The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/mwl/mwlhal.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
    3  * Copyright (c) 2007-2009 Marvell Semiconductor, Inc.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer,
   11  *    without modification.
   12  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
   13  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
   14  *    redistribution must be conditioned upon including a substantially
   15  *    similar Disclaimer requirement for further binary redistribution.
   16  *
   17  * NO WARRANTY
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   20  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
   21  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
   22  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
   23  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
   26  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   28  * THE POSSIBILITY OF SUCH DAMAGES.
   29  *
   30  * $FreeBSD: releng/9.2/sys/dev/mwl/mwlhal.c 248085 2013-03-09 02:36:32Z marius $
   31  */
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h> 
   35 #include <sys/sysctl.h>
   36 #include <sys/malloc.h>
   37 #include <sys/lock.h>
   38 #include <sys/mutex.h>
   39 #include <sys/kernel.h>
   40 #include <sys/errno.h>
   41 #include <sys/bus.h>
   42 #include <sys/endian.h>
   43 
   44 #include <sys/linker.h>
   45 #include <sys/firmware.h>
   46 
   47 #include <machine/bus.h>
   48 
   49 #include <dev/mwl/mwlhal.h>
   50 #include <dev/mwl/mwlreg.h>
   51 
   52 #include <sys/socket.h>
   53 #include <sys/sockio.h>
   54 #include <net/if.h>
   55 #include <dev/mwl/mwldiag.h>
   56 
   57 #define MWLHAL_DEBUG                    /* debug msgs */
   58 
   59 typedef enum {
   60     WL_ANTENNAMODE_RX = 0xffff,
   61     WL_ANTENNAMODE_TX = 2,
   62 } wlantennamode_e;
   63 
   64 typedef enum {
   65     WL_TX_POWERLEVEL_LOW = 5,
   66     WL_TX_POWERLEVEL_MEDIUM = 10,
   67     WL_TX_POWERLEVEL_HIGH = 15,
   68 } wltxpowerlevel_e;
   69 
   70 #define MWL_CMDBUF_SIZE 0x4000          /* size of f/w command buffer */
   71 #define MWL_BASTREAMS_MAX       7       /* max BA streams (NB: fw >3.3.5.9) */
   72 #define MWL_BAQID_MAX           8       /* max BA Q id's (NB: fw >3.3.5.9) */
   73 #define MWL_MBSS_AP_MAX         8       /* max ap vap's */
   74 #define MWL_MBSS_STA_MAX        24      /* max station/client vap's */
   75 #define MWL_MBSS_MAX    (MWL_MBSS_AP_MAX+MWL_MBSS_STA_MAX)
   76 
   77 /*
   78  * BA stream -> queue ID mapping
   79  *
   80  * The first 2 streams map to h/w; the remaining streams are
   81  * implemented in firmware.
   82  */
   83 static const int ba2qid[MWL_BASTREAMS_MAX] = {
   84         5, 6                            /* h/w supported */
   85 #if MWL_BASTREAMS_MAX == 7
   86         , 7, 0, 1, 2, 3                 /* f/w supported */
   87 #endif
   88 };
   89 static int qid2ba[MWL_BAQID_MAX];
   90 
   91 #define IEEE80211_ADDR_LEN      6       /* XXX */
   92 #define IEEE80211_ADDR_COPY(_dst, _src) \
   93         memcpy(_dst, _src, IEEE80211_ADDR_LEN)
   94 #define IEEE80211_ADDR_EQ(_dst, _src) \
   95         (memcmp(_dst, _src, IEEE80211_ADDR_LEN) == 0)
   96 
   97 #define _CMD_SETUP(pCmd, type, cmd) do {                                \
   98         pCmd = (type *)&mh->mh_cmdbuf[0];                               \
   99         memset(pCmd, 0, sizeof(type));                                  \
  100         pCmd->CmdHdr.Cmd = htole16(cmd);                                \
  101         pCmd->CmdHdr.Length = htole16(sizeof(type));                    \
  102 } while (0)
  103 
  104 #define _VCMD_SETUP(vap, pCmd, type, cmd) do {                          \
  105         _CMD_SETUP(pCmd, type, cmd);                                    \
  106         pCmd->CmdHdr.MacId = vap->macid;                                \
  107 } while (0)
  108 
  109 #define PWTAGETRATETABLE20M     14*4
  110 #define PWTAGETRATETABLE40M     9*4
  111 #define PWTAGETRATETABLE20M_5G  35*4
  112 #define PWTAGETRATETABLE40M_5G  16*4
  113 
  114 struct mwl_hal_bastream {
  115         MWL_HAL_BASTREAM public;        /* public state */
  116         uint8_t stream;                 /* stream # */
  117         uint8_t setup;                  /* f/w cmd sent */
  118         uint8_t ba_policy;              /* direct/delayed BA policy */
  119         uint8_t tid;
  120         uint8_t paraminfo;
  121         uint8_t macaddr[IEEE80211_ADDR_LEN];
  122 };
  123 
  124 struct mwl_hal_priv;
  125 
  126 struct mwl_hal_vap {
  127         struct mwl_hal_priv *mh;        /* back pointer */
  128         uint16_t bss_type;              /* f/w type */
  129         uint8_t vap_type;               /* MWL_HAL_BSSTYPE */
  130         uint8_t macid;                  /* for passing to f/w */
  131         uint8_t flags;
  132 #define MVF_RUNNING     0x01            /* BSS_START issued */
  133 #define MVF_STATION     0x02            /* sta db entry created */
  134         uint8_t mac[IEEE80211_ADDR_LEN];/* mac address */
  135 };
  136 #define MWLVAP(_vap)    ((_vap)->mh)
  137 
  138 /*
  139  * Per-device state.  We allocate a single cmd buffer for
  140  * submitting operations to the firmware.  Access to this
  141  * buffer (and the f/w) are single-threaded.  At present
  142  * we spin waiting for cmds to complete which is bad.  Not
  143  * sure if it's possible to submit multiple requests or
  144  * control when we get cmd done interrupts.  There's no
  145  * documentation and no example code to indicate what can
  146  * or cannot be done so all we can do right now is follow the
  147  * linux driver logic.  This falls apart when the f/w fails;
  148  * the system comes to a crawl as we spin waiting for operations
  149  * to finish.
  150  */
  151 struct mwl_hal_priv {
  152         struct mwl_hal  public;         /* public area */
  153         device_t        mh_dev;
  154         char            mh_mtxname[12];
  155         struct mtx      mh_mtx;
  156         bus_dma_tag_t   mh_dmat;        /* bus DMA tag for cmd buffer */
  157         bus_dma_segment_t mh_seg;       /* segment for cmd buffer */
  158         bus_dmamap_t    mh_dmamap;      /* DMA map for cmd buffer */
  159         uint16_t        *mh_cmdbuf;     /* f/w cmd buffer */
  160         bus_addr_t      mh_cmdaddr;     /* physaddr of cmd buffer */
  161         int             mh_flags;
  162 #define MHF_CALDATA     0x0001          /* cal data retrieved */
  163 #define MHF_FWHANG      0x0002          /* fw appears hung */
  164 #define MHF_MBSS        0x0004          /* mbss enabled */
  165         struct mwl_hal_vap mh_vaps[MWL_MBSS_MAX+1];
  166         int             mh_bastreams;   /* bit mask of available BA streams */
  167         int             mh_regioncode;  /* XXX last region code sent to fw */
  168         struct mwl_hal_bastream mh_streams[MWL_BASTREAMS_MAX];
  169         int             mh_debug;
  170         MWL_HAL_CHANNELINFO mh_20M;
  171         MWL_HAL_CHANNELINFO mh_40M;
  172         MWL_HAL_CHANNELINFO mh_20M_5G;
  173         MWL_HAL_CHANNELINFO mh_40M_5G;
  174         int             mh_SDRAMSIZE_Addr;
  175         uint32_t        mh_RTSSuccesses;/* cumulative stats for read-on-clear */
  176         uint32_t        mh_RTSFailures;
  177         uint32_t        mh_RxDuplicateFrames;
  178         uint32_t        mh_FCSErrorCount;
  179         MWL_DIAG_REVS   mh_revs;
  180 };
  181 #define MWLPRIV(_mh)    ((struct mwl_hal_priv *)(_mh))
  182 
  183 static int mwl_hal_setmac_locked(struct mwl_hal_vap *,
  184         const uint8_t addr[IEEE80211_ADDR_LEN]);
  185 static int mwlExecuteCmd(struct mwl_hal_priv *, unsigned short cmd);
  186 static int mwlGetPwrCalTable(struct mwl_hal_priv *);
  187 #ifdef MWLHAL_DEBUG
  188 static const char *mwlcmdname(int cmd);
  189 static void dumpresult(struct mwl_hal_priv *, int showresult);
  190 #endif /* MWLHAL_DEBUG */
  191 
  192 SYSCTL_DECL(_hw_mwl);
  193 static SYSCTL_NODE(_hw_mwl, OID_AUTO, hal, CTLFLAG_RD, 0,
  194     "Marvell HAL parameters");
  195 
  196 static __inline void
  197 MWL_HAL_LOCK(struct mwl_hal_priv *mh)
  198 {
  199         mtx_lock(&mh->mh_mtx);
  200 }
  201 
  202 static __inline void
  203 MWL_HAL_LOCK_ASSERT(struct mwl_hal_priv *mh)
  204 {
  205         mtx_assert(&mh->mh_mtx, MA_OWNED);
  206 }
  207 
  208 static __inline void
  209 MWL_HAL_UNLOCK(struct mwl_hal_priv *mh)
  210 {
  211         mtx_unlock(&mh->mh_mtx);
  212 }
  213 
  214 static __inline uint32_t
  215 RD4(struct mwl_hal_priv *mh, bus_size_t off)
  216 {
  217         return bus_space_read_4(mh->public.mh_iot, mh->public.mh_ioh, off);
  218 }
  219 
  220 static __inline void
  221 WR4(struct mwl_hal_priv *mh, bus_size_t off, uint32_t val)
  222 {
  223         bus_space_write_4(mh->public.mh_iot, mh->public.mh_ioh, off, val);
  224 }
  225 
  226 static void
  227 mwl_hal_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  228 {
  229         bus_addr_t *paddr = (bus_addr_t*) arg;
  230         KASSERT(error == 0, ("error %u on bus_dma callback", error));
  231         *paddr = segs->ds_addr;
  232 }
  233 
  234 /*
  235  * Setup for communication with the device.  We allocate
  236  * a command buffer and map it for bus dma use.  The pci
  237  * device id is used to identify whether the device has
  238  * SRAM on it (in which case f/w download must include a
  239  * memory controller reset).  All bus i/o operations happen
  240  * in BAR 1; the driver passes in the tag and handle we need.
  241  */
  242 struct mwl_hal *
  243 mwl_hal_attach(device_t dev, uint16_t devid,
  244     bus_space_handle_t ioh, bus_space_tag_t iot, bus_dma_tag_t tag)
  245 {
  246         struct mwl_hal_priv *mh;
  247         struct mwl_hal_vap *hvap;
  248         int error, i;
  249 
  250         mh = malloc(sizeof(struct mwl_hal_priv), M_DEVBUF, M_NOWAIT | M_ZERO);
  251         if (mh == NULL)
  252                 return NULL;
  253         mh->mh_dev = dev;
  254         mh->public.mh_ioh = ioh;
  255         mh->public.mh_iot = iot;
  256         for (i = 0; i < MWL_BASTREAMS_MAX; i++) {
  257                 mh->mh_streams[i].public.txq = ba2qid[i];
  258                 mh->mh_streams[i].stream = i;
  259                 /* construct back-mapping while we're at it */
  260                 if (mh->mh_streams[i].public.txq < MWL_BAQID_MAX)
  261                         qid2ba[mh->mh_streams[i].public.txq] = i;
  262                 else
  263                         device_printf(dev, "unexpected BA tx qid %d for "
  264                             "stream %d\n", mh->mh_streams[i].public.txq, i);
  265         }
  266         /* setup constant portion of vap state */
  267         /* XXX should get max ap/client vap's from f/w */
  268         i = 0;
  269         hvap = &mh->mh_vaps[i];
  270         hvap->vap_type = MWL_HAL_AP;
  271         hvap->bss_type = htole16(WL_MAC_TYPE_PRIMARY_AP);
  272         hvap->macid = 0;
  273         for (i++; i < MWL_MBSS_AP_MAX; i++) {
  274                 hvap = &mh->mh_vaps[i];
  275                 hvap->vap_type = MWL_HAL_AP;
  276                 hvap->bss_type = htole16(WL_MAC_TYPE_SECONDARY_AP);
  277                 hvap->macid = i;
  278         }
  279         hvap = &mh->mh_vaps[i];
  280         hvap->vap_type = MWL_HAL_STA;
  281         hvap->bss_type = htole16(WL_MAC_TYPE_PRIMARY_CLIENT);
  282         hvap->macid = i;
  283         for (i++; i < MWL_MBSS_MAX; i++) {
  284                 hvap = &mh->mh_vaps[i];
  285                 hvap->vap_type = MWL_HAL_STA;
  286                 hvap->bss_type = htole16(WL_MAC_TYPE_SECONDARY_CLIENT);
  287                 hvap->macid = i;
  288         }
  289         mh->mh_revs.mh_devid = devid;
  290         snprintf(mh->mh_mtxname, sizeof(mh->mh_mtxname),
  291             "%s_hal", device_get_nameunit(dev));
  292         mtx_init(&mh->mh_mtx, mh->mh_mtxname, NULL, MTX_DEF);
  293 
  294         /*
  295          * Allocate the command buffer and map into the address
  296          * space of the h/w.  We request "coherent" memory which
  297          * will be uncached on some architectures.
  298          */
  299         error = bus_dma_tag_create(tag,         /* parent */
  300                        PAGE_SIZE, 0,            /* alignment, bounds */
  301                        BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
  302                        BUS_SPACE_MAXADDR,       /* highaddr */
  303                        NULL, NULL,              /* filter, filterarg */
  304                        MWL_CMDBUF_SIZE,         /* maxsize */
  305                        1,                       /* nsegments */
  306                        MWL_CMDBUF_SIZE,         /* maxsegsize */
  307                        BUS_DMA_ALLOCNOW,        /* flags */
  308                        NULL,                    /* lockfunc */
  309                        NULL,                    /* lockarg */
  310                        &mh->mh_dmat);
  311         if (error != 0) {
  312                 device_printf(dev, "unable to allocate memory for cmd buffer, "
  313                         "error %u\n", error);
  314                 goto fail0;
  315         }
  316 
  317         /* allocate descriptors */
  318         error = bus_dmamap_create(mh->mh_dmat, BUS_DMA_NOWAIT, &mh->mh_dmamap);
  319         if (error != 0) {
  320                 device_printf(dev, "unable to create dmamap for cmd buffers, "
  321                         "error %u\n", error);
  322                 goto fail0;
  323         }
  324 
  325         error = bus_dmamem_alloc(mh->mh_dmat, (void**) &mh->mh_cmdbuf,
  326                                  BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 
  327                                  &mh->mh_dmamap);
  328         if (error != 0) {
  329                 device_printf(dev, "unable to allocate memory for cmd buffer, "
  330                         "error %u\n", error);
  331                 goto fail1;
  332         }
  333 
  334         error = bus_dmamap_load(mh->mh_dmat, mh->mh_dmamap,
  335                                 mh->mh_cmdbuf, MWL_CMDBUF_SIZE,
  336                                 mwl_hal_load_cb, &mh->mh_cmdaddr,
  337                                 BUS_DMA_NOWAIT);
  338         if (error != 0) {
  339                 device_printf(dev, "unable to load cmd buffer, error %u\n",
  340                         error);
  341                 goto fail2;
  342         }
  343 
  344         /*
  345          * Some cards have SDRAM.  When loading firmware we need
  346          * to reset the SDRAM controller prior to doing this.
  347          * When the SDRAMSIZE is non-zero we do that work in
  348          * mwl_hal_fwload.
  349          */
  350         switch (devid) {
  351         case 0x2a02:            /* CB82 */
  352         case 0x2a03:            /* CB85 */
  353         case 0x2a08:            /* MC85_B1 */
  354         case 0x2a0b:            /* CB85AP */
  355         case 0x2a24:
  356                 mh->mh_SDRAMSIZE_Addr = 0x40fe70b7;     /* 8M SDRAM */
  357                 break;
  358         case 0x2a04:            /* MC85 */
  359                 mh->mh_SDRAMSIZE_Addr = 0x40fc70b7;     /* 16M SDRAM */
  360                 break;
  361         default:
  362                 break;
  363         }
  364         return &mh->public;
  365 fail2:
  366         bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap);
  367 fail1:
  368         bus_dmamap_destroy(mh->mh_dmat, mh->mh_dmamap);
  369 fail0:
  370         bus_dma_tag_destroy(mh->mh_dmat);
  371         mtx_destroy(&mh->mh_mtx);
  372         free(mh, M_DEVBUF);
  373         return NULL;
  374 }
  375 
  376 void
  377 mwl_hal_detach(struct mwl_hal *mh0)
  378 {
  379         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  380 
  381         bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap);
  382         bus_dmamap_destroy(mh->mh_dmat, mh->mh_dmamap);
  383         bus_dma_tag_destroy(mh->mh_dmat);
  384         mtx_destroy(&mh->mh_mtx);
  385         free(mh, M_DEVBUF);
  386 }
  387 
  388 /*
  389  * Reset internal state after a firmware download.
  390  */
  391 static int
  392 mwlResetHalState(struct mwl_hal_priv *mh)
  393 {
  394         int i;
  395 
  396         /* XXX get from f/w */
  397         mh->mh_bastreams = (1<<MWL_BASTREAMS_MAX)-1;
  398         for (i = 0; i < MWL_MBSS_MAX; i++)
  399                 mh->mh_vaps[i].mh = NULL;
  400         /*
  401          * Clear cumulative stats.
  402          */
  403         mh->mh_RTSSuccesses = 0;
  404         mh->mh_RTSFailures = 0;
  405         mh->mh_RxDuplicateFrames = 0;
  406         mh->mh_FCSErrorCount = 0;
  407         /*
  408          * Fetch cal data for later use.
  409          * XXX may want to fetch other stuff too.
  410          */
  411         /* XXX check return */
  412         if ((mh->mh_flags & MHF_CALDATA) == 0)
  413                 mwlGetPwrCalTable(mh);
  414         return 0;
  415 }
  416 
  417 struct mwl_hal_vap *
  418 mwl_hal_newvap(struct mwl_hal *mh0, MWL_HAL_BSSTYPE type,
  419         const uint8_t mac[IEEE80211_ADDR_LEN])
  420 {
  421         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  422         struct mwl_hal_vap *vap;
  423         int i;
  424 
  425         MWL_HAL_LOCK(mh);
  426         /* NB: could optimize but not worth it w/ max 32 bss */
  427         for (i = 0; i < MWL_MBSS_MAX; i++) {
  428                 vap = &mh->mh_vaps[i];
  429                 if (vap->vap_type == type && vap->mh == NULL) {
  430                         vap->mh = mh;
  431                         mwl_hal_setmac_locked(vap, mac);
  432                         break;
  433                 }
  434         }
  435         MWL_HAL_UNLOCK(mh);
  436         return (i < MWL_MBSS_MAX) ? vap : NULL;
  437 }
  438 
  439 void
  440 mwl_hal_delvap(struct mwl_hal_vap *vap)
  441 {
  442         /* NB: locking not needed for single write */
  443         vap->mh = NULL;
  444 }
  445 
  446 /*
  447  * Manipulate the debug mask.  Note debug
  448  * msgs are only provided when this code is
  449  * compiled with MWLHAL_DEBUG defined.
  450  */
  451 
  452 void
  453 mwl_hal_setdebug(struct mwl_hal *mh, int debug)
  454 {
  455         MWLPRIV(mh)->mh_debug = debug;
  456 }
  457 
  458 int
  459 mwl_hal_getdebug(struct mwl_hal *mh)
  460 {
  461         return MWLPRIV(mh)->mh_debug;
  462 }
  463 
  464 void
  465 mwl_hal_setbastreams(struct mwl_hal *mh, int mask)
  466 {
  467         MWLPRIV(mh)->mh_bastreams = mask & ((1<<MWL_BASTREAMS_MAX)-1);
  468 }
  469 
  470 int
  471 mwl_hal_getbastreams(struct mwl_hal *mh)
  472 {
  473         return MWLPRIV(mh)->mh_bastreams;
  474 }
  475 
  476 int
  477 mwl_hal_ismbsscapable(struct mwl_hal *mh)
  478 {
  479         return (MWLPRIV(mh)->mh_flags & MHF_MBSS) != 0;
  480 }
  481 
  482 #if 0
  483 /* XXX inlined */
  484 /*
  485  * Return the current ISR setting and clear the cause.
  486  * XXX maybe make inline
  487  */
  488 void
  489 mwl_hal_getisr(struct mwl_hal *mh0, uint32_t *status)
  490 {
  491         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  492         uint32_t cause;
  493 
  494         cause = RD4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE);
  495         if (cause == 0xffffffff) {      /* card removed */
  496 device_printf(mh->mh_dev, "%s: cause 0x%x\n", __func__, cause);
  497                 cause = 0;
  498         } else if (cause != 0) {
  499                 /* clear cause bits */
  500                 WR4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE,
  501                     cause &~ mh->public.mh_imask);
  502                 RD4(mh, MACREG_REG_INT_CODE);   /* XXX flush write? */
  503         }
  504         *status = cause;
  505 }
  506 #endif
  507 
  508 /*
  509  * Set the interrupt mask.
  510  */
  511 void
  512 mwl_hal_intrset(struct mwl_hal *mh0, uint32_t mask)
  513 {
  514         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  515 
  516         WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, 0);
  517         RD4(mh, MACREG_REG_INT_CODE);
  518 
  519         mh->public.mh_imask = mask;
  520         WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, mask);
  521         RD4(mh, MACREG_REG_INT_CODE);
  522 }
  523 
  524 #if 0
  525 /* XXX inlined */
  526 /*
  527  * Kick the firmware to tell it there are new tx descriptors
  528  * for processing.  The driver says what h/w q has work in
  529  * case the f/w ever gets smarter.
  530  */
  531 void
  532 mwl_hal_txstart(struct mwl_hal *mh0, int qnum)
  533 {
  534         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  535         uint32_t dummy;
  536 
  537         WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_PPA_READY);
  538         dummy = RD4(mh, MACREG_REG_INT_CODE);
  539 }
  540 #endif
  541 
  542 /*
  543  * Callback from the driver on a cmd done interrupt.
  544  * Nothing to do right now as we spin waiting for
  545  * cmd completion.
  546  */
  547 void
  548 mwl_hal_cmddone(struct mwl_hal *mh0)
  549 {
  550 #if 0
  551         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  552 
  553         if (mh->mh_debug & MWL_HAL_DEBUG_CMDDONE) {
  554                 device_printf(mh->mh_dev, "cmd done interrupt:\n");
  555                 dumpresult(mh, 1);
  556         }
  557 #endif
  558 }
  559 
  560 /*
  561  * Return "hw specs".  Note this must be the first
  562  * cmd MUST be done after a firmware download or the
  563  * f/w will lockup.
  564  * XXX move into the hal so driver doesn't need to be responsible
  565  */
  566 int
  567 mwl_hal_gethwspecs(struct mwl_hal *mh0, struct mwl_hal_hwspec *hw)
  568 {
  569         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  570         HostCmd_DS_GET_HW_SPEC *pCmd;
  571         int retval, minrev;
  572 
  573         MWL_HAL_LOCK(mh);
  574         _CMD_SETUP(pCmd, HostCmd_DS_GET_HW_SPEC, HostCmd_CMD_GET_HW_SPEC);
  575         memset(&pCmd->PermanentAddr[0], 0xff, IEEE80211_ADDR_LEN);
  576         pCmd->ulFwAwakeCookie = htole32((unsigned int)mh->mh_cmdaddr+2048);
  577 
  578         retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_HW_SPEC);
  579         if (retval == 0) {
  580                 IEEE80211_ADDR_COPY(hw->macAddr, pCmd->PermanentAddr);
  581                 hw->wcbBase[0] = le32toh(pCmd->WcbBase0) & 0x0000ffff;
  582                 hw->wcbBase[1] = le32toh(pCmd->WcbBase1[0]) & 0x0000ffff;
  583                 hw->wcbBase[2] = le32toh(pCmd->WcbBase1[1]) & 0x0000ffff;
  584                 hw->wcbBase[3] = le32toh(pCmd->WcbBase1[2]) & 0x0000ffff;
  585                 hw->rxDescRead = le32toh(pCmd->RxPdRdPtr)& 0x0000ffff;
  586                 hw->rxDescWrite = le32toh(pCmd->RxPdWrPtr)& 0x0000ffff;
  587                 hw->regionCode = le16toh(pCmd->RegionCode) & 0x00ff;
  588                 hw->fwReleaseNumber = le32toh(pCmd->FWReleaseNumber);
  589                 hw->maxNumWCB = le16toh(pCmd->NumOfWCB);
  590                 hw->maxNumMCAddr = le16toh(pCmd->NumOfMCastAddr);
  591                 hw->numAntennas = le16toh(pCmd->NumberOfAntenna);
  592                 hw->hwVersion = pCmd->Version;
  593                 hw->hostInterface = pCmd->HostIf;
  594 
  595                 mh->mh_revs.mh_macRev = hw->hwVersion;          /* XXX */
  596                 mh->mh_revs.mh_phyRev = hw->hostInterface;      /* XXX */
  597 
  598                 minrev = ((hw->fwReleaseNumber) >> 16) & 0xff;
  599                 if (minrev >= 4) {
  600                         /* starting with 3.4.x.x s/w BA streams supported */
  601                         mh->mh_bastreams &= (1<<MWL_BASTREAMS_MAX)-1;
  602                 } else
  603                         mh->mh_bastreams &= (1<<2)-1;
  604         }
  605         MWL_HAL_UNLOCK(mh);
  606         return retval;
  607 }
  608 
  609 /*
  610  * Inform the f/w about location of the tx/rx dma data structures
  611  * and related state.  This cmd must be done immediately after a
  612  * mwl_hal_gethwspecs call or the f/w will lockup.
  613  */
  614 int
  615 mwl_hal_sethwdma(struct mwl_hal *mh0, const struct mwl_hal_txrxdma *dma)
  616 {
  617         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  618         HostCmd_DS_SET_HW_SPEC *pCmd;
  619         int retval;
  620 
  621         MWL_HAL_LOCK(mh);
  622         _CMD_SETUP(pCmd, HostCmd_DS_SET_HW_SPEC, HostCmd_CMD_SET_HW_SPEC);
  623         pCmd->WcbBase[0] = htole32(dma->wcbBase[0]);
  624         pCmd->WcbBase[1] = htole32(dma->wcbBase[1]);
  625         pCmd->WcbBase[2] = htole32(dma->wcbBase[2]);
  626         pCmd->WcbBase[3] = htole32(dma->wcbBase[3]);
  627         pCmd->TxWcbNumPerQueue = htole32(dma->maxNumTxWcb);
  628         pCmd->NumTxQueues = htole32(dma->maxNumWCB);
  629         pCmd->TotalRxWcb = htole32(1);          /* XXX */
  630         pCmd->RxPdWrPtr = htole32(dma->rxDescRead);
  631         pCmd->Flags = htole32(SET_HW_SPEC_HOSTFORM_BEACON
  632 #ifdef MWL_HOST_PS_SUPPORT
  633                     | SET_HW_SPEC_HOST_POWERSAVE
  634 #endif
  635                     | SET_HW_SPEC_HOSTFORM_PROBERESP);
  636         /* disable multi-bss operation for A1-A4 parts */
  637         if (mh->mh_revs.mh_macRev < 5)
  638                 pCmd->Flags |= htole32(SET_HW_SPEC_DISABLEMBSS);
  639 
  640         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_HW_SPEC);
  641         if (retval == 0) {
  642                 if (pCmd->Flags & htole32(SET_HW_SPEC_DISABLEMBSS))
  643                         mh->mh_flags &= ~MHF_MBSS;
  644                 else
  645                         mh->mh_flags |= MHF_MBSS;
  646         }
  647         MWL_HAL_UNLOCK(mh);
  648         return retval;
  649 }
  650 
  651 /*
  652  * Retrieve statistics from the f/w.
  653  * XXX should be in memory shared w/ driver
  654  */
  655 int
  656 mwl_hal_gethwstats(struct mwl_hal *mh0, struct mwl_hal_hwstats *stats)
  657 {
  658         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  659         HostCmd_DS_802_11_GET_STAT *pCmd;
  660         int retval;
  661 
  662         MWL_HAL_LOCK(mh);
  663         _CMD_SETUP(pCmd, HostCmd_DS_802_11_GET_STAT,
  664                 HostCmd_CMD_802_11_GET_STAT);
  665 
  666         retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_GET_STAT);
  667         if (retval == 0) {
  668                 const uint32_t *sp = (const uint32_t *)&pCmd->TxRetrySuccesses;
  669                 uint32_t *dp = (uint32_t *)&stats->TxRetrySuccesses;
  670                 int i;
  671 
  672                 for (i = 0; i < sizeof(*stats)/sizeof(uint32_t); i++)
  673                         dp[i] = le32toh(sp[i]);
  674                 /*
  675                  * Update stats not returned by f/w but available
  676                  * through public registers.  Note these registers
  677                  * are "clear on read" so we maintain cumulative data.
  678                  * XXX register defines
  679                  */
  680                 mh->mh_RTSSuccesses += RD4(mh, 0xa834);
  681                 mh->mh_RTSFailures += RD4(mh, 0xa830);
  682                 mh->mh_RxDuplicateFrames += RD4(mh, 0xa84c);
  683                 mh->mh_FCSErrorCount += RD4(mh, 0xa840);
  684         }
  685         MWL_HAL_UNLOCK(mh);
  686 
  687         stats->RTSSuccesses = mh->mh_RTSSuccesses;
  688         stats->RTSFailures = mh->mh_RTSFailures;
  689         stats->RxDuplicateFrames = mh->mh_RxDuplicateFrames;
  690         stats->FCSErrorCount = mh->mh_FCSErrorCount;
  691         return retval;
  692 }
  693 
  694 /*
  695  * Set HT guard interval handling.
  696  * Takes effect immediately.
  697  */
  698 int
  699 mwl_hal_sethtgi(struct mwl_hal_vap *vap, int GIType)
  700 {
  701         struct mwl_hal_priv *mh = MWLVAP(vap);
  702         HostCmd_FW_HT_GUARD_INTERVAL *pCmd;
  703         int retval;
  704 
  705         MWL_HAL_LOCK(mh);
  706         _VCMD_SETUP(vap, pCmd, HostCmd_FW_HT_GUARD_INTERVAL,
  707                 HostCmd_CMD_HT_GUARD_INTERVAL);
  708         pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
  709 
  710         if (GIType == 0) {
  711                 pCmd->GIType = htole32(GI_TYPE_LONG);
  712         } else if (GIType == 1) {
  713                 pCmd->GIType = htole32(GI_TYPE_LONG | GI_TYPE_SHORT);
  714         } else {
  715                 pCmd->GIType = htole32(GI_TYPE_LONG);
  716         }
  717 
  718         retval = mwlExecuteCmd(mh, HostCmd_CMD_HT_GUARD_INTERVAL);
  719         MWL_HAL_UNLOCK(mh);
  720         return retval;
  721 }
  722 
  723 /*
  724  * Configure radio.
  725  * Takes effect immediately.
  726  * XXX preamble installed after set fixed rate cmd
  727  */
  728 int
  729 mwl_hal_setradio(struct mwl_hal *mh0, int onoff, MWL_HAL_PREAMBLE preamble)
  730 {
  731         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  732         HostCmd_DS_802_11_RADIO_CONTROL *pCmd;
  733         int retval;
  734 
  735         MWL_HAL_LOCK(mh);
  736         _CMD_SETUP(pCmd, HostCmd_DS_802_11_RADIO_CONTROL,
  737                 HostCmd_CMD_802_11_RADIO_CONTROL);
  738         pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
  739         if (onoff == 0)
  740                 pCmd->Control = 0;
  741         else
  742                 pCmd->Control = htole16(preamble);
  743         pCmd->RadioOn = htole16(onoff);
  744 
  745         retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RADIO_CONTROL);
  746         MWL_HAL_UNLOCK(mh);
  747         return retval;
  748 }
  749 
  750 /*
  751  * Configure antenna use.
  752  * Takes effect immediately.
  753  * XXX tx antenna setting ignored
  754  * XXX rx antenna setting should always be 3 (for now)
  755  */
  756 int
  757 mwl_hal_setantenna(struct mwl_hal *mh0, MWL_HAL_ANTENNA dirSet, int ant)
  758 {
  759         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  760         HostCmd_DS_802_11_RF_ANTENNA *pCmd;
  761         int retval;
  762 
  763         if (!(dirSet == WL_ANTENNATYPE_RX || dirSet == WL_ANTENNATYPE_TX))
  764                 return EINVAL;
  765 
  766         MWL_HAL_LOCK(mh);
  767         _CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_ANTENNA,
  768                 HostCmd_CMD_802_11_RF_ANTENNA);
  769         pCmd->Action = htole16(dirSet);
  770         if (ant == 0)                   /* default to all/both antennae */
  771                 ant = 3;
  772         pCmd->AntennaMode = htole16(ant);
  773 
  774         retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_ANTENNA);
  775         MWL_HAL_UNLOCK(mh);
  776         return retval;
  777 }
  778 
  779 /*
  780  * Set packet size threshold for implicit use of RTS.
  781  * Takes effect immediately.
  782  * XXX packet length > threshold =>'s RTS
  783  */
  784 int
  785 mwl_hal_setrtsthreshold(struct mwl_hal_vap *vap, int threshold)
  786 {
  787         struct mwl_hal_priv *mh = MWLVAP(vap);
  788         HostCmd_DS_802_11_RTS_THSD *pCmd;
  789         int retval;
  790 
  791         MWL_HAL_LOCK(mh);
  792         _VCMD_SETUP(vap, pCmd, HostCmd_DS_802_11_RTS_THSD,
  793                 HostCmd_CMD_802_11_RTS_THSD);
  794         pCmd->Action  = htole16(HostCmd_ACT_GEN_SET);
  795         pCmd->Threshold = htole16(threshold);
  796 
  797         retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RTS_THSD);
  798         MWL_HAL_UNLOCK(mh);
  799         return retval;
  800 }
  801 
  802 /*
  803  * Enable sta-mode operation (disables beacon frame xmit).
  804  */
  805 int
  806 mwl_hal_setinframode(struct mwl_hal_vap *vap)
  807 {
  808         struct mwl_hal_priv *mh = MWLVAP(vap);
  809         HostCmd_FW_SET_INFRA_MODE *pCmd;
  810         int retval;
  811 
  812         MWL_HAL_LOCK(mh);
  813         _VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_INFRA_MODE,
  814                 HostCmd_CMD_SET_INFRA_MODE);
  815 
  816         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_INFRA_MODE);
  817         MWL_HAL_UNLOCK(mh);
  818         return retval;
  819 }
  820 
  821 /*
  822  * Configure radar detection in support of 802.11h.
  823  */
  824 int
  825 mwl_hal_setradardetection(struct mwl_hal *mh0, MWL_HAL_RADAR action)
  826 {
  827         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  828         HostCmd_802_11h_Detect_Radar *pCmd;
  829         int retval;
  830 
  831         MWL_HAL_LOCK(mh);
  832         _CMD_SETUP(pCmd, HostCmd_802_11h_Detect_Radar,
  833                 HostCmd_CMD_802_11H_DETECT_RADAR);
  834         pCmd->CmdHdr.Length = htole16(sizeof(HostCmd_802_11h_Detect_Radar));
  835         pCmd->Action = htole16(action);
  836         if (mh->mh_regioncode == DOMAIN_CODE_ETSI_131)
  837                 pCmd->RadarTypeCode = htole16(131);
  838 
  839         retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11H_DETECT_RADAR);
  840         MWL_HAL_UNLOCK(mh);
  841         return retval;
  842 } 
  843 
  844 /*
  845  * Convert public channel flags definition to a
  846  * value suitable for feeding to the firmware.
  847  * Note this includes byte swapping.
  848  */
  849 static uint32_t
  850 cvtChannelFlags(const MWL_HAL_CHANNEL *chan)
  851 {
  852         uint32_t w;
  853 
  854         /*
  855          * NB: f/w only understands FREQ_BAND_5GHZ, supplying the more
  856          *     precise band info causes it to lockup (sometimes).
  857          */
  858         w = (chan->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) ?
  859                 FREQ_BAND_2DOT4GHZ : FREQ_BAND_5GHZ;
  860         switch (chan->channelFlags.ChnlWidth) {
  861         case MWL_CH_10_MHz_WIDTH:
  862                 w |= CH_10_MHz_WIDTH;
  863                 break;
  864         case MWL_CH_20_MHz_WIDTH:
  865                 w |= CH_20_MHz_WIDTH;
  866                 break;
  867         case MWL_CH_40_MHz_WIDTH:
  868         default:
  869                 w |= CH_40_MHz_WIDTH;
  870                 break;
  871         }
  872         switch (chan->channelFlags.ExtChnlOffset) {
  873         case MWL_EXT_CH_NONE:
  874                 w |= EXT_CH_NONE;
  875                 break;
  876         case MWL_EXT_CH_ABOVE_CTRL_CH:
  877                 w |= EXT_CH_ABOVE_CTRL_CH;
  878                 break;
  879         case MWL_EXT_CH_BELOW_CTRL_CH:
  880                 w |= EXT_CH_BELOW_CTRL_CH;
  881                 break;
  882         }
  883         return htole32(w);
  884 }
  885 
  886 /*
  887  * Start a channel switch announcement countdown.  The IE
  888  * in the beacon frame is allowed to go out and the firmware
  889  * counts down and notifies the host when it's time to switch
  890  * channels.
  891  */
  892 int
  893 mwl_hal_setchannelswitchie(struct mwl_hal *mh0,
  894         const MWL_HAL_CHANNEL *nextchan, uint32_t mode, uint32_t count)
  895 {
  896         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  897         HostCmd_SET_SWITCH_CHANNEL *pCmd;
  898         int retval;
  899 
  900         MWL_HAL_LOCK(mh);
  901         _CMD_SETUP(pCmd, HostCmd_SET_SWITCH_CHANNEL,
  902                 HostCmd_CMD_SET_SWITCH_CHANNEL);
  903         pCmd->Next11hChannel = htole32(nextchan->channel);
  904         pCmd->Mode = htole32(mode);
  905         pCmd->InitialCount = htole32(count+1);
  906         pCmd->ChannelFlags = cvtChannelFlags(nextchan);
  907 
  908         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_SWITCH_CHANNEL);
  909         MWL_HAL_UNLOCK(mh);
  910         return retval;
  911 }
  912 
  913 /*
  914  * Set the region code that selects the radar bin'ing agorithm.
  915  */
  916 int
  917 mwl_hal_setregioncode(struct mwl_hal *mh0, int regionCode)
  918 {
  919         struct mwl_hal_priv *mh = MWLPRIV(mh0);
  920         HostCmd_SET_REGIONCODE_INFO *pCmd;
  921         int retval;
  922 
  923         MWL_HAL_LOCK(mh);
  924         _CMD_SETUP(pCmd, HostCmd_SET_REGIONCODE_INFO,
  925                 HostCmd_CMD_SET_REGION_CODE);
  926         /* XXX map pseudo-codes to fw codes */
  927         switch (regionCode) {
  928         case DOMAIN_CODE_ETSI_131:
  929                 pCmd->regionCode = htole16(DOMAIN_CODE_ETSI);
  930                 break;
  931         default:
  932                 pCmd->regionCode = htole16(regionCode);
  933                 break;
  934         }
  935 
  936         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_REGION_CODE);
  937         if (retval == 0)
  938                 mh->mh_regioncode = regionCode;
  939         MWL_HAL_UNLOCK(mh);
  940         return retval;
  941 }
  942 
  943 #define RATEVAL(r)      ((r) &~ RATE_MCS)
  944 #define RATETYPE(r)     (((r) & RATE_MCS) ? HT_RATE_TYPE : LEGACY_RATE_TYPE)
  945 
  946 int
  947 mwl_hal_settxrate(struct mwl_hal_vap *vap, MWL_HAL_TXRATE_HANDLING handling,
  948         const MWL_HAL_TXRATE *rate)
  949 {
  950         struct mwl_hal_priv *mh = MWLVAP(vap);
  951         HostCmd_FW_USE_FIXED_RATE *pCmd;
  952         FIXED_RATE_ENTRY *fp;
  953         int retval, i, n;
  954 
  955         MWL_HAL_LOCK(mh);
  956         _VCMD_SETUP(vap, pCmd, HostCmd_FW_USE_FIXED_RATE,
  957                 HostCmd_CMD_SET_FIXED_RATE);
  958 
  959         pCmd->MulticastRate = RATEVAL(rate->McastRate);
  960         pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
  961         /* NB: no rate type field */
  962         pCmd->ManagementRate = RATEVAL(rate->MgtRate);
  963         memset(pCmd->FixedRateTable, 0, sizeof(pCmd->FixedRateTable));
  964         if (handling == RATE_FIXED) {
  965                 pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
  966                 pCmd->AllowRateDrop = htole32(FIXED_RATE_WITHOUT_AUTORATE_DROP);
  967                 fp = pCmd->FixedRateTable;
  968                 fp->FixedRate =
  969                     htole32(RATEVAL(rate->RateSeries[0].Rate));
  970                 fp->FixRateTypeFlags.FixRateType =
  971                     htole32(RATETYPE(rate->RateSeries[0].Rate));
  972                 pCmd->EntryCount = htole32(1);
  973         } else if (handling == RATE_FIXED_DROP) {
  974                 pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
  975                 pCmd->AllowRateDrop = htole32(FIXED_RATE_WITH_AUTO_RATE_DROP);
  976                 n = 0;
  977                 fp = pCmd->FixedRateTable;
  978                 for (i = 0; i < 4; i++) {
  979                         if (rate->RateSeries[0].TryCount == 0)
  980                                 break;
  981                         fp->FixRateTypeFlags.FixRateType =
  982                             htole32(RATETYPE(rate->RateSeries[i].Rate));
  983                         fp->FixedRate =
  984                             htole32(RATEVAL(rate->RateSeries[i].Rate));
  985                         fp->FixRateTypeFlags.RetryCountValid =
  986                             htole32(RETRY_COUNT_VALID);
  987                         fp->RetryCount =
  988                             htole32(rate->RateSeries[i].TryCount-1);
  989                         n++;
  990                 }
  991                 pCmd->EntryCount = htole32(n);
  992         } else 
  993                 pCmd->Action = htole32(HostCmd_ACT_NOT_USE_FIXED_RATE);
  994 
  995         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_FIXED_RATE);
  996         MWL_HAL_UNLOCK(mh);
  997         return retval;
  998 }
  999 
 1000 int
 1001 mwl_hal_settxrate_auto(struct mwl_hal *mh0, const MWL_HAL_TXRATE *rate)
 1002 {
 1003         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1004         HostCmd_FW_USE_FIXED_RATE *pCmd;
 1005         int retval;
 1006 
 1007         MWL_HAL_LOCK(mh);
 1008         _CMD_SETUP(pCmd, HostCmd_FW_USE_FIXED_RATE,
 1009                 HostCmd_CMD_SET_FIXED_RATE);
 1010 
 1011         pCmd->MulticastRate = RATEVAL(rate->McastRate);
 1012         pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
 1013         /* NB: no rate type field */
 1014         pCmd->ManagementRate = RATEVAL(rate->MgtRate);
 1015         memset(pCmd->FixedRateTable, 0, sizeof(pCmd->FixedRateTable));
 1016         pCmd->Action = htole32(HostCmd_ACT_NOT_USE_FIXED_RATE);
 1017 
 1018         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_FIXED_RATE);
 1019         MWL_HAL_UNLOCK(mh);
 1020         return retval;
 1021 }
 1022 
 1023 #undef RATEVAL
 1024 #undef RATETYPE
 1025 
 1026 int
 1027 mwl_hal_setslottime(struct mwl_hal *mh0, int usecs)
 1028 {
 1029         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1030         HostCmd_FW_SET_SLOT *pCmd;
 1031         int retval;
 1032 
 1033         if (usecs != 9 && usecs != 20)
 1034                 return EINVAL;
 1035 
 1036         MWL_HAL_LOCK(mh);
 1037         _CMD_SETUP(pCmd, HostCmd_FW_SET_SLOT,
 1038             HostCmd_CMD_802_11_SET_SLOT);
 1039         pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
 1040         pCmd->Slot = (usecs == 9 ? 1 : 0);
 1041 
 1042         retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_SET_SLOT);
 1043         MWL_HAL_UNLOCK(mh);
 1044         return retval;
 1045 }
 1046 
 1047 int
 1048 mwl_hal_adjusttxpower(struct mwl_hal *mh0, uint32_t level)
 1049 {
 1050         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1051         HostCmd_DS_802_11_RF_TX_POWER *pCmd;
 1052         int retval;
 1053 
 1054         MWL_HAL_LOCK(mh);
 1055         _CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
 1056             HostCmd_CMD_802_11_RF_TX_POWER);
 1057         pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
 1058 
 1059         if (level < 30) {
 1060                 pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_LOW);
 1061         } else if (level >= 30 && level < 60) {
 1062                 pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_MEDIUM);
 1063         } else {
 1064                 pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_HIGH);
 1065         }
 1066 
 1067         retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_TX_POWER);
 1068         MWL_HAL_UNLOCK(mh);
 1069         return retval;
 1070 }
 1071 
 1072 static const struct mwl_hal_channel *
 1073 findchannel(const struct mwl_hal_priv *mh, const MWL_HAL_CHANNEL *c)
 1074 {
 1075         const struct mwl_hal_channel *hc;
 1076         const MWL_HAL_CHANNELINFO *ci;
 1077         int chan = c->channel, i;
 1078 
 1079         if (c->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) {
 1080                 i = chan - 1;
 1081                 if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
 1082                         ci = &mh->mh_40M;
 1083                         if (c->channelFlags.ExtChnlOffset == MWL_EXT_CH_BELOW_CTRL_CH)
 1084                                 i -= 4;
 1085                 } else
 1086                         ci = &mh->mh_20M;
 1087                 /* 2.4G channel table is directly indexed */
 1088                 hc = ((unsigned)i < ci->nchannels) ? &ci->channels[i] : NULL;
 1089         } else if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ) {
 1090                 if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
 1091                         ci = &mh->mh_40M_5G;
 1092                         if (c->channelFlags.ExtChnlOffset == MWL_EXT_CH_BELOW_CTRL_CH)
 1093                                 chan -= 4;
 1094                 } else
 1095                         ci = &mh->mh_20M_5G;
 1096                 /* 5GHz channel table is sparse and must be searched */
 1097                 for (i = 0; i < ci->nchannels; i++)
 1098                         if (ci->channels[i].ieee == chan)
 1099                                 break;
 1100                 hc = (i < ci->nchannels) ? &ci->channels[i] : NULL;
 1101         } else
 1102                 hc = NULL;
 1103         return hc;
 1104 }
 1105 
 1106 int
 1107 mwl_hal_settxpower(struct mwl_hal *mh0, const MWL_HAL_CHANNEL *c, uint8_t maxtxpow)
 1108 {
 1109         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1110         HostCmd_DS_802_11_RF_TX_POWER *pCmd;
 1111         const struct mwl_hal_channel *hc;
 1112         int i, retval;
 1113 
 1114         hc = findchannel(mh, c);
 1115         if (hc == NULL) {
 1116                 /* XXX temp while testing */
 1117                 device_printf(mh->mh_dev,
 1118                     "%s: no cal data for channel %u band %u width %u ext %u\n",
 1119                     __func__, c->channel, c->channelFlags.FreqBand,
 1120                     c->channelFlags.ChnlWidth, c->channelFlags.ExtChnlOffset);
 1121                 return EINVAL;
 1122         }
 1123 
 1124         MWL_HAL_LOCK(mh);
 1125         _CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
 1126             HostCmd_CMD_802_11_RF_TX_POWER);
 1127         pCmd->Action = htole16(HostCmd_ACT_GEN_SET_LIST);
 1128         i = 0;
 1129         /* NB: 5Ghz cal data have the channel # in [0]; don't truncate */
 1130         if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ)
 1131                 pCmd->PowerLevelList[i++] = htole16(hc->targetPowers[0]);
 1132         for (; i < 4; i++) {
 1133                 uint16_t pow = hc->targetPowers[i];
 1134                 if (pow > maxtxpow)
 1135                         pow = maxtxpow;
 1136                 pCmd->PowerLevelList[i] = htole16(pow);
 1137         }
 1138         retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_TX_POWER);
 1139         MWL_HAL_UNLOCK(mh);
 1140         return retval;
 1141 }
 1142 
 1143 int
 1144 mwl_hal_getchannelinfo(struct mwl_hal *mh0, int band, int chw,
 1145         const MWL_HAL_CHANNELINFO **ci)
 1146 {
 1147         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1148 
 1149         switch (band) {
 1150         case MWL_FREQ_BAND_2DOT4GHZ:
 1151                 *ci = (chw == MWL_CH_20_MHz_WIDTH) ? &mh->mh_20M : &mh->mh_40M;
 1152                 break;
 1153         case MWL_FREQ_BAND_5GHZ:
 1154                 *ci = (chw == MWL_CH_20_MHz_WIDTH) ?
 1155                      &mh->mh_20M_5G : &mh->mh_40M_5G;
 1156                 break;
 1157         default:
 1158                 return EINVAL;
 1159         }
 1160         return ((*ci)->freqLow == (*ci)->freqHigh) ? EINVAL : 0;
 1161 }
 1162 
 1163 int
 1164 mwl_hal_setmcast(struct mwl_hal *mh0, int nmc, const uint8_t macs[])
 1165 {
 1166         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1167         HostCmd_DS_MAC_MULTICAST_ADR *pCmd;
 1168         int retval;
 1169 
 1170         if (nmc > MWL_HAL_MCAST_MAX)
 1171                 return EINVAL;
 1172 
 1173         MWL_HAL_LOCK(mh);
 1174         _CMD_SETUP(pCmd, HostCmd_DS_MAC_MULTICAST_ADR,
 1175                 HostCmd_CMD_MAC_MULTICAST_ADR);
 1176         memcpy(pCmd->MACList, macs, nmc*IEEE80211_ADDR_LEN);
 1177         pCmd->NumOfAdrs = htole16(nmc);
 1178         pCmd->Action = htole16(0xffff);
 1179 
 1180         retval = mwlExecuteCmd(mh, HostCmd_CMD_MAC_MULTICAST_ADR);
 1181         MWL_HAL_UNLOCK(mh);
 1182         return retval;
 1183 }
 1184 
 1185 int
 1186 mwl_hal_keyset(struct mwl_hal_vap *vap, const MWL_HAL_KEYVAL *kv,
 1187         const uint8_t mac[IEEE80211_ADDR_LEN])
 1188 {
 1189         struct mwl_hal_priv *mh = MWLVAP(vap);
 1190         HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
 1191         int retval;
 1192 
 1193         MWL_HAL_LOCK(mh);
 1194         _VCMD_SETUP(vap, pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
 1195                 HostCmd_CMD_UPDATE_ENCRYPTION);
 1196         if (kv->keyFlags & (KEY_FLAG_TXGROUPKEY|KEY_FLAG_RXGROUPKEY))
 1197                 pCmd->ActionType = htole32(EncrActionTypeSetGroupKey);
 1198         else
 1199                 pCmd->ActionType = htole32(EncrActionTypeSetKey);
 1200         pCmd->KeyParam.Length = htole16(sizeof(pCmd->KeyParam));
 1201         pCmd->KeyParam.KeyTypeId = htole16(kv->keyTypeId);
 1202         pCmd->KeyParam.KeyInfo = htole32(kv->keyFlags);
 1203         pCmd->KeyParam.KeyIndex = htole32(kv->keyIndex);
 1204         /* NB: includes TKIP MIC keys */
 1205         memcpy(&pCmd->KeyParam.Key, &kv->key, kv->keyLen);
 1206         switch (kv->keyTypeId) {
 1207         case KEY_TYPE_ID_WEP:
 1208                 pCmd->KeyParam.KeyLen = htole16(kv->keyLen);
 1209                 break;
 1210         case KEY_TYPE_ID_TKIP:
 1211                 pCmd->KeyParam.KeyLen = htole16(sizeof(TKIP_TYPE_KEY));
 1212                 pCmd->KeyParam.Key.TkipKey.TkipRsc.low =
 1213                         htole16(kv->key.tkip.rsc.low);
 1214                 pCmd->KeyParam.Key.TkipKey.TkipRsc.high =
 1215                         htole32(kv->key.tkip.rsc.high);
 1216                 pCmd->KeyParam.Key.TkipKey.TkipTsc.low =
 1217                         htole16(kv->key.tkip.tsc.low);
 1218                 pCmd->KeyParam.Key.TkipKey.TkipTsc.high =
 1219                         htole32(kv->key.tkip.tsc.high);
 1220                 break;
 1221         case KEY_TYPE_ID_AES:
 1222                 pCmd->KeyParam.KeyLen = htole16(sizeof(AES_TYPE_KEY));
 1223                 break;
 1224         }
 1225 #ifdef MWL_MBSS_SUPPORT
 1226         IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
 1227 #else
 1228         IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
 1229 #endif
 1230         retval = mwlExecuteCmd(mh, HostCmd_CMD_UPDATE_ENCRYPTION);
 1231         MWL_HAL_UNLOCK(mh);
 1232         return retval;
 1233 }
 1234 
 1235 int
 1236 mwl_hal_keyreset(struct mwl_hal_vap *vap, const MWL_HAL_KEYVAL *kv, const uint8_t mac[IEEE80211_ADDR_LEN])
 1237 {
 1238         struct mwl_hal_priv *mh = MWLVAP(vap);
 1239         HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
 1240         int retval;
 1241 
 1242         MWL_HAL_LOCK(mh);
 1243         _VCMD_SETUP(vap, pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
 1244                 HostCmd_CMD_UPDATE_ENCRYPTION);
 1245         pCmd->ActionType = htole16(EncrActionTypeRemoveKey);
 1246         pCmd->KeyParam.Length = htole16(sizeof(pCmd->KeyParam));
 1247         pCmd->KeyParam.KeyTypeId = htole16(kv->keyTypeId);
 1248         pCmd->KeyParam.KeyInfo = htole32(kv->keyFlags);
 1249         pCmd->KeyParam.KeyIndex = htole32(kv->keyIndex);
 1250 #ifdef MWL_MBSS_SUPPORT
 1251         IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
 1252 #else
 1253         IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
 1254 #endif
 1255         retval = mwlExecuteCmd(mh, HostCmd_CMD_UPDATE_ENCRYPTION);
 1256         MWL_HAL_UNLOCK(mh);
 1257         return retval;
 1258 }
 1259 
 1260 static int
 1261 mwl_hal_setmac_locked(struct mwl_hal_vap *vap,
 1262         const uint8_t addr[IEEE80211_ADDR_LEN])
 1263 {
 1264         struct mwl_hal_priv *mh = MWLVAP(vap);
 1265         HostCmd_DS_SET_MAC *pCmd;
 1266 
 1267         _VCMD_SETUP(vap, pCmd, HostCmd_DS_SET_MAC, HostCmd_CMD_SET_MAC_ADDR);
 1268         IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
 1269 #ifdef MWL_MBSS_SUPPORT
 1270         pCmd->MacType = vap->bss_type;          /* NB: already byte swapped */
 1271         IEEE80211_ADDR_COPY(vap->mac, addr);    /* XXX do only if success */
 1272 #endif
 1273         return mwlExecuteCmd(mh, HostCmd_CMD_SET_MAC_ADDR);
 1274 }
 1275 
 1276 int
 1277 mwl_hal_setmac(struct mwl_hal_vap *vap, const uint8_t addr[IEEE80211_ADDR_LEN])
 1278 {
 1279         struct mwl_hal_priv *mh = MWLVAP(vap);
 1280         int retval;
 1281 
 1282         MWL_HAL_LOCK(mh);
 1283         retval = mwl_hal_setmac_locked(vap, addr);
 1284         MWL_HAL_UNLOCK(mh);
 1285         return retval;
 1286 }
 1287 
 1288 int
 1289 mwl_hal_setbeacon(struct mwl_hal_vap *vap, const void *frame, size_t frameLen)
 1290 {
 1291         struct mwl_hal_priv *mh = MWLVAP(vap);
 1292         HostCmd_DS_SET_BEACON *pCmd;
 1293         int retval;
 1294 
 1295         /* XXX verify frameLen fits */
 1296         MWL_HAL_LOCK(mh);
 1297         _VCMD_SETUP(vap, pCmd, HostCmd_DS_SET_BEACON, HostCmd_CMD_SET_BEACON);
 1298         /* XXX override _VCMD_SETUP */
 1299         pCmd->CmdHdr.Length = htole16(sizeof(HostCmd_DS_SET_BEACON)-1+frameLen);
 1300         pCmd->FrmBodyLen = htole16(frameLen);
 1301         memcpy(pCmd->FrmBody, frame, frameLen);
 1302 
 1303         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_BEACON);
 1304         MWL_HAL_UNLOCK(mh);
 1305         return retval;
 1306 }
 1307 
 1308 int
 1309 mwl_hal_setpowersave_bss(struct mwl_hal_vap *vap, uint8_t nsta)
 1310 {
 1311         struct mwl_hal_priv *mh = MWLVAP(vap);
 1312         HostCmd_SET_POWERSAVESTATION *pCmd;
 1313         int retval;
 1314 
 1315         MWL_HAL_LOCK(mh);
 1316         _VCMD_SETUP(vap, pCmd, HostCmd_SET_POWERSAVESTATION,
 1317                 HostCmd_CMD_SET_POWERSAVESTATION);
 1318         pCmd->NumberOfPowersave = nsta;
 1319 
 1320         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_POWERSAVESTATION);
 1321         MWL_HAL_UNLOCK(mh);
 1322         return retval;
 1323 }
 1324 
 1325 int
 1326 mwl_hal_setpowersave_sta(struct mwl_hal_vap *vap, uint16_t aid, int ena)
 1327 {
 1328         struct mwl_hal_priv *mh = MWLVAP(vap);
 1329         HostCmd_SET_TIM *pCmd;
 1330         int retval;
 1331 
 1332         MWL_HAL_LOCK(mh);
 1333         _VCMD_SETUP(vap, pCmd, HostCmd_SET_TIM, HostCmd_CMD_SET_TIM);
 1334         pCmd->Aid = htole16(aid);
 1335         pCmd->Set = htole32(ena);
 1336 
 1337         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_TIM);
 1338         MWL_HAL_UNLOCK(mh);
 1339         return retval;
 1340 }
 1341 
 1342 int
 1343 mwl_hal_setassocid(struct mwl_hal_vap *vap,
 1344         const uint8_t bssId[IEEE80211_ADDR_LEN], uint16_t assocId)
 1345 {
 1346         struct mwl_hal_priv *mh = MWLVAP(vap);
 1347         HostCmd_FW_SET_AID *pCmd = (HostCmd_FW_SET_AID *) &mh->mh_cmdbuf[0];
 1348         int retval;
 1349 
 1350         MWL_HAL_LOCK(mh);
 1351         _VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_AID, HostCmd_CMD_SET_AID);
 1352         pCmd->AssocID = htole16(assocId);
 1353         IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], bssId);
 1354 
 1355         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_AID);
 1356         MWL_HAL_UNLOCK(mh);
 1357         return retval;
 1358 }
 1359 
 1360 int
 1361 mwl_hal_setchannel(struct mwl_hal *mh0, const MWL_HAL_CHANNEL *chan)
 1362 {
 1363         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1364         HostCmd_FW_SET_RF_CHANNEL *pCmd;
 1365         int retval;
 1366 
 1367         MWL_HAL_LOCK(mh);
 1368         _CMD_SETUP(pCmd, HostCmd_FW_SET_RF_CHANNEL, HostCmd_CMD_SET_RF_CHANNEL);
 1369         pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
 1370         pCmd->CurrentChannel = chan->channel;
 1371         pCmd->ChannelFlags = cvtChannelFlags(chan);     /* NB: byte-swapped */
 1372 
 1373         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RF_CHANNEL);
 1374         MWL_HAL_UNLOCK(mh);
 1375         return retval;
 1376 }
 1377 
 1378 static int
 1379 bastream_check_available(struct mwl_hal_vap *vap, int qid,
 1380         const uint8_t Macaddr[IEEE80211_ADDR_LEN],
 1381         uint8_t Tid, uint8_t ParamInfo)
 1382 {
 1383         struct mwl_hal_priv *mh = MWLVAP(vap);
 1384         HostCmd_FW_BASTREAM *pCmd;
 1385         int retval;
 1386 
 1387         MWL_HAL_LOCK_ASSERT(mh);
 1388 
 1389         _VCMD_SETUP(vap, pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
 1390         pCmd->ActionType = htole32(BaCheckCreateStream);
 1391         pCmd->BaInfo.CreateParams.BarThrs = htole32(63);
 1392         pCmd->BaInfo.CreateParams.WindowSize = htole32(64); 
 1393         pCmd->BaInfo.CreateParams.IdleThrs = htole32(0x22000);
 1394         IEEE80211_ADDR_COPY(&pCmd->BaInfo.CreateParams.PeerMacAddr[0], Macaddr);
 1395         pCmd->BaInfo.CreateParams.DialogToken = 10;
 1396         pCmd->BaInfo.CreateParams.Tid = Tid;
 1397         pCmd->BaInfo.CreateParams.QueueId = qid;
 1398         pCmd->BaInfo.CreateParams.ParamInfo = (uint8_t) ParamInfo;
 1399 #if 0
 1400         cvtBAFlags(&pCmd->BaInfo.CreateParams.Flags, sp->ba_policy, 0);
 1401 #else
 1402         pCmd->BaInfo.CreateParams.Flags =
 1403                           htole32(BASTREAM_FLAG_IMMEDIATE_TYPE)
 1404                         | htole32(BASTREAM_FLAG_DIRECTION_UPSTREAM)
 1405                         ;
 1406 #endif
 1407 
 1408         retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
 1409         if (retval == 0) {
 1410                 /*
 1411                  * NB: BA stream create may fail when the stream is
 1412                  * h/w backed under some (as yet not understood) conditions.
 1413                  * Check the result code to catch this.
 1414                  */
 1415                 if (le16toh(pCmd->CmdHdr.Result) != HostCmd_RESULT_OK)
 1416                         retval = EIO;
 1417         }
 1418         return retval;
 1419 }
 1420 
 1421 const MWL_HAL_BASTREAM *
 1422 mwl_hal_bastream_alloc(struct mwl_hal_vap *vap, int ba_policy,
 1423         const uint8_t Macaddr[IEEE80211_ADDR_LEN],
 1424         uint8_t Tid, uint8_t ParamInfo, void *a1, void *a2)
 1425 {
 1426         struct mwl_hal_priv *mh = MWLVAP(vap);
 1427         struct mwl_hal_bastream *sp;
 1428         int s;
 1429 
 1430         MWL_HAL_LOCK(mh);
 1431         if (mh->mh_bastreams == 0) {
 1432                 /* no streams available */
 1433                 MWL_HAL_UNLOCK(mh);
 1434                 return NULL;
 1435         }
 1436         for (s = 0; (mh->mh_bastreams & (1<<s)) == 0; s++)
 1437                 ;
 1438         if (bastream_check_available(vap, s, Macaddr, Tid, ParamInfo)) {
 1439                 MWL_HAL_UNLOCK(mh);
 1440                 return NULL;
 1441         }
 1442         sp = &mh->mh_streams[s];
 1443         mh->mh_bastreams &= ~(1<<s);
 1444         sp->public.data[0] = a1;
 1445         sp->public.data[1] = a2;
 1446         IEEE80211_ADDR_COPY(sp->macaddr, Macaddr);
 1447         sp->tid = Tid;
 1448         sp->paraminfo = ParamInfo;
 1449         sp->setup = 0;
 1450         sp->ba_policy = ba_policy;
 1451         MWL_HAL_UNLOCK(mh);
 1452         return sp != NULL ? &sp->public : NULL;
 1453 }
 1454 
 1455 const MWL_HAL_BASTREAM *
 1456 mwl_hal_bastream_lookup(struct mwl_hal *mh0, int s)
 1457 {
 1458         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1459 
 1460         if (!(0 <= s && s < MWL_BASTREAMS_MAX))
 1461                 return NULL;
 1462         if (mh->mh_bastreams & (1<<s))
 1463                 return NULL;
 1464         return &mh->mh_streams[s].public;
 1465 }
 1466 
 1467 #ifndef __DECONST
 1468 #define __DECONST(type, var)    ((type)(uintptr_t)(const void *)(var))
 1469 #endif
 1470 
 1471 int
 1472 mwl_hal_bastream_create(struct mwl_hal_vap *vap,
 1473         const MWL_HAL_BASTREAM *s, int BarThrs, int WindowSize, uint16_t seqno)
 1474 {
 1475         struct mwl_hal_priv *mh = MWLVAP(vap);
 1476         struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
 1477         HostCmd_FW_BASTREAM *pCmd;
 1478         int retval;
 1479 
 1480         MWL_HAL_LOCK(mh);
 1481         _VCMD_SETUP(vap, pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
 1482         pCmd->ActionType = htole32(BaCreateStream);
 1483         pCmd->BaInfo.CreateParams.BarThrs = htole32(BarThrs);
 1484         pCmd->BaInfo.CreateParams.WindowSize = htole32(WindowSize);
 1485         pCmd->BaInfo.CreateParams.IdleThrs = htole32(0x22000);
 1486         IEEE80211_ADDR_COPY(&pCmd->BaInfo.CreateParams.PeerMacAddr[0],
 1487             sp->macaddr);
 1488         /* XXX proxy STA */
 1489         memset(&pCmd->BaInfo.CreateParams.StaSrcMacAddr, 0, IEEE80211_ADDR_LEN);
 1490 #if 0
 1491         pCmd->BaInfo.CreateParams.DialogToken = DialogToken;
 1492 #else
 1493         pCmd->BaInfo.CreateParams.DialogToken = 10;
 1494 #endif
 1495         pCmd->BaInfo.CreateParams.Tid = sp->tid;
 1496         pCmd->BaInfo.CreateParams.QueueId = sp->stream;
 1497         pCmd->BaInfo.CreateParams.ParamInfo = sp->paraminfo;
 1498         /* NB: ResetSeqNo known to be zero */
 1499         pCmd->BaInfo.CreateParams.StartSeqNo = htole16(seqno);
 1500 #if 0
 1501         cvtBAFlags(&pCmd->BaInfo.CreateParams.Flags, sp->ba_policy, 0);
 1502 #else
 1503         pCmd->BaInfo.CreateParams.Flags =
 1504                           htole32(BASTREAM_FLAG_IMMEDIATE_TYPE)
 1505                         | htole32(BASTREAM_FLAG_DIRECTION_UPSTREAM)
 1506                         ;
 1507 #endif
 1508 
 1509         retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
 1510         if (retval == 0) {
 1511                 /*
 1512                  * NB: BA stream create may fail when the stream is
 1513                  * h/w backed under some (as yet not understood) conditions.
 1514                  * Check the result code to catch this.
 1515                  */
 1516                 if (le16toh(pCmd->CmdHdr.Result) != HostCmd_RESULT_OK)
 1517                         retval = EIO;
 1518                 else
 1519                         sp->setup = 1;
 1520         }
 1521         MWL_HAL_UNLOCK(mh);
 1522         return retval;
 1523 }
 1524 
 1525 int
 1526 mwl_hal_bastream_destroy(struct mwl_hal *mh0, const MWL_HAL_BASTREAM *s)
 1527 {
 1528         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1529         struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
 1530         HostCmd_FW_BASTREAM *pCmd;
 1531         int retval;
 1532 
 1533         if (sp->stream >= MWL_BASTREAMS_MAX) {
 1534                 /* XXX */
 1535                 return EINVAL;
 1536         }
 1537         MWL_HAL_LOCK(mh);
 1538         if (sp->setup) {
 1539                 _CMD_SETUP(pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
 1540                 pCmd->ActionType = htole32(BaDestroyStream);
 1541                 pCmd->BaInfo.DestroyParams.FwBaContext.Context =
 1542                     htole32(sp->stream);
 1543 
 1544                 retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
 1545         } else
 1546                 retval = 0;
 1547         /* NB: always reclaim stream */
 1548         mh->mh_bastreams |= 1<<sp->stream;
 1549         sp->public.data[0] = NULL;
 1550         sp->public.data[1] = NULL;
 1551         sp->setup = 0;
 1552         MWL_HAL_UNLOCK(mh);
 1553         return retval;
 1554 }
 1555 
 1556 int
 1557 mwl_hal_bastream_get_seqno(struct mwl_hal *mh0,
 1558         const MWL_HAL_BASTREAM *s, const uint8_t Macaddr[IEEE80211_ADDR_LEN],
 1559         uint16_t *pseqno)
 1560 {
 1561         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1562         struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
 1563         HostCmd_GET_SEQNO *pCmd;
 1564         int retval;
 1565 
 1566         MWL_HAL_LOCK(mh);
 1567         _CMD_SETUP(pCmd, HostCmd_GET_SEQNO, HostCmd_CMD_GET_SEQNO);
 1568         IEEE80211_ADDR_COPY(pCmd->MacAddr, Macaddr);
 1569         pCmd->TID = sp->tid;
 1570 
 1571         retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_SEQNO);
 1572         if (retval == 0)
 1573                 *pseqno = le16toh(pCmd->SeqNo);
 1574         MWL_HAL_UNLOCK(mh);
 1575         return retval;
 1576 }       
 1577 
 1578 int
 1579 mwl_hal_getwatchdogbitmap(struct mwl_hal *mh0, uint8_t bitmap[1])
 1580 {
 1581         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1582         HostCmd_FW_GET_WATCHDOG_BITMAP *pCmd;
 1583         int retval;
 1584 
 1585         MWL_HAL_LOCK(mh);
 1586         _CMD_SETUP(pCmd, HostCmd_FW_GET_WATCHDOG_BITMAP,
 1587                 HostCmd_CMD_GET_WATCHDOG_BITMAP);
 1588 
 1589         retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_WATCHDOG_BITMAP);
 1590         if (retval == 0) {
 1591                 bitmap[0] = pCmd->Watchdogbitmap;
 1592                 /* fw returns qid, map it to BA stream */
 1593                 if (bitmap[0] < MWL_BAQID_MAX)
 1594                         bitmap[0] = qid2ba[bitmap[0]];
 1595         }
 1596         MWL_HAL_UNLOCK(mh);
 1597         return retval;
 1598 }
 1599 
 1600 /*
 1601  * Configure aggressive Ampdu rate mode.
 1602  */
 1603 int
 1604 mwl_hal_setaggampduratemode(struct mwl_hal *mh0, int mode, int threshold)
 1605 {
 1606         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1607         HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE *pCmd;
 1608         int retval;
 1609 
 1610         MWL_HAL_LOCK(mh);
 1611         _CMD_SETUP(pCmd, HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE,
 1612                 HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
 1613         pCmd->Action = htole16(1);
 1614         pCmd->Option = htole32(mode);
 1615         pCmd->Threshold = htole32(threshold);
 1616 
 1617         retval = mwlExecuteCmd(mh, HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
 1618         MWL_HAL_UNLOCK(mh);   
 1619         return retval;
 1620 }
 1621 
 1622 int
 1623 mwl_hal_getaggampduratemode(struct mwl_hal *mh0, int *mode, int *threshold)
 1624 {
 1625         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1626         HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE *pCmd;
 1627         int retval;
 1628 
 1629         MWL_HAL_LOCK(mh);
 1630         _CMD_SETUP(pCmd, HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE,
 1631                 HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
 1632         pCmd->Action = htole16(0);
 1633 
 1634         retval = mwlExecuteCmd(mh, HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
 1635         MWL_HAL_UNLOCK(mh);   
 1636         *mode =  le32toh(pCmd->Option);
 1637         *threshold = le32toh(pCmd->Threshold);
 1638         return retval;
 1639 }
 1640 
 1641 /*
 1642  * Set CFEND status Enable/Disable
 1643  */
 1644 int
 1645 mwl_hal_setcfend(struct mwl_hal *mh0, int ena)
 1646 {
 1647         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1648         HostCmd_CFEND_ENABLE *pCmd;
 1649         int retval;
 1650 
 1651         MWL_HAL_LOCK(mh);
 1652         _CMD_SETUP(pCmd, HostCmd_CFEND_ENABLE,
 1653                 HostCmd_CMD_CFEND_ENABLE);
 1654         pCmd->Enable = htole32(ena);
 1655 
 1656         retval = mwlExecuteCmd(mh, HostCmd_CMD_CFEND_ENABLE);
 1657         MWL_HAL_UNLOCK(mh); 
 1658         return retval;
 1659 }
 1660 
 1661 int
 1662 mwl_hal_setdwds(struct mwl_hal *mh0, int ena)
 1663 {
 1664         HostCmd_DWDS_ENABLE *pCmd;
 1665         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1666         int retval;
 1667 
 1668         MWL_HAL_LOCK(mh);
 1669         _CMD_SETUP(pCmd, HostCmd_DWDS_ENABLE, HostCmd_CMD_DWDS_ENABLE);
 1670         pCmd->Enable = htole32(ena);
 1671         retval = mwlExecuteCmd(mh, HostCmd_CMD_DWDS_ENABLE);
 1672         MWL_HAL_UNLOCK(mh);
 1673         return retval;
 1674 }
 1675 
 1676 static void
 1677 cvtPeerInfo(PeerInfo_t *to, const MWL_HAL_PEERINFO *from)
 1678 {
 1679         to->LegacyRateBitMap = htole32(from->LegacyRateBitMap);
 1680         to->HTRateBitMap = htole32(from->HTRateBitMap);
 1681         to->CapInfo = htole16(from->CapInfo);
 1682         to->HTCapabilitiesInfo = htole16(from->HTCapabilitiesInfo);
 1683         to->MacHTParamInfo = from->MacHTParamInfo;
 1684         to->AddHtInfo.ControlChan = from->AddHtInfo.ControlChan;
 1685         to->AddHtInfo.AddChan = from->AddHtInfo.AddChan;
 1686         to->AddHtInfo.OpMode = htole16(from->AddHtInfo.OpMode);
 1687         to->AddHtInfo.stbc = htole16(from->AddHtInfo.stbc);
 1688 }
 1689 
 1690 /* XXX station id must be in [0..63] */
 1691 int
 1692 mwl_hal_newstation(struct mwl_hal_vap *vap,
 1693         const uint8_t addr[IEEE80211_ADDR_LEN], uint16_t aid, uint16_t sid, 
 1694         const MWL_HAL_PEERINFO *peer, int isQosSta, int wmeInfo)
 1695 {
 1696         struct mwl_hal_priv *mh = MWLVAP(vap);
 1697         HostCmd_FW_SET_NEW_STN *pCmd;
 1698         int retval;
 1699 
 1700         MWL_HAL_LOCK(mh);
 1701         _VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_NEW_STN, HostCmd_CMD_SET_NEW_STN);
 1702         pCmd->AID = htole16(aid);
 1703         pCmd->StnId = htole16(sid);
 1704         pCmd->Action = htole16(0);      /* SET */
 1705         if (peer != NULL) {
 1706                 /* NB: must fix up byte order */
 1707                 cvtPeerInfo(&pCmd->PeerInfo, peer);
 1708         }
 1709         IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
 1710         pCmd->Qosinfo = wmeInfo;
 1711         pCmd->isQosSta = (isQosSta != 0);
 1712 
 1713         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_NEW_STN);
 1714         if (retval == 0 && IEEE80211_ADDR_EQ(vap->mac, addr))
 1715                 vap->flags |= MVF_STATION;
 1716         MWL_HAL_UNLOCK(mh);
 1717         return retval;
 1718 }
 1719 
 1720 int
 1721 mwl_hal_delstation(struct mwl_hal_vap *vap,
 1722         const uint8_t addr[IEEE80211_ADDR_LEN])
 1723 {
 1724         struct mwl_hal_priv *mh = MWLVAP(vap);
 1725         HostCmd_FW_SET_NEW_STN *pCmd;
 1726         int retval, islocal;
 1727 
 1728         MWL_HAL_LOCK(mh);
 1729         islocal = IEEE80211_ADDR_EQ(vap->mac, addr);
 1730         if (!islocal || (vap->flags & MVF_STATION)) {
 1731                 _VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_NEW_STN,
 1732                     HostCmd_CMD_SET_NEW_STN);
 1733                 pCmd->Action = htole16(2);      /* REMOVE */
 1734                 IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
 1735                 retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_NEW_STN);
 1736                 if (islocal)
 1737                         vap->flags &= ~MVF_STATION;
 1738         } else
 1739                 retval = 0;
 1740         MWL_HAL_UNLOCK(mh);
 1741         return retval;
 1742 }
 1743 
 1744 /*
 1745  * Prod the firmware to age packets on station power
 1746  * save queues and reap frames on the tx aggregation q's.
 1747  */
 1748 int
 1749 mwl_hal_setkeepalive(struct mwl_hal *mh0)
 1750 {
 1751         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1752         HostCmd_FW_SET_KEEP_ALIVE_TICK *pCmd;
 1753         int retval;
 1754 
 1755         MWL_HAL_LOCK(mh);
 1756         _CMD_SETUP(pCmd, HostCmd_FW_SET_KEEP_ALIVE_TICK,
 1757                 HostCmd_CMD_SET_KEEP_ALIVE);
 1758         /*
 1759          * NB: tick must be 0 to prod the f/w;
 1760          *     a non-zero value is a noop.
 1761          */
 1762         pCmd->tick = 0;
 1763 
 1764         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_KEEP_ALIVE);
 1765         MWL_HAL_UNLOCK(mh);
 1766         return retval;
 1767 }
 1768 
 1769 int
 1770 mwl_hal_setapmode(struct mwl_hal_vap *vap, MWL_HAL_APMODE ApMode)
 1771 {
 1772         struct mwl_hal_priv *mh = MWLVAP(vap);
 1773         HostCmd_FW_SET_APMODE *pCmd;
 1774         int retval;
 1775 
 1776         /* XXX validate ApMode? */
 1777 
 1778         MWL_HAL_LOCK(mh);
 1779         _VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_APMODE, HostCmd_CMD_SET_APMODE);
 1780         pCmd->ApMode = ApMode;
 1781 
 1782         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_APMODE);
 1783         MWL_HAL_UNLOCK(mh);
 1784         return retval;
 1785 }
 1786 
 1787 int
 1788 mwl_hal_stop(struct mwl_hal_vap *vap)
 1789 {
 1790         struct mwl_hal_priv *mh = MWLVAP(vap);
 1791         HostCmd_DS_BSS_START *pCmd;
 1792         int retval;
 1793 
 1794         MWL_HAL_LOCK(mh);
 1795         if (vap->flags & MVF_RUNNING) {
 1796                 _VCMD_SETUP(vap, pCmd, HostCmd_DS_BSS_START,
 1797                     HostCmd_CMD_BSS_START);
 1798                 pCmd->Enable = htole32(HostCmd_ACT_GEN_OFF);
 1799                 retval = mwlExecuteCmd(mh, HostCmd_CMD_BSS_START);
 1800         } else
 1801                 retval = 0;
 1802         /* NB: mark !running regardless */
 1803         vap->flags &= ~MVF_RUNNING;
 1804         MWL_HAL_UNLOCK(mh);
 1805         return retval;
 1806 }
 1807 
 1808 int
 1809 mwl_hal_start(struct mwl_hal_vap *vap)
 1810 {
 1811         struct mwl_hal_priv *mh = MWLVAP(vap);
 1812         HostCmd_DS_BSS_START *pCmd;
 1813         int retval;
 1814 
 1815         MWL_HAL_LOCK(mh);
 1816         _VCMD_SETUP(vap, pCmd, HostCmd_DS_BSS_START, HostCmd_CMD_BSS_START);
 1817         pCmd->Enable = htole32(HostCmd_ACT_GEN_ON);
 1818 
 1819         retval = mwlExecuteCmd(mh, HostCmd_CMD_BSS_START);
 1820         if (retval == 0)
 1821                 vap->flags |= MVF_RUNNING;
 1822         MWL_HAL_UNLOCK(mh);
 1823         return retval;
 1824 }
 1825 
 1826 int
 1827 mwl_hal_setgprot(struct mwl_hal *mh0, int prot)
 1828 {
 1829         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1830         HostCmd_FW_SET_G_PROTECT_FLAG *pCmd;
 1831         int retval;
 1832 
 1833         MWL_HAL_LOCK(mh);
 1834         _CMD_SETUP(pCmd, HostCmd_FW_SET_G_PROTECT_FLAG,
 1835                 HostCmd_CMD_SET_G_PROTECT_FLAG);
 1836         pCmd->GProtectFlag  = htole32(prot);
 1837 
 1838         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_G_PROTECT_FLAG);
 1839         MWL_HAL_UNLOCK(mh);
 1840         return retval;
 1841 }
 1842 
 1843 int
 1844 mwl_hal_setwmm(struct mwl_hal *mh0, int onoff)
 1845 {
 1846         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1847         HostCmd_FW_SetWMMMode *pCmd;
 1848         int retval;
 1849 
 1850         MWL_HAL_LOCK(mh);
 1851         _CMD_SETUP(pCmd, HostCmd_FW_SetWMMMode,
 1852                 HostCmd_CMD_SET_WMM_MODE);
 1853         pCmd->Action = htole16(onoff);
 1854 
 1855         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_WMM_MODE);
 1856         MWL_HAL_UNLOCK(mh);
 1857         return retval;
 1858 }
 1859 
 1860 int
 1861 mwl_hal_setedcaparams(struct mwl_hal *mh0, uint8_t qnum,
 1862         uint32_t CWmin, uint32_t CWmax, uint8_t AIFSN,  uint16_t TXOPLimit)
 1863 {
 1864         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1865         HostCmd_FW_SET_EDCA_PARAMS *pCmd;
 1866         int retval;
 1867 
 1868         MWL_HAL_LOCK(mh);
 1869         _CMD_SETUP(pCmd, HostCmd_FW_SET_EDCA_PARAMS,
 1870                 HostCmd_CMD_SET_EDCA_PARAMS);
 1871         /*
 1872          * NB: CWmin and CWmax are always set.
 1873          *     TxOpLimit is set if bit 0x2 is marked in Action
 1874          *     AIFSN is set if bit 0x4 is marked in Action
 1875          */
 1876         pCmd->Action = htole16(0xffff); /* NB: set everything */
 1877         pCmd->TxOP = htole16(TXOPLimit);
 1878         pCmd->CWMax = htole32(CWmax);
 1879         pCmd->CWMin = htole32(CWmin);
 1880         pCmd->AIFSN = AIFSN;
 1881         pCmd->TxQNum = qnum;            /* XXX check */
 1882 
 1883         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_EDCA_PARAMS);
 1884         MWL_HAL_UNLOCK(mh);
 1885         return retval;
 1886 }
 1887 
 1888 /* XXX 0 = indoor, 1 = outdoor */
 1889 int
 1890 mwl_hal_setrateadaptmode(struct mwl_hal *mh0, uint16_t mode)
 1891 {
 1892         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1893         HostCmd_DS_SET_RATE_ADAPT_MODE *pCmd;
 1894         int retval;
 1895 
 1896         MWL_HAL_LOCK(mh);
 1897         _CMD_SETUP(pCmd, HostCmd_DS_SET_RATE_ADAPT_MODE,
 1898                 HostCmd_CMD_SET_RATE_ADAPT_MODE);
 1899         pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
 1900         pCmd->RateAdaptMode = htole16(mode);
 1901 
 1902         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RATE_ADAPT_MODE);
 1903         MWL_HAL_UNLOCK(mh);
 1904         return retval;
 1905 }
 1906 
 1907 int
 1908 mwl_hal_setcsmode(struct mwl_hal *mh0, MWL_HAL_CSMODE csmode)
 1909 {
 1910         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1911         HostCmd_DS_SET_LINKADAPT_CS_MODE *pCmd;
 1912         int retval;
 1913 
 1914         MWL_HAL_LOCK(mh);
 1915         _CMD_SETUP(pCmd, HostCmd_DS_SET_LINKADAPT_CS_MODE,
 1916                 HostCmd_CMD_SET_LINKADAPT_CS_MODE);
 1917         pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
 1918         pCmd->CSMode = htole16(csmode);
 1919 
 1920         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_LINKADAPT_CS_MODE);
 1921         MWL_HAL_UNLOCK(mh);
 1922         return retval;
 1923 }
 1924 
 1925 int
 1926 mwl_hal_setnprot(struct mwl_hal_vap *vap, MWL_HAL_HTPROTECT mode)
 1927 {
 1928         struct mwl_hal_priv *mh = MWLVAP(vap);
 1929         HostCmd_FW_SET_N_PROTECT_FLAG *pCmd;
 1930         int retval;
 1931 
 1932         /* XXX validate mode */
 1933         MWL_HAL_LOCK(mh);
 1934         _VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_N_PROTECT_FLAG,
 1935                 HostCmd_CMD_SET_N_PROTECT_FLAG);
 1936         pCmd->NProtectFlag  = htole32(mode);
 1937 
 1938         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_N_PROTECT_FLAG);
 1939         MWL_HAL_UNLOCK(mh);
 1940         return retval;
 1941 }
 1942 
 1943 int
 1944 mwl_hal_setnprotmode(struct mwl_hal_vap *vap, uint8_t mode)
 1945 {
 1946         struct mwl_hal_priv *mh = MWLVAP(vap);
 1947         HostCmd_FW_SET_N_PROTECT_OPMODE *pCmd;
 1948         int retval;
 1949 
 1950         MWL_HAL_LOCK(mh);
 1951         _VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_N_PROTECT_OPMODE,
 1952                 HostCmd_CMD_SET_N_PROTECT_OPMODE);
 1953         pCmd->NProtectOpMode = mode;
 1954 
 1955         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_N_PROTECT_OPMODE);
 1956         MWL_HAL_UNLOCK(mh);
 1957         return retval;
 1958 }
 1959 
 1960 int
 1961 mwl_hal_setoptimizationlevel(struct mwl_hal *mh0, int level)
 1962 {
 1963         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1964         HostCmd_FW_SET_OPTIMIZATION_LEVEL *pCmd;
 1965         int retval;
 1966 
 1967         MWL_HAL_LOCK(mh);
 1968         _CMD_SETUP(pCmd, HostCmd_FW_SET_OPTIMIZATION_LEVEL,
 1969                 HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
 1970         pCmd->OptLevel = level;
 1971 
 1972         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
 1973         MWL_HAL_UNLOCK(mh);
 1974         return retval;
 1975 }
 1976 
 1977 int
 1978 mwl_hal_setmimops(struct mwl_hal *mh0, const uint8_t addr[IEEE80211_ADDR_LEN],
 1979         uint8_t enable, uint8_t mode)
 1980 {
 1981         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 1982         HostCmd_FW_SET_MIMOPSHT *pCmd;
 1983         int retval;
 1984 
 1985         MWL_HAL_LOCK(mh);
 1986         _CMD_SETUP(pCmd, HostCmd_FW_SET_MIMOPSHT, HostCmd_CMD_SET_MIMOPSHT);
 1987         IEEE80211_ADDR_COPY(pCmd->Addr, addr);
 1988         pCmd->Enable = enable;
 1989         pCmd->Mode = mode;
 1990 
 1991         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_MIMOPSHT);
 1992         MWL_HAL_UNLOCK(mh);
 1993         return retval;
 1994 }
 1995 
 1996 static int
 1997 mwlGetCalTable(struct mwl_hal_priv *mh, uint8_t annex, uint8_t index)
 1998 {
 1999         HostCmd_FW_GET_CALTABLE *pCmd;
 2000         int retval;
 2001 
 2002         MWL_HAL_LOCK_ASSERT(mh);
 2003 
 2004         _CMD_SETUP(pCmd, HostCmd_FW_GET_CALTABLE, HostCmd_CMD_GET_CALTABLE);
 2005         pCmd->annex = annex;
 2006         pCmd->index = index;
 2007         memset(pCmd->calTbl, 0, sizeof(pCmd->calTbl));
 2008 
 2009         retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_CALTABLE);
 2010         if (retval == 0 &&
 2011             pCmd->calTbl[0] != annex && annex != 0 && annex != 255)
 2012                 retval = EIO;
 2013         return retval;
 2014 }                                                         
 2015 
 2016 /*
 2017  * Calculate the max tx power from the channel's cal data.
 2018  */
 2019 static void
 2020 setmaxtxpow(struct mwl_hal_channel *hc, int i, int maxix)
 2021 {
 2022         hc->maxTxPow = hc->targetPowers[i];
 2023         for (i++; i < maxix; i++)
 2024                 if (hc->targetPowers[i] > hc->maxTxPow)
 2025                         hc->maxTxPow = hc->targetPowers[i];
 2026 }
 2027 
 2028 /*
 2029  * Construct channel info for 5GHz channels from cal data.
 2030  */
 2031 static void
 2032 get5Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
 2033 {
 2034         int i, j, f, l, h;
 2035 
 2036         l = 32000;
 2037         h = 0;
 2038         j = 0;
 2039         for (i = 0; i < len; i += 4) {
 2040                 struct mwl_hal_channel *hc;
 2041 
 2042                 if (table[i] == 0)
 2043                         continue;
 2044                 f = 5000 + 5*table[i];
 2045                 if (f < l)
 2046                         l = f;
 2047                 if (f > h)
 2048                         h = f;
 2049                 hc = &ci->channels[j];
 2050                 hc->freq = f;
 2051                 hc->ieee = table[i];
 2052                 memcpy(hc->targetPowers, &table[i], 4);
 2053                 setmaxtxpow(hc, 1, 4);          /* NB: col 1 is the freq, skip*/
 2054                 j++;
 2055         }
 2056         ci->nchannels = j;
 2057         ci->freqLow = (l == 32000) ? 0 : l;
 2058         ci->freqHigh = h;
 2059 }
 2060 
 2061 static uint16_t
 2062 ieee2mhz(int chan)
 2063 {
 2064         if (chan == 14)
 2065                 return 2484;
 2066         if (chan < 14)
 2067                 return 2407 + chan*5;
 2068         return 2512 + (chan-15)*20;
 2069 }
 2070 
 2071 /*
 2072  * Construct channel info for 2.4GHz channels from cal data.
 2073  */
 2074 static void
 2075 get2Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
 2076 {
 2077         int i, j;
 2078 
 2079         j = 0;
 2080         for (i = 0; i < len; i += 4) {
 2081                 struct mwl_hal_channel *hc = &ci->channels[j];
 2082                 hc->ieee = 1+j;
 2083                 hc->freq = ieee2mhz(1+j);
 2084                 memcpy(hc->targetPowers, &table[i], 4);
 2085                 setmaxtxpow(hc, 0, 4);
 2086                 j++;
 2087         }
 2088         ci->nchannels = j;
 2089         ci->freqLow = ieee2mhz(1);
 2090         ci->freqHigh = ieee2mhz(j);
 2091 }
 2092 
 2093 #undef DUMPCALDATA
 2094 #ifdef DUMPCALDATA
 2095 static void
 2096 dumpcaldata(const char *name, const uint8_t *table, int n)
 2097 {
 2098         int i;
 2099         printf("\n%s:\n", name);
 2100         for (i = 0; i < n; i += 4)
 2101                 printf("[%2d] %3d %3d %3d %3d\n", i/4, table[i+0], table[i+1], table[i+2], table[i+3]);
 2102 }
 2103 #endif
 2104 
 2105 static int
 2106 mwlGetPwrCalTable(struct mwl_hal_priv *mh)
 2107 {
 2108         const uint8_t *data;
 2109         MWL_HAL_CHANNELINFO *ci;
 2110         int len;
 2111 
 2112         MWL_HAL_LOCK(mh);
 2113         /* NB: we hold the lock so it's ok to use cmdbuf */
 2114         data = ((const HostCmd_FW_GET_CALTABLE *) mh->mh_cmdbuf)->calTbl;
 2115         if (mwlGetCalTable(mh, 33, 0) == 0) {
 2116                 len = (data[2] | (data[3] << 8)) - 12;
 2117                 if (len > PWTAGETRATETABLE20M)
 2118                         len = PWTAGETRATETABLE20M;
 2119 #ifdef DUMPCALDATA
 2120 dumpcaldata("2.4G 20M", &data[12], len);/*XXX*/
 2121 #endif
 2122                 get2Ghz(&mh->mh_20M, &data[12], len);
 2123         }
 2124         if (mwlGetCalTable(mh, 34, 0) == 0) {
 2125                 len = (data[2] | (data[3] << 8)) - 12;
 2126                 if (len > PWTAGETRATETABLE40M)
 2127                         len = PWTAGETRATETABLE40M;
 2128 #ifdef DUMPCALDATA
 2129 dumpcaldata("2.4G 40M", &data[12], len);/*XXX*/
 2130 #endif
 2131                 ci = &mh->mh_40M;
 2132                 get2Ghz(ci, &data[12], len);
 2133         }
 2134         if (mwlGetCalTable(mh, 35, 0) == 0) {
 2135                 len = (data[2] | (data[3] << 8)) - 20;
 2136                 if (len > PWTAGETRATETABLE20M_5G)
 2137                         len = PWTAGETRATETABLE20M_5G;
 2138 #ifdef DUMPCALDATA
 2139 dumpcaldata("5G 20M", &data[20], len);/*XXX*/
 2140 #endif
 2141                 get5Ghz(&mh->mh_20M_5G, &data[20], len);
 2142         }
 2143         if (mwlGetCalTable(mh, 36, 0) == 0) {
 2144                 len = (data[2] | (data[3] << 8)) - 20;
 2145                 if (len > PWTAGETRATETABLE40M_5G)
 2146                         len = PWTAGETRATETABLE40M_5G;
 2147 #ifdef DUMPCALDATA
 2148 dumpcaldata("5G 40M", &data[20], len);/*XXX*/
 2149 #endif
 2150                 ci = &mh->mh_40M_5G;
 2151                 get5Ghz(ci, &data[20], len);
 2152         }
 2153         mh->mh_flags |= MHF_CALDATA;
 2154         MWL_HAL_UNLOCK(mh);
 2155         return 0;
 2156 }
 2157 
 2158 int
 2159 mwl_hal_getregioncode(struct mwl_hal *mh0, uint8_t *countryCode)
 2160 {
 2161         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 2162         int retval;
 2163 
 2164         MWL_HAL_LOCK(mh);
 2165         retval = mwlGetCalTable(mh, 0, 0);
 2166         if (retval == 0) {
 2167                 const HostCmd_FW_GET_CALTABLE *pCmd =
 2168                     (const HostCmd_FW_GET_CALTABLE *) mh->mh_cmdbuf;
 2169                 *countryCode = pCmd->calTbl[16];
 2170         }
 2171         MWL_HAL_UNLOCK(mh);
 2172         return retval;
 2173 }
 2174 
 2175 int
 2176 mwl_hal_setpromisc(struct mwl_hal *mh0, int ena)
 2177 {
 2178         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 2179         uint32_t v;
 2180 
 2181         MWL_HAL_LOCK(mh);
 2182         v = RD4(mh, MACREG_REG_PROMISCUOUS);
 2183         WR4(mh, MACREG_REG_PROMISCUOUS, ena ? v | 1 : v &~ 1);
 2184         MWL_HAL_UNLOCK(mh);
 2185         return 0;
 2186 }
 2187 
 2188 int
 2189 mwl_hal_getpromisc(struct mwl_hal *mh0)
 2190 {
 2191         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 2192         uint32_t v;
 2193 
 2194         MWL_HAL_LOCK(mh);
 2195         v = RD4(mh, MACREG_REG_PROMISCUOUS);
 2196         MWL_HAL_UNLOCK(mh);
 2197         return (v & 1) != 0;
 2198 }
 2199 
 2200 int
 2201 mwl_hal_GetBeacon(struct mwl_hal *mh0, uint8_t *pBcn, uint16_t *pLen)
 2202 {
 2203         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 2204         HostCmd_FW_GET_BEACON *pCmd;
 2205         int retval;
 2206 
 2207         MWL_HAL_LOCK(mh);
 2208         _CMD_SETUP(pCmd, HostCmd_FW_GET_BEACON, HostCmd_CMD_GET_BEACON);
 2209         pCmd->Bcnlen = htole16(0);
 2210 
 2211         retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_BEACON);
 2212         if (retval == 0) {
 2213                 /* XXX bounds check */
 2214                 memcpy(pBcn, &pCmd->Bcn, pCmd->Bcnlen);
 2215                 *pLen = pCmd->Bcnlen;
 2216         }
 2217         MWL_HAL_UNLOCK(mh);
 2218         return retval;
 2219 }       
 2220 
 2221 int
 2222 mwl_hal_SetRifs(struct mwl_hal *mh0, uint8_t QNum)
 2223 {
 2224         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 2225         HostCmd_FW_SET_RIFS  *pCmd;
 2226         int retval;
 2227 
 2228         MWL_HAL_LOCK(mh);
 2229         _CMD_SETUP(pCmd, HostCmd_FW_SET_RIFS, HostCmd_CMD_SET_RIFS);
 2230         pCmd->QNum = QNum;
 2231 
 2232         retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RIFS);
 2233         MWL_HAL_UNLOCK(mh);
 2234         return retval;
 2235 }
 2236 
 2237 /*
 2238  * Diagnostic api's for set/get registers.
 2239  */
 2240 
 2241 static int
 2242 getRFReg(struct mwl_hal_priv *mh, int flag, uint32_t reg, uint32_t *val)
 2243 {
 2244         HostCmd_DS_RF_REG_ACCESS *pCmd;
 2245         int retval;
 2246 
 2247         MWL_HAL_LOCK(mh);
 2248         _CMD_SETUP(pCmd, HostCmd_DS_RF_REG_ACCESS, HostCmd_CMD_RF_REG_ACCESS);
 2249         pCmd->Offset =  htole16(reg);
 2250         pCmd->Action = htole16(flag);
 2251         pCmd->Value = htole32(*val);
 2252 
 2253         retval = mwlExecuteCmd(mh, HostCmd_CMD_RF_REG_ACCESS);
 2254         if (retval == 0)
 2255                 *val = pCmd->Value;
 2256         MWL_HAL_UNLOCK(mh);
 2257         return retval;
 2258 }
 2259 
 2260 static int
 2261 getBBReg(struct mwl_hal_priv *mh, int flag, uint32_t reg, uint32_t *val)
 2262 {
 2263         HostCmd_DS_BBP_REG_ACCESS *pCmd;
 2264         int retval;
 2265 
 2266         MWL_HAL_LOCK(mh);
 2267         _CMD_SETUP(pCmd, HostCmd_DS_BBP_REG_ACCESS, HostCmd_CMD_BBP_REG_ACCESS);
 2268         pCmd->Offset =  htole16(reg);
 2269         pCmd->Action = htole16(flag);
 2270         pCmd->Value = htole32(*val);
 2271 
 2272         retval = mwlExecuteCmd(mh, HostCmd_CMD_BBP_REG_ACCESS);
 2273         if (retval == 0)
 2274                 *val = pCmd->Value;
 2275         MWL_HAL_UNLOCK(mh);
 2276         return retval;
 2277 }
 2278 
 2279 static u_int
 2280 mwl_hal_getregdump(struct mwl_hal_priv *mh, const MWL_DIAG_REGRANGE *regs,
 2281         void *dstbuf, int space)
 2282 {
 2283         uint32_t *dp = dstbuf;
 2284         int i;
 2285 
 2286         for (i = 0; space >= 2*sizeof(uint32_t); i++) {
 2287                 u_int r = regs[i].start;
 2288                 u_int e = regs[i].end;
 2289                 *dp++ = (r<<16) | e;
 2290                 space -= sizeof(uint32_t);
 2291                 do {
 2292                         if (MWL_DIAG_ISMAC(r))
 2293                                 *dp = RD4(mh, r);
 2294                         else if (MWL_DIAG_ISBB(r))
 2295                                 getBBReg(mh, HostCmd_ACT_GEN_READ,
 2296                                     r - MWL_DIAG_BASE_BB, dp);
 2297                         else if (MWL_DIAG_ISRF(r))
 2298                                 getRFReg(mh, HostCmd_ACT_GEN_READ,
 2299                                     r - MWL_DIAG_BASE_RF, dp);
 2300                         else if (r < 0x1000 || r == MACREG_REG_FW_PRESENT)
 2301                                 *dp = RD4(mh, r);
 2302                         else
 2303                                 *dp = 0xffffffff;
 2304                         dp++;
 2305                         r += sizeof(uint32_t);
 2306                         space -= sizeof(uint32_t);
 2307                 } while (r <= e && space >= sizeof(uint32_t));
 2308         }
 2309         return (char *) dp - (char *) dstbuf;
 2310 }
 2311 
 2312 int
 2313 mwl_hal_getdiagstate(struct mwl_hal *mh0, int request,
 2314         const void *args, uint32_t argsize,
 2315         void **result, uint32_t *resultsize)
 2316 {
 2317         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 2318 
 2319         switch (request) {
 2320         case MWL_DIAG_CMD_REVS:
 2321                 *result = &mh->mh_revs;
 2322                 *resultsize = sizeof(mh->mh_revs);
 2323                 return 1;
 2324         case MWL_DIAG_CMD_REGS:
 2325                 *resultsize = mwl_hal_getregdump(mh, args, *result, *resultsize);
 2326                 return 1;
 2327         case MWL_DIAG_CMD_HOSTCMD: {
 2328                 FWCmdHdr *pCmd = (FWCmdHdr *) &mh->mh_cmdbuf[0];
 2329                 int retval;
 2330 
 2331                 MWL_HAL_LOCK(mh);
 2332                 memcpy(pCmd, args, argsize);
 2333                 retval = mwlExecuteCmd(mh, le16toh(pCmd->Cmd));
 2334                 *result = (*resultsize != 0) ? pCmd : NULL;
 2335                 MWL_HAL_UNLOCK(mh);
 2336                 return (retval == 0);
 2337         }
 2338         case MWL_DIAG_CMD_FWLOAD:
 2339                 if (mwl_hal_fwload(mh0, __DECONST(void *, args))) {
 2340                         device_printf(mh->mh_dev, "problem loading fw image\n");
 2341                         return 0;
 2342                 }
 2343                 return 1;
 2344         }
 2345         return 0;
 2346 }
 2347 
 2348 /*
 2349  * Low level firmware cmd block handshake support.
 2350  */
 2351 
 2352 static void
 2353 mwlSendCmd(struct mwl_hal_priv *mh)
 2354 {
 2355         uint32_t dummy;
 2356 
 2357         bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap,
 2358             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2359 
 2360         WR4(mh, MACREG_REG_GEN_PTR, mh->mh_cmdaddr);
 2361         dummy = RD4(mh, MACREG_REG_INT_CODE);
 2362 
 2363         WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_DOOR_BELL);
 2364 }
 2365 
 2366 static int
 2367 mwlWaitForCmdComplete(struct mwl_hal_priv *mh, uint16_t cmdCode)
 2368 {
 2369 #define MAX_WAIT_FW_COMPLETE_ITERATIONS 10000
 2370         int i;
 2371 
 2372         for (i = 0; i < MAX_WAIT_FW_COMPLETE_ITERATIONS; i++) {
 2373                 if (mh->mh_cmdbuf[0] == le16toh(cmdCode))
 2374                         return 1;
 2375                 DELAY(1*1000);
 2376         }
 2377         return 0;
 2378 #undef MAX_WAIT_FW_COMPLETE_ITERATIONS
 2379 }
 2380 
 2381 static int
 2382 mwlExecuteCmd(struct mwl_hal_priv *mh, unsigned short cmd)
 2383 {
 2384 
 2385         MWL_HAL_LOCK_ASSERT(mh);
 2386 
 2387         if ((mh->mh_flags & MHF_FWHANG) &&
 2388             (mh->mh_debug & MWL_HAL_DEBUG_IGNHANG) == 0) {
 2389 #ifdef MWLHAL_DEBUG
 2390                 device_printf(mh->mh_dev, "firmware hung, skipping cmd %s\n",
 2391                         mwlcmdname(cmd));
 2392 #else
 2393                 device_printf(mh->mh_dev, "firmware hung, skipping cmd 0x%x\n",
 2394                         cmd);
 2395 #endif
 2396                 return ENXIO;
 2397         }
 2398         if (RD4(mh,  MACREG_REG_INT_CODE) == 0xffffffff) {
 2399                 device_printf(mh->mh_dev, "%s: device not present!\n",
 2400                     __func__);
 2401                 return EIO;
 2402         }
 2403 #ifdef MWLHAL_DEBUG
 2404         if (mh->mh_debug & MWL_HAL_DEBUG_SENDCMD)
 2405                 dumpresult(mh, 0);
 2406 #endif
 2407         mwlSendCmd(mh);
 2408         if (!mwlWaitForCmdComplete(mh, 0x8000 | cmd)) {
 2409 #ifdef MWLHAL_DEBUG
 2410                 device_printf(mh->mh_dev,
 2411                     "timeout waiting for f/w cmd %s\n", mwlcmdname(cmd));
 2412 #else
 2413                 device_printf(mh->mh_dev,
 2414                     "timeout waiting for f/w cmd 0x%x\n", cmd);
 2415 #endif
 2416                 mh->mh_flags |= MHF_FWHANG;
 2417                 return ETIMEDOUT;
 2418         }
 2419         bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap,
 2420             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2421 #ifdef MWLHAL_DEBUG
 2422         if (mh->mh_debug & MWL_HAL_DEBUG_CMDDONE)
 2423                 dumpresult(mh, 1);
 2424 #endif
 2425         return 0;
 2426 }
 2427 
 2428 /*
 2429  * Firmware download support.
 2430  */
 2431 #define FW_DOWNLOAD_BLOCK_SIZE  256  
 2432 #define FW_CHECK_USECS          (5*1000)        /* 5ms */
 2433 #define FW_MAX_NUM_CHECKS       200  
 2434 
 2435 #if 0
 2436 /* XXX read f/w from file */
 2437 #include <dev/mwl/mwlbootfw.h>
 2438 #include <dev/mwl/mwl88W8363fw.h>
 2439 #endif
 2440 
 2441 static void
 2442 mwlFwReset(struct mwl_hal_priv *mh)
 2443 {
 2444         if (RD4(mh,  MACREG_REG_INT_CODE) == 0xffffffff) {
 2445                 device_printf(mh->mh_dev, "%s: device not present!\n",
 2446                     __func__);
 2447                 return;
 2448         }
 2449         WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, ISR_RESET);
 2450         mh->mh_flags &= ~MHF_FWHANG;
 2451 }
 2452 
 2453 static void
 2454 mwlTriggerPciCmd(struct mwl_hal_priv *mh)
 2455 {
 2456         uint32_t dummy;
 2457 
 2458         bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap, BUS_DMASYNC_PREWRITE);
 2459 
 2460         WR4(mh, MACREG_REG_GEN_PTR, mh->mh_cmdaddr);
 2461         dummy = RD4(mh, MACREG_REG_INT_CODE);
 2462 
 2463         WR4(mh, MACREG_REG_INT_CODE, 0x00);
 2464         dummy = RD4(mh, MACREG_REG_INT_CODE);
 2465 
 2466         WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_DOOR_BELL);
 2467         dummy = RD4(mh, MACREG_REG_INT_CODE);
 2468 }
 2469 
 2470 static int
 2471 mwlWaitFor(struct mwl_hal_priv *mh, uint32_t val)
 2472 {
 2473         int i;
 2474 
 2475         for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
 2476                 DELAY(FW_CHECK_USECS);
 2477                 if (RD4(mh, MACREG_REG_INT_CODE) == val)
 2478                         return 1;
 2479         }
 2480         return 0;
 2481 }
 2482 
 2483 /*
 2484  * Firmware block xmit when talking to the boot-rom.
 2485  */
 2486 static int
 2487 mwlSendBlock(struct mwl_hal_priv *mh, int bsize, const void *data, size_t dsize)
 2488 {
 2489         mh->mh_cmdbuf[0] = htole16(HostCmd_CMD_CODE_DNLD);
 2490         mh->mh_cmdbuf[1] = htole16(bsize);
 2491         memcpy(&mh->mh_cmdbuf[4], data , dsize);
 2492         mwlTriggerPciCmd(mh);
 2493         /* XXX 2000 vs 200 */
 2494         if (mwlWaitFor(mh, MACREG_INT_CODE_CMD_FINISHED)) {
 2495                 WR4(mh, MACREG_REG_INT_CODE, 0);
 2496                 return 1;
 2497         }
 2498         device_printf(mh->mh_dev,
 2499             "%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
 2500             __func__, RD4(mh, MACREG_REG_INT_CODE));
 2501         return 0;
 2502 }
 2503 
 2504 /*
 2505  * Firmware block xmit when talking to the 1st-stage loader.
 2506  */
 2507 static int
 2508 mwlSendBlock2(struct mwl_hal_priv *mh, const void *data, size_t dsize)
 2509 {
 2510         memcpy(&mh->mh_cmdbuf[0], data, dsize);
 2511         mwlTriggerPciCmd(mh);
 2512         if (mwlWaitFor(mh, MACREG_INT_CODE_CMD_FINISHED)) {
 2513                 WR4(mh, MACREG_REG_INT_CODE, 0);
 2514                 return 1;
 2515         }
 2516         device_printf(mh->mh_dev,
 2517             "%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
 2518             __func__, RD4(mh, MACREG_REG_INT_CODE));
 2519         return 0;
 2520 }
 2521 
 2522 static void
 2523 mwlPokeSdramController(struct mwl_hal_priv *mh, int SDRAMSIZE_Addr)
 2524 {
 2525         /** Set up sdram controller for superflyv2 **/
 2526         WR4(mh, 0x00006014, 0x33);
 2527         WR4(mh, 0x00006018, 0xa3a2632);
 2528         WR4(mh, 0x00006010, SDRAMSIZE_Addr);
 2529 }
 2530 
 2531 int
 2532 mwl_hal_fwload(struct mwl_hal *mh0, void *fwargs)
 2533 {
 2534         struct mwl_hal_priv *mh = MWLPRIV(mh0);
 2535         const char *fwname = "mw88W8363fw";
 2536         const char *fwbootname = "mwlboot";
 2537         const struct firmware *fwboot = NULL;
 2538         const struct firmware *fw;
 2539         /* XXX get from firmware header */
 2540         uint32_t FwReadySignature = HostCmd_SOFTAP_FWRDY_SIGNATURE;
 2541         uint32_t OpMode = HostCmd_SOFTAP_MODE;
 2542         const uint8_t *fp, *ep;
 2543         const uint8_t *fmdata;
 2544         uint32_t blocksize, nbytes, fmsize;
 2545         int i, error, ntries;
 2546 
 2547         fw = firmware_get(fwname);
 2548         if (fw == NULL) {
 2549                 device_printf(mh->mh_dev,
 2550                     "could not load firmware image %s\n", fwname);
 2551                 return ENXIO;
 2552         }
 2553         fmdata = fw->data;
 2554         fmsize = fw->datasize;
 2555         if (fmsize < 4) {
 2556                 device_printf(mh->mh_dev, "firmware image %s too small\n",
 2557                     fwname);
 2558                 error = ENXIO;
 2559                 goto bad2;
 2560         }
 2561         if (fmdata[0] == 0x01 && fmdata[1] == 0x00 &&
 2562             fmdata[2] == 0x00 && fmdata[3] == 0x00) {
 2563                 /*
 2564                  * 2-stage load, get the boot firmware.
 2565                  */
 2566                 fwboot = firmware_get(fwbootname);
 2567                 if (fwboot == NULL) {
 2568                         device_printf(mh->mh_dev,
 2569                             "could not load firmware image %s\n", fwbootname);
 2570                         error = ENXIO;
 2571                         goto bad2;
 2572                 }
 2573         } else
 2574                 fwboot = NULL;
 2575 
 2576         mwlFwReset(mh);
 2577 
 2578         WR4(mh, MACREG_REG_A2H_INTERRUPT_CLEAR_SEL, MACREG_A2HRIC_BIT_MASK);
 2579         WR4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE, 0x00);
 2580         WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, 0x00);
 2581         WR4(mh, MACREG_REG_A2H_INTERRUPT_STATUS_MASK, MACREG_A2HRIC_BIT_MASK);
 2582         if (mh->mh_SDRAMSIZE_Addr != 0) {
 2583                 /** Set up sdram controller for superflyv2 **/
 2584                 mwlPokeSdramController(mh, mh->mh_SDRAMSIZE_Addr);
 2585         }
 2586         device_printf(mh->mh_dev, "load %s firmware image (%u bytes)\n",
 2587             fwname, fmsize);
 2588         if (fwboot != NULL) {
 2589                 /*
 2590                  * Do 2-stage load.  The 1st stage loader is setup
 2591                  * with the bootrom loader then we load the real
 2592                  * image using a different handshake. With this
 2593                  * mechanism the firmware is segmented into chunks
 2594                  * that have a CRC.  If a chunk is incorrect we'll
 2595                  * be told to retransmit.
 2596                  */
 2597                 /* XXX assumes hlpimage fits in a block */
 2598                 /* NB: zero size block indicates download is finished */
 2599                 if (!mwlSendBlock(mh, fwboot->datasize, fwboot->data, fwboot->datasize) ||
 2600                     !mwlSendBlock(mh, 0, NULL, 0)) {
 2601                         error = ETIMEDOUT;
 2602                         goto bad;
 2603                 }
 2604                 DELAY(200*FW_CHECK_USECS);
 2605                 if (mh->mh_SDRAMSIZE_Addr != 0) {
 2606                         /** Set up sdram controller for superflyv2 **/
 2607                         mwlPokeSdramController(mh, mh->mh_SDRAMSIZE_Addr);
 2608                 }
 2609                 nbytes = ntries = 0;            /* NB: silence compiler */
 2610                 for (fp = fmdata, ep = fp + fmsize; fp < ep; ) {
 2611                         WR4(mh, MACREG_REG_INT_CODE, 0);
 2612                         blocksize = RD4(mh, MACREG_REG_SCRATCH);
 2613                         if (blocksize == 0)     /* download complete */
 2614                                 break;
 2615                         if (blocksize > 0x00000c00) {
 2616                                 error = EINVAL;
 2617                                 goto bad;
 2618                         }
 2619                         if ((blocksize & 0x1) == 0) {
 2620                                 /* block successfully downloaded, advance */
 2621                                 fp += nbytes;
 2622                                 ntries = 0;
 2623                         } else {
 2624                                 if (++ntries > 2) {
 2625                                         /*
 2626                                          * Guard against f/w telling us to
 2627                                          * retry infinitely.
 2628                                          */
 2629                                         error = ELOOP;
 2630                                         goto bad;
 2631                                 }
 2632                                 /* clear NAK bit/flag */
 2633                                 blocksize &= ~0x1;
 2634                         }
 2635                         if (blocksize > ep - fp) {
 2636                                 /* XXX this should not happen, what to do? */
 2637                                 blocksize = ep - fp;
 2638                         }
 2639                         nbytes = blocksize;
 2640                         if (!mwlSendBlock2(mh, fp, nbytes)) {
 2641                                 error = ETIMEDOUT;
 2642                                 goto bad;
 2643                         }
 2644                 }
 2645         } else {
 2646                 for (fp = fmdata, ep = fp + fmsize; fp < ep;) {
 2647                         nbytes = ep - fp;
 2648                         if (nbytes > FW_DOWNLOAD_BLOCK_SIZE)
 2649                                 nbytes = FW_DOWNLOAD_BLOCK_SIZE;
 2650                         if (!mwlSendBlock(mh, FW_DOWNLOAD_BLOCK_SIZE, fp, nbytes)) {
 2651                                 error = EIO;
 2652                                 goto bad;
 2653                         }
 2654                         fp += nbytes;
 2655                 }
 2656         }
 2657         /* done with firmware... */
 2658         if (fwboot != NULL)
 2659                 firmware_put(fwboot, FIRMWARE_UNLOAD);
 2660         firmware_put(fw, FIRMWARE_UNLOAD);
 2661         /*
 2662          * Wait for firmware to startup; we monitor the
 2663          * INT_CODE register waiting for a signature to
 2664          * written back indicating it's ready to go.
 2665          */
 2666         mh->mh_cmdbuf[1] = 0;
 2667         /*
 2668          * XXX WAR for mfg fw download
 2669          */
 2670         if (OpMode != HostCmd_STA_MODE)
 2671                 mwlTriggerPciCmd(mh);
 2672         for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
 2673                 WR4(mh, MACREG_REG_GEN_PTR, OpMode);
 2674                 DELAY(FW_CHECK_USECS);
 2675                 if (RD4(mh, MACREG_REG_INT_CODE) == FwReadySignature) {
 2676                         WR4(mh, MACREG_REG_INT_CODE, 0x00);
 2677                         return mwlResetHalState(mh);
 2678                 }
 2679         }
 2680         return ETIMEDOUT;
 2681 bad:
 2682         mwlFwReset(mh);
 2683 bad2:
 2684         /* done with firmware... */
 2685         if (fwboot != NULL)
 2686                 firmware_put(fwboot, FIRMWARE_UNLOAD);
 2687         firmware_put(fw, FIRMWARE_UNLOAD);
 2688         return error;
 2689 }
 2690 
 2691 #ifdef MWLHAL_DEBUG
 2692 static const char *
 2693 mwlcmdname(int cmd)
 2694 {
 2695         static char buf[12];
 2696 #define CMD(x)  case HostCmd_CMD_##x: return #x
 2697         switch (cmd) {
 2698         CMD(CODE_DNLD);
 2699         CMD(GET_HW_SPEC);
 2700         CMD(SET_HW_SPEC);
 2701         CMD(MAC_MULTICAST_ADR);
 2702         CMD(802_11_GET_STAT);
 2703         CMD(MAC_REG_ACCESS);
 2704         CMD(BBP_REG_ACCESS);
 2705         CMD(RF_REG_ACCESS);
 2706         CMD(802_11_RADIO_CONTROL);
 2707         CMD(802_11_RF_TX_POWER);
 2708         CMD(802_11_RF_ANTENNA);
 2709         CMD(SET_BEACON);
 2710         CMD(SET_RF_CHANNEL);
 2711         CMD(SET_AID);
 2712         CMD(SET_INFRA_MODE);
 2713         CMD(SET_G_PROTECT_FLAG);
 2714         CMD(802_11_RTS_THSD);
 2715         CMD(802_11_SET_SLOT);
 2716         CMD(SET_EDCA_PARAMS);
 2717         CMD(802_11H_DETECT_RADAR);
 2718         CMD(SET_WMM_MODE);
 2719         CMD(HT_GUARD_INTERVAL);
 2720         CMD(SET_FIXED_RATE);
 2721         CMD(SET_LINKADAPT_CS_MODE);
 2722         CMD(SET_MAC_ADDR);
 2723         CMD(SET_RATE_ADAPT_MODE);
 2724         CMD(BSS_START);
 2725         CMD(SET_NEW_STN);
 2726         CMD(SET_KEEP_ALIVE);
 2727         CMD(SET_APMODE);
 2728         CMD(SET_SWITCH_CHANNEL);
 2729         CMD(UPDATE_ENCRYPTION);
 2730         CMD(BASTREAM);
 2731         CMD(SET_RIFS);
 2732         CMD(SET_N_PROTECT_FLAG);
 2733         CMD(SET_N_PROTECT_OPMODE);
 2734         CMD(SET_OPTIMIZATION_LEVEL);
 2735         CMD(GET_CALTABLE);
 2736         CMD(SET_MIMOPSHT);
 2737         CMD(GET_BEACON);
 2738         CMD(SET_REGION_CODE);
 2739         CMD(SET_POWERSAVESTATION);
 2740         CMD(SET_TIM);
 2741         CMD(GET_TIM);
 2742         CMD(GET_SEQNO);
 2743         CMD(DWDS_ENABLE);
 2744         CMD(AMPDU_RETRY_RATEDROP_MODE);
 2745         CMD(CFEND_ENABLE);
 2746         }
 2747         snprintf(buf, sizeof(buf), "0x%x", cmd);
 2748         return buf;
 2749 #undef CMD
 2750 }
 2751 
 2752 static void
 2753 dumpresult(struct mwl_hal_priv *mh, int showresult)
 2754 {
 2755         const FWCmdHdr *h = (const FWCmdHdr *)mh->mh_cmdbuf;
 2756         const uint8_t *cp;
 2757         int len, i;
 2758 
 2759         len = le16toh(h->Length);
 2760 #ifdef MWL_MBSS_SUPPORT
 2761         device_printf(mh->mh_dev, "Cmd %s Length %d SeqNum %d MacId %d",
 2762             mwlcmdname(le16toh(h->Cmd) &~ 0x8000), len, h->SeqNum, h->MacId);
 2763 #else
 2764         device_printf(mh->mh_dev, "Cmd %s Length %d SeqNum %d",
 2765             mwlcmdname(le16toh(h->Cmd) &~ 0x8000), len, le16toh(h->SeqNum));
 2766 #endif
 2767         if (showresult) {
 2768                 const char *results[] =
 2769                     { "OK", "ERROR", "NOT_SUPPORT", "PENDING", "BUSY",
 2770                       "PARTIAL_DATA" };
 2771                 int result = le16toh(h->Result);
 2772 
 2773                 if (result <= HostCmd_RESULT_PARTIAL_DATA)
 2774                         printf(" Result %s", results[result]);
 2775                 else
 2776                         printf(" Result %d", result);
 2777         }
 2778         cp = (const uint8_t *)h;
 2779         for (i = 0; i < len; i++) {
 2780                 if ((i % 16) == 0)
 2781                         printf("\n%02x", cp[i]);
 2782                 else
 2783                         printf(" %02x", cp[i]);
 2784         }
 2785         printf("\n");
 2786 }
 2787 #endif /* MWLHAL_DEBUG */

Cache object: 3cb41514470765b8c49572ee7a4bd8d3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.