FreeBSD/Linux Kernel Cross Reference
sys/dev/msk/if_msk.c
1 /******************************************************************************
2 *
3 * Name : sky2.c
4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5 * Version: $Revision: 1.23 $
6 * Date : $Date: 2005/12/22 09:04:11 $
7 * Purpose: Main driver source file
8 *
9 *****************************************************************************/
10
11 /******************************************************************************
12 *
13 * LICENSE:
14 * Copyright (C) Marvell International Ltd. and/or its affiliates
15 *
16 * The computer program files contained in this folder ("Files")
17 * are provided to you under the BSD-type license terms provided
18 * below, and any use of such Files and any derivative works
19 * thereof created by you shall be governed by the following terms
20 * and conditions:
21 *
22 * - Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials provided
27 * with the distribution.
28 * - Neither the name of Marvell nor the names of its contributors
29 * may be used to endorse or promote products derived from this
30 * software without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43 * OF THE POSSIBILITY OF SUCH DAMAGE.
44 * /LICENSE
45 *
46 *****************************************************************************/
47
48 /*-
49 * SPDX-License-Identifier: BSD-4-Clause AND BSD-3-Clause
50 *
51 * Copyright (c) 1997, 1998, 1999, 2000
52 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
53 *
54 * Redistribution and use in source and binary forms, with or without
55 * modification, are permitted provided that the following conditions
56 * are met:
57 * 1. Redistributions of source code must retain the above copyright
58 * notice, this list of conditions and the following disclaimer.
59 * 2. Redistributions in binary form must reproduce the above copyright
60 * notice, this list of conditions and the following disclaimer in the
61 * documentation and/or other materials provided with the distribution.
62 * 3. All advertising materials mentioning features or use of this software
63 * must display the following acknowledgement:
64 * This product includes software developed by Bill Paul.
65 * 4. Neither the name of the author nor the names of any co-contributors
66 * may be used to endorse or promote products derived from this software
67 * without specific prior written permission.
68 *
69 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
70 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
71 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
72 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
73 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
79 * THE POSSIBILITY OF SUCH DAMAGE.
80 */
81 /*-
82 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
83 *
84 * Permission to use, copy, modify, and distribute this software for any
85 * purpose with or without fee is hereby granted, provided that the above
86 * copyright notice and this permission notice appear in all copies.
87 *
88 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
89 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
90 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
91 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
92 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
93 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
94 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
95 */
96
97 /*
98 * Device driver for the Marvell Yukon II Ethernet controller.
99 * Due to lack of documentation, this driver is based on the code from
100 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101 */
102
103 #include <sys/cdefs.h>
104 __FBSDID("$FreeBSD$");
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/bus.h>
109 #include <sys/endian.h>
110 #include <sys/mbuf.h>
111 #include <sys/malloc.h>
112 #include <sys/kernel.h>
113 #include <sys/module.h>
114 #include <sys/socket.h>
115 #include <sys/sockio.h>
116 #include <sys/queue.h>
117 #include <sys/sysctl.h>
118
119 #include <net/bpf.h>
120 #include <net/ethernet.h>
121 #include <net/if.h>
122 #include <net/if_var.h>
123 #include <net/if_arp.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_types.h>
127 #include <net/if_vlan_var.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/tcp.h>
133 #include <netinet/udp.h>
134
135 #include <machine/bus.h>
136 #include <machine/in_cksum.h>
137 #include <machine/resource.h>
138 #include <sys/rman.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142
143 #include <dev/pci/pcireg.h>
144 #include <dev/pci/pcivar.h>
145
146 #include <dev/msk/if_mskreg.h>
147
148 MODULE_DEPEND(msk, pci, 1, 1, 1);
149 MODULE_DEPEND(msk, ether, 1, 1, 1);
150 MODULE_DEPEND(msk, miibus, 1, 1, 1);
151
152 /* "device miibus" required. See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154
155 /* Tunables. */
156 static int msi_disable = 0;
157 TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
158 static int legacy_intr = 0;
159 TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
160 static int jumbo_disable = 0;
161 TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable);
162
163 #define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
164
165 /*
166 * Devices supported by this driver.
167 */
168 static const struct msk_product {
169 uint16_t msk_vendorid;
170 uint16_t msk_deviceid;
171 const char *msk_name;
172 } msk_products[] = {
173 { VENDORID_SK, DEVICEID_SK_YUKON2,
174 "SK-9Sxx Gigabit Ethernet" },
175 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
176 "SK-9Exx Gigabit Ethernet"},
177 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
178 "Marvell Yukon 88E8021CU Gigabit Ethernet" },
179 { VENDORID_MARVELL, DEVICEID_MRVL_8021X,
180 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
181 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
182 "Marvell Yukon 88E8022CU Gigabit Ethernet" },
183 { VENDORID_MARVELL, DEVICEID_MRVL_8022X,
184 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
185 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
186 "Marvell Yukon 88E8061CU Gigabit Ethernet" },
187 { VENDORID_MARVELL, DEVICEID_MRVL_8061X,
188 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
189 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
190 "Marvell Yukon 88E8062CU Gigabit Ethernet" },
191 { VENDORID_MARVELL, DEVICEID_MRVL_8062X,
192 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
193 { VENDORID_MARVELL, DEVICEID_MRVL_8035,
194 "Marvell Yukon 88E8035 Fast Ethernet" },
195 { VENDORID_MARVELL, DEVICEID_MRVL_8036,
196 "Marvell Yukon 88E8036 Fast Ethernet" },
197 { VENDORID_MARVELL, DEVICEID_MRVL_8038,
198 "Marvell Yukon 88E8038 Fast Ethernet" },
199 { VENDORID_MARVELL, DEVICEID_MRVL_8039,
200 "Marvell Yukon 88E8039 Fast Ethernet" },
201 { VENDORID_MARVELL, DEVICEID_MRVL_8040,
202 "Marvell Yukon 88E8040 Fast Ethernet" },
203 { VENDORID_MARVELL, DEVICEID_MRVL_8040T,
204 "Marvell Yukon 88E8040T Fast Ethernet" },
205 { VENDORID_MARVELL, DEVICEID_MRVL_8042,
206 "Marvell Yukon 88E8042 Fast Ethernet" },
207 { VENDORID_MARVELL, DEVICEID_MRVL_8048,
208 "Marvell Yukon 88E8048 Fast Ethernet" },
209 { VENDORID_MARVELL, DEVICEID_MRVL_4361,
210 "Marvell Yukon 88E8050 Gigabit Ethernet" },
211 { VENDORID_MARVELL, DEVICEID_MRVL_4360,
212 "Marvell Yukon 88E8052 Gigabit Ethernet" },
213 { VENDORID_MARVELL, DEVICEID_MRVL_4362,
214 "Marvell Yukon 88E8053 Gigabit Ethernet" },
215 { VENDORID_MARVELL, DEVICEID_MRVL_4363,
216 "Marvell Yukon 88E8055 Gigabit Ethernet" },
217 { VENDORID_MARVELL, DEVICEID_MRVL_4364,
218 "Marvell Yukon 88E8056 Gigabit Ethernet" },
219 { VENDORID_MARVELL, DEVICEID_MRVL_4365,
220 "Marvell Yukon 88E8070 Gigabit Ethernet" },
221 { VENDORID_MARVELL, DEVICEID_MRVL_436A,
222 "Marvell Yukon 88E8058 Gigabit Ethernet" },
223 { VENDORID_MARVELL, DEVICEID_MRVL_436B,
224 "Marvell Yukon 88E8071 Gigabit Ethernet" },
225 { VENDORID_MARVELL, DEVICEID_MRVL_436C,
226 "Marvell Yukon 88E8072 Gigabit Ethernet" },
227 { VENDORID_MARVELL, DEVICEID_MRVL_436D,
228 "Marvell Yukon 88E8055 Gigabit Ethernet" },
229 { VENDORID_MARVELL, DEVICEID_MRVL_4370,
230 "Marvell Yukon 88E8075 Gigabit Ethernet" },
231 { VENDORID_MARVELL, DEVICEID_MRVL_4380,
232 "Marvell Yukon 88E8057 Gigabit Ethernet" },
233 { VENDORID_MARVELL, DEVICEID_MRVL_4381,
234 "Marvell Yukon 88E8059 Gigabit Ethernet" },
235 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
236 "D-Link 550SX Gigabit Ethernet" },
237 { VENDORID_DLINK, DEVICEID_DLINK_DGE560SX,
238 "D-Link 560SX Gigabit Ethernet" },
239 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
240 "D-Link 560T Gigabit Ethernet" }
241 };
242
243 static const char *model_name[] = {
244 "Yukon XL",
245 "Yukon EC Ultra",
246 "Yukon EX",
247 "Yukon EC",
248 "Yukon FE",
249 "Yukon FE+",
250 "Yukon Supreme",
251 "Yukon Ultra 2",
252 "Yukon Unknown",
253 "Yukon Optima",
254 };
255
256 static int mskc_probe(device_t);
257 static int mskc_attach(device_t);
258 static int mskc_detach(device_t);
259 static int mskc_shutdown(device_t);
260 static int mskc_setup_rambuffer(struct msk_softc *);
261 static int mskc_suspend(device_t);
262 static int mskc_resume(device_t);
263 static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t);
264 static void mskc_reset(struct msk_softc *);
265
266 static int msk_probe(device_t);
267 static int msk_attach(device_t);
268 static int msk_detach(device_t);
269
270 static void msk_tick(void *);
271 static void msk_intr(void *);
272 static void msk_intr_phy(struct msk_if_softc *);
273 static void msk_intr_gmac(struct msk_if_softc *);
274 static __inline void msk_rxput(struct msk_if_softc *);
275 static int msk_handle_events(struct msk_softc *);
276 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
277 static void msk_intr_hwerr(struct msk_softc *);
278 #ifndef __NO_STRICT_ALIGNMENT
279 static __inline void msk_fixup_rx(struct mbuf *);
280 #endif
281 static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *);
282 static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
283 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int);
284 static void msk_txeof(struct msk_if_softc *, int);
285 static int msk_encap(struct msk_if_softc *, struct mbuf **);
286 static void msk_start(struct ifnet *);
287 static void msk_start_locked(struct ifnet *);
288 static int msk_ioctl(struct ifnet *, u_long, caddr_t);
289 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
290 static void msk_set_rambuffer(struct msk_if_softc *);
291 static void msk_set_tx_stfwd(struct msk_if_softc *);
292 static void msk_init(void *);
293 static void msk_init_locked(struct msk_if_softc *);
294 static void msk_stop(struct msk_if_softc *);
295 static void msk_watchdog(struct msk_if_softc *);
296 static int msk_mediachange(struct ifnet *);
297 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
298 static void msk_phy_power(struct msk_softc *, int);
299 static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
300 static int msk_status_dma_alloc(struct msk_softc *);
301 static void msk_status_dma_free(struct msk_softc *);
302 static int msk_txrx_dma_alloc(struct msk_if_softc *);
303 static int msk_rx_dma_jalloc(struct msk_if_softc *);
304 static void msk_txrx_dma_free(struct msk_if_softc *);
305 static void msk_rx_dma_jfree(struct msk_if_softc *);
306 static int msk_rx_fill(struct msk_if_softc *, int);
307 static int msk_init_rx_ring(struct msk_if_softc *);
308 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
309 static void msk_init_tx_ring(struct msk_if_softc *);
310 static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
311 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
312 static int msk_newbuf(struct msk_if_softc *, int);
313 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
314
315 static int msk_phy_readreg(struct msk_if_softc *, int, int);
316 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
317 static int msk_miibus_readreg(device_t, int, int);
318 static int msk_miibus_writereg(device_t, int, int, int);
319 static void msk_miibus_statchg(device_t);
320
321 static void msk_rxfilter(struct msk_if_softc *);
322 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
323
324 static void msk_stats_clear(struct msk_if_softc *);
325 static void msk_stats_update(struct msk_if_softc *);
326 static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS);
327 static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS);
328 static void msk_sysctl_node(struct msk_if_softc *);
329 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
330 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
331
332 static device_method_t mskc_methods[] = {
333 /* Device interface */
334 DEVMETHOD(device_probe, mskc_probe),
335 DEVMETHOD(device_attach, mskc_attach),
336 DEVMETHOD(device_detach, mskc_detach),
337 DEVMETHOD(device_suspend, mskc_suspend),
338 DEVMETHOD(device_resume, mskc_resume),
339 DEVMETHOD(device_shutdown, mskc_shutdown),
340
341 DEVMETHOD(bus_get_dma_tag, mskc_get_dma_tag),
342
343 DEVMETHOD_END
344 };
345
346 static driver_t mskc_driver = {
347 "mskc",
348 mskc_methods,
349 sizeof(struct msk_softc)
350 };
351
352 static device_method_t msk_methods[] = {
353 /* Device interface */
354 DEVMETHOD(device_probe, msk_probe),
355 DEVMETHOD(device_attach, msk_attach),
356 DEVMETHOD(device_detach, msk_detach),
357 DEVMETHOD(device_shutdown, bus_generic_shutdown),
358
359 /* MII interface */
360 DEVMETHOD(miibus_readreg, msk_miibus_readreg),
361 DEVMETHOD(miibus_writereg, msk_miibus_writereg),
362 DEVMETHOD(miibus_statchg, msk_miibus_statchg),
363
364 DEVMETHOD_END
365 };
366
367 static driver_t msk_driver = {
368 "msk",
369 msk_methods,
370 sizeof(struct msk_if_softc)
371 };
372
373 DRIVER_MODULE(mskc, pci, mskc_driver, NULL, NULL);
374 DRIVER_MODULE(msk, mskc, msk_driver, NULL, NULL);
375 DRIVER_MODULE(miibus, msk, miibus_driver, NULL, NULL);
376
377 static struct resource_spec msk_res_spec_io[] = {
378 { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
379 { -1, 0, 0 }
380 };
381
382 static struct resource_spec msk_res_spec_mem[] = {
383 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
384 { -1, 0, 0 }
385 };
386
387 static struct resource_spec msk_irq_spec_legacy[] = {
388 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
389 { -1, 0, 0 }
390 };
391
392 static struct resource_spec msk_irq_spec_msi[] = {
393 { SYS_RES_IRQ, 1, RF_ACTIVE },
394 { -1, 0, 0 }
395 };
396
397 static int
398 msk_miibus_readreg(device_t dev, int phy, int reg)
399 {
400 struct msk_if_softc *sc_if;
401
402 sc_if = device_get_softc(dev);
403
404 return (msk_phy_readreg(sc_if, phy, reg));
405 }
406
407 static int
408 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
409 {
410 struct msk_softc *sc;
411 int i, val;
412
413 sc = sc_if->msk_softc;
414
415 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
416 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
417
418 for (i = 0; i < MSK_TIMEOUT; i++) {
419 DELAY(1);
420 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
421 if ((val & GM_SMI_CT_RD_VAL) != 0) {
422 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
423 break;
424 }
425 }
426
427 if (i == MSK_TIMEOUT) {
428 if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
429 val = 0;
430 }
431
432 return (val);
433 }
434
435 static int
436 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
437 {
438 struct msk_if_softc *sc_if;
439
440 sc_if = device_get_softc(dev);
441
442 return (msk_phy_writereg(sc_if, phy, reg, val));
443 }
444
445 static int
446 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
447 {
448 struct msk_softc *sc;
449 int i;
450
451 sc = sc_if->msk_softc;
452
453 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
454 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
455 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
456 for (i = 0; i < MSK_TIMEOUT; i++) {
457 DELAY(1);
458 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
459 GM_SMI_CT_BUSY) == 0)
460 break;
461 }
462 if (i == MSK_TIMEOUT)
463 if_printf(sc_if->msk_ifp, "phy write timeout\n");
464
465 return (0);
466 }
467
468 static void
469 msk_miibus_statchg(device_t dev)
470 {
471 struct msk_softc *sc;
472 struct msk_if_softc *sc_if;
473 struct mii_data *mii;
474 struct ifnet *ifp;
475 uint32_t gmac;
476
477 sc_if = device_get_softc(dev);
478 sc = sc_if->msk_softc;
479
480 MSK_IF_LOCK_ASSERT(sc_if);
481
482 mii = device_get_softc(sc_if->msk_miibus);
483 ifp = sc_if->msk_ifp;
484 if (mii == NULL || ifp == NULL ||
485 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
486 return;
487
488 sc_if->msk_flags &= ~MSK_FLAG_LINK;
489 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
490 (IFM_AVALID | IFM_ACTIVE)) {
491 switch (IFM_SUBTYPE(mii->mii_media_active)) {
492 case IFM_10_T:
493 case IFM_100_TX:
494 sc_if->msk_flags |= MSK_FLAG_LINK;
495 break;
496 case IFM_1000_T:
497 case IFM_1000_SX:
498 case IFM_1000_LX:
499 case IFM_1000_CX:
500 if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
501 sc_if->msk_flags |= MSK_FLAG_LINK;
502 break;
503 default:
504 break;
505 }
506 }
507
508 if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) {
509 /* Enable Tx FIFO Underrun. */
510 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
511 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
512 /*
513 * Because mii(4) notify msk(4) that it detected link status
514 * change, there is no need to enable automatic
515 * speed/flow-control/duplex updates.
516 */
517 gmac = GM_GPCR_AU_ALL_DIS;
518 switch (IFM_SUBTYPE(mii->mii_media_active)) {
519 case IFM_1000_SX:
520 case IFM_1000_T:
521 gmac |= GM_GPCR_SPEED_1000;
522 break;
523 case IFM_100_TX:
524 gmac |= GM_GPCR_SPEED_100;
525 break;
526 case IFM_10_T:
527 break;
528 }
529
530 if ((IFM_OPTIONS(mii->mii_media_active) &
531 IFM_ETH_RXPAUSE) == 0)
532 gmac |= GM_GPCR_FC_RX_DIS;
533 if ((IFM_OPTIONS(mii->mii_media_active) &
534 IFM_ETH_TXPAUSE) == 0)
535 gmac |= GM_GPCR_FC_TX_DIS;
536 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
537 gmac |= GM_GPCR_DUP_FULL;
538 else
539 gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
540 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
541 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
542 /* Read again to ensure writing. */
543 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
544 gmac = GMC_PAUSE_OFF;
545 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
546 if ((IFM_OPTIONS(mii->mii_media_active) &
547 IFM_ETH_RXPAUSE) != 0)
548 gmac = GMC_PAUSE_ON;
549 }
550 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
551
552 /* Enable PHY interrupt for FIFO underrun/overflow. */
553 msk_phy_writereg(sc_if, PHY_ADDR_MARV,
554 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
555 } else {
556 /*
557 * Link state changed to down.
558 * Disable PHY interrupts.
559 */
560 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
561 /* Disable Rx/Tx MAC. */
562 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
563 if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) {
564 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
565 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
566 /* Read again to ensure writing. */
567 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
568 }
569 }
570 }
571
572 static u_int
573 msk_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
574 {
575 uint32_t *mchash = arg;
576 uint32_t crc;
577
578 crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
579 /* Just want the 6 least significant bits. */
580 crc &= 0x3f;
581 /* Set the corresponding bit in the hash table. */
582 mchash[crc >> 5] |= 1 << (crc & 0x1f);
583
584 return (1);
585 }
586
587 static void
588 msk_rxfilter(struct msk_if_softc *sc_if)
589 {
590 struct msk_softc *sc;
591 struct ifnet *ifp;
592 uint32_t mchash[2];
593 uint16_t mode;
594
595 sc = sc_if->msk_softc;
596
597 MSK_IF_LOCK_ASSERT(sc_if);
598
599 ifp = sc_if->msk_ifp;
600
601 bzero(mchash, sizeof(mchash));
602 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
603 if ((ifp->if_flags & IFF_PROMISC) != 0)
604 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
605 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
606 mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
607 mchash[0] = 0xffff;
608 mchash[1] = 0xffff;
609 } else {
610 mode |= GM_RXCR_UCF_ENA;
611 if_foreach_llmaddr(ifp, msk_hash_maddr, mchash);
612 if (mchash[0] != 0 || mchash[1] != 0)
613 mode |= GM_RXCR_MCF_ENA;
614 }
615
616 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
617 mchash[0] & 0xffff);
618 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
619 (mchash[0] >> 16) & 0xffff);
620 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
621 mchash[1] & 0xffff);
622 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
623 (mchash[1] >> 16) & 0xffff);
624 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
625 }
626
627 static void
628 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
629 {
630 struct msk_softc *sc;
631
632 sc = sc_if->msk_softc;
633 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
634 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
635 RX_VLAN_STRIP_ON);
636 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
637 TX_VLAN_TAG_ON);
638 } else {
639 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
640 RX_VLAN_STRIP_OFF);
641 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
642 TX_VLAN_TAG_OFF);
643 }
644 }
645
646 static int
647 msk_rx_fill(struct msk_if_softc *sc_if, int jumbo)
648 {
649 uint16_t idx;
650 int i;
651
652 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
653 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
654 /* Wait until controller executes OP_TCPSTART command. */
655 for (i = 100; i > 0; i--) {
656 DELAY(100);
657 idx = CSR_READ_2(sc_if->msk_softc,
658 Y2_PREF_Q_ADDR(sc_if->msk_rxq,
659 PREF_UNIT_GET_IDX_REG));
660 if (idx != 0)
661 break;
662 }
663 if (i == 0) {
664 device_printf(sc_if->msk_if_dev,
665 "prefetch unit stuck?\n");
666 return (ETIMEDOUT);
667 }
668 /*
669 * Fill consumed LE with free buffer. This can be done
670 * in Rx handler but we don't want to add special code
671 * in fast handler.
672 */
673 if (jumbo > 0) {
674 if (msk_jumbo_newbuf(sc_if, 0) != 0)
675 return (ENOBUFS);
676 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
677 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
678 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
679 } else {
680 if (msk_newbuf(sc_if, 0) != 0)
681 return (ENOBUFS);
682 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
683 sc_if->msk_cdata.msk_rx_ring_map,
684 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
685 }
686 sc_if->msk_cdata.msk_rx_prod = 0;
687 CSR_WRITE_2(sc_if->msk_softc,
688 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
689 sc_if->msk_cdata.msk_rx_prod);
690 }
691 return (0);
692 }
693
694 static int
695 msk_init_rx_ring(struct msk_if_softc *sc_if)
696 {
697 struct msk_ring_data *rd;
698 struct msk_rxdesc *rxd;
699 int i, nbuf, prod;
700
701 MSK_IF_LOCK_ASSERT(sc_if);
702
703 sc_if->msk_cdata.msk_rx_cons = 0;
704 sc_if->msk_cdata.msk_rx_prod = 0;
705 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
706
707 rd = &sc_if->msk_rdata;
708 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
709 for (i = prod = 0; i < MSK_RX_RING_CNT; i++) {
710 rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
711 rxd->rx_m = NULL;
712 rxd->rx_le = &rd->msk_rx_ring[prod];
713 MSK_INC(prod, MSK_RX_RING_CNT);
714 }
715 nbuf = MSK_RX_BUF_CNT;
716 prod = 0;
717 /* Have controller know how to compute Rx checksum. */
718 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
719 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
720 #ifdef MSK_64BIT_DMA
721 rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
722 rxd->rx_m = NULL;
723 rxd->rx_le = &rd->msk_rx_ring[prod];
724 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
725 ETHER_HDR_LEN);
726 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
727 MSK_INC(prod, MSK_RX_RING_CNT);
728 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
729 #endif
730 rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
731 rxd->rx_m = NULL;
732 rxd->rx_le = &rd->msk_rx_ring[prod];
733 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
734 ETHER_HDR_LEN);
735 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
736 MSK_INC(prod, MSK_RX_RING_CNT);
737 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
738 nbuf--;
739 }
740 for (i = 0; i < nbuf; i++) {
741 if (msk_newbuf(sc_if, prod) != 0)
742 return (ENOBUFS);
743 MSK_RX_INC(prod, MSK_RX_RING_CNT);
744 }
745
746 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
747 sc_if->msk_cdata.msk_rx_ring_map,
748 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
749
750 /* Update prefetch unit. */
751 sc_if->msk_cdata.msk_rx_prod = prod;
752 CSR_WRITE_2(sc_if->msk_softc,
753 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
754 (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) %
755 MSK_RX_RING_CNT);
756 if (msk_rx_fill(sc_if, 0) != 0)
757 return (ENOBUFS);
758 return (0);
759 }
760
761 static int
762 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
763 {
764 struct msk_ring_data *rd;
765 struct msk_rxdesc *rxd;
766 int i, nbuf, prod;
767
768 MSK_IF_LOCK_ASSERT(sc_if);
769
770 sc_if->msk_cdata.msk_rx_cons = 0;
771 sc_if->msk_cdata.msk_rx_prod = 0;
772 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
773
774 rd = &sc_if->msk_rdata;
775 bzero(rd->msk_jumbo_rx_ring,
776 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
777 for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
778 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
779 rxd->rx_m = NULL;
780 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
781 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
782 }
783 nbuf = MSK_RX_BUF_CNT;
784 prod = 0;
785 /* Have controller know how to compute Rx checksum. */
786 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
787 (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) {
788 #ifdef MSK_64BIT_DMA
789 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
790 rxd->rx_m = NULL;
791 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
792 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
793 ETHER_HDR_LEN);
794 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
795 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
796 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
797 #endif
798 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
799 rxd->rx_m = NULL;
800 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
801 rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 |
802 ETHER_HDR_LEN);
803 rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER);
804 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
805 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
806 nbuf--;
807 }
808 for (i = 0; i < nbuf; i++) {
809 if (msk_jumbo_newbuf(sc_if, prod) != 0)
810 return (ENOBUFS);
811 MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT);
812 }
813
814 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
815 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
816 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
817
818 /* Update prefetch unit. */
819 sc_if->msk_cdata.msk_rx_prod = prod;
820 CSR_WRITE_2(sc_if->msk_softc,
821 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
822 (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) %
823 MSK_JUMBO_RX_RING_CNT);
824 if (msk_rx_fill(sc_if, 1) != 0)
825 return (ENOBUFS);
826 return (0);
827 }
828
829 static void
830 msk_init_tx_ring(struct msk_if_softc *sc_if)
831 {
832 struct msk_ring_data *rd;
833 struct msk_txdesc *txd;
834 int i;
835
836 sc_if->msk_cdata.msk_tso_mtu = 0;
837 sc_if->msk_cdata.msk_last_csum = 0;
838 sc_if->msk_cdata.msk_tx_prod = 0;
839 sc_if->msk_cdata.msk_tx_cons = 0;
840 sc_if->msk_cdata.msk_tx_cnt = 0;
841 sc_if->msk_cdata.msk_tx_high_addr = 0;
842
843 rd = &sc_if->msk_rdata;
844 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
845 for (i = 0; i < MSK_TX_RING_CNT; i++) {
846 txd = &sc_if->msk_cdata.msk_txdesc[i];
847 txd->tx_m = NULL;
848 txd->tx_le = &rd->msk_tx_ring[i];
849 }
850
851 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
852 sc_if->msk_cdata.msk_tx_ring_map,
853 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
854 }
855
856 static __inline void
857 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
858 {
859 struct msk_rx_desc *rx_le;
860 struct msk_rxdesc *rxd;
861 struct mbuf *m;
862
863 #ifdef MSK_64BIT_DMA
864 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
865 rx_le = rxd->rx_le;
866 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
867 MSK_INC(idx, MSK_RX_RING_CNT);
868 #endif
869 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
870 m = rxd->rx_m;
871 rx_le = rxd->rx_le;
872 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
873 }
874
875 static __inline void
876 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx)
877 {
878 struct msk_rx_desc *rx_le;
879 struct msk_rxdesc *rxd;
880 struct mbuf *m;
881
882 #ifdef MSK_64BIT_DMA
883 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
884 rx_le = rxd->rx_le;
885 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
886 MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
887 #endif
888 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
889 m = rxd->rx_m;
890 rx_le = rxd->rx_le;
891 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
892 }
893
894 static int
895 msk_newbuf(struct msk_if_softc *sc_if, int idx)
896 {
897 struct msk_rx_desc *rx_le;
898 struct msk_rxdesc *rxd;
899 struct mbuf *m;
900 bus_dma_segment_t segs[1];
901 bus_dmamap_t map;
902 int nsegs;
903
904 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
905 if (m == NULL)
906 return (ENOBUFS);
907
908 m->m_len = m->m_pkthdr.len = MCLBYTES;
909 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
910 m_adj(m, ETHER_ALIGN);
911 #ifndef __NO_STRICT_ALIGNMENT
912 else
913 m_adj(m, MSK_RX_BUF_ALIGN);
914 #endif
915
916 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
917 sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
918 BUS_DMA_NOWAIT) != 0) {
919 m_freem(m);
920 return (ENOBUFS);
921 }
922 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
923
924 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
925 #ifdef MSK_64BIT_DMA
926 rx_le = rxd->rx_le;
927 rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
928 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
929 MSK_INC(idx, MSK_RX_RING_CNT);
930 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
931 #endif
932 if (rxd->rx_m != NULL) {
933 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
934 BUS_DMASYNC_POSTREAD);
935 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
936 rxd->rx_m = NULL;
937 }
938 map = rxd->rx_dmamap;
939 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
940 sc_if->msk_cdata.msk_rx_sparemap = map;
941 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
942 BUS_DMASYNC_PREREAD);
943 rxd->rx_m = m;
944 rx_le = rxd->rx_le;
945 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
946 rx_le->msk_control =
947 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
948
949 return (0);
950 }
951
952 static int
953 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
954 {
955 struct msk_rx_desc *rx_le;
956 struct msk_rxdesc *rxd;
957 struct mbuf *m;
958 bus_dma_segment_t segs[1];
959 bus_dmamap_t map;
960 int nsegs;
961
962 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
963 if (m == NULL)
964 return (ENOBUFS);
965 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
966 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
967 m_adj(m, ETHER_ALIGN);
968 #ifndef __NO_STRICT_ALIGNMENT
969 else
970 m_adj(m, MSK_RX_BUF_ALIGN);
971 #endif
972
973 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
974 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
975 BUS_DMA_NOWAIT) != 0) {
976 m_freem(m);
977 return (ENOBUFS);
978 }
979 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
980
981 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
982 #ifdef MSK_64BIT_DMA
983 rx_le = rxd->rx_le;
984 rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr));
985 rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
986 MSK_INC(idx, MSK_JUMBO_RX_RING_CNT);
987 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
988 #endif
989 if (rxd->rx_m != NULL) {
990 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
991 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
992 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
993 rxd->rx_dmamap);
994 rxd->rx_m = NULL;
995 }
996 map = rxd->rx_dmamap;
997 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
998 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
999 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
1000 BUS_DMASYNC_PREREAD);
1001 rxd->rx_m = m;
1002 rx_le = rxd->rx_le;
1003 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
1004 rx_le->msk_control =
1005 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
1006
1007 return (0);
1008 }
1009
1010 /*
1011 * Set media options.
1012 */
1013 static int
1014 msk_mediachange(struct ifnet *ifp)
1015 {
1016 struct msk_if_softc *sc_if;
1017 struct mii_data *mii;
1018 int error;
1019
1020 sc_if = ifp->if_softc;
1021
1022 MSK_IF_LOCK(sc_if);
1023 mii = device_get_softc(sc_if->msk_miibus);
1024 error = mii_mediachg(mii);
1025 MSK_IF_UNLOCK(sc_if);
1026
1027 return (error);
1028 }
1029
1030 /*
1031 * Report current media status.
1032 */
1033 static void
1034 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1035 {
1036 struct msk_if_softc *sc_if;
1037 struct mii_data *mii;
1038
1039 sc_if = ifp->if_softc;
1040 MSK_IF_LOCK(sc_if);
1041 if ((ifp->if_flags & IFF_UP) == 0) {
1042 MSK_IF_UNLOCK(sc_if);
1043 return;
1044 }
1045 mii = device_get_softc(sc_if->msk_miibus);
1046
1047 mii_pollstat(mii);
1048 ifmr->ifm_active = mii->mii_media_active;
1049 ifmr->ifm_status = mii->mii_media_status;
1050 MSK_IF_UNLOCK(sc_if);
1051 }
1052
1053 static int
1054 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1055 {
1056 struct msk_if_softc *sc_if;
1057 struct ifreq *ifr;
1058 struct mii_data *mii;
1059 int error, mask, reinit;
1060
1061 sc_if = ifp->if_softc;
1062 ifr = (struct ifreq *)data;
1063 error = 0;
1064
1065 switch(command) {
1066 case SIOCSIFMTU:
1067 MSK_IF_LOCK(sc_if);
1068 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN)
1069 error = EINVAL;
1070 else if (ifp->if_mtu != ifr->ifr_mtu) {
1071 if (ifr->ifr_mtu > ETHERMTU) {
1072 if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
1073 error = EINVAL;
1074 MSK_IF_UNLOCK(sc_if);
1075 break;
1076 }
1077 if ((sc_if->msk_flags &
1078 MSK_FLAG_JUMBO_NOCSUM) != 0) {
1079 ifp->if_hwassist &=
1080 ~(MSK_CSUM_FEATURES | CSUM_TSO);
1081 ifp->if_capenable &=
1082 ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1083 VLAN_CAPABILITIES(ifp);
1084 }
1085 }
1086 ifp->if_mtu = ifr->ifr_mtu;
1087 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1088 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1089 msk_init_locked(sc_if);
1090 }
1091 }
1092 MSK_IF_UNLOCK(sc_if);
1093 break;
1094 case SIOCSIFFLAGS:
1095 MSK_IF_LOCK(sc_if);
1096 if ((ifp->if_flags & IFF_UP) != 0) {
1097 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1098 ((ifp->if_flags ^ sc_if->msk_if_flags) &
1099 (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1100 msk_rxfilter(sc_if);
1101 else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0)
1102 msk_init_locked(sc_if);
1103 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1104 msk_stop(sc_if);
1105 sc_if->msk_if_flags = ifp->if_flags;
1106 MSK_IF_UNLOCK(sc_if);
1107 break;
1108 case SIOCADDMULTI:
1109 case SIOCDELMULTI:
1110 MSK_IF_LOCK(sc_if);
1111 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1112 msk_rxfilter(sc_if);
1113 MSK_IF_UNLOCK(sc_if);
1114 break;
1115 case SIOCGIFMEDIA:
1116 case SIOCSIFMEDIA:
1117 mii = device_get_softc(sc_if->msk_miibus);
1118 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1119 break;
1120 case SIOCSIFCAP:
1121 reinit = 0;
1122 MSK_IF_LOCK(sc_if);
1123 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1124 if ((mask & IFCAP_TXCSUM) != 0 &&
1125 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1126 ifp->if_capenable ^= IFCAP_TXCSUM;
1127 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1128 ifp->if_hwassist |= MSK_CSUM_FEATURES;
1129 else
1130 ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
1131 }
1132 if ((mask & IFCAP_RXCSUM) != 0 &&
1133 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1134 ifp->if_capenable ^= IFCAP_RXCSUM;
1135 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1136 reinit = 1;
1137 }
1138 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1139 (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0)
1140 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1141 if ((mask & IFCAP_TSO4) != 0 &&
1142 (IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1143 ifp->if_capenable ^= IFCAP_TSO4;
1144 if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1145 ifp->if_hwassist |= CSUM_TSO;
1146 else
1147 ifp->if_hwassist &= ~CSUM_TSO;
1148 }
1149 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1150 (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0)
1151 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1152 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1153 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1154 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1155 if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0)
1156 ifp->if_capenable &=
1157 ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1158 msk_setvlan(sc_if, ifp);
1159 }
1160 if (ifp->if_mtu > ETHERMTU &&
1161 (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
1162 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
1163 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
1164 }
1165 VLAN_CAPABILITIES(ifp);
1166 if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1167 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1168 msk_init_locked(sc_if);
1169 }
1170 MSK_IF_UNLOCK(sc_if);
1171 break;
1172 default:
1173 error = ether_ioctl(ifp, command, data);
1174 break;
1175 }
1176
1177 return (error);
1178 }
1179
1180 static int
1181 mskc_probe(device_t dev)
1182 {
1183 const struct msk_product *mp;
1184 uint16_t vendor, devid;
1185 int i;
1186
1187 vendor = pci_get_vendor(dev);
1188 devid = pci_get_device(dev);
1189 mp = msk_products;
1190 for (i = 0; i < nitems(msk_products); i++, mp++) {
1191 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
1192 device_set_desc(dev, mp->msk_name);
1193 return (BUS_PROBE_DEFAULT);
1194 }
1195 }
1196
1197 return (ENXIO);
1198 }
1199
1200 static int
1201 mskc_setup_rambuffer(struct msk_softc *sc)
1202 {
1203 int next;
1204 int i;
1205
1206 /* Get adapter SRAM size. */
1207 sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
1208 if (bootverbose)
1209 device_printf(sc->msk_dev,
1210 "RAM buffer size : %dKB\n", sc->msk_ramsize);
1211 if (sc->msk_ramsize == 0)
1212 return (0);
1213
1214 sc->msk_pflags |= MSK_FLAG_RAMBUF;
1215 /*
1216 * Give receiver 2/3 of memory and round down to the multiple
1217 * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple
1218 * of 1024.
1219 */
1220 sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
1221 sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
1222 for (i = 0, next = 0; i < sc->msk_num_port; i++) {
1223 sc->msk_rxqstart[i] = next;
1224 sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
1225 next = sc->msk_rxqend[i] + 1;
1226 sc->msk_txqstart[i] = next;
1227 sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1228 next = sc->msk_txqend[i] + 1;
1229 if (bootverbose) {
1230 device_printf(sc->msk_dev,
1231 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1232 sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1233 sc->msk_rxqend[i]);
1234 device_printf(sc->msk_dev,
1235 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1236 sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1237 sc->msk_txqend[i]);
1238 }
1239 }
1240
1241 return (0);
1242 }
1243
1244 static void
1245 msk_phy_power(struct msk_softc *sc, int mode)
1246 {
1247 uint32_t our, val;
1248 int i;
1249
1250 switch (mode) {
1251 case MSK_PHY_POWERUP:
1252 /* Switch power to VCC (WA for VAUX problem). */
1253 CSR_WRITE_1(sc, B0_POWER_CTRL,
1254 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1255 /* Disable Core Clock Division, set Clock Select to 0. */
1256 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1257
1258 val = 0;
1259 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1260 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1261 /* Enable bits are inverted. */
1262 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1263 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1264 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1265 }
1266 /*
1267 * Enable PCI & Core Clock, enable clock gating for both Links.
1268 */
1269 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1270
1271 our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1272 our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1273 if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1274 if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1275 /* Deassert Low Power for 1st PHY. */
1276 our |= PCI_Y2_PHY1_COMA;
1277 if (sc->msk_num_port > 1)
1278 our |= PCI_Y2_PHY2_COMA;
1279 }
1280 }
1281 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1282 sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1283 sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1284 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1285 val &= (PCI_FORCE_ASPM_REQUEST |
1286 PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1287 PCI_ASPM_CLKRUN_REQUEST);
1288 /* Set all bits to 0 except bits 15..12. */
1289 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1290 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1291 val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1292 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1293 CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1294 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1295 /*
1296 * Disable status race, workaround for
1297 * Yukon EC Ultra & Yukon EX.
1298 */
1299 val = CSR_READ_4(sc, B2_GP_IO);
1300 val |= GLB_GPIO_STAT_RACE_DIS;
1301 CSR_WRITE_4(sc, B2_GP_IO, val);
1302 CSR_READ_4(sc, B2_GP_IO);
1303 }
1304 /* Release PHY from PowerDown/COMA mode. */
1305 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1306
1307 for (i = 0; i < sc->msk_num_port; i++) {
1308 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1309 GMLC_RST_SET);
1310 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1311 GMLC_RST_CLR);
1312 }
1313 break;
1314 case MSK_PHY_POWERDOWN:
1315 val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1316 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1317 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1318 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1319 val &= ~PCI_Y2_PHY1_COMA;
1320 if (sc->msk_num_port > 1)
1321 val &= ~PCI_Y2_PHY2_COMA;
1322 }
1323 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1324
1325 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1326 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1327 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1328 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1329 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1330 /* Enable bits are inverted. */
1331 val = 0;
1332 }
1333 /*
1334 * Disable PCI & Core Clock, disable clock gating for
1335 * both Links.
1336 */
1337 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1338 CSR_WRITE_1(sc, B0_POWER_CTRL,
1339 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1340 break;
1341 default:
1342 break;
1343 }
1344 }
1345
1346 static void
1347 mskc_reset(struct msk_softc *sc)
1348 {
1349 bus_addr_t addr;
1350 uint16_t status;
1351 uint32_t val;
1352 int i, initram;
1353
1354 /* Disable ASF. */
1355 if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1356 sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1357 if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1358 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1359 CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1360 status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1361 /* Clear AHB bridge & microcontroller reset. */
1362 status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1363 Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1364 /* Clear ASF microcontroller state. */
1365 status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1366 status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1367 CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1368 CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1369 } else
1370 CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1371 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1372 /*
1373 * Since we disabled ASF, S/W reset is required for
1374 * Power Management.
1375 */
1376 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1377 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1378 }
1379
1380 /* Clear all error bits in the PCI status register. */
1381 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1382 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1383
1384 pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1385 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1386 PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
1387 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1388
1389 switch (sc->msk_bustype) {
1390 case MSK_PEX_BUS:
1391 /* Clear all PEX errors. */
1392 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1393 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1394 if ((val & PEX_RX_OV) != 0) {
1395 sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1396 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1397 }
1398 break;
1399 case MSK_PCI_BUS:
1400 case MSK_PCIX_BUS:
1401 /* Set Cache Line Size to 2(8bytes) if configured to 0. */
1402 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1403 if (val == 0)
1404 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1405 if (sc->msk_bustype == MSK_PCIX_BUS) {
1406 /* Set Cache Line Size opt. */
1407 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1408 val |= PCI_CLS_OPT;
1409 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1410 }
1411 break;
1412 }
1413 /* Set PHY power state. */
1414 msk_phy_power(sc, MSK_PHY_POWERUP);
1415
1416 /* Reset GPHY/GMAC Control */
1417 for (i = 0; i < sc->msk_num_port; i++) {
1418 /* GPHY Control reset. */
1419 CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1420 CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1421 /* GMAC Control reset. */
1422 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1423 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1424 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1425 if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1426 sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
1427 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1428 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1429 GMC_BYP_RETR_ON);
1430 }
1431
1432 if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1433 sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1434 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1435 if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1436 /* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1437 CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1438 }
1439 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1440
1441 /* LED On. */
1442 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1443
1444 /* Clear TWSI IRQ. */
1445 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1446
1447 /* Turn off hardware timer. */
1448 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1449 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1450
1451 /* Turn off descriptor polling. */
1452 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1453
1454 /* Turn off time stamps. */
1455 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1456 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1457
1458 initram = 0;
1459 if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1460 sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1461 sc->msk_hw_id == CHIP_ID_YUKON_FE)
1462 initram++;
1463
1464 /* Configure timeout values. */
1465 for (i = 0; initram > 0 && i < sc->msk_num_port; i++) {
1466 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1467 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1468 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1469 MSK_RI_TO_53);
1470 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1471 MSK_RI_TO_53);
1472 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1473 MSK_RI_TO_53);
1474 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1475 MSK_RI_TO_53);
1476 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1477 MSK_RI_TO_53);
1478 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1479 MSK_RI_TO_53);
1480 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1481 MSK_RI_TO_53);
1482 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1483 MSK_RI_TO_53);
1484 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1485 MSK_RI_TO_53);
1486 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1487 MSK_RI_TO_53);
1488 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1489 MSK_RI_TO_53);
1490 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1491 MSK_RI_TO_53);
1492 }
1493
1494 /* Disable all interrupts. */
1495 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1496 CSR_READ_4(sc, B0_HWE_IMSK);
1497 CSR_WRITE_4(sc, B0_IMSK, 0);
1498 CSR_READ_4(sc, B0_IMSK);
1499
1500 /*
1501 * On dual port PCI-X card, there is an problem where status
1502 * can be received out of order due to split transactions.
1503 */
1504 if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1505 uint16_t pcix_cmd;
1506
1507 pcix_cmd = pci_read_config(sc->msk_dev,
1508 sc->msk_pcixcap + PCIXR_COMMAND, 2);
1509 /* Clear Max Outstanding Split Transactions. */
1510 pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1511 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1512 pci_write_config(sc->msk_dev,
1513 sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1514 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1515 }
1516 if (sc->msk_expcap != 0) {
1517 /* Change Max. Read Request Size to 2048 bytes. */
1518 if (pci_get_max_read_req(sc->msk_dev) == 512)
1519 pci_set_max_read_req(sc->msk_dev, 2048);
1520 }
1521
1522 /* Clear status list. */
1523 bzero(sc->msk_stat_ring,
1524 sizeof(struct msk_stat_desc) * sc->msk_stat_count);
1525 sc->msk_stat_cons = 0;
1526 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1527 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1528 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1529 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1530 /* Set the status list base address. */
1531 addr = sc->msk_stat_ring_paddr;
1532 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1533 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1534 /* Set the status list last index. */
1535 CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1);
1536 if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1537 sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1538 /* WA for dev. #4.3 */
1539 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1540 /* WA for dev. #4.18 */
1541 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1542 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1543 } else {
1544 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1545 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1546 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1547 sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1548 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1549 else
1550 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1551 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1552 }
1553 /*
1554 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1555 */
1556 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1557
1558 /* Enable status unit. */
1559 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1560
1561 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1562 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1563 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1564 }
1565
1566 static int
1567 msk_probe(device_t dev)
1568 {
1569 struct msk_softc *sc;
1570 char desc[100];
1571
1572 sc = device_get_softc(device_get_parent(dev));
1573 /*
1574 * Not much to do here. We always know there will be
1575 * at least one GMAC present, and if there are two,
1576 * mskc_attach() will create a second device instance
1577 * for us.
1578 */
1579 snprintf(desc, sizeof(desc),
1580 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1581 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1582 sc->msk_hw_rev);
1583 device_set_desc_copy(dev, desc);
1584
1585 return (BUS_PROBE_DEFAULT);
1586 }
1587
1588 static int
1589 msk_attach(device_t dev)
1590 {
1591 struct msk_softc *sc;
1592 struct msk_if_softc *sc_if;
1593 struct ifnet *ifp;
1594 struct msk_mii_data *mmd;
1595 int i, port, error;
1596 uint8_t eaddr[6];
1597
1598 if (dev == NULL)
1599 return (EINVAL);
1600
1601 error = 0;
1602 sc_if = device_get_softc(dev);
1603 sc = device_get_softc(device_get_parent(dev));
1604 mmd = device_get_ivars(dev);
1605 port = mmd->port;
1606
1607 sc_if->msk_if_dev = dev;
1608 sc_if->msk_port = port;
1609 sc_if->msk_softc = sc;
1610 sc_if->msk_flags = sc->msk_pflags;
1611 sc->msk_if[port] = sc_if;
1612 /* Setup Tx/Rx queue register offsets. */
1613 if (port == MSK_PORT_A) {
1614 sc_if->msk_txq = Q_XA1;
1615 sc_if->msk_txsq = Q_XS1;
1616 sc_if->msk_rxq = Q_R1;
1617 } else {
1618 sc_if->msk_txq = Q_XA2;
1619 sc_if->msk_txsq = Q_XS2;
1620 sc_if->msk_rxq = Q_R2;
1621 }
1622
1623 callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
1624 msk_sysctl_node(sc_if);
1625
1626 if ((error = msk_txrx_dma_alloc(sc_if)) != 0)
1627 goto fail;
1628 msk_rx_dma_jalloc(sc_if);
1629
1630 ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
1631 if (ifp == NULL) {
1632 device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
1633 error = ENOSPC;
1634 goto fail;
1635 }
1636 ifp->if_softc = sc_if;
1637 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1638 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1639 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4;
1640 /*
1641 * Enable Rx checksum offloading if controller supports
1642 * new descriptor formant and controller is not Yukon XL.
1643 */
1644 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
1645 sc->msk_hw_id != CHIP_ID_YUKON_XL)
1646 ifp->if_capabilities |= IFCAP_RXCSUM;
1647 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1648 (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1649 ifp->if_capabilities |= IFCAP_RXCSUM;
1650 ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO;
1651 ifp->if_capenable = ifp->if_capabilities;
1652 ifp->if_ioctl = msk_ioctl;
1653 ifp->if_start = msk_start;
1654 ifp->if_init = msk_init;
1655 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1656 ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
1657 IFQ_SET_READY(&ifp->if_snd);
1658 /*
1659 * Get station address for this interface. Note that
1660 * dual port cards actually come with three station
1661 * addresses: one for each port, plus an extra. The
1662 * extra one is used by the SysKonnect driver software
1663 * as a 'virtual' station address for when both ports
1664 * are operating in failover mode. Currently we don't
1665 * use this extra address.
1666 */
1667 MSK_IF_LOCK(sc_if);
1668 for (i = 0; i < ETHER_ADDR_LEN; i++)
1669 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1670
1671 /*
1672 * Call MI attach routine. Can't hold locks when calling into ether_*.
1673 */
1674 MSK_IF_UNLOCK(sc_if);
1675 ether_ifattach(ifp, eaddr);
1676 MSK_IF_LOCK(sc_if);
1677
1678 /* VLAN capability setup */
1679 ifp->if_capabilities |= IFCAP_VLAN_MTU;
1680 if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) {
1681 /*
1682 * Due to Tx checksum offload hardware bugs, msk(4) manually
1683 * computes checksum for short frames. For VLAN tagged frames
1684 * this workaround does not work so disable checksum offload
1685 * for VLAN interface.
1686 */
1687 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO;
1688 /*
1689 * Enable Rx checksum offloading for VLAN tagged frames
1690 * if controller support new descriptor format.
1691 */
1692 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 &&
1693 (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0)
1694 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1695 }
1696 ifp->if_capenable = ifp->if_capabilities;
1697 /*
1698 * Disable RX checksum offloading on controllers that don't use
1699 * new descriptor format but give chance to enable it.
1700 */
1701 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0)
1702 ifp->if_capenable &= ~IFCAP_RXCSUM;
1703
1704 /*
1705 * Tell the upper layer(s) we support long frames.
1706 * Must appear after the call to ether_ifattach() because
1707 * ether_ifattach() sets ifi_hdrlen to the default value.
1708 */
1709 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1710
1711 /*
1712 * Do miibus setup.
1713 */
1714 MSK_IF_UNLOCK(sc_if);
1715 error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange,
1716 msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY,
1717 mmd->mii_flags);
1718 if (error != 0) {
1719 device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n");
1720 ether_ifdetach(ifp);
1721 error = ENXIO;
1722 goto fail;
1723 }
1724
1725 fail:
1726 if (error != 0) {
1727 /* Access should be ok even though lock has been dropped */
1728 sc->msk_if[port] = NULL;
1729 msk_detach(dev);
1730 }
1731
1732 return (error);
1733 }
1734
1735 /*
1736 * Attach the interface. Allocate softc structures, do ifmedia
1737 * setup and ethernet/BPF attach.
1738 */
1739 static int
1740 mskc_attach(device_t dev)
1741 {
1742 struct msk_softc *sc;
1743 struct msk_mii_data *mmd;
1744 int error, msic, msir, reg;
1745
1746 sc = device_get_softc(dev);
1747 sc->msk_dev = dev;
1748 mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1749 MTX_DEF);
1750
1751 /*
1752 * Map control/status registers.
1753 */
1754 pci_enable_busmaster(dev);
1755
1756 /* Allocate I/O resource */
1757 #ifdef MSK_USEIOSPACE
1758 sc->msk_res_spec = msk_res_spec_io;
1759 #else
1760 sc->msk_res_spec = msk_res_spec_mem;
1761 #endif
1762 sc->msk_irq_spec = msk_irq_spec_legacy;
1763 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1764 if (error) {
1765 if (sc->msk_res_spec == msk_res_spec_mem)
1766 sc->msk_res_spec = msk_res_spec_io;
1767 else
1768 sc->msk_res_spec = msk_res_spec_mem;
1769 error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
1770 if (error) {
1771 device_printf(dev, "couldn't allocate %s resources\n",
1772 sc->msk_res_spec == msk_res_spec_mem ? "memory" :
1773 "I/O");
1774 mtx_destroy(&sc->msk_mtx);
1775 return (ENXIO);
1776 }
1777 }
1778
1779 /* Enable all clocks before accessing any registers. */
1780 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1781
1782 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1783 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1784 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1785 /* Bail out if chip is not recognized. */
1786 if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1787 sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1788 sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1789 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1790 sc->msk_hw_id, sc->msk_hw_rev);
1791 mtx_destroy(&sc->msk_mtx);
1792 return (ENXIO);
1793 }
1794
1795 SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1796 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1797 OID_AUTO, "process_limit",
1798 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1799 &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1800 "max number of Rx events to process");
1801
1802 sc->msk_process_limit = MSK_PROC_DEFAULT;
1803 error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1804 "process_limit", &sc->msk_process_limit);
1805 if (error == 0) {
1806 if (sc->msk_process_limit < MSK_PROC_MIN ||
1807 sc->msk_process_limit > MSK_PROC_MAX) {
1808 device_printf(dev, "process_limit value out of range; "
1809 "using default: %d\n", MSK_PROC_DEFAULT);
1810 sc->msk_process_limit = MSK_PROC_DEFAULT;
1811 }
1812 }
1813
1814 sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT;
1815 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
1816 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
1817 "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0,
1818 "Maximum number of time to delay interrupts");
1819 resource_int_value(device_get_name(dev), device_get_unit(dev),
1820 "int_holdoff", &sc->msk_int_holdoff);
1821
1822 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1823 /* Check number of MACs. */
1824 sc->msk_num_port = 1;
1825 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1826 CFG_DUAL_MAC_MSK) {
1827 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1828 sc->msk_num_port++;
1829 }
1830
1831 /* Check bus type. */
1832 if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, ®) == 0) {
1833 sc->msk_bustype = MSK_PEX_BUS;
1834 sc->msk_expcap = reg;
1835 } else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, ®) == 0) {
1836 sc->msk_bustype = MSK_PCIX_BUS;
1837 sc->msk_pcixcap = reg;
1838 } else
1839 sc->msk_bustype = MSK_PCI_BUS;
1840
1841 switch (sc->msk_hw_id) {
1842 case CHIP_ID_YUKON_EC:
1843 sc->msk_clock = 125; /* 125 MHz */
1844 sc->msk_pflags |= MSK_FLAG_JUMBO;
1845 break;
1846 case CHIP_ID_YUKON_EC_U:
1847 sc->msk_clock = 125; /* 125 MHz */
1848 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM;
1849 break;
1850 case CHIP_ID_YUKON_EX:
1851 sc->msk_clock = 125; /* 125 MHz */
1852 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1853 MSK_FLAG_AUTOTX_CSUM;
1854 /*
1855 * Yukon Extreme seems to have silicon bug for
1856 * automatic Tx checksum calculation capability.
1857 */
1858 if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
1859 sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM;
1860 /*
1861 * Yukon Extreme A0 could not use store-and-forward
1862 * for jumbo frames, so disable Tx checksum
1863 * offloading for jumbo frames.
1864 */
1865 if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
1866 sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM;
1867 break;
1868 case CHIP_ID_YUKON_FE:
1869 sc->msk_clock = 100; /* 100 MHz */
1870 sc->msk_pflags |= MSK_FLAG_FASTETHER;
1871 break;
1872 case CHIP_ID_YUKON_FE_P:
1873 sc->msk_clock = 50; /* 50 MHz */
1874 sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 |
1875 MSK_FLAG_AUTOTX_CSUM;
1876 if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1877 /*
1878 * XXX
1879 * FE+ A0 has status LE writeback bug so msk(4)
1880 * does not rely on status word of received frame
1881 * in msk_rxeof() which in turn disables all
1882 * hardware assistance bits reported by the status
1883 * word as well as validity of the received frame.
1884 * Just pass received frames to upper stack with
1885 * minimal test and let upper stack handle them.
1886 */
1887 sc->msk_pflags |= MSK_FLAG_NOHWVLAN |
1888 MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM;
1889 }
1890 break;
1891 case CHIP_ID_YUKON_XL:
1892 sc->msk_clock = 156; /* 156 MHz */
1893 sc->msk_pflags |= MSK_FLAG_JUMBO;
1894 break;
1895 case CHIP_ID_YUKON_SUPR:
1896 sc->msk_clock = 125; /* 125 MHz */
1897 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 |
1898 MSK_FLAG_AUTOTX_CSUM;
1899 break;
1900 case CHIP_ID_YUKON_UL_2:
1901 sc->msk_clock = 125; /* 125 MHz */
1902 sc->msk_pflags |= MSK_FLAG_JUMBO;
1903 break;
1904 case CHIP_ID_YUKON_OPT:
1905 sc->msk_clock = 125; /* 125 MHz */
1906 sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2;
1907 break;
1908 default:
1909 sc->msk_clock = 156; /* 156 MHz */
1910 break;
1911 }
1912
1913 /* Allocate IRQ resources. */
1914 msic = pci_msi_count(dev);
1915 if (bootverbose)
1916 device_printf(dev, "MSI count : %d\n", msic);
1917 if (legacy_intr != 0)
1918 msi_disable = 1;
1919 if (msi_disable == 0 && msic > 0) {
1920 msir = 1;
1921 if (pci_alloc_msi(dev, &msir) == 0) {
1922 if (msir == 1) {
1923 sc->msk_pflags |= MSK_FLAG_MSI;
1924 sc->msk_irq_spec = msk_irq_spec_msi;
1925 } else
1926 pci_release_msi(dev);
1927 }
1928 }
1929
1930 error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
1931 if (error) {
1932 device_printf(dev, "couldn't allocate IRQ resources\n");
1933 goto fail;
1934 }
1935
1936 if ((error = msk_status_dma_alloc(sc)) != 0)
1937 goto fail;
1938
1939 /* Set base interrupt mask. */
1940 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1941 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1942 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1943
1944 /* Reset the adapter. */
1945 mskc_reset(sc);
1946
1947 if ((error = mskc_setup_rambuffer(sc)) != 0)
1948 goto fail;
1949
1950 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1951 if (sc->msk_devs[MSK_PORT_A] == NULL) {
1952 device_printf(dev, "failed to add child for PORT_A\n");
1953 error = ENXIO;
1954 goto fail;
1955 }
1956 mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO);
1957 mmd->port = MSK_PORT_A;
1958 mmd->pmd = sc->msk_pmd;
1959 mmd->mii_flags |= MIIF_DOPAUSE;
1960 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1961 mmd->mii_flags |= MIIF_HAVEFIBER;
1962 if (sc->msk_pmd == 'P')
1963 mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1964 device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd);
1965
1966 if (sc->msk_num_port > 1) {
1967 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1968 if (sc->msk_devs[MSK_PORT_B] == NULL) {
1969 device_printf(dev, "failed to add child for PORT_B\n");
1970 error = ENXIO;
1971 goto fail;
1972 }
1973 mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK |
1974 M_ZERO);
1975 mmd->port = MSK_PORT_B;
1976 mmd->pmd = sc->msk_pmd;
1977 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1978 mmd->mii_flags |= MIIF_HAVEFIBER;
1979 if (sc->msk_pmd == 'P')
1980 mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0;
1981 device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd);
1982 }
1983
1984 error = bus_generic_attach(dev);
1985 if (error) {
1986 device_printf(dev, "failed to attach port(s)\n");
1987 goto fail;
1988 }
1989
1990 /* Hook interrupt last to avoid having to lock softc. */
1991 error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
1992 INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand);
1993 if (error != 0) {
1994 device_printf(dev, "couldn't set up interrupt handler\n");
1995 goto fail;
1996 }
1997 fail:
1998 if (error != 0)
1999 mskc_detach(dev);
2000
2001 return (error);
2002 }
2003
2004 /*
2005 * Shutdown hardware and free up resources. This can be called any
2006 * time after the mutex has been initialized. It is called in both
2007 * the error case in attach and the normal detach case so it needs
2008 * to be careful about only freeing resources that have actually been
2009 * allocated.
2010 */
2011 static int
2012 msk_detach(device_t dev)
2013 {
2014 struct msk_softc *sc;
2015 struct msk_if_softc *sc_if;
2016 struct ifnet *ifp;
2017
2018 sc_if = device_get_softc(dev);
2019 KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
2020 ("msk mutex not initialized in msk_detach"));
2021 MSK_IF_LOCK(sc_if);
2022
2023 ifp = sc_if->msk_ifp;
2024 if (device_is_attached(dev)) {
2025 /* XXX */
2026 sc_if->msk_flags |= MSK_FLAG_DETACH;
2027 msk_stop(sc_if);
2028 /* Can't hold locks while calling detach. */
2029 MSK_IF_UNLOCK(sc_if);
2030 callout_drain(&sc_if->msk_tick_ch);
2031 if (ifp)
2032 ether_ifdetach(ifp);
2033 MSK_IF_LOCK(sc_if);
2034 }
2035
2036 /*
2037 * We're generally called from mskc_detach() which is using
2038 * device_delete_child() to get to here. It's already trashed
2039 * miibus for us, so don't do it here or we'll panic.
2040 *
2041 * if (sc_if->msk_miibus != NULL) {
2042 * device_delete_child(dev, sc_if->msk_miibus);
2043 * sc_if->msk_miibus = NULL;
2044 * }
2045 */
2046
2047 msk_rx_dma_jfree(sc_if);
2048 msk_txrx_dma_free(sc_if);
2049 bus_generic_detach(dev);
2050
2051 sc = sc_if->msk_softc;
2052 sc->msk_if[sc_if->msk_port] = NULL;
2053 MSK_IF_UNLOCK(sc_if);
2054 if (ifp)
2055 if_free(ifp);
2056
2057 return (0);
2058 }
2059
2060 static int
2061 mskc_detach(device_t dev)
2062 {
2063 struct msk_softc *sc;
2064
2065 sc = device_get_softc(dev);
2066 KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
2067
2068 if (device_is_alive(dev)) {
2069 if (sc->msk_devs[MSK_PORT_A] != NULL) {
2070 free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
2071 M_DEVBUF);
2072 device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
2073 }
2074 if (sc->msk_devs[MSK_PORT_B] != NULL) {
2075 free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
2076 M_DEVBUF);
2077 device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
2078 }
2079 bus_generic_detach(dev);
2080 }
2081
2082 /* Disable all interrupts. */
2083 CSR_WRITE_4(sc, B0_IMSK, 0);
2084 CSR_READ_4(sc, B0_IMSK);
2085 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2086 CSR_READ_4(sc, B0_HWE_IMSK);
2087
2088 /* LED Off. */
2089 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
2090
2091 /* Put hardware reset. */
2092 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2093
2094 msk_status_dma_free(sc);
2095
2096 if (sc->msk_intrhand) {
2097 bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand);
2098 sc->msk_intrhand = NULL;
2099 }
2100 bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
2101 if ((sc->msk_pflags & MSK_FLAG_MSI) != 0)
2102 pci_release_msi(dev);
2103 bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
2104 mtx_destroy(&sc->msk_mtx);
2105
2106 return (0);
2107 }
2108
2109 static bus_dma_tag_t
2110 mskc_get_dma_tag(device_t bus, device_t child __unused)
2111 {
2112
2113 return (bus_get_dma_tag(bus));
2114 }
2115
2116 struct msk_dmamap_arg {
2117 bus_addr_t msk_busaddr;
2118 };
2119
2120 static void
2121 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2122 {
2123 struct msk_dmamap_arg *ctx;
2124
2125 if (error != 0)
2126 return;
2127 ctx = arg;
2128 ctx->msk_busaddr = segs[0].ds_addr;
2129 }
2130
2131 /* Create status DMA region. */
2132 static int
2133 msk_status_dma_alloc(struct msk_softc *sc)
2134 {
2135 struct msk_dmamap_arg ctx;
2136 bus_size_t stat_sz;
2137 int count, error;
2138
2139 /*
2140 * It seems controller requires number of status LE entries
2141 * is power of 2 and the maximum number of status LE entries
2142 * is 4096. For dual-port controllers, the number of status
2143 * LE entries should be large enough to hold both port's
2144 * status updates.
2145 */
2146 count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT;
2147 count = imin(4096, roundup2(count, 1024));
2148 sc->msk_stat_count = count;
2149 stat_sz = count * sizeof(struct msk_stat_desc);
2150 error = bus_dma_tag_create(
2151 bus_get_dma_tag(sc->msk_dev), /* parent */
2152 MSK_STAT_ALIGN, 0, /* alignment, boundary */
2153 BUS_SPACE_MAXADDR, /* lowaddr */
2154 BUS_SPACE_MAXADDR, /* highaddr */
2155 NULL, NULL, /* filter, filterarg */
2156 stat_sz, /* maxsize */
2157 1, /* nsegments */
2158 stat_sz, /* maxsegsize */
2159 0, /* flags */
2160 NULL, NULL, /* lockfunc, lockarg */
2161 &sc->msk_stat_tag);
2162 if (error != 0) {
2163 device_printf(sc->msk_dev,
2164 "failed to create status DMA tag\n");
2165 return (error);
2166 }
2167
2168 /* Allocate DMA'able memory and load the DMA map for status ring. */
2169 error = bus_dmamem_alloc(sc->msk_stat_tag,
2170 (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
2171 BUS_DMA_ZERO, &sc->msk_stat_map);
2172 if (error != 0) {
2173 device_printf(sc->msk_dev,
2174 "failed to allocate DMA'able memory for status ring\n");
2175 return (error);
2176 }
2177
2178 ctx.msk_busaddr = 0;
2179 error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
2180 sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2181 if (error != 0) {
2182 device_printf(sc->msk_dev,
2183 "failed to load DMA'able memory for status ring\n");
2184 return (error);
2185 }
2186 sc->msk_stat_ring_paddr = ctx.msk_busaddr;
2187
2188 return (0);
2189 }
2190
2191 static void
2192 msk_status_dma_free(struct msk_softc *sc)
2193 {
2194
2195 /* Destroy status block. */
2196 if (sc->msk_stat_tag) {
2197 if (sc->msk_stat_ring_paddr) {
2198 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
2199 sc->msk_stat_ring_paddr = 0;
2200 }
2201 if (sc->msk_stat_ring) {
2202 bus_dmamem_free(sc->msk_stat_tag,
2203 sc->msk_stat_ring, sc->msk_stat_map);
2204 sc->msk_stat_ring = NULL;
2205 }
2206 bus_dma_tag_destroy(sc->msk_stat_tag);
2207 sc->msk_stat_tag = NULL;
2208 }
2209 }
2210
2211 static int
2212 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
2213 {
2214 struct msk_dmamap_arg ctx;
2215 struct msk_txdesc *txd;
2216 struct msk_rxdesc *rxd;
2217 bus_size_t rxalign;
2218 int error, i;
2219
2220 /* Create parent DMA tag. */
2221 error = bus_dma_tag_create(
2222 bus_get_dma_tag(sc_if->msk_if_dev), /* parent */
2223 1, 0, /* alignment, boundary */
2224 BUS_SPACE_MAXADDR, /* lowaddr */
2225 BUS_SPACE_MAXADDR, /* highaddr */
2226 NULL, NULL, /* filter, filterarg */
2227 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
2228 0, /* nsegments */
2229 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
2230 0, /* flags */
2231 NULL, NULL, /* lockfunc, lockarg */
2232 &sc_if->msk_cdata.msk_parent_tag);
2233 if (error != 0) {
2234 device_printf(sc_if->msk_if_dev,
2235 "failed to create parent DMA tag\n");
2236 goto fail;
2237 }
2238 /* Create tag for Tx ring. */
2239 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2240 MSK_RING_ALIGN, 0, /* alignment, boundary */
2241 BUS_SPACE_MAXADDR, /* lowaddr */
2242 BUS_SPACE_MAXADDR, /* highaddr */
2243 NULL, NULL, /* filter, filterarg */
2244 MSK_TX_RING_SZ, /* maxsize */
2245 1, /* nsegments */
2246 MSK_TX_RING_SZ, /* maxsegsize */
2247 0, /* flags */
2248 NULL, NULL, /* lockfunc, lockarg */
2249 &sc_if->msk_cdata.msk_tx_ring_tag);
2250 if (error != 0) {
2251 device_printf(sc_if->msk_if_dev,
2252 "failed to create Tx ring DMA tag\n");
2253 goto fail;
2254 }
2255
2256 /* Create tag for Rx ring. */
2257 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2258 MSK_RING_ALIGN, 0, /* alignment, boundary */
2259 BUS_SPACE_MAXADDR, /* lowaddr */
2260 BUS_SPACE_MAXADDR, /* highaddr */
2261 NULL, NULL, /* filter, filterarg */
2262 MSK_RX_RING_SZ, /* maxsize */
2263 1, /* nsegments */
2264 MSK_RX_RING_SZ, /* maxsegsize */
2265 0, /* flags */
2266 NULL, NULL, /* lockfunc, lockarg */
2267 &sc_if->msk_cdata.msk_rx_ring_tag);
2268 if (error != 0) {
2269 device_printf(sc_if->msk_if_dev,
2270 "failed to create Rx ring DMA tag\n");
2271 goto fail;
2272 }
2273
2274 /* Create tag for Tx buffers. */
2275 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2276 1, 0, /* alignment, boundary */
2277 BUS_SPACE_MAXADDR, /* lowaddr */
2278 BUS_SPACE_MAXADDR, /* highaddr */
2279 NULL, NULL, /* filter, filterarg */
2280 MSK_TSO_MAXSIZE, /* maxsize */
2281 MSK_MAXTXSEGS, /* nsegments */
2282 MSK_TSO_MAXSGSIZE, /* maxsegsize */
2283 0, /* flags */
2284 NULL, NULL, /* lockfunc, lockarg */
2285 &sc_if->msk_cdata.msk_tx_tag);
2286 if (error != 0) {
2287 device_printf(sc_if->msk_if_dev,
2288 "failed to create Tx DMA tag\n");
2289 goto fail;
2290 }
2291
2292 rxalign = 1;
2293 /*
2294 * Workaround hardware hang which seems to happen when Rx buffer
2295 * is not aligned on multiple of FIFO word(8 bytes).
2296 */
2297 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2298 rxalign = MSK_RX_BUF_ALIGN;
2299 /* Create tag for Rx buffers. */
2300 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2301 rxalign, 0, /* alignment, boundary */
2302 BUS_SPACE_MAXADDR, /* lowaddr */
2303 BUS_SPACE_MAXADDR, /* highaddr */
2304 NULL, NULL, /* filter, filterarg */
2305 MCLBYTES, /* maxsize */
2306 1, /* nsegments */
2307 MCLBYTES, /* maxsegsize */
2308 0, /* flags */
2309 NULL, NULL, /* lockfunc, lockarg */
2310 &sc_if->msk_cdata.msk_rx_tag);
2311 if (error != 0) {
2312 device_printf(sc_if->msk_if_dev,
2313 "failed to create Rx DMA tag\n");
2314 goto fail;
2315 }
2316
2317 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
2318 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
2319 (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
2320 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
2321 if (error != 0) {
2322 device_printf(sc_if->msk_if_dev,
2323 "failed to allocate DMA'able memory for Tx ring\n");
2324 goto fail;
2325 }
2326
2327 ctx.msk_busaddr = 0;
2328 error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
2329 sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
2330 MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2331 if (error != 0) {
2332 device_printf(sc_if->msk_if_dev,
2333 "failed to load DMA'able memory for Tx ring\n");
2334 goto fail;
2335 }
2336 sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
2337
2338 /* Allocate DMA'able memory and load the DMA map for Rx ring. */
2339 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
2340 (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
2341 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
2342 if (error != 0) {
2343 device_printf(sc_if->msk_if_dev,
2344 "failed to allocate DMA'able memory for Rx ring\n");
2345 goto fail;
2346 }
2347
2348 ctx.msk_busaddr = 0;
2349 error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
2350 sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
2351 MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2352 if (error != 0) {
2353 device_printf(sc_if->msk_if_dev,
2354 "failed to load DMA'able memory for Rx ring\n");
2355 goto fail;
2356 }
2357 sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
2358
2359 /* Create DMA maps for Tx buffers. */
2360 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2361 txd = &sc_if->msk_cdata.msk_txdesc[i];
2362 txd->tx_m = NULL;
2363 txd->tx_dmamap = NULL;
2364 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
2365 &txd->tx_dmamap);
2366 if (error != 0) {
2367 device_printf(sc_if->msk_if_dev,
2368 "failed to create Tx dmamap\n");
2369 goto fail;
2370 }
2371 }
2372 /* Create DMA maps for Rx buffers. */
2373 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2374 &sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
2375 device_printf(sc_if->msk_if_dev,
2376 "failed to create spare Rx dmamap\n");
2377 goto fail;
2378 }
2379 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2380 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2381 rxd->rx_m = NULL;
2382 rxd->rx_dmamap = NULL;
2383 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2384 &rxd->rx_dmamap);
2385 if (error != 0) {
2386 device_printf(sc_if->msk_if_dev,
2387 "failed to create Rx dmamap\n");
2388 goto fail;
2389 }
2390 }
2391
2392 fail:
2393 return (error);
2394 }
2395
2396 static int
2397 msk_rx_dma_jalloc(struct msk_if_softc *sc_if)
2398 {
2399 struct msk_dmamap_arg ctx;
2400 struct msk_rxdesc *jrxd;
2401 bus_size_t rxalign;
2402 int error, i;
2403
2404 if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) {
2405 sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2406 device_printf(sc_if->msk_if_dev,
2407 "disabling jumbo frame support\n");
2408 return (0);
2409 }
2410 /* Create tag for jumbo Rx ring. */
2411 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2412 MSK_RING_ALIGN, 0, /* alignment, boundary */
2413 BUS_SPACE_MAXADDR, /* lowaddr */
2414 BUS_SPACE_MAXADDR, /* highaddr */
2415 NULL, NULL, /* filter, filterarg */
2416 MSK_JUMBO_RX_RING_SZ, /* maxsize */
2417 1, /* nsegments */
2418 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */
2419 0, /* flags */
2420 NULL, NULL, /* lockfunc, lockarg */
2421 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2422 if (error != 0) {
2423 device_printf(sc_if->msk_if_dev,
2424 "failed to create jumbo Rx ring DMA tag\n");
2425 goto jumbo_fail;
2426 }
2427
2428 rxalign = 1;
2429 /*
2430 * Workaround hardware hang which seems to happen when Rx buffer
2431 * is not aligned on multiple of FIFO word(8 bytes).
2432 */
2433 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
2434 rxalign = MSK_RX_BUF_ALIGN;
2435 /* Create tag for jumbo Rx buffers. */
2436 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2437 rxalign, 0, /* alignment, boundary */
2438 BUS_SPACE_MAXADDR, /* lowaddr */
2439 BUS_SPACE_MAXADDR, /* highaddr */
2440 NULL, NULL, /* filter, filterarg */
2441 MJUM9BYTES, /* maxsize */
2442 1, /* nsegments */
2443 MJUM9BYTES, /* maxsegsize */
2444 0, /* flags */
2445 NULL, NULL, /* lockfunc, lockarg */
2446 &sc_if->msk_cdata.msk_jumbo_rx_tag);
2447 if (error != 0) {
2448 device_printf(sc_if->msk_if_dev,
2449 "failed to create jumbo Rx DMA tag\n");
2450 goto jumbo_fail;
2451 }
2452
2453 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2454 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2455 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2456 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2457 &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2458 if (error != 0) {
2459 device_printf(sc_if->msk_if_dev,
2460 "failed to allocate DMA'able memory for jumbo Rx ring\n");
2461 goto jumbo_fail;
2462 }
2463
2464 ctx.msk_busaddr = 0;
2465 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2466 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2467 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2468 msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
2469 if (error != 0) {
2470 device_printf(sc_if->msk_if_dev,
2471 "failed to load DMA'able memory for jumbo Rx ring\n");
2472 goto jumbo_fail;
2473 }
2474 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2475
2476 /* Create DMA maps for jumbo Rx buffers. */
2477 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2478 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2479 device_printf(sc_if->msk_if_dev,
2480 "failed to create spare jumbo Rx dmamap\n");
2481 goto jumbo_fail;
2482 }
2483 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2484 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2485 jrxd->rx_m = NULL;
2486 jrxd->rx_dmamap = NULL;
2487 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2488 &jrxd->rx_dmamap);
2489 if (error != 0) {
2490 device_printf(sc_if->msk_if_dev,
2491 "failed to create jumbo Rx dmamap\n");
2492 goto jumbo_fail;
2493 }
2494 }
2495
2496 return (0);
2497
2498 jumbo_fail:
2499 msk_rx_dma_jfree(sc_if);
2500 device_printf(sc_if->msk_if_dev, "disabling jumbo frame support "
2501 "due to resource shortage\n");
2502 sc_if->msk_flags &= ~MSK_FLAG_JUMBO;
2503 return (error);
2504 }
2505
2506 static void
2507 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2508 {
2509 struct msk_txdesc *txd;
2510 struct msk_rxdesc *rxd;
2511 int i;
2512
2513 /* Tx ring. */
2514 if (sc_if->msk_cdata.msk_tx_ring_tag) {
2515 if (sc_if->msk_rdata.msk_tx_ring_paddr)
2516 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
2517 sc_if->msk_cdata.msk_tx_ring_map);
2518 if (sc_if->msk_rdata.msk_tx_ring)
2519 bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
2520 sc_if->msk_rdata.msk_tx_ring,
2521 sc_if->msk_cdata.msk_tx_ring_map);
2522 sc_if->msk_rdata.msk_tx_ring = NULL;
2523 sc_if->msk_rdata.msk_tx_ring_paddr = 0;
2524 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
2525 sc_if->msk_cdata.msk_tx_ring_tag = NULL;
2526 }
2527 /* Rx ring. */
2528 if (sc_if->msk_cdata.msk_rx_ring_tag) {
2529 if (sc_if->msk_rdata.msk_rx_ring_paddr)
2530 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
2531 sc_if->msk_cdata.msk_rx_ring_map);
2532 if (sc_if->msk_rdata.msk_rx_ring)
2533 bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
2534 sc_if->msk_rdata.msk_rx_ring,
2535 sc_if->msk_cdata.msk_rx_ring_map);
2536 sc_if->msk_rdata.msk_rx_ring = NULL;
2537 sc_if->msk_rdata.msk_rx_ring_paddr = 0;
2538 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
2539 sc_if->msk_cdata.msk_rx_ring_tag = NULL;
2540 }
2541 /* Tx buffers. */
2542 if (sc_if->msk_cdata.msk_tx_tag) {
2543 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2544 txd = &sc_if->msk_cdata.msk_txdesc[i];
2545 if (txd->tx_dmamap) {
2546 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2547 txd->tx_dmamap);
2548 txd->tx_dmamap = NULL;
2549 }
2550 }
2551 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2552 sc_if->msk_cdata.msk_tx_tag = NULL;
2553 }
2554 /* Rx buffers. */
2555 if (sc_if->msk_cdata.msk_rx_tag) {
2556 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2557 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2558 if (rxd->rx_dmamap) {
2559 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2560 rxd->rx_dmamap);
2561 rxd->rx_dmamap = NULL;
2562 }
2563 }
2564 if (sc_if->msk_cdata.msk_rx_sparemap) {
2565 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2566 sc_if->msk_cdata.msk_rx_sparemap);
2567 sc_if->msk_cdata.msk_rx_sparemap = 0;
2568 }
2569 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2570 sc_if->msk_cdata.msk_rx_tag = NULL;
2571 }
2572 if (sc_if->msk_cdata.msk_parent_tag) {
2573 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2574 sc_if->msk_cdata.msk_parent_tag = NULL;
2575 }
2576 }
2577
2578 static void
2579 msk_rx_dma_jfree(struct msk_if_softc *sc_if)
2580 {
2581 struct msk_rxdesc *jrxd;
2582 int i;
2583
2584 /* Jumbo Rx ring. */
2585 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2586 if (sc_if->msk_rdata.msk_jumbo_rx_ring_paddr)
2587 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2588 sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2589 if (sc_if->msk_rdata.msk_jumbo_rx_ring)
2590 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2591 sc_if->msk_rdata.msk_jumbo_rx_ring,
2592 sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2593 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2594 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = 0;
2595 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2596 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2597 }
2598 /* Jumbo Rx buffers. */
2599 if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2600 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2601 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2602 if (jrxd->rx_dmamap) {
2603 bus_dmamap_destroy(
2604 sc_if->msk_cdata.msk_jumbo_rx_tag,
2605 jrxd->rx_dmamap);
2606 jrxd->rx_dmamap = NULL;
2607 }
2608 }
2609 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2610 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2611 sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2612 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2613 }
2614 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2615 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2616 }
2617 }
2618
2619 static int
2620 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2621 {
2622 struct msk_txdesc *txd, *txd_last;
2623 struct msk_tx_desc *tx_le;
2624 struct mbuf *m;
2625 bus_dmamap_t map;
2626 bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2627 uint32_t control, csum, prod, si;
2628 uint16_t offset, tcp_offset, tso_mtu;
2629 int error, i, nseg, tso;
2630
2631 MSK_IF_LOCK_ASSERT(sc_if);
2632
2633 tcp_offset = offset = 0;
2634 m = *m_head;
2635 if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2636 (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) ||
2637 ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
2638 (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) {
2639 /*
2640 * Since mbuf has no protocol specific structure information
2641 * in it we have to inspect protocol information here to
2642 * setup TSO and checksum offload. I don't know why Marvell
2643 * made a such decision in chip design because other GigE
2644 * hardwares normally takes care of all these chores in
2645 * hardware. However, TSO performance of Yukon II is very
2646 * good such that it's worth to implement it.
2647 */
2648 struct ether_header *eh;
2649 struct ip *ip;
2650 struct tcphdr *tcp;
2651
2652 if (M_WRITABLE(m) == 0) {
2653 /* Get a writable copy. */
2654 m = m_dup(*m_head, M_NOWAIT);
2655 m_freem(*m_head);
2656 if (m == NULL) {
2657 *m_head = NULL;
2658 return (ENOBUFS);
2659 }
2660 *m_head = m;
2661 }
2662
2663 offset = sizeof(struct ether_header);
2664 m = m_pullup(m, offset);
2665 if (m == NULL) {
2666 *m_head = NULL;
2667 return (ENOBUFS);
2668 }
2669 eh = mtod(m, struct ether_header *);
2670 /* Check if hardware VLAN insertion is off. */
2671 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2672 offset = sizeof(struct ether_vlan_header);
2673 m = m_pullup(m, offset);
2674 if (m == NULL) {
2675 *m_head = NULL;
2676 return (ENOBUFS);
2677 }
2678 }
2679 m = m_pullup(m, offset + sizeof(struct ip));
2680 if (m == NULL) {
2681 *m_head = NULL;
2682 return (ENOBUFS);
2683 }
2684 ip = (struct ip *)(mtod(m, char *) + offset);
2685 offset += (ip->ip_hl << 2);
2686 tcp_offset = offset;
2687 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2688 m = m_pullup(m, offset + sizeof(struct tcphdr));
2689 if (m == NULL) {
2690 *m_head = NULL;
2691 return (ENOBUFS);
2692 }
2693 tcp = (struct tcphdr *)(mtod(m, char *) + offset);
2694 offset += (tcp->th_off << 2);
2695 } else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 &&
2696 (m->m_pkthdr.len < MSK_MIN_FRAMELEN) &&
2697 (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2698 /*
2699 * It seems that Yukon II has Tx checksum offload bug
2700 * for small TCP packets that's less than 60 bytes in
2701 * size (e.g. TCP window probe packet, pure ACK packet).
2702 * Common work around like padding with zeros to make
2703 * the frame minimum ethernet frame size didn't work at
2704 * all.
2705 * Instead of disabling checksum offload completely we
2706 * resort to S/W checksum routine when we encounter
2707 * short TCP frames.
2708 * Short UDP packets appear to be handled correctly by
2709 * Yukon II. Also I assume this bug does not happen on
2710 * controllers that use newer descriptor format or
2711 * automatic Tx checksum calculation.
2712 */
2713 m = m_pullup(m, offset + sizeof(struct tcphdr));
2714 if (m == NULL) {
2715 *m_head = NULL;
2716 return (ENOBUFS);
2717 }
2718 *(uint16_t *)(m->m_data + offset +
2719 m->m_pkthdr.csum_data) = in_cksum_skip(m,
2720 m->m_pkthdr.len, offset);
2721 m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2722 }
2723 *m_head = m;
2724 }
2725
2726 prod = sc_if->msk_cdata.msk_tx_prod;
2727 txd = &sc_if->msk_cdata.msk_txdesc[prod];
2728 txd_last = txd;
2729 map = txd->tx_dmamap;
2730 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
2731 *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2732 if (error == EFBIG) {
2733 m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS);
2734 if (m == NULL) {
2735 m_freem(*m_head);
2736 *m_head = NULL;
2737 return (ENOBUFS);
2738 }
2739 *m_head = m;
2740 error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
2741 map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
2742 if (error != 0) {
2743 m_freem(*m_head);
2744 *m_head = NULL;
2745 return (error);
2746 }
2747 } else if (error != 0)
2748 return (error);
2749 if (nseg == 0) {
2750 m_freem(*m_head);
2751 *m_head = NULL;
2752 return (EIO);
2753 }
2754
2755 /* Check number of available descriptors. */
2756 if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
2757 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2758 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2759 return (ENOBUFS);
2760 }
2761
2762 control = 0;
2763 tso = 0;
2764 tx_le = NULL;
2765
2766 /* Check TSO support. */
2767 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2768 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2769 tso_mtu = m->m_pkthdr.tso_segsz;
2770 else
2771 tso_mtu = offset + m->m_pkthdr.tso_segsz;
2772 if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
2773 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2774 tx_le->msk_addr = htole32(tso_mtu);
2775 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0)
2776 tx_le->msk_control = htole32(OP_MSS | HW_OWNER);
2777 else
2778 tx_le->msk_control =
2779 htole32(OP_LRGLEN | HW_OWNER);
2780 sc_if->msk_cdata.msk_tx_cnt++;
2781 MSK_INC(prod, MSK_TX_RING_CNT);
2782 sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
2783 }
2784 tso++;
2785 }
2786 /* Check if we have a VLAN tag to insert. */
2787 if ((m->m_flags & M_VLANTAG) != 0) {
2788 if (tx_le == NULL) {
2789 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2790 tx_le->msk_addr = htole32(0);
2791 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2792 htons(m->m_pkthdr.ether_vtag));
2793 sc_if->msk_cdata.msk_tx_cnt++;
2794 MSK_INC(prod, MSK_TX_RING_CNT);
2795 } else {
2796 tx_le->msk_control |= htole32(OP_VLAN |
2797 htons(m->m_pkthdr.ether_vtag));
2798 }
2799 control |= INS_VLAN;
2800 }
2801 /* Check if we have to handle checksum offload. */
2802 if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
2803 if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0)
2804 control |= CALSUM;
2805 else {
2806 control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2807 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2808 control |= UDPTCP;
2809 /* Checksum write position. */
2810 csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff;
2811 /* Checksum start position. */
2812 csum |= (uint32_t)tcp_offset << 16;
2813 if (csum != sc_if->msk_cdata.msk_last_csum) {
2814 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2815 tx_le->msk_addr = htole32(csum);
2816 tx_le->msk_control = htole32(1 << 16 |
2817 (OP_TCPLISW | HW_OWNER));
2818 sc_if->msk_cdata.msk_tx_cnt++;
2819 MSK_INC(prod, MSK_TX_RING_CNT);
2820 sc_if->msk_cdata.msk_last_csum = csum;
2821 }
2822 }
2823 }
2824
2825 #ifdef MSK_64BIT_DMA
2826 if (MSK_ADDR_HI(txsegs[0].ds_addr) !=
2827 sc_if->msk_cdata.msk_tx_high_addr) {
2828 sc_if->msk_cdata.msk_tx_high_addr =
2829 MSK_ADDR_HI(txsegs[0].ds_addr);
2830 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2831 tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr));
2832 tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2833 sc_if->msk_cdata.msk_tx_cnt++;
2834 MSK_INC(prod, MSK_TX_RING_CNT);
2835 }
2836 #endif
2837 si = prod;
2838 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2839 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2840 if (tso == 0)
2841 tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2842 OP_PACKET);
2843 else
2844 tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2845 OP_LARGESEND);
2846 sc_if->msk_cdata.msk_tx_cnt++;
2847 MSK_INC(prod, MSK_TX_RING_CNT);
2848
2849 for (i = 1; i < nseg; i++) {
2850 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2851 #ifdef MSK_64BIT_DMA
2852 if (MSK_ADDR_HI(txsegs[i].ds_addr) !=
2853 sc_if->msk_cdata.msk_tx_high_addr) {
2854 sc_if->msk_cdata.msk_tx_high_addr =
2855 MSK_ADDR_HI(txsegs[i].ds_addr);
2856 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2857 tx_le->msk_addr =
2858 htole32(MSK_ADDR_HI(txsegs[i].ds_addr));
2859 tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER);
2860 sc_if->msk_cdata.msk_tx_cnt++;
2861 MSK_INC(prod, MSK_TX_RING_CNT);
2862 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2863 }
2864 #endif
2865 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2866 tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2867 OP_BUFFER | HW_OWNER);
2868 sc_if->msk_cdata.msk_tx_cnt++;
2869 MSK_INC(prod, MSK_TX_RING_CNT);
2870 }
2871 /* Update producer index. */
2872 sc_if->msk_cdata.msk_tx_prod = prod;
2873
2874 /* Set EOP on the last descriptor. */
2875 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2876 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2877 tx_le->msk_control |= htole32(EOP);
2878
2879 /* Turn the first descriptor ownership to hardware. */
2880 tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2881 tx_le->msk_control |= htole32(HW_OWNER);
2882
2883 txd = &sc_if->msk_cdata.msk_txdesc[prod];
2884 map = txd_last->tx_dmamap;
2885 txd_last->tx_dmamap = txd->tx_dmamap;
2886 txd->tx_dmamap = map;
2887 txd->tx_m = m;
2888
2889 /* Sync descriptors. */
2890 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2891 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2892 sc_if->msk_cdata.msk_tx_ring_map,
2893 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2894
2895 return (0);
2896 }
2897
2898 static void
2899 msk_start(struct ifnet *ifp)
2900 {
2901 struct msk_if_softc *sc_if;
2902
2903 sc_if = ifp->if_softc;
2904 MSK_IF_LOCK(sc_if);
2905 msk_start_locked(ifp);
2906 MSK_IF_UNLOCK(sc_if);
2907 }
2908
2909 static void
2910 msk_start_locked(struct ifnet *ifp)
2911 {
2912 struct msk_if_softc *sc_if;
2913 struct mbuf *m_head;
2914 int enq;
2915
2916 sc_if = ifp->if_softc;
2917 MSK_IF_LOCK_ASSERT(sc_if);
2918
2919 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2920 IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0)
2921 return;
2922
2923 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2924 sc_if->msk_cdata.msk_tx_cnt <
2925 (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2926 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2927 if (m_head == NULL)
2928 break;
2929 /*
2930 * Pack the data into the transmit ring. If we
2931 * don't have room, set the OACTIVE flag and wait
2932 * for the NIC to drain the ring.
2933 */
2934 if (msk_encap(sc_if, &m_head) != 0) {
2935 if (m_head == NULL)
2936 break;
2937 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2938 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2939 break;
2940 }
2941
2942 enq++;
2943 /*
2944 * If there's a BPF listener, bounce a copy of this frame
2945 * to him.
2946 */
2947 ETHER_BPF_MTAP(ifp, m_head);
2948 }
2949
2950 if (enq > 0) {
2951 /* Transmit */
2952 CSR_WRITE_2(sc_if->msk_softc,
2953 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2954 sc_if->msk_cdata.msk_tx_prod);
2955
2956 /* Set a timeout in case the chip goes out to lunch. */
2957 sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
2958 }
2959 }
2960
2961 static void
2962 msk_watchdog(struct msk_if_softc *sc_if)
2963 {
2964 struct ifnet *ifp;
2965
2966 MSK_IF_LOCK_ASSERT(sc_if);
2967
2968 if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
2969 return;
2970 ifp = sc_if->msk_ifp;
2971 if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) {
2972 if (bootverbose)
2973 if_printf(sc_if->msk_ifp, "watchdog timeout "
2974 "(missed link)\n");
2975 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2976 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2977 msk_init_locked(sc_if);
2978 return;
2979 }
2980
2981 if_printf(ifp, "watchdog timeout\n");
2982 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2983 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2984 msk_init_locked(sc_if);
2985 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2986 msk_start_locked(ifp);
2987 }
2988
2989 static int
2990 mskc_shutdown(device_t dev)
2991 {
2992 struct msk_softc *sc;
2993 int i;
2994
2995 sc = device_get_softc(dev);
2996 MSK_LOCK(sc);
2997 for (i = 0; i < sc->msk_num_port; i++) {
2998 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2999 ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3000 IFF_DRV_RUNNING) != 0))
3001 msk_stop(sc->msk_if[i]);
3002 }
3003 MSK_UNLOCK(sc);
3004
3005 /* Put hardware reset. */
3006 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3007 return (0);
3008 }
3009
3010 static int
3011 mskc_suspend(device_t dev)
3012 {
3013 struct msk_softc *sc;
3014 int i;
3015
3016 sc = device_get_softc(dev);
3017
3018 MSK_LOCK(sc);
3019
3020 for (i = 0; i < sc->msk_num_port; i++) {
3021 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3022 ((sc->msk_if[i]->msk_ifp->if_drv_flags &
3023 IFF_DRV_RUNNING) != 0))
3024 msk_stop(sc->msk_if[i]);
3025 }
3026
3027 /* Disable all interrupts. */
3028 CSR_WRITE_4(sc, B0_IMSK, 0);
3029 CSR_READ_4(sc, B0_IMSK);
3030 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
3031 CSR_READ_4(sc, B0_HWE_IMSK);
3032
3033 msk_phy_power(sc, MSK_PHY_POWERDOWN);
3034
3035 /* Put hardware reset. */
3036 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
3037 sc->msk_pflags |= MSK_FLAG_SUSPEND;
3038
3039 MSK_UNLOCK(sc);
3040
3041 return (0);
3042 }
3043
3044 static int
3045 mskc_resume(device_t dev)
3046 {
3047 struct msk_softc *sc;
3048 int i;
3049
3050 sc = device_get_softc(dev);
3051
3052 MSK_LOCK(sc);
3053
3054 CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
3055 mskc_reset(sc);
3056 for (i = 0; i < sc->msk_num_port; i++) {
3057 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
3058 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) {
3059 sc->msk_if[i]->msk_ifp->if_drv_flags &=
3060 ~IFF_DRV_RUNNING;
3061 msk_init_locked(sc->msk_if[i]);
3062 }
3063 }
3064 sc->msk_pflags &= ~MSK_FLAG_SUSPEND;
3065
3066 MSK_UNLOCK(sc);
3067
3068 return (0);
3069 }
3070
3071 #ifndef __NO_STRICT_ALIGNMENT
3072 static __inline void
3073 msk_fixup_rx(struct mbuf *m)
3074 {
3075 int i;
3076 uint16_t *src, *dst;
3077
3078 src = mtod(m, uint16_t *);
3079 dst = src - 3;
3080
3081 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
3082 *dst++ = *src++;
3083
3084 m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN);
3085 }
3086 #endif
3087
3088 static __inline void
3089 msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m)
3090 {
3091 struct ether_header *eh;
3092 struct ip *ip;
3093 struct udphdr *uh;
3094 int32_t hlen, len, pktlen, temp32;
3095 uint16_t csum, *opts;
3096
3097 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) {
3098 if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) {
3099 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3100 if ((control & CSS_IPV4_CSUM_OK) != 0)
3101 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3102 if ((control & (CSS_TCP | CSS_UDP)) != 0 &&
3103 (control & (CSS_TCPUDP_CSUM_OK)) != 0) {
3104 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3105 CSUM_PSEUDO_HDR;
3106 m->m_pkthdr.csum_data = 0xffff;
3107 }
3108 }
3109 return;
3110 }
3111 /*
3112 * Marvell Yukon controllers that support OP_RXCHKS has known
3113 * to have various Rx checksum offloading bugs. These
3114 * controllers can be configured to compute simple checksum
3115 * at two different positions. So we can compute IP and TCP/UDP
3116 * checksum at the same time. We intentionally have controller
3117 * compute TCP/UDP checksum twice by specifying the same
3118 * checksum start position and compare the result. If the value
3119 * is different it would indicate the hardware logic was wrong.
3120 */
3121 if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) {
3122 if (bootverbose)
3123 device_printf(sc_if->msk_if_dev,
3124 "Rx checksum value mismatch!\n");
3125 return;
3126 }
3127 pktlen = m->m_pkthdr.len;
3128 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
3129 return;
3130 eh = mtod(m, struct ether_header *);
3131 if (eh->ether_type != htons(ETHERTYPE_IP))
3132 return;
3133 ip = (struct ip *)(eh + 1);
3134 if (ip->ip_v != IPVERSION)
3135 return;
3136
3137 hlen = ip->ip_hl << 2;
3138 pktlen -= sizeof(struct ether_header);
3139 if (hlen < sizeof(struct ip))
3140 return;
3141 if (ntohs(ip->ip_len) < hlen)
3142 return;
3143 if (ntohs(ip->ip_len) != pktlen)
3144 return;
3145 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
3146 return; /* can't handle fragmented packet. */
3147
3148 switch (ip->ip_p) {
3149 case IPPROTO_TCP:
3150 if (pktlen < (hlen + sizeof(struct tcphdr)))
3151 return;
3152 break;
3153 case IPPROTO_UDP:
3154 if (pktlen < (hlen + sizeof(struct udphdr)))
3155 return;
3156 uh = (struct udphdr *)((caddr_t)ip + hlen);
3157 if (uh->uh_sum == 0)
3158 return; /* no checksum */
3159 break;
3160 default:
3161 return;
3162 }
3163 csum = bswap16(sc_if->msk_csum & 0xFFFF);
3164 /* Checksum fixup for IP options. */
3165 len = hlen - sizeof(struct ip);
3166 if (len > 0) {
3167 opts = (uint16_t *)(ip + 1);
3168 for (; len > 0; len -= sizeof(uint16_t), opts++) {
3169 temp32 = csum - *opts;
3170 temp32 = (temp32 >> 16) + (temp32 & 65535);
3171 csum = temp32 & 65535;
3172 }
3173 }
3174 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
3175 m->m_pkthdr.csum_data = csum;
3176 }
3177
3178 static void
3179 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3180 int len)
3181 {
3182 struct mbuf *m;
3183 struct ifnet *ifp;
3184 struct msk_rxdesc *rxd;
3185 int cons, rxlen;
3186
3187 ifp = sc_if->msk_ifp;
3188
3189 MSK_IF_LOCK_ASSERT(sc_if);
3190
3191 cons = sc_if->msk_cdata.msk_rx_cons;
3192 do {
3193 rxlen = status >> 16;
3194 if ((status & GMR_FS_VLAN) != 0 &&
3195 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3196 rxlen -= ETHER_VLAN_ENCAP_LEN;
3197 if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) {
3198 /*
3199 * For controllers that returns bogus status code
3200 * just do minimal check and let upper stack
3201 * handle this frame.
3202 */
3203 if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
3204 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3205 msk_discard_rxbuf(sc_if, cons);
3206 break;
3207 }
3208 } else if (len > sc_if->msk_framesize ||
3209 ((status & GMR_FS_ANY_ERR) != 0) ||
3210 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3211 /* Don't count flow-control packet as errors. */
3212 if ((status & GMR_FS_GOOD_FC) == 0)
3213 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3214 msk_discard_rxbuf(sc_if, cons);
3215 break;
3216 }
3217 #ifdef MSK_64BIT_DMA
3218 rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) %
3219 MSK_RX_RING_CNT];
3220 #else
3221 rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
3222 #endif
3223 m = rxd->rx_m;
3224 if (msk_newbuf(sc_if, cons) != 0) {
3225 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3226 /* Reuse old buffer. */
3227 msk_discard_rxbuf(sc_if, cons);
3228 break;
3229 }
3230 m->m_pkthdr.rcvif = ifp;
3231 m->m_pkthdr.len = m->m_len = len;
3232 #ifndef __NO_STRICT_ALIGNMENT
3233 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3234 msk_fixup_rx(m);
3235 #endif
3236 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3237 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3238 msk_rxcsum(sc_if, control, m);
3239 /* Check for VLAN tagged packets. */
3240 if ((status & GMR_FS_VLAN) != 0 &&
3241 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3242 m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3243 m->m_flags |= M_VLANTAG;
3244 }
3245 MSK_IF_UNLOCK(sc_if);
3246 (*ifp->if_input)(ifp, m);
3247 MSK_IF_LOCK(sc_if);
3248 } while (0);
3249
3250 MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
3251 MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
3252 }
3253
3254 static void
3255 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control,
3256 int len)
3257 {
3258 struct mbuf *m;
3259 struct ifnet *ifp;
3260 struct msk_rxdesc *jrxd;
3261 int cons, rxlen;
3262
3263 ifp = sc_if->msk_ifp;
3264
3265 MSK_IF_LOCK_ASSERT(sc_if);
3266
3267 cons = sc_if->msk_cdata.msk_rx_cons;
3268 do {
3269 rxlen = status >> 16;
3270 if ((status & GMR_FS_VLAN) != 0 &&
3271 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3272 rxlen -= ETHER_VLAN_ENCAP_LEN;
3273 if (len > sc_if->msk_framesize ||
3274 ((status & GMR_FS_ANY_ERR) != 0) ||
3275 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
3276 /* Don't count flow-control packet as errors. */
3277 if ((status & GMR_FS_GOOD_FC) == 0)
3278 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3279 msk_discard_jumbo_rxbuf(sc_if, cons);
3280 break;
3281 }
3282 #ifdef MSK_64BIT_DMA
3283 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) %
3284 MSK_JUMBO_RX_RING_CNT];
3285 #else
3286 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
3287 #endif
3288 m = jrxd->rx_m;
3289 if (msk_jumbo_newbuf(sc_if, cons) != 0) {
3290 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
3291 /* Reuse old buffer. */
3292 msk_discard_jumbo_rxbuf(sc_if, cons);
3293 break;
3294 }
3295 m->m_pkthdr.rcvif = ifp;
3296 m->m_pkthdr.len = m->m_len = len;
3297 #ifndef __NO_STRICT_ALIGNMENT
3298 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0)
3299 msk_fixup_rx(m);
3300 #endif
3301 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3302 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3303 msk_rxcsum(sc_if, control, m);
3304 /* Check for VLAN tagged packets. */
3305 if ((status & GMR_FS_VLAN) != 0 &&
3306 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
3307 m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
3308 m->m_flags |= M_VLANTAG;
3309 }
3310 MSK_IF_UNLOCK(sc_if);
3311 (*ifp->if_input)(ifp, m);
3312 MSK_IF_LOCK(sc_if);
3313 } while (0);
3314
3315 MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
3316 MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
3317 }
3318
3319 static void
3320 msk_txeof(struct msk_if_softc *sc_if, int idx)
3321 {
3322 struct msk_txdesc *txd;
3323 struct msk_tx_desc *cur_tx;
3324 struct ifnet *ifp;
3325 uint32_t control;
3326 int cons, prog;
3327
3328 MSK_IF_LOCK_ASSERT(sc_if);
3329
3330 ifp = sc_if->msk_ifp;
3331
3332 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
3333 sc_if->msk_cdata.msk_tx_ring_map,
3334 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3335 /*
3336 * Go through our tx ring and free mbufs for those
3337 * frames that have been sent.
3338 */
3339 cons = sc_if->msk_cdata.msk_tx_cons;
3340 prog = 0;
3341 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
3342 if (sc_if->msk_cdata.msk_tx_cnt <= 0)
3343 break;
3344 prog++;
3345 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
3346 control = le32toh(cur_tx->msk_control);
3347 sc_if->msk_cdata.msk_tx_cnt--;
3348 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3349 if ((control & EOP) == 0)
3350 continue;
3351 txd = &sc_if->msk_cdata.msk_txdesc[cons];
3352 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
3353 BUS_DMASYNC_POSTWRITE);
3354 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
3355
3356 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3357 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
3358 __func__));
3359 m_freem(txd->tx_m);
3360 txd->tx_m = NULL;
3361 }
3362
3363 if (prog > 0) {
3364 sc_if->msk_cdata.msk_tx_cons = cons;
3365 if (sc_if->msk_cdata.msk_tx_cnt == 0)
3366 sc_if->msk_watchdog_timer = 0;
3367 /* No need to sync LEs as we didn't update LEs. */
3368 }
3369 }
3370
3371 static void
3372 msk_tick(void *xsc_if)
3373 {
3374 struct epoch_tracker et;
3375 struct msk_if_softc *sc_if;
3376 struct mii_data *mii;
3377
3378 sc_if = xsc_if;
3379
3380 MSK_IF_LOCK_ASSERT(sc_if);
3381
3382 mii = device_get_softc(sc_if->msk_miibus);
3383
3384 mii_tick(mii);
3385 if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0)
3386 msk_miibus_statchg(sc_if->msk_if_dev);
3387 NET_EPOCH_ENTER(et);
3388 msk_handle_events(sc_if->msk_softc);
3389 NET_EPOCH_EXIT(et);
3390 msk_watchdog(sc_if);
3391 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3392 }
3393
3394 static void
3395 msk_intr_phy(struct msk_if_softc *sc_if)
3396 {
3397 uint16_t status;
3398
3399 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3400 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
3401 /* Handle FIFO Underrun/Overflow? */
3402 if ((status & PHY_M_IS_FIFO_ERROR))
3403 device_printf(sc_if->msk_if_dev,
3404 "PHY FIFO underrun/overflow.\n");
3405 }
3406
3407 static void
3408 msk_intr_gmac(struct msk_if_softc *sc_if)
3409 {
3410 struct msk_softc *sc;
3411 uint8_t status;
3412
3413 sc = sc_if->msk_softc;
3414 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3415
3416 /* GMAC Rx FIFO overrun. */
3417 if ((status & GM_IS_RX_FF_OR) != 0)
3418 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3419 GMF_CLI_RX_FO);
3420 /* GMAC Tx FIFO underrun. */
3421 if ((status & GM_IS_TX_FF_UR) != 0) {
3422 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3423 GMF_CLI_TX_FU);
3424 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3425 /*
3426 * XXX
3427 * In case of Tx underrun, we may need to flush/reset
3428 * Tx MAC but that would also require resynchronization
3429 * with status LEs. Reinitializing status LEs would
3430 * affect other port in dual MAC configuration so it
3431 * should be avoided as possible as we can.
3432 * Due to lack of documentation it's all vague guess but
3433 * it needs more investigation.
3434 */
3435 }
3436 }
3437
3438 static void
3439 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3440 {
3441 struct msk_softc *sc;
3442
3443 sc = sc_if->msk_softc;
3444 if ((status & Y2_IS_PAR_RD1) != 0) {
3445 device_printf(sc_if->msk_if_dev,
3446 "RAM buffer read parity error\n");
3447 /* Clear IRQ. */
3448 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3449 RI_CLR_RD_PERR);
3450 }
3451 if ((status & Y2_IS_PAR_WR1) != 0) {
3452 device_printf(sc_if->msk_if_dev,
3453 "RAM buffer write parity error\n");
3454 /* Clear IRQ. */
3455 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3456 RI_CLR_WR_PERR);
3457 }
3458 if ((status & Y2_IS_PAR_MAC1) != 0) {
3459 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3460 /* Clear IRQ. */
3461 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3462 GMF_CLI_TX_PE);
3463 }
3464 if ((status & Y2_IS_PAR_RX1) != 0) {
3465 device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3466 /* Clear IRQ. */
3467 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3468 }
3469 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3470 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3471 /* Clear IRQ. */
3472 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3473 }
3474 }
3475
3476 static void
3477 msk_intr_hwerr(struct msk_softc *sc)
3478 {
3479 uint32_t status;
3480 uint32_t tlphead[4];
3481
3482 status = CSR_READ_4(sc, B0_HWE_ISRC);
3483 /* Time Stamp timer overflow. */
3484 if ((status & Y2_IS_TIST_OV) != 0)
3485 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3486 if ((status & Y2_IS_PCI_NEXP) != 0) {
3487 /*
3488 * PCI Express Error occurred which is not described in PEX
3489 * spec.
3490 * This error is also mapped either to Master Abort(
3491 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3492 * can only be cleared there.
3493 */
3494 device_printf(sc->msk_dev,
3495 "PCI Express protocol violation error\n");
3496 }
3497
3498 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3499 uint16_t v16;
3500
3501 if ((status & Y2_IS_MST_ERR) != 0)
3502 device_printf(sc->msk_dev,
3503 "unexpected IRQ Status error\n");
3504 else
3505 device_printf(sc->msk_dev,
3506 "unexpected IRQ Master error\n");
3507 /* Reset all bits in the PCI status register. */
3508 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3509 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3510 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3511 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3512 PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2);
3513 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3514 }
3515
3516 /* Check for PCI Express Uncorrectable Error. */
3517 if ((status & Y2_IS_PCI_EXP) != 0) {
3518 uint32_t v32;
3519
3520 /*
3521 * On PCI Express bus bridges are called root complexes (RC).
3522 * PCI Express errors are recognized by the root complex too,
3523 * which requests the system to handle the problem. After
3524 * error occurrence it may be that no access to the adapter
3525 * may be performed any longer.
3526 */
3527
3528 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3529 if ((v32 & PEX_UNSUP_REQ) != 0) {
3530 /* Ignore unsupported request error. */
3531 device_printf(sc->msk_dev,
3532 "Uncorrectable PCI Express error\n");
3533 }
3534 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3535 int i;
3536
3537 /* Get TLP header form Log Registers. */
3538 for (i = 0; i < 4; i++)
3539 tlphead[i] = CSR_PCI_READ_4(sc,
3540 PEX_HEADER_LOG + i * 4);
3541 /* Check for vendor defined broadcast message. */
3542 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3543 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3544 CSR_WRITE_4(sc, B0_HWE_IMSK,
3545 sc->msk_intrhwemask);
3546 CSR_READ_4(sc, B0_HWE_IMSK);
3547 }
3548 }
3549 /* Clear the interrupt. */
3550 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3551 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3552 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3553 }
3554
3555 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3556 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3557 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3558 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3559 }
3560
3561 static __inline void
3562 msk_rxput(struct msk_if_softc *sc_if)
3563 {
3564 struct msk_softc *sc;
3565
3566 sc = sc_if->msk_softc;
3567 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN))
3568 bus_dmamap_sync(
3569 sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3570 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3571 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3572 else
3573 bus_dmamap_sync(
3574 sc_if->msk_cdata.msk_rx_ring_tag,
3575 sc_if->msk_cdata.msk_rx_ring_map,
3576 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3577 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3578 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3579 }
3580
3581 static int
3582 msk_handle_events(struct msk_softc *sc)
3583 {
3584 struct msk_if_softc *sc_if;
3585 int rxput[2];
3586 struct msk_stat_desc *sd;
3587 uint32_t control, status;
3588 int cons, len, port, rxprog;
3589
3590 if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX))
3591 return (0);
3592
3593 /* Sync status LEs. */
3594 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3595 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3596
3597 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3598 rxprog = 0;
3599 cons = sc->msk_stat_cons;
3600 for (;;) {
3601 sd = &sc->msk_stat_ring[cons];
3602 control = le32toh(sd->msk_control);
3603 if ((control & HW_OWNER) == 0)
3604 break;
3605 control &= ~HW_OWNER;
3606 sd->msk_control = htole32(control);
3607 status = le32toh(sd->msk_status);
3608 len = control & STLE_LEN_MASK;
3609 port = (control >> 16) & 0x01;
3610 sc_if = sc->msk_if[port];
3611 if (sc_if == NULL) {
3612 device_printf(sc->msk_dev, "invalid port opcode "
3613 "0x%08x\n", control & STLE_OP_MASK);
3614 continue;
3615 }
3616
3617 switch (control & STLE_OP_MASK) {
3618 case OP_RXVLAN:
3619 sc_if->msk_vtag = ntohs(len);
3620 break;
3621 case OP_RXCHKSVLAN:
3622 sc_if->msk_vtag = ntohs(len);
3623 /* FALLTHROUGH */
3624 case OP_RXCHKS:
3625 sc_if->msk_csum = status;
3626 break;
3627 case OP_RXSTAT:
3628 if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING))
3629 break;
3630 if (sc_if->msk_framesize >
3631 (MCLBYTES - MSK_RX_BUF_ALIGN))
3632 msk_jumbo_rxeof(sc_if, status, control, len);
3633 else
3634 msk_rxeof(sc_if, status, control, len);
3635 rxprog++;
3636 /*
3637 * Because there is no way to sync single Rx LE
3638 * put the DMA sync operation off until the end of
3639 * event processing.
3640 */
3641 rxput[port]++;
3642 /* Update prefetch unit if we've passed water mark. */
3643 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3644 msk_rxput(sc_if);
3645 rxput[port] = 0;
3646 }
3647 break;
3648 case OP_TXINDEXLE:
3649 if (sc->msk_if[MSK_PORT_A] != NULL)
3650 msk_txeof(sc->msk_if[MSK_PORT_A],
3651 status & STLE_TXA1_MSKL);
3652 if (sc->msk_if[MSK_PORT_B] != NULL)
3653 msk_txeof(sc->msk_if[MSK_PORT_B],
3654 ((status & STLE_TXA2_MSKL) >>
3655 STLE_TXA2_SHIFTL) |
3656 ((len & STLE_TXA2_MSKH) <<
3657 STLE_TXA2_SHIFTH));
3658 break;
3659 default:
3660 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3661 control & STLE_OP_MASK);
3662 break;
3663 }
3664 MSK_INC(cons, sc->msk_stat_count);
3665 if (rxprog > sc->msk_process_limit)
3666 break;
3667 }
3668
3669 sc->msk_stat_cons = cons;
3670 bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3671 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3672
3673 if (rxput[MSK_PORT_A] > 0)
3674 msk_rxput(sc->msk_if[MSK_PORT_A]);
3675 if (rxput[MSK_PORT_B] > 0)
3676 msk_rxput(sc->msk_if[MSK_PORT_B]);
3677
3678 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3679 }
3680
3681 static void
3682 msk_intr(void *xsc)
3683 {
3684 struct msk_softc *sc;
3685 struct msk_if_softc *sc_if0, *sc_if1;
3686 struct ifnet *ifp0, *ifp1;
3687 uint32_t status;
3688 int domore;
3689
3690 sc = xsc;
3691 MSK_LOCK(sc);
3692
3693 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3694 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3695 if (status == 0 || status == 0xffffffff ||
3696 (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 ||
3697 (status & sc->msk_intrmask) == 0) {
3698 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3699 MSK_UNLOCK(sc);
3700 return;
3701 }
3702
3703 sc_if0 = sc->msk_if[MSK_PORT_A];
3704 sc_if1 = sc->msk_if[MSK_PORT_B];
3705 ifp0 = ifp1 = NULL;
3706 if (sc_if0 != NULL)
3707 ifp0 = sc_if0->msk_ifp;
3708 if (sc_if1 != NULL)
3709 ifp1 = sc_if1->msk_ifp;
3710
3711 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3712 msk_intr_phy(sc_if0);
3713 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3714 msk_intr_phy(sc_if1);
3715 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3716 msk_intr_gmac(sc_if0);
3717 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3718 msk_intr_gmac(sc_if1);
3719 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3720 device_printf(sc->msk_dev, "Rx descriptor error\n");
3721 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3722 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3723 CSR_READ_4(sc, B0_IMSK);
3724 }
3725 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3726 device_printf(sc->msk_dev, "Tx descriptor error\n");
3727 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3728 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3729 CSR_READ_4(sc, B0_IMSK);
3730 }
3731 if ((status & Y2_IS_HW_ERR) != 0)
3732 msk_intr_hwerr(sc);
3733
3734 domore = msk_handle_events(sc);
3735 if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0)
3736 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3737
3738 /* Reenable interrupts. */
3739 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3740
3741 if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3742 !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
3743 msk_start_locked(ifp0);
3744 if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
3745 !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
3746 msk_start_locked(ifp1);
3747
3748 MSK_UNLOCK(sc);
3749 }
3750
3751 static void
3752 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3753 {
3754 struct msk_softc *sc;
3755 struct ifnet *ifp;
3756
3757 ifp = sc_if->msk_ifp;
3758 sc = sc_if->msk_softc;
3759 if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3760 sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3761 sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3762 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3763 TX_STFW_ENA);
3764 } else {
3765 if (ifp->if_mtu > ETHERMTU) {
3766 /* Set Tx GMAC FIFO Almost Empty Threshold. */
3767 CSR_WRITE_4(sc,
3768 MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3769 MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3770 /* Disable Store & Forward mode for Tx. */
3771 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3772 TX_STFW_DIS);
3773 } else {
3774 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3775 TX_STFW_ENA);
3776 }
3777 }
3778 }
3779
3780 static void
3781 msk_init(void *xsc)
3782 {
3783 struct msk_if_softc *sc_if = xsc;
3784
3785 MSK_IF_LOCK(sc_if);
3786 msk_init_locked(sc_if);
3787 MSK_IF_UNLOCK(sc_if);
3788 }
3789
3790 static void
3791 msk_init_locked(struct msk_if_softc *sc_if)
3792 {
3793 struct msk_softc *sc;
3794 struct ifnet *ifp;
3795 struct mii_data *mii;
3796 uint8_t *eaddr;
3797 uint16_t gmac;
3798 uint32_t reg;
3799 int error;
3800
3801 MSK_IF_LOCK_ASSERT(sc_if);
3802
3803 ifp = sc_if->msk_ifp;
3804 sc = sc_if->msk_softc;
3805 mii = device_get_softc(sc_if->msk_miibus);
3806
3807 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3808 return;
3809
3810 error = 0;
3811 /* Cancel pending I/O and free all Rx/Tx buffers. */
3812 msk_stop(sc_if);
3813
3814 if (ifp->if_mtu < ETHERMTU)
3815 sc_if->msk_framesize = ETHERMTU;
3816 else
3817 sc_if->msk_framesize = ifp->if_mtu;
3818 sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3819 if (ifp->if_mtu > ETHERMTU &&
3820 (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) {
3821 ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO);
3822 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM);
3823 }
3824
3825 /* GMAC Control reset. */
3826 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3827 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3828 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3829 if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3830 sc->msk_hw_id == CHIP_ID_YUKON_SUPR)
3831 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3832 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3833 GMC_BYP_RETR_ON);
3834
3835 /*
3836 * Initialize GMAC first such that speed/duplex/flow-control
3837 * parameters are renegotiated when interface is brought up.
3838 */
3839 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3840
3841 /* Dummy read the Interrupt Source Register. */
3842 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3843
3844 /* Clear MIB stats. */
3845 msk_stats_clear(sc_if);
3846
3847 /* Disable FCS. */
3848 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3849
3850 /* Setup Transmit Control Register. */
3851 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3852
3853 /* Setup Transmit Flow Control Register. */
3854 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3855
3856 /* Setup Transmit Parameter Register. */
3857 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3858 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3859 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3860
3861 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3862 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3863
3864 if (ifp->if_mtu > ETHERMTU)
3865 gmac |= GM_SMOD_JUMBO_ENA;
3866 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3867
3868 /* Set station address. */
3869 eaddr = IF_LLADDR(ifp);
3870 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L,
3871 eaddr[0] | (eaddr[1] << 8));
3872 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M,
3873 eaddr[2] | (eaddr[3] << 8));
3874 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H,
3875 eaddr[4] | (eaddr[5] << 8));
3876 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L,
3877 eaddr[0] | (eaddr[1] << 8));
3878 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M,
3879 eaddr[2] | (eaddr[3] << 8));
3880 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H,
3881 eaddr[4] | (eaddr[5] << 8));
3882
3883 /* Disable interrupts for counter overflows. */
3884 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3885 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3886 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3887
3888 /* Configure Rx MAC FIFO. */
3889 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3890 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3891 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3892 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3893 sc->msk_hw_id == CHIP_ID_YUKON_EX)
3894 reg |= GMF_RX_OVER_ON;
3895 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3896
3897 /* Set receive filter. */
3898 msk_rxfilter(sc_if);
3899
3900 if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3901 /* Clear flush mask - HW bug. */
3902 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3903 } else {
3904 /* Flush Rx MAC FIFO on any flow control or error. */
3905 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3906 GMR_FS_ANY_ERR);
3907 }
3908
3909 /*
3910 * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
3911 * due to hardware hang on receipt of pause frames.
3912 */
3913 reg = RX_GMF_FL_THR_DEF + 1;
3914 /* Another magic for Yukon FE+ - From Linux. */
3915 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3916 sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3917 reg = 0x178;
3918 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3919
3920 /* Configure Tx MAC FIFO. */
3921 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3922 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3923 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3924
3925 /* Configure hardware VLAN tag insertion/stripping. */
3926 msk_setvlan(sc_if, ifp);
3927
3928 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3929 /* Set Rx Pause threshold. */
3930 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3931 MSK_ECU_LLPP);
3932 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3933 MSK_ECU_ULPP);
3934 /* Configure store-and-forward for Tx. */
3935 msk_set_tx_stfwd(sc_if);
3936 }
3937
3938 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3939 sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3940 /* Disable dynamic watermark - from Linux. */
3941 reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3942 reg &= ~0x03;
3943 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3944 }
3945
3946 /*
3947 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3948 * arbiter as we don't use Sync Tx queue.
3949 */
3950 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3951 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3952 /* Enable the RAM Interface Arbiter. */
3953 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3954
3955 /* Setup RAM buffer. */
3956 msk_set_rambuffer(sc_if);
3957
3958 /* Disable Tx sync Queue. */
3959 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3960
3961 /* Setup Tx Queue Bus Memory Interface. */
3962 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3963 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3964 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3965 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3966 switch (sc->msk_hw_id) {
3967 case CHIP_ID_YUKON_EC_U:
3968 if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3969 /* Fix for Yukon-EC Ultra: set BMU FIFO level */
3970 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3971 MSK_ECU_TXFF_LEV);
3972 }
3973 break;
3974 case CHIP_ID_YUKON_EX:
3975 /*
3976 * Yukon Extreme seems to have silicon bug for
3977 * automatic Tx checksum calculation capability.
3978 */
3979 if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0)
3980 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3981 F_TX_CHK_AUTO_OFF);
3982 break;
3983 }
3984
3985 /* Setup Rx Queue Bus Memory Interface. */
3986 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3987 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3988 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3989 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3990 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3991 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3992 /* MAC Rx RAM Read is controlled by hardware. */
3993 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3994 }
3995
3996 msk_set_prefetch(sc, sc_if->msk_txq,
3997 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3998 msk_init_tx_ring(sc_if);
3999
4000 /* Disable Rx checksum offload and RSS hash. */
4001 reg = BMU_DIS_RX_RSS_HASH;
4002 if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 &&
4003 (ifp->if_capenable & IFCAP_RXCSUM) != 0)
4004 reg |= BMU_ENA_RX_CHKSUM;
4005 else
4006 reg |= BMU_DIS_RX_CHKSUM;
4007 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg);
4008 if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) {
4009 msk_set_prefetch(sc, sc_if->msk_rxq,
4010 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
4011 MSK_JUMBO_RX_RING_CNT - 1);
4012 error = msk_init_jumbo_rx_ring(sc_if);
4013 } else {
4014 msk_set_prefetch(sc, sc_if->msk_rxq,
4015 sc_if->msk_rdata.msk_rx_ring_paddr,
4016 MSK_RX_RING_CNT - 1);
4017 error = msk_init_rx_ring(sc_if);
4018 }
4019 if (error != 0) {
4020 device_printf(sc_if->msk_if_dev,
4021 "initialization failed: no memory for Rx buffers\n");
4022 msk_stop(sc_if);
4023 return;
4024 }
4025 if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
4026 sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
4027 /* Disable flushing of non-ASF packets. */
4028 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
4029 GMF_RX_MACSEC_FLUSH_OFF);
4030 }
4031
4032 /* Configure interrupt handling. */
4033 if (sc_if->msk_port == MSK_PORT_A) {
4034 sc->msk_intrmask |= Y2_IS_PORT_A;
4035 sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
4036 } else {
4037 sc->msk_intrmask |= Y2_IS_PORT_B;
4038 sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
4039 }
4040 /* Configure IRQ moderation mask. */
4041 CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
4042 if (sc->msk_int_holdoff > 0) {
4043 /* Configure initial IRQ moderation timer value. */
4044 CSR_WRITE_4(sc, B2_IRQM_INI,
4045 MSK_USECS(sc, sc->msk_int_holdoff));
4046 CSR_WRITE_4(sc, B2_IRQM_VAL,
4047 MSK_USECS(sc, sc->msk_int_holdoff));
4048 /* Start IRQ moderation. */
4049 CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START);
4050 }
4051 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4052 CSR_READ_4(sc, B0_HWE_IMSK);
4053 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4054 CSR_READ_4(sc, B0_IMSK);
4055
4056 ifp->if_drv_flags |= IFF_DRV_RUNNING;
4057 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4058
4059 sc_if->msk_flags &= ~MSK_FLAG_LINK;
4060 mii_mediachg(mii);
4061
4062 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
4063 }
4064
4065 static void
4066 msk_set_rambuffer(struct msk_if_softc *sc_if)
4067 {
4068 struct msk_softc *sc;
4069 int ltpp, utpp;
4070
4071 sc = sc_if->msk_softc;
4072 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
4073 return;
4074
4075 /* Setup Rx Queue. */
4076 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
4077 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
4078 sc->msk_rxqstart[sc_if->msk_port] / 8);
4079 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
4080 sc->msk_rxqend[sc_if->msk_port] / 8);
4081 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
4082 sc->msk_rxqstart[sc_if->msk_port] / 8);
4083 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
4084 sc->msk_rxqstart[sc_if->msk_port] / 8);
4085
4086 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4087 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
4088 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
4089 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
4090 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
4091 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
4092 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
4093 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
4094 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
4095
4096 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
4097 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
4098
4099 /* Setup Tx Queue. */
4100 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
4101 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
4102 sc->msk_txqstart[sc_if->msk_port] / 8);
4103 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
4104 sc->msk_txqend[sc_if->msk_port] / 8);
4105 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
4106 sc->msk_txqstart[sc_if->msk_port] / 8);
4107 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
4108 sc->msk_txqstart[sc_if->msk_port] / 8);
4109 /* Enable Store & Forward for Tx side. */
4110 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
4111 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
4112 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
4113 }
4114
4115 static void
4116 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
4117 uint32_t count)
4118 {
4119
4120 /* Reset the prefetch unit. */
4121 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4122 PREF_UNIT_RST_SET);
4123 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4124 PREF_UNIT_RST_CLR);
4125 /* Set LE base address. */
4126 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
4127 MSK_ADDR_LO(addr));
4128 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
4129 MSK_ADDR_HI(addr));
4130 /* Set the list last index. */
4131 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
4132 count);
4133 /* Turn on prefetch unit. */
4134 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
4135 PREF_UNIT_OP_ON);
4136 /* Dummy read to ensure write. */
4137 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
4138 }
4139
4140 static void
4141 msk_stop(struct msk_if_softc *sc_if)
4142 {
4143 struct msk_softc *sc;
4144 struct msk_txdesc *txd;
4145 struct msk_rxdesc *rxd;
4146 struct msk_rxdesc *jrxd;
4147 struct ifnet *ifp;
4148 uint32_t val;
4149 int i;
4150
4151 MSK_IF_LOCK_ASSERT(sc_if);
4152 sc = sc_if->msk_softc;
4153 ifp = sc_if->msk_ifp;
4154
4155 callout_stop(&sc_if->msk_tick_ch);
4156 sc_if->msk_watchdog_timer = 0;
4157
4158 /* Disable interrupts. */
4159 if (sc_if->msk_port == MSK_PORT_A) {
4160 sc->msk_intrmask &= ~Y2_IS_PORT_A;
4161 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
4162 } else {
4163 sc->msk_intrmask &= ~Y2_IS_PORT_B;
4164 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
4165 }
4166 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
4167 CSR_READ_4(sc, B0_HWE_IMSK);
4168 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
4169 CSR_READ_4(sc, B0_IMSK);
4170
4171 /* Disable Tx/Rx MAC. */
4172 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4173 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
4174 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
4175 /* Read again to ensure writing. */
4176 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
4177 /* Update stats and clear counters. */
4178 msk_stats_update(sc_if);
4179
4180 /* Stop Tx BMU. */
4181 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
4182 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4183 for (i = 0; i < MSK_TIMEOUT; i++) {
4184 if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
4185 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4186 BMU_STOP);
4187 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
4188 } else
4189 break;
4190 DELAY(1);
4191 }
4192 if (i == MSK_TIMEOUT)
4193 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
4194 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
4195 RB_RST_SET | RB_DIS_OP_MD);
4196
4197 /* Disable all GMAC interrupt. */
4198 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
4199 /* Disable PHY interrupt. */
4200 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
4201
4202 /* Disable the RAM Interface Arbiter. */
4203 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
4204
4205 /* Reset the PCI FIFO of the async Tx queue */
4206 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
4207 BMU_RST_SET | BMU_FIFO_RST);
4208
4209 /* Reset the Tx prefetch units. */
4210 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
4211 PREF_UNIT_RST_SET);
4212
4213 /* Reset the RAM Buffer async Tx queue. */
4214 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
4215
4216 /* Reset Tx MAC FIFO. */
4217 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
4218 /* Set Pause Off. */
4219 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
4220
4221 /*
4222 * The Rx Stop command will not work for Yukon-2 if the BMU does not
4223 * reach the end of packet and since we can't make sure that we have
4224 * incoming data, we must reset the BMU while it is not during a DMA
4225 * transfer. Since it is possible that the Rx path is still active,
4226 * the Rx RAM buffer will be stopped first, so any possible incoming
4227 * data will not trigger a DMA. After the RAM buffer is stopped, the
4228 * BMU is polled until any DMA in progress is ended and only then it
4229 * will be reset.
4230 */
4231
4232 /* Disable the RAM Buffer receive queue. */
4233 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
4234 for (i = 0; i < MSK_TIMEOUT; i++) {
4235 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
4236 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
4237 break;
4238 DELAY(1);
4239 }
4240 if (i == MSK_TIMEOUT)
4241 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
4242 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
4243 BMU_RST_SET | BMU_FIFO_RST);
4244 /* Reset the Rx prefetch unit. */
4245 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
4246 PREF_UNIT_RST_SET);
4247 /* Reset the RAM Buffer receive queue. */
4248 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
4249 /* Reset Rx MAC FIFO. */
4250 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
4251
4252 /* Free Rx and Tx mbufs still in the queues. */
4253 for (i = 0; i < MSK_RX_RING_CNT; i++) {
4254 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
4255 if (rxd->rx_m != NULL) {
4256 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
4257 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4258 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
4259 rxd->rx_dmamap);
4260 m_freem(rxd->rx_m);
4261 rxd->rx_m = NULL;
4262 }
4263 }
4264 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
4265 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
4266 if (jrxd->rx_m != NULL) {
4267 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
4268 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
4269 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
4270 jrxd->rx_dmamap);
4271 m_freem(jrxd->rx_m);
4272 jrxd->rx_m = NULL;
4273 }
4274 }
4275 for (i = 0; i < MSK_TX_RING_CNT; i++) {
4276 txd = &sc_if->msk_cdata.msk_txdesc[i];
4277 if (txd->tx_m != NULL) {
4278 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
4279 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
4280 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
4281 txd->tx_dmamap);
4282 m_freem(txd->tx_m);
4283 txd->tx_m = NULL;
4284 }
4285 }
4286
4287 /*
4288 * Mark the interface down.
4289 */
4290 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4291 sc_if->msk_flags &= ~MSK_FLAG_LINK;
4292 }
4293
4294 /*
4295 * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
4296 * counter clears high 16 bits of the counter such that accessing
4297 * lower 16 bits should be the last operation.
4298 */
4299 #define MSK_READ_MIB32(x, y) \
4300 ((((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) + \
4301 (uint32_t)GMAC_READ_2(sc, x, y))
4302 #define MSK_READ_MIB64(x, y) \
4303 ((((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) + \
4304 (uint64_t)MSK_READ_MIB32(x, y))
4305
4306 static void
4307 msk_stats_clear(struct msk_if_softc *sc_if)
4308 {
4309 struct msk_softc *sc;
4310 uint16_t gmac;
4311 int i;
4312
4313 MSK_IF_LOCK_ASSERT(sc_if);
4314
4315 sc = sc_if->msk_softc;
4316 /* Set MIB Clear Counter Mode. */
4317 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4318 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4319 /* Read all MIB Counters with Clear Mode set. */
4320 for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t))
4321 (void)MSK_READ_MIB32(sc_if->msk_port, i);
4322 /* Clear MIB Clear Counter Mode. */
4323 gmac &= ~GM_PAR_MIB_CLR;
4324 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4325 }
4326
4327 static void
4328 msk_stats_update(struct msk_if_softc *sc_if)
4329 {
4330 struct msk_softc *sc;
4331 struct ifnet *ifp;
4332 struct msk_hw_stats *stats;
4333 uint16_t gmac;
4334
4335 MSK_IF_LOCK_ASSERT(sc_if);
4336
4337 ifp = sc_if->msk_ifp;
4338 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
4339 return;
4340 sc = sc_if->msk_softc;
4341 stats = &sc_if->msk_stats;
4342 /* Set MIB Clear Counter Mode. */
4343 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
4344 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
4345
4346 /* Rx stats. */
4347 stats->rx_ucast_frames +=
4348 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK);
4349 stats->rx_bcast_frames +=
4350 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK);
4351 stats->rx_pause_frames +=
4352 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE);
4353 stats->rx_mcast_frames +=
4354 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK);
4355 stats->rx_crc_errs +=
4356 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR);
4357 stats->rx_good_octets +=
4358 MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO);
4359 stats->rx_bad_octets +=
4360 MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO);
4361 stats->rx_runts +=
4362 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT);
4363 stats->rx_runt_errs +=
4364 MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG);
4365 stats->rx_pkts_64 +=
4366 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B);
4367 stats->rx_pkts_65_127 +=
4368 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B);
4369 stats->rx_pkts_128_255 +=
4370 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B);
4371 stats->rx_pkts_256_511 +=
4372 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B);
4373 stats->rx_pkts_512_1023 +=
4374 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B);
4375 stats->rx_pkts_1024_1518 +=
4376 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B);
4377 stats->rx_pkts_1519_max +=
4378 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ);
4379 stats->rx_pkts_too_long +=
4380 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR);
4381 stats->rx_pkts_jabbers +=
4382 MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT);
4383 stats->rx_fifo_oflows +=
4384 MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV);
4385
4386 /* Tx stats. */
4387 stats->tx_ucast_frames +=
4388 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK);
4389 stats->tx_bcast_frames +=
4390 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK);
4391 stats->tx_pause_frames +=
4392 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE);
4393 stats->tx_mcast_frames +=
4394 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK);
4395 stats->tx_octets +=
4396 MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO);
4397 stats->tx_pkts_64 +=
4398 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B);
4399 stats->tx_pkts_65_127 +=
4400 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B);
4401 stats->tx_pkts_128_255 +=
4402 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B);
4403 stats->tx_pkts_256_511 +=
4404 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B);
4405 stats->tx_pkts_512_1023 +=
4406 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B);
4407 stats->tx_pkts_1024_1518 +=
4408 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B);
4409 stats->tx_pkts_1519_max +=
4410 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ);
4411 stats->tx_colls +=
4412 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL);
4413 stats->tx_late_colls +=
4414 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL);
4415 stats->tx_excess_colls +=
4416 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL);
4417 stats->tx_multi_colls +=
4418 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL);
4419 stats->tx_single_colls +=
4420 MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL);
4421 stats->tx_underflows +=
4422 MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR);
4423 /* Clear MIB Clear Counter Mode. */
4424 gmac &= ~GM_PAR_MIB_CLR;
4425 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
4426 }
4427
4428 static int
4429 msk_sysctl_stat32(SYSCTL_HANDLER_ARGS)
4430 {
4431 struct msk_softc *sc;
4432 struct msk_if_softc *sc_if;
4433 uint32_t result, *stat;
4434 int off;
4435
4436 sc_if = (struct msk_if_softc *)arg1;
4437 sc = sc_if->msk_softc;
4438 off = arg2;
4439 stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off);
4440
4441 MSK_IF_LOCK(sc_if);
4442 result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4443 result += *stat;
4444 MSK_IF_UNLOCK(sc_if);
4445
4446 return (sysctl_handle_int(oidp, &result, 0, req));
4447 }
4448
4449 static int
4450 msk_sysctl_stat64(SYSCTL_HANDLER_ARGS)
4451 {
4452 struct msk_softc *sc;
4453 struct msk_if_softc *sc_if;
4454 uint64_t result, *stat;
4455 int off;
4456
4457 sc_if = (struct msk_if_softc *)arg1;
4458 sc = sc_if->msk_softc;
4459 off = arg2;
4460 stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off);
4461
4462 MSK_IF_LOCK(sc_if);
4463 result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2);
4464 result += *stat;
4465 MSK_IF_UNLOCK(sc_if);
4466
4467 return (sysctl_handle_64(oidp, &result, 0, req));
4468 }
4469
4470 #undef MSK_READ_MIB32
4471 #undef MSK_READ_MIB64
4472
4473 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) \
4474 SYSCTL_ADD_PROC(c, p, OID_AUTO, o, \
4475 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, \
4476 sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32, \
4477 "IU", d)
4478 #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) \
4479 SYSCTL_ADD_PROC(c, p, OID_AUTO, o, \
4480 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT, \
4481 sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64, \
4482 "QU", d)
4483
4484 static void
4485 msk_sysctl_node(struct msk_if_softc *sc_if)
4486 {
4487 struct sysctl_ctx_list *ctx;
4488 struct sysctl_oid_list *child, *schild;
4489 struct sysctl_oid *tree;
4490
4491 ctx = device_get_sysctl_ctx(sc_if->msk_if_dev);
4492 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev));
4493
4494 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
4495 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK Statistics");
4496 schild = SYSCTL_CHILDREN(tree);
4497 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx",
4498 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK RX Statistics");
4499 child = SYSCTL_CHILDREN(tree);
4500 MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4501 child, rx_ucast_frames, "Good unicast frames");
4502 MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4503 child, rx_bcast_frames, "Good broadcast frames");
4504 MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4505 child, rx_pause_frames, "Pause frames");
4506 MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4507 child, rx_mcast_frames, "Multicast frames");
4508 MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs",
4509 child, rx_crc_errs, "CRC errors");
4510 MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets",
4511 child, rx_good_octets, "Good octets");
4512 MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets",
4513 child, rx_bad_octets, "Bad octets");
4514 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4515 child, rx_pkts_64, "64 bytes frames");
4516 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4517 child, rx_pkts_65_127, "65 to 127 bytes frames");
4518 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4519 child, rx_pkts_128_255, "128 to 255 bytes frames");
4520 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4521 child, rx_pkts_256_511, "256 to 511 bytes frames");
4522 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4523 child, rx_pkts_512_1023, "512 to 1023 bytes frames");
4524 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4525 child, rx_pkts_1024_1518, "1024 to 1518 bytes frames");
4526 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4527 child, rx_pkts_1519_max, "1519 to max frames");
4528 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long",
4529 child, rx_pkts_too_long, "frames too long");
4530 MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers",
4531 child, rx_pkts_jabbers, "Jabber errors");
4532 MSK_SYSCTL_STAT32(sc_if, ctx, "overflows",
4533 child, rx_fifo_oflows, "FIFO overflows");
4534
4535 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx",
4536 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "MSK TX Statistics");
4537 child = SYSCTL_CHILDREN(tree);
4538 MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames",
4539 child, tx_ucast_frames, "Unicast frames");
4540 MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames",
4541 child, tx_bcast_frames, "Broadcast frames");
4542 MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames",
4543 child, tx_pause_frames, "Pause frames");
4544 MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames",
4545 child, tx_mcast_frames, "Multicast frames");
4546 MSK_SYSCTL_STAT64(sc_if, ctx, "octets",
4547 child, tx_octets, "Octets");
4548 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64",
4549 child, tx_pkts_64, "64 bytes frames");
4550 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127",
4551 child, tx_pkts_65_127, "65 to 127 bytes frames");
4552 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255",
4553 child, tx_pkts_128_255, "128 to 255 bytes frames");
4554 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511",
4555 child, tx_pkts_256_511, "256 to 511 bytes frames");
4556 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023",
4557 child, tx_pkts_512_1023, "512 to 1023 bytes frames");
4558 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518",
4559 child, tx_pkts_1024_1518, "1024 to 1518 bytes frames");
4560 MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max",
4561 child, tx_pkts_1519_max, "1519 to max frames");
4562 MSK_SYSCTL_STAT32(sc_if, ctx, "colls",
4563 child, tx_colls, "Collisions");
4564 MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls",
4565 child, tx_late_colls, "Late collisions");
4566 MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls",
4567 child, tx_excess_colls, "Excessive collisions");
4568 MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls",
4569 child, tx_multi_colls, "Multiple collisions");
4570 MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls",
4571 child, tx_single_colls, "Single collisions");
4572 MSK_SYSCTL_STAT32(sc_if, ctx, "underflows",
4573 child, tx_underflows, "FIFO underflows");
4574 }
4575
4576 #undef MSK_SYSCTL_STAT32
4577 #undef MSK_SYSCTL_STAT64
4578
4579 static int
4580 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4581 {
4582 int error, value;
4583
4584 if (!arg1)
4585 return (EINVAL);
4586 value = *(int *)arg1;
4587 error = sysctl_handle_int(oidp, &value, 0, req);
4588 if (error || !req->newptr)
4589 return (error);
4590 if (value < low || value > high)
4591 return (EINVAL);
4592 *(int *)arg1 = value;
4593
4594 return (0);
4595 }
4596
4597 static int
4598 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
4599 {
4600
4601 return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
4602 MSK_PROC_MAX));
4603 }
Cache object: 5b8e9c4e25401967b16afc3a6621f4d4
|