =
 1270                                             ((span_row << raid->stripeShift) * span_row_width) - 1;
 1271 
 1272                                         span_set->span_row_start = 0;
 1273                                         span_set->span_row_end = span_row - 1;
 1274 
 1275                                         span_set->data_strip_start = 0;
 1276                                         span_set->data_strip_end = (span_row * span_row_width) - 1;
 1277 
 1278                                         span_set->data_row_start = 0;
 1279                                         span_set->data_row_end =
 1280                                           (span_row * le32toh(quad->diff)) - 1;
 1281                                 } else {
 1282                                         span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
 1283                                         span_set->log_start_lba = span_set_prev->log_end_lba + 1;
 1284                                         span_set->log_end_lba = span_set->log_start_lba +
 1285                                             ((span_row << raid->stripeShift) * span_row_width) - 1;
 1286 
 1287                                         span_set->span_row_start = span_set_prev->span_row_end + 1;
 1288                                         span_set->span_row_end =
 1289                                             span_set->span_row_start + span_row - 1;
 1290 
 1291                                         span_set->data_strip_start =
 1292                                             span_set_prev->data_strip_end + 1;
 1293                                         span_set->data_strip_end = span_set->data_strip_start +
 1294                                             (span_row * span_row_width) - 1;
 1295 
 1296                                         span_set->data_row_start = span_set_prev->data_row_end + 1;
 1297                                         span_set->data_row_end = span_set->data_row_start +
 1298                                             (span_row * le32toh(quad->diff)) - 1;
 1299                                 }
 1300                                 break;
 1301                         }
 1302                         if (span == raid->spanDepth)
 1303                                 break;  /* no quads remain */
 1304                 }
 1305         }
 1306 #if SPAN_DEBUG
 1307         getSpanInfo(map, ldSpanInfo);   /* to get span set info */
 1308 #endif
 1309 }
 1310 
 1311 /*
 1312  * mrsas_update_load_balance_params:    Update load balance parmas
 1313  * Inputs:
 1314  * sc - driver softc instance
 1315  * drv_map - driver RAID map
 1316  * lbInfo - Load balance info
 1317  *
 1318  * This function updates the load balance parameters for the LD config of a two
 1319  * drive optimal RAID-1.
 1320  */
 1321 void
 1322 mrsas_update_load_balance_params(struct mrsas_softc *sc,
 1323     MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
 1324 {
 1325         int ldCount;
 1326         u_int16_t ld;
 1327         MR_LD_RAID *raid;
 1328 
 1329         if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
 1330                 sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
 1331 
 1332         for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
 1333                 ld = MR_TargetIdToLdGet(ldCount, drv_map);
 1334                 if (ld >= MAX_LOGICAL_DRIVES_EXT) {
 1335                         lbInfo[ldCount].loadBalanceFlag = 0;
 1336                         continue;
 1337                 }
 1338                 raid = MR_LdRaidGet(ld, drv_map);
 1339                 le32_to_cpus(&raid->capability);
 1340                 if ((raid->level != 1) ||
 1341                     (raid->ldState != MR_LD_STATE_OPTIMAL)) {
 1342                         lbInfo[ldCount].loadBalanceFlag = 0;
 1343                         continue;
 1344                 }
 1345                 lbInfo[ldCount].loadBalanceFlag = 1;
 1346         }
 1347 }
 1348 
 1349 /*
 1350  * mrsas_set_pd_lba:    Sets PD LBA
 1351  * input:                               io_request pointer
 1352  *                                              CDB length
 1353  *                                              io_info pointer
 1354  *                                              Pointer to CCB
 1355  *                                              Local RAID map pointer
 1356  *                                              Start block of IO Block Size
 1357  *
 1358  * Used to set the PD logical block address in CDB for FP IOs.
 1359  */
 1360 void
 1361 mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
 1362     struct IO_REQUEST_INFO *io_info, union ccb *ccb,
 1363     MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
 1364     u_int32_t ld_block_size)
 1365 {
 1366         MR_LD_RAID *raid;
 1367         u_int32_t ld;
 1368         u_int64_t start_blk = io_info->pdBlock;
 1369         u_int8_t *cdb = io_request->CDB.CDB32;
 1370         u_int32_t num_blocks = io_info->numBlocks;
 1371         u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
 1372         struct ccb_hdr *ccb_h = &(ccb->ccb_h);
 1373 
 1374         /* Check if T10 PI (DIF) is enabled for this LD */
 1375         ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
 1376         raid = MR_LdRaidGet(ld, local_map_ptr);
 1377         if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
 1378                 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
 1379                 cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
 1380                 cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
 1381 
 1382                 if (ccb_h->flags == CAM_DIR_OUT)
 1383                         cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
 1384                 else
 1385                         cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
 1386                 cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
 1387 
 1388                 /* LBA */
 1389                 cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
 1390                 cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
 1391                 cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
 1392                 cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
 1393                 cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
 1394                 cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
 1395                 cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
 1396                 cdb[19] = (u_int8_t)(start_blk & 0xff);
 1397 
 1398                 /* Logical block reference tag */
 1399                 io_request->CDB.EEDP32.PrimaryReferenceTag = htobe32(ref_tag);
 1400                 io_request->CDB.EEDP32.PrimaryApplicationTagMask = htobe16(0xffff);
 1401                 io_request->IoFlags = htole16(32);      /* Specify 32-byte cdb */
 1402 
 1403                 /* Transfer length */
 1404                 cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
 1405                 cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
 1406                 cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
 1407                 cdb[31] = (u_int8_t)(num_blocks & 0xff);
 1408 
 1409                 /* set SCSI IO EEDP Flags */
 1410                 if (ccb_h->flags == CAM_DIR_OUT) {
 1411                         io_request->EEDPFlags = htole16(
 1412                             MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
 1413                             MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
 1414                             MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
 1415                             MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
 1416                             MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
 1417                 } else {
 1418                         io_request->EEDPFlags = htole16(
 1419                             MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
 1420                             MPI2_SCSIIO_EEDPFLAGS_INSERT_OP);
 1421                 }
 1422                 io_request->Control |= htole32(0x4 << 26);
 1423                 io_request->EEDPBlockSize = htole32(ld_block_size);
 1424         } else {
 1425                 /* Some drives don't support 16/12 byte CDB's, convert to 10 */
 1426                 if (((cdb_len == 12) || (cdb_len == 16)) &&
 1427                     (start_blk <= 0xffffffff)) {
 1428                         if (cdb_len == 16) {
 1429                                 opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
 1430                                 flagvals = cdb[1];
 1431                                 groupnum = cdb[14];
 1432                                 control = cdb[15];
 1433                         } else {
 1434                                 opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
 1435                                 flagvals = cdb[1];
 1436                                 groupnum = cdb[10];
 1437                                 control = cdb[11];
 1438                         }
 1439 
 1440                         memset(cdb, 0, sizeof(io_request->CDB.CDB32));
 1441 
 1442                         cdb[0] = opcode;
 1443                         cdb[1] = flagvals;
 1444                         cdb[6] = groupnum;
 1445                         cdb[9] = control;
 1446 
 1447                         /* Transfer length */
 1448                         cdb[8] = (u_int8_t)(num_blocks & 0xff);
 1449                         cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
 1450 
 1451                         io_request->IoFlags = htole16(10);      /* Specify 10-byte cdb */
 1452                         cdb_len = 10;
 1453                 } else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
 1454                         /* Convert to 16 byte CDB for large LBA's */
 1455                         switch (cdb_len) {
 1456                         case 6:
 1457                                 opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
 1458                                 control = cdb[5];
 1459                                 break;
 1460                         case 10:
 1461                                 opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
 1462                                 flagvals = cdb[1];
 1463                                 groupnum = cdb[6];
 1464                                 control = cdb[9];
 1465                                 break;
 1466                         case 12:
 1467                                 opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
 1468                                 flagvals = cdb[1];
 1469                                 groupnum = cdb[10];
 1470                                 control = cdb[11];
 1471                                 break;
 1472                         }
 1473 
 1474                         memset(cdb, 0, sizeof(io_request->CDB.CDB32));
 1475 
 1476                         cdb[0] = opcode;
 1477                         cdb[1] = flagvals;
 1478                         cdb[14] = groupnum;
 1479                         cdb[15] = control;
 1480 
 1481                         /* Transfer length */
 1482                         cdb[13] = (u_int8_t)(num_blocks & 0xff);
 1483                         cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
 1484                         cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
 1485                         cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
 1486 
 1487                         io_request->IoFlags = htole16(16);      /* Specify 16-byte cdb */
 1488                         cdb_len = 16;
 1489                 } else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
 1490                         /* convert to 10 byte CDB */
 1491                         opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
 1492                         control = cdb[5];
 1493 
 1494                         memset(cdb, 0, sizeof(io_request->CDB.CDB32));
 1495                         cdb[0] = opcode;
 1496                         cdb[9] = control;
 1497 
 1498                         /* Set transfer length */
 1499                         cdb[8] = (u_int8_t)(num_blocks & 0xff);
 1500                         cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
 1501 
 1502                         /* Specify 10-byte cdb */
 1503                         cdb_len = 10;
 1504                 }
 1505                 /* Fall through normal case, just load LBA here */
 1506                 u_int8_t val = cdb[1] & 0xE0;
 1507 
 1508                 switch (cdb_len) {
 1509                 case 6:
 1510                         cdb[3] = (u_int8_t)(start_blk & 0xff);
 1511                         cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
 1512                         cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
 1513                         break;
 1514                 case 10:
 1515                         cdb[5] = (u_int8_t)(start_blk & 0xff);
 1516                         cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
 1517                         cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
 1518                         cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
 1519                         break;
 1520                 case 16:
 1521                         cdb[9] = (u_int8_t)(start_blk & 0xff);
 1522                         cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
 1523                         cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
 1524                         cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
 1525                         cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
 1526                         cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
 1527                         cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
 1528                         cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
 1529                         break;
 1530                 }
 1531         }
 1532 }
 1533 
 1534 /*
 1535  * mrsas_get_best_arm_pd:       Determine the best spindle arm
 1536  * Inputs:
 1537  *    sc - HBA instance
 1538  *    lbInfo - Load balance info
 1539  *    io_info - IO request info
 1540  *
 1541  * This function determines and returns the best arm by looking at the
 1542  * parameters of the last PD access.
 1543  */
 1544 u_int8_t 
 1545 mrsas_get_best_arm_pd(struct mrsas_softc *sc,
 1546     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
 1547 {
 1548         MR_LD_RAID *raid;
 1549         MR_DRV_RAID_MAP_ALL *drv_map;
 1550         u_int16_t pd1_devHandle;
 1551         u_int16_t pend0, pend1, ld;
 1552         u_int64_t diff0, diff1;
 1553         u_int8_t bestArm, pd0, pd1, span, arm;
 1554         u_int32_t arRef, span_row_size;
 1555 
 1556         u_int64_t block = io_info->ldStartBlock;
 1557         u_int32_t count = io_info->numBlocks;
 1558 
 1559         span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
 1560             >> RAID_CTX_SPANARM_SPAN_SHIFT);
 1561         arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
 1562 
 1563         drv_map = sc->ld_drv_map[(sc->map_id & 1)];
 1564         ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
 1565         raid = MR_LdRaidGet(ld, drv_map);
 1566         span_row_size = sc->UnevenSpanSupport ?
 1567             SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
 1568 
 1569         arRef = MR_LdSpanArrayGet(ld, span, drv_map);
 1570         pd0 = MR_ArPdGet(arRef, arm, drv_map);
 1571         pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
 1572             (arm + 1 - span_row_size) : arm + 1, drv_map);
 1573 
 1574         /* Get PD1 Dev Handle */
 1575         pd1_devHandle = MR_PdDevHandleGet(pd1, drv_map);
 1576         if (pd1_devHandle == MR_DEVHANDLE_INVALID) {
 1577                 bestArm = arm;
 1578         } else {
 1579                 /* get the pending cmds for the data and mirror arms */
 1580                 pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
 1581                 pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
 1582 
 1583                 /* Determine the disk whose head is nearer to the req. block */
 1584                 diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
 1585                 diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
 1586                 bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
 1587 
 1588                 if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
 1589                     (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
 1590                         bestArm ^= 1;
 1591 
 1592                 /* Update the last accessed block on the correct pd */
 1593                 io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
 1594                 io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
 1595         }
 1596 
 1597         lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
 1598 #if SPAN_DEBUG
 1599         if (arm != bestArm)
 1600                 printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
 1601                     "io_info->span_arm 0x%x\n",
 1602                     span, arm, bestArm, io_info->span_arm);
 1603 #endif
 1604 
 1605         return io_info->pd_after_lb;
 1606 }
 1607 
 1608 /*
 1609  * mrsas_get_updated_dev_handle:        Get the update dev handle
 1610  * Inputs:
 1611  *      sc - Adapter instance soft state
 1612  *      lbInfo - Load balance info
 1613  *      io_info - io_info pointer
 1614  *
 1615  * This function determines and returns the updated dev handle.
 1616  */
 1617 u_int16_t 
 1618 mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
 1619     PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
 1620 {
 1621         u_int8_t arm_pd;
 1622         u_int16_t devHandle;
 1623         MR_DRV_RAID_MAP_ALL *drv_map;
 1624 
 1625         drv_map = sc->ld_drv_map[(sc->map_id & 1)];
 1626 
 1627         /* get best new arm */
 1628         arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
 1629         devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
 1630         io_info->pdInterface = MR_PdInterfaceTypeGet(arm_pd, drv_map);
 1631         mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
 1632 
 1633         return devHandle;
 1634 }
 1635 
 1636 /*
 1637  * MR_GetPhyParams:     Calculates arm, span, and block
 1638  * Inputs:                      Adapter soft state
 1639  *                                      Logical drive number (LD)
 1640  *                                      Stripe number(stripRow)
 1641  *                                      Reference in stripe (stripRef)
 1642  *
 1643  * Outputs:                     Absolute Block number in the physical disk
 1644  *
 1645  * This routine calculates the arm, span and block for the specified stripe and
 1646  * reference in stripe.
 1647  */
 1648 u_int8_t
 1649 MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
 1650     u_int64_t stripRow,
 1651     u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
 1652     RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
 1653 {
 1654         MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
 1655         u_int32_t pd, arRef, r1_alt_pd;
 1656         u_int8_t physArm, span;
 1657         u_int64_t row;
 1658         u_int8_t retval = TRUE;
 1659         int error_code = 0;
 1660         u_int64_t *pdBlock = &io_info->pdBlock;
 1661         u_int16_t *pDevHandle = &io_info->devHandle;
 1662         u_int8_t  *pPdInterface = &io_info->pdInterface;
 1663         u_int32_t rowMod, armQ, arm, logArm;
 1664 
 1665         row = mega_div64_32(stripRow, raid->rowDataSize);
 1666 
 1667         if (raid->level == 6) {
 1668                 /* logical arm within row */
 1669                 logArm = mega_mod64(stripRow, raid->rowDataSize);
 1670                 if (raid->rowSize == 0)
 1671                         return FALSE;
 1672                 rowMod = mega_mod64(row, raid->rowSize);        /* get logical row mod */
 1673                 armQ = raid->rowSize - 1 - rowMod;      /* index of Q drive */
 1674                 arm = armQ + 1 + logArm;/* data always logically follows Q */
 1675                 if (arm >= raid->rowSize)       /* handle wrap condition */
 1676                         arm -= raid->rowSize;
 1677                 physArm = (u_int8_t)arm;
 1678         } else {
 1679                 if (raid->modFactor == 0)
 1680                         return FALSE;
 1681                 physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
 1682         }
 1683 
 1684         if (raid->spanDepth == 1) {
 1685                 span = 0;
 1686                 *pdBlock = row << raid->stripeShift;
 1687         } else {
 1688                 span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
 1689                 if (error_code == 1)
 1690                         return FALSE;
 1691         }
 1692 
 1693         /* Get the array on which this span is present */
 1694         arRef = MR_LdSpanArrayGet(ld, span, map);
 1695 
 1696         pd = MR_ArPdGet(arRef, physArm, map);   /* Get the Pd. */
 1697 
 1698         if (pd != MR_PD_INVALID) {
 1699                 /* Get dev handle from Pd */
 1700                 *pDevHandle = MR_PdDevHandleGet(pd, map);
 1701                 *pPdInterface = MR_PdInterfaceTypeGet(pd, map);
 1702                 /* get second pd also for raid 1/10 fast path writes */
 1703                 if ((raid->level == 1) && !io_info->isRead) {
 1704                         r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map);
 1705                         if (r1_alt_pd != MR_PD_INVALID)
 1706                                 io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map);
 1707                 }
 1708         } else {
 1709                 *pDevHandle = htole16(MR_DEVHANDLE_INVALID);    /* set dev handle as invalid. */
 1710                 if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) ||
 1711                         (sc->mrsas_gen3_ctrl &&
 1712                         raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
 1713                         pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
 1714                 else if (raid->level == 1) {
 1715                         /* Get Alternate Pd. */
 1716                         pd = MR_ArPdGet(arRef, physArm + 1, map);
 1717                         if (pd != MR_PD_INVALID) {
 1718                                 /* Get dev handle from Pd. */
 1719                                 *pDevHandle = MR_PdDevHandleGet(pd, map);
 1720                                 *pPdInterface = MR_PdInterfaceTypeGet(pd, map);
 1721                         }
 1722                 }
 1723         }
 1724 
 1725         *pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk);
 1726         if (sc->is_ventura || sc->is_aero) {
 1727                 ((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm =
 1728                     (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
 1729                 io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
 1730         } else {
 1731                 pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
 1732                 io_info->span_arm = pRAID_Context->spanArm;
 1733         }
 1734         return retval;
 1735 }
 1736 
 1737 /*
 1738  * MR_GetSpanBlock:     Calculates span block
 1739  * Inputs:                      LD
 1740  *                                      row PD
 1741  *                                      span block
 1742  *                                      RAID map pointer
 1743  *
 1744  * Outputs:                     Span number Error code
 1745  *
 1746  * This routine calculates the span from the span block info.
 1747  */
 1748 u_int32_t
 1749 MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
 1750     MR_DRV_RAID_MAP_ALL * map, int *div_error)
 1751 {
 1752         MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
 1753         MR_QUAD_ELEMENT *quad;
 1754         MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
 1755         u_int32_t span, j;
 1756         u_int64_t blk;
 1757 
 1758         for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
 1759                 for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
 1760                         quad = &pSpanBlock->block_span_info.quad[j];
 1761                         if (quad->diff == 0) {
 1762                                 *div_error = 1;
 1763                                 return span;
 1764                         }
 1765                         if (quad->logStart <= row && row <= quad->logEnd &&
 1766                             (mega_mod64(row - quad->logStart, quad->diff)) == 0) {
 1767                                 if (span_blk != NULL) {
 1768                                         blk = mega_div64_32((row - quad->logStart), quad->diff);
 1769                                         blk = (blk + quad->offsetInSpan) << raid->stripeShift;
 1770                                         *span_blk = blk;
 1771                                 }
 1772                                 return span;
 1773                         }
 1774                 }
 1775         }
 1776         return span;
 1777 }

Cache object: 0478effd35685562ba55c5dc17871c1e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.