1 /*
2 * Copyright (c) 2017 Stormshield.
3 * Copyright (c) 2017 Semihalf.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "opt_platform.h"
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/endian.h>
35 #include <sys/mbuf.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/kernel.h>
39 #include <sys/module.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/smp.h>
43 #include <sys/taskqueue.h>
44 #ifdef MVNETA_KTR
45 #include <sys/ktr.h>
46 #endif
47
48 #include <net/ethernet.h>
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp_lro.h>
61
62 #include <sys/sockio.h>
63 #include <sys/bus.h>
64 #include <machine/bus.h>
65 #include <sys/rman.h>
66 #include <machine/resource.h>
67
68 #include <dev/extres/clk/clk.h>
69
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72
73 #include <dev/mdio/mdio.h>
74
75 #include <arm/mv/mvvar.h>
76
77 #if !defined(__aarch64__)
78 #include <arm/mv/mvreg.h>
79 #include <arm/mv/mvwin.h>
80 #endif
81
82 #include "if_mvnetareg.h"
83 #include "if_mvnetavar.h"
84
85 #include "miibus_if.h"
86 #include "mdio_if.h"
87
88 #ifdef MVNETA_DEBUG
89 #define STATIC /* nothing */
90 #else
91 #define STATIC static
92 #endif
93
94 #define DASSERT(x) KASSERT((x), (#x))
95
96 #define A3700_TCLK_250MHZ 250000000
97
98 /* Device Register Initialization */
99 STATIC int mvneta_initreg(if_t);
100
101 /* Descriptor Ring Control for each of queues */
102 STATIC int mvneta_ring_alloc_rx_queue(struct mvneta_softc *, int);
103 STATIC int mvneta_ring_alloc_tx_queue(struct mvneta_softc *, int);
104 STATIC void mvneta_ring_dealloc_rx_queue(struct mvneta_softc *, int);
105 STATIC void mvneta_ring_dealloc_tx_queue(struct mvneta_softc *, int);
106 STATIC int mvneta_ring_init_rx_queue(struct mvneta_softc *, int);
107 STATIC int mvneta_ring_init_tx_queue(struct mvneta_softc *, int);
108 STATIC void mvneta_ring_flush_rx_queue(struct mvneta_softc *, int);
109 STATIC void mvneta_ring_flush_tx_queue(struct mvneta_softc *, int);
110 STATIC void mvneta_dmamap_cb(void *, bus_dma_segment_t *, int, int);
111 STATIC int mvneta_dma_create(struct mvneta_softc *);
112
113 /* Rx/Tx Queue Control */
114 STATIC int mvneta_rx_queue_init(if_t, int);
115 STATIC int mvneta_tx_queue_init(if_t, int);
116 STATIC int mvneta_rx_queue_enable(if_t, int);
117 STATIC int mvneta_tx_queue_enable(if_t, int);
118 STATIC void mvneta_rx_lockq(struct mvneta_softc *, int);
119 STATIC void mvneta_rx_unlockq(struct mvneta_softc *, int);
120 STATIC void mvneta_tx_lockq(struct mvneta_softc *, int);
121 STATIC void mvneta_tx_unlockq(struct mvneta_softc *, int);
122
123 /* Interrupt Handlers */
124 STATIC void mvneta_disable_intr(struct mvneta_softc *);
125 STATIC void mvneta_enable_intr(struct mvneta_softc *);
126 STATIC void mvneta_rxtxth_intr(void *);
127 STATIC int mvneta_misc_intr(struct mvneta_softc *);
128 STATIC void mvneta_tick(void *);
129 /* struct ifnet and mii callbacks*/
130 STATIC int mvneta_xmitfast_locked(struct mvneta_softc *, int, struct mbuf **);
131 STATIC int mvneta_xmit_locked(struct mvneta_softc *, int);
132 #ifdef MVNETA_MULTIQUEUE
133 STATIC int mvneta_transmit(if_t, struct mbuf *);
134 #else /* !MVNETA_MULTIQUEUE */
135 STATIC void mvneta_start(if_t);
136 #endif
137 STATIC void mvneta_qflush(if_t);
138 STATIC void mvneta_tx_task(void *, int);
139 STATIC int mvneta_ioctl(if_t, u_long, caddr_t);
140 STATIC void mvneta_init(void *);
141 STATIC void mvneta_init_locked(void *);
142 STATIC void mvneta_stop(struct mvneta_softc *);
143 STATIC void mvneta_stop_locked(struct mvneta_softc *);
144 STATIC int mvneta_mediachange(if_t);
145 STATIC void mvneta_mediastatus(if_t, struct ifmediareq *);
146 STATIC void mvneta_portup(struct mvneta_softc *);
147 STATIC void mvneta_portdown(struct mvneta_softc *);
148
149 /* Link State Notify */
150 STATIC void mvneta_update_autoneg(struct mvneta_softc *, int);
151 STATIC int mvneta_update_media(struct mvneta_softc *, int);
152 STATIC void mvneta_adjust_link(struct mvneta_softc *);
153 STATIC void mvneta_update_eee(struct mvneta_softc *);
154 STATIC void mvneta_update_fc(struct mvneta_softc *);
155 STATIC void mvneta_link_isr(struct mvneta_softc *);
156 STATIC void mvneta_linkupdate(struct mvneta_softc *, boolean_t);
157 STATIC void mvneta_linkup(struct mvneta_softc *);
158 STATIC void mvneta_linkdown(struct mvneta_softc *);
159 STATIC void mvneta_linkreset(struct mvneta_softc *);
160
161 /* Tx Subroutines */
162 STATIC int mvneta_tx_queue(struct mvneta_softc *, struct mbuf **, int);
163 STATIC void mvneta_tx_set_csumflag(if_t,
164 struct mvneta_tx_desc *, struct mbuf *);
165 STATIC void mvneta_tx_queue_complete(struct mvneta_softc *, int);
166 STATIC void mvneta_tx_drain(struct mvneta_softc *);
167
168 /* Rx Subroutines */
169 STATIC int mvneta_rx(struct mvneta_softc *, int, int);
170 STATIC void mvneta_rx_queue(struct mvneta_softc *, int, int);
171 STATIC void mvneta_rx_queue_refill(struct mvneta_softc *, int);
172 STATIC void mvneta_rx_set_csumflag(if_t,
173 struct mvneta_rx_desc *, struct mbuf *);
174 STATIC void mvneta_rx_buf_free(struct mvneta_softc *, struct mvneta_buf *);
175
176 /* MAC address filter */
177 STATIC void mvneta_filter_setup(struct mvneta_softc *);
178
179 /* sysctl(9) */
180 STATIC int sysctl_read_mib(SYSCTL_HANDLER_ARGS);
181 STATIC int sysctl_clear_mib(SYSCTL_HANDLER_ARGS);
182 STATIC int sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS);
183 STATIC void sysctl_mvneta_init(struct mvneta_softc *);
184
185 /* MIB */
186 STATIC void mvneta_clear_mib(struct mvneta_softc *);
187 STATIC uint64_t mvneta_read_mib(struct mvneta_softc *, int);
188 STATIC void mvneta_update_mib(struct mvneta_softc *);
189
190 /* Switch */
191 STATIC boolean_t mvneta_has_switch(device_t);
192
193 #define mvneta_sc_lock(sc) mtx_lock(&sc->mtx)
194 #define mvneta_sc_unlock(sc) mtx_unlock(&sc->mtx)
195
196 STATIC struct mtx mii_mutex;
197 STATIC int mii_init = 0;
198
199 /* Device */
200 STATIC int mvneta_detach(device_t);
201 /* MII */
202 STATIC int mvneta_miibus_readreg(device_t, int, int);
203 STATIC int mvneta_miibus_writereg(device_t, int, int, int);
204
205 static device_method_t mvneta_methods[] = {
206 /* Device interface */
207 DEVMETHOD(device_detach, mvneta_detach),
208 /* MII interface */
209 DEVMETHOD(miibus_readreg, mvneta_miibus_readreg),
210 DEVMETHOD(miibus_writereg, mvneta_miibus_writereg),
211 /* MDIO interface */
212 DEVMETHOD(mdio_readreg, mvneta_miibus_readreg),
213 DEVMETHOD(mdio_writereg, mvneta_miibus_writereg),
214
215 /* End */
216 DEVMETHOD_END
217 };
218
219 DEFINE_CLASS_0(mvneta, mvneta_driver, mvneta_methods, sizeof(struct mvneta_softc));
220
221 DRIVER_MODULE(miibus, mvneta, miibus_driver, 0, 0);
222 DRIVER_MODULE(mdio, mvneta, mdio_driver, 0, 0);
223 MODULE_DEPEND(mvneta, mdio, 1, 1, 1);
224 MODULE_DEPEND(mvneta, ether, 1, 1, 1);
225 MODULE_DEPEND(mvneta, miibus, 1, 1, 1);
226 MODULE_DEPEND(mvneta, mvxpbm, 1, 1, 1);
227
228 /*
229 * List of MIB register and names
230 */
231 enum mvneta_mib_idx
232 {
233 MVNETA_MIB_RX_GOOD_OCT_IDX,
234 MVNETA_MIB_RX_BAD_OCT_IDX,
235 MVNETA_MIB_TX_MAC_TRNS_ERR_IDX,
236 MVNETA_MIB_RX_GOOD_FRAME_IDX,
237 MVNETA_MIB_RX_BAD_FRAME_IDX,
238 MVNETA_MIB_RX_BCAST_FRAME_IDX,
239 MVNETA_MIB_RX_MCAST_FRAME_IDX,
240 MVNETA_MIB_RX_FRAME64_OCT_IDX,
241 MVNETA_MIB_RX_FRAME127_OCT_IDX,
242 MVNETA_MIB_RX_FRAME255_OCT_IDX,
243 MVNETA_MIB_RX_FRAME511_OCT_IDX,
244 MVNETA_MIB_RX_FRAME1023_OCT_IDX,
245 MVNETA_MIB_RX_FRAMEMAX_OCT_IDX,
246 MVNETA_MIB_TX_GOOD_OCT_IDX,
247 MVNETA_MIB_TX_GOOD_FRAME_IDX,
248 MVNETA_MIB_TX_EXCES_COL_IDX,
249 MVNETA_MIB_TX_MCAST_FRAME_IDX,
250 MVNETA_MIB_TX_BCAST_FRAME_IDX,
251 MVNETA_MIB_TX_MAC_CTL_ERR_IDX,
252 MVNETA_MIB_FC_SENT_IDX,
253 MVNETA_MIB_FC_GOOD_IDX,
254 MVNETA_MIB_FC_BAD_IDX,
255 MVNETA_MIB_PKT_UNDERSIZE_IDX,
256 MVNETA_MIB_PKT_FRAGMENT_IDX,
257 MVNETA_MIB_PKT_OVERSIZE_IDX,
258 MVNETA_MIB_PKT_JABBER_IDX,
259 MVNETA_MIB_MAC_RX_ERR_IDX,
260 MVNETA_MIB_MAC_CRC_ERR_IDX,
261 MVNETA_MIB_MAC_COL_IDX,
262 MVNETA_MIB_MAC_LATE_COL_IDX,
263 };
264
265 STATIC struct mvneta_mib_def {
266 uint32_t regnum;
267 int reg64;
268 const char *sysctl_name;
269 const char *desc;
270 } mvneta_mib_list[] = {
271 [MVNETA_MIB_RX_GOOD_OCT_IDX] = {MVNETA_MIB_RX_GOOD_OCT, 1,
272 "rx_good_oct", "Good Octets Rx"},
273 [MVNETA_MIB_RX_BAD_OCT_IDX] = {MVNETA_MIB_RX_BAD_OCT, 0,
274 "rx_bad_oct", "Bad Octets Rx"},
275 [MVNETA_MIB_TX_MAC_TRNS_ERR_IDX] = {MVNETA_MIB_TX_MAC_TRNS_ERR, 0,
276 "tx_mac_err", "MAC Transmit Error"},
277 [MVNETA_MIB_RX_GOOD_FRAME_IDX] = {MVNETA_MIB_RX_GOOD_FRAME, 0,
278 "rx_good_frame", "Good Frames Rx"},
279 [MVNETA_MIB_RX_BAD_FRAME_IDX] = {MVNETA_MIB_RX_BAD_FRAME, 0,
280 "rx_bad_frame", "Bad Frames Rx"},
281 [MVNETA_MIB_RX_BCAST_FRAME_IDX] = {MVNETA_MIB_RX_BCAST_FRAME, 0,
282 "rx_bcast_frame", "Broadcast Frames Rx"},
283 [MVNETA_MIB_RX_MCAST_FRAME_IDX] = {MVNETA_MIB_RX_MCAST_FRAME, 0,
284 "rx_mcast_frame", "Multicast Frames Rx"},
285 [MVNETA_MIB_RX_FRAME64_OCT_IDX] = {MVNETA_MIB_RX_FRAME64_OCT, 0,
286 "rx_frame_1_64", "Frame Size 1 - 64"},
287 [MVNETA_MIB_RX_FRAME127_OCT_IDX] = {MVNETA_MIB_RX_FRAME127_OCT, 0,
288 "rx_frame_65_127", "Frame Size 65 - 127"},
289 [MVNETA_MIB_RX_FRAME255_OCT_IDX] = {MVNETA_MIB_RX_FRAME255_OCT, 0,
290 "rx_frame_128_255", "Frame Size 128 - 255"},
291 [MVNETA_MIB_RX_FRAME511_OCT_IDX] = {MVNETA_MIB_RX_FRAME511_OCT, 0,
292 "rx_frame_256_511", "Frame Size 256 - 511"},
293 [MVNETA_MIB_RX_FRAME1023_OCT_IDX] = {MVNETA_MIB_RX_FRAME1023_OCT, 0,
294 "rx_frame_512_1023", "Frame Size 512 - 1023"},
295 [MVNETA_MIB_RX_FRAMEMAX_OCT_IDX] = {MVNETA_MIB_RX_FRAMEMAX_OCT, 0,
296 "rx_fame_1024_max", "Frame Size 1024 - Max"},
297 [MVNETA_MIB_TX_GOOD_OCT_IDX] = {MVNETA_MIB_TX_GOOD_OCT, 1,
298 "tx_good_oct", "Good Octets Tx"},
299 [MVNETA_MIB_TX_GOOD_FRAME_IDX] = {MVNETA_MIB_TX_GOOD_FRAME, 0,
300 "tx_good_frame", "Good Frames Tx"},
301 [MVNETA_MIB_TX_EXCES_COL_IDX] = {MVNETA_MIB_TX_EXCES_COL, 0,
302 "tx_exces_collision", "Excessive Collision"},
303 [MVNETA_MIB_TX_MCAST_FRAME_IDX] = {MVNETA_MIB_TX_MCAST_FRAME, 0,
304 "tx_mcast_frame", "Multicast Frames Tx"},
305 [MVNETA_MIB_TX_BCAST_FRAME_IDX] = {MVNETA_MIB_TX_BCAST_FRAME, 0,
306 "tx_bcast_frame", "Broadcast Frames Tx"},
307 [MVNETA_MIB_TX_MAC_CTL_ERR_IDX] = {MVNETA_MIB_TX_MAC_CTL_ERR, 0,
308 "tx_mac_ctl_err", "Unknown MAC Control"},
309 [MVNETA_MIB_FC_SENT_IDX] = {MVNETA_MIB_FC_SENT, 0,
310 "fc_tx", "Flow Control Tx"},
311 [MVNETA_MIB_FC_GOOD_IDX] = {MVNETA_MIB_FC_GOOD, 0,
312 "fc_rx_good", "Good Flow Control Rx"},
313 [MVNETA_MIB_FC_BAD_IDX] = {MVNETA_MIB_FC_BAD, 0,
314 "fc_rx_bad", "Bad Flow Control Rx"},
315 [MVNETA_MIB_PKT_UNDERSIZE_IDX] = {MVNETA_MIB_PKT_UNDERSIZE, 0,
316 "pkt_undersize", "Undersized Packets Rx"},
317 [MVNETA_MIB_PKT_FRAGMENT_IDX] = {MVNETA_MIB_PKT_FRAGMENT, 0,
318 "pkt_fragment", "Fragmented Packets Rx"},
319 [MVNETA_MIB_PKT_OVERSIZE_IDX] = {MVNETA_MIB_PKT_OVERSIZE, 0,
320 "pkt_oversize", "Oversized Packets Rx"},
321 [MVNETA_MIB_PKT_JABBER_IDX] = {MVNETA_MIB_PKT_JABBER, 0,
322 "pkt_jabber", "Jabber Packets Rx"},
323 [MVNETA_MIB_MAC_RX_ERR_IDX] = {MVNETA_MIB_MAC_RX_ERR, 0,
324 "mac_rx_err", "MAC Rx Errors"},
325 [MVNETA_MIB_MAC_CRC_ERR_IDX] = {MVNETA_MIB_MAC_CRC_ERR, 0,
326 "mac_crc_err", "MAC CRC Errors"},
327 [MVNETA_MIB_MAC_COL_IDX] = {MVNETA_MIB_MAC_COL, 0,
328 "mac_collision", "MAC Collision"},
329 [MVNETA_MIB_MAC_LATE_COL_IDX] = {MVNETA_MIB_MAC_LATE_COL, 0,
330 "mac_late_collision", "MAC Late Collision"},
331 };
332
333 static struct resource_spec res_spec[] = {
334 { SYS_RES_MEMORY, 0, RF_ACTIVE },
335 { SYS_RES_IRQ, 0, RF_ACTIVE },
336 { -1, 0}
337 };
338
339 static struct {
340 driver_intr_t *handler;
341 char * description;
342 } mvneta_intrs[] = {
343 { mvneta_rxtxth_intr, "MVNETA aggregated interrupt" },
344 };
345
346 static int
347 mvneta_set_mac_address(struct mvneta_softc *sc, uint8_t *addr)
348 {
349 unsigned int mac_h;
350 unsigned int mac_l;
351
352 mac_l = (addr[4] << 8) | (addr[5]);
353 mac_h = (addr[0] << 24) | (addr[1] << 16) |
354 (addr[2] << 8) | (addr[3] << 0);
355
356 MVNETA_WRITE(sc, MVNETA_MACAL, mac_l);
357 MVNETA_WRITE(sc, MVNETA_MACAH, mac_h);
358 return (0);
359 }
360
361 static int
362 mvneta_get_mac_address(struct mvneta_softc *sc, uint8_t *addr)
363 {
364 uint32_t mac_l, mac_h;
365
366 #ifdef FDT
367 if (mvneta_fdt_mac_address(sc, addr) == 0)
368 return (0);
369 #endif
370 /*
371 * Fall back -- use the currently programmed address.
372 */
373 mac_l = MVNETA_READ(sc, MVNETA_MACAL);
374 mac_h = MVNETA_READ(sc, MVNETA_MACAH);
375 if (mac_l == 0 && mac_h == 0) {
376 /*
377 * Generate pseudo-random MAC.
378 * Set lower part to random number | unit number.
379 */
380 mac_l = arc4random() & ~0xff;
381 mac_l |= device_get_unit(sc->dev) & 0xff;
382 mac_h = arc4random();
383 mac_h &= ~(3 << 24); /* Clear multicast and LAA bits */
384 if (bootverbose) {
385 device_printf(sc->dev,
386 "Could not acquire MAC address. "
387 "Using randomized one.\n");
388 }
389 }
390
391 addr[0] = (mac_h & 0xff000000) >> 24;
392 addr[1] = (mac_h & 0x00ff0000) >> 16;
393 addr[2] = (mac_h & 0x0000ff00) >> 8;
394 addr[3] = (mac_h & 0x000000ff);
395 addr[4] = (mac_l & 0x0000ff00) >> 8;
396 addr[5] = (mac_l & 0x000000ff);
397 return (0);
398 }
399
400 STATIC boolean_t
401 mvneta_has_switch(device_t self)
402 {
403 #ifdef FDT
404 return (mvneta_has_switch_fdt(self));
405 #endif
406
407 return (false);
408 }
409
410 STATIC int
411 mvneta_dma_create(struct mvneta_softc *sc)
412 {
413 size_t maxsize, maxsegsz;
414 size_t q;
415 int error;
416
417 /*
418 * Create Tx DMA
419 */
420 maxsize = maxsegsz = sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT;
421
422 error = bus_dma_tag_create(
423 bus_get_dma_tag(sc->dev), /* parent */
424 16, 0, /* alignment, boundary */
425 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
426 BUS_SPACE_MAXADDR, /* highaddr */
427 NULL, NULL, /* filtfunc, filtfuncarg */
428 maxsize, /* maxsize */
429 1, /* nsegments */
430 maxsegsz, /* maxsegsz */
431 0, /* flags */
432 NULL, NULL, /* lockfunc, lockfuncarg */
433 &sc->tx_dtag); /* dmat */
434 if (error != 0) {
435 device_printf(sc->dev,
436 "Failed to create DMA tag for Tx descriptors.\n");
437 goto fail;
438 }
439 error = bus_dma_tag_create(
440 bus_get_dma_tag(sc->dev), /* parent */
441 1, 0, /* alignment, boundary */
442 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
443 BUS_SPACE_MAXADDR, /* highaddr */
444 NULL, NULL, /* filtfunc, filtfuncarg */
445 MVNETA_MAX_FRAME, /* maxsize */
446 MVNETA_TX_SEGLIMIT, /* nsegments */
447 MVNETA_MAX_FRAME, /* maxsegsz */
448 BUS_DMA_ALLOCNOW, /* flags */
449 NULL, NULL, /* lockfunc, lockfuncarg */
450 &sc->txmbuf_dtag);
451 if (error != 0) {
452 device_printf(sc->dev,
453 "Failed to create DMA tag for Tx mbufs.\n");
454 goto fail;
455 }
456
457 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
458 error = mvneta_ring_alloc_tx_queue(sc, q);
459 if (error != 0) {
460 device_printf(sc->dev,
461 "Failed to allocate DMA safe memory for TxQ: %zu\n", q);
462 goto fail;
463 }
464 }
465
466 /*
467 * Create Rx DMA.
468 */
469 /* Create tag for Rx descripors */
470 error = bus_dma_tag_create(
471 bus_get_dma_tag(sc->dev), /* parent */
472 32, 0, /* alignment, boundary */
473 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
474 BUS_SPACE_MAXADDR, /* highaddr */
475 NULL, NULL, /* filtfunc, filtfuncarg */
476 sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsize */
477 1, /* nsegments */
478 sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT, /* maxsegsz */
479 0, /* flags */
480 NULL, NULL, /* lockfunc, lockfuncarg */
481 &sc->rx_dtag); /* dmat */
482 if (error != 0) {
483 device_printf(sc->dev,
484 "Failed to create DMA tag for Rx descriptors.\n");
485 goto fail;
486 }
487
488 /* Create tag for Rx buffers */
489 error = bus_dma_tag_create(
490 bus_get_dma_tag(sc->dev), /* parent */
491 32, 0, /* alignment, boundary */
492 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
493 BUS_SPACE_MAXADDR, /* highaddr */
494 NULL, NULL, /* filtfunc, filtfuncarg */
495 MVNETA_MAX_FRAME, 1, /* maxsize, nsegments */
496 MVNETA_MAX_FRAME, /* maxsegsz */
497 0, /* flags */
498 NULL, NULL, /* lockfunc, lockfuncarg */
499 &sc->rxbuf_dtag); /* dmat */
500 if (error != 0) {
501 device_printf(sc->dev,
502 "Failed to create DMA tag for Rx buffers.\n");
503 goto fail;
504 }
505
506 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
507 if (mvneta_ring_alloc_rx_queue(sc, q) != 0) {
508 device_printf(sc->dev,
509 "Failed to allocate DMA safe memory for RxQ: %zu\n", q);
510 goto fail;
511 }
512 }
513
514 return (0);
515 fail:
516 mvneta_detach(sc->dev);
517
518 return (error);
519 }
520
521 /* ARGSUSED */
522 int
523 mvneta_attach(device_t self)
524 {
525 struct mvneta_softc *sc;
526 if_t ifp;
527 device_t child;
528 int ifm_target;
529 int q, error;
530 #if !defined(__aarch64__)
531 uint32_t reg;
532 #endif
533 clk_t clk;
534
535 sc = device_get_softc(self);
536 sc->dev = self;
537
538 mtx_init(&sc->mtx, "mvneta_sc", NULL, MTX_DEF);
539
540 error = bus_alloc_resources(self, res_spec, sc->res);
541 if (error) {
542 device_printf(self, "could not allocate resources\n");
543 return (ENXIO);
544 }
545
546 sc->version = MVNETA_READ(sc, MVNETA_PV);
547 device_printf(self, "version is %x\n", sc->version);
548 callout_init(&sc->tick_ch, 0);
549
550 /*
551 * make sure DMA engines are in reset state
552 */
553 MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
554 MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
555
556 error = clk_get_by_ofw_index(sc->dev, ofw_bus_get_node(sc->dev), 0,
557 &clk);
558 if (error != 0) {
559 #if defined(__aarch64__)
560 device_printf(sc->dev,
561 "Cannot get clock, using default frequency: %d\n",
562 A3700_TCLK_250MHZ);
563 sc->clk_freq = A3700_TCLK_250MHZ;
564 #else
565 device_printf(sc->dev,
566 "Cannot get clock, using get_tclk()\n");
567 sc->clk_freq = get_tclk();
568 #endif
569 } else {
570 error = clk_get_freq(clk, &sc->clk_freq);
571 if (error != 0) {
572 device_printf(sc->dev,
573 "Cannot obtain frequency from parent clock\n");
574 bus_release_resources(sc->dev, res_spec, sc->res);
575 return (error);
576 }
577 }
578
579 #if !defined(__aarch64__)
580 /*
581 * Disable port snoop for buffers and descriptors
582 * to avoid L2 caching of both without DRAM copy.
583 * Obtain coherency settings from the first MBUS
584 * window attribute.
585 */
586 if ((MVNETA_READ(sc, MV_WIN_NETA_BASE(0)) & IO_WIN_COH_ATTR_MASK) == 0) {
587 reg = MVNETA_READ(sc, MVNETA_PSNPCFG);
588 reg &= ~MVNETA_PSNPCFG_DESCSNP_MASK;
589 reg &= ~MVNETA_PSNPCFG_BUFSNP_MASK;
590 MVNETA_WRITE(sc, MVNETA_PSNPCFG, reg);
591 }
592 #endif
593
594 error = bus_setup_intr(self, sc->res[1],
595 INTR_TYPE_NET | INTR_MPSAFE, NULL, mvneta_intrs[0].handler, sc,
596 &sc->ih_cookie[0]);
597 if (error) {
598 device_printf(self, "could not setup %s\n",
599 mvneta_intrs[0].description);
600 mvneta_detach(self);
601 return (error);
602 }
603
604 /*
605 * MAC address
606 */
607 if (mvneta_get_mac_address(sc, sc->enaddr)) {
608 device_printf(self, "no mac address.\n");
609 return (ENXIO);
610 }
611 mvneta_set_mac_address(sc, sc->enaddr);
612
613 mvneta_disable_intr(sc);
614
615 /* Allocate network interface */
616 ifp = sc->ifp = if_alloc(IFT_ETHER);
617 if (ifp == NULL) {
618 device_printf(self, "if_alloc() failed\n");
619 mvneta_detach(self);
620 return (ENOMEM);
621 }
622 if_initname(ifp, device_get_name(self), device_get_unit(self));
623
624 /*
625 * We can support 802.1Q VLAN-sized frames and jumbo
626 * Ethernet frames.
627 */
628 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_JUMBO_MTU, 0);
629
630 if_setsoftc(ifp, sc);
631 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
632 #ifdef MVNETA_MULTIQUEUE
633 if_settransmitfn(ifp, mvneta_transmit);
634 if_setqflushfn(ifp, mvneta_qflush);
635 #else /* !MVNETA_MULTIQUEUE */
636 if_setstartfn(ifp, mvneta_start);
637 if_setsendqlen(ifp, MVNETA_TX_RING_CNT - 1);
638 if_setsendqready(ifp);
639 #endif
640 if_setinitfn(ifp, mvneta_init);
641 if_setioctlfn(ifp, mvneta_ioctl);
642
643 /*
644 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
645 */
646 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
647
648 /*
649 * As VLAN hardware tagging is not supported
650 * but is necessary to perform VLAN hardware checksums,
651 * it is done in the driver
652 */
653 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM, 0);
654
655 /*
656 * Currently IPv6 HW checksum is broken, so make sure it is disabled.
657 */
658 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM_IPV6);
659 if_setcapenable(ifp, if_getcapabilities(ifp));
660
661 /*
662 * Disabled option(s):
663 * - Support for Large Receive Offload
664 */
665 if_setcapabilitiesbit(ifp, IFCAP_LRO, 0);
666
667 if_sethwassist(ifp, CSUM_IP | CSUM_TCP | CSUM_UDP);
668
669 sc->rx_frame_size = MCLBYTES; /* ether_ifattach() always sets normal mtu */
670
671 /*
672 * Device DMA Buffer allocation.
673 * Handles resource deallocation in case of failure.
674 */
675 error = mvneta_dma_create(sc);
676 if (error != 0) {
677 mvneta_detach(self);
678 return (error);
679 }
680
681 /* Initialize queues */
682 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
683 error = mvneta_ring_init_tx_queue(sc, q);
684 if (error != 0) {
685 mvneta_detach(self);
686 return (error);
687 }
688 }
689
690 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
691 error = mvneta_ring_init_rx_queue(sc, q);
692 if (error != 0) {
693 mvneta_detach(self);
694 return (error);
695 }
696 }
697
698 /*
699 * Enable DMA engines and Initialize Device Registers.
700 */
701 MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
702 MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
703 MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
704 mvneta_sc_lock(sc);
705 mvneta_filter_setup(sc);
706 mvneta_sc_unlock(sc);
707 mvneta_initreg(ifp);
708
709 /*
710 * Now MAC is working, setup MII.
711 */
712 if (mii_init == 0) {
713 /*
714 * MII bus is shared by all MACs and all PHYs in SoC.
715 * serializing the bus access should be safe.
716 */
717 mtx_init(&mii_mutex, "mvneta_mii", NULL, MTX_DEF);
718 mii_init = 1;
719 }
720
721 /* Attach PHY(s) */
722 if ((sc->phy_addr != MII_PHY_ANY) && (!sc->use_inband_status)) {
723 error = mii_attach(self, &sc->miibus, ifp, mvneta_mediachange,
724 mvneta_mediastatus, BMSR_DEFCAPMASK, sc->phy_addr,
725 MII_OFFSET_ANY, 0);
726 if (error != 0) {
727 device_printf(self, "MII attach failed, error: %d\n",
728 error);
729 ether_ifdetach(sc->ifp);
730 mvneta_detach(self);
731 return (error);
732 }
733 sc->mii = device_get_softc(sc->miibus);
734 sc->phy_attached = 1;
735
736 /* Disable auto-negotiation in MAC - rely on PHY layer */
737 mvneta_update_autoneg(sc, FALSE);
738 } else if (sc->use_inband_status == TRUE) {
739 /* In-band link status */
740 ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
741 mvneta_mediastatus);
742
743 /* Configure media */
744 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
745 0, NULL);
746 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
747 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
748 0, NULL);
749 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
750 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
751 0, NULL);
752 ifmedia_add(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
753 ifmedia_set(&sc->mvneta_ifmedia, IFM_ETHER | IFM_AUTO);
754
755 /* Enable auto-negotiation */
756 mvneta_update_autoneg(sc, TRUE);
757
758 mvneta_sc_lock(sc);
759 if (MVNETA_IS_LINKUP(sc))
760 mvneta_linkup(sc);
761 else
762 mvneta_linkdown(sc);
763 mvneta_sc_unlock(sc);
764
765 } else {
766 /* Fixed-link, use predefined values */
767 mvneta_update_autoneg(sc, FALSE);
768 ifmedia_init(&sc->mvneta_ifmedia, 0, mvneta_mediachange,
769 mvneta_mediastatus);
770
771 ifm_target = IFM_ETHER;
772 switch (sc->phy_speed) {
773 case 2500:
774 if (sc->phy_mode != MVNETA_PHY_SGMII &&
775 sc->phy_mode != MVNETA_PHY_QSGMII) {
776 device_printf(self,
777 "2.5G speed can work only in (Q)SGMII mode\n");
778 ether_ifdetach(sc->ifp);
779 mvneta_detach(self);
780 return (ENXIO);
781 }
782 ifm_target |= IFM_2500_T;
783 break;
784 case 1000:
785 ifm_target |= IFM_1000_T;
786 break;
787 case 100:
788 ifm_target |= IFM_100_TX;
789 break;
790 case 10:
791 ifm_target |= IFM_10_T;
792 break;
793 default:
794 ether_ifdetach(sc->ifp);
795 mvneta_detach(self);
796 return (ENXIO);
797 }
798
799 if (sc->phy_fdx)
800 ifm_target |= IFM_FDX;
801 else
802 ifm_target |= IFM_HDX;
803
804 ifmedia_add(&sc->mvneta_ifmedia, ifm_target, 0, NULL);
805 ifmedia_set(&sc->mvneta_ifmedia, ifm_target);
806 if_link_state_change(sc->ifp, LINK_STATE_UP);
807
808 if (mvneta_has_switch(self)) {
809 if (bootverbose)
810 device_printf(self, "This device is attached to a switch\n");
811 child = device_add_child(sc->dev, "mdio", -1);
812 if (child == NULL) {
813 ether_ifdetach(sc->ifp);
814 mvneta_detach(self);
815 return (ENXIO);
816 }
817 bus_generic_attach(sc->dev);
818 bus_generic_attach(child);
819 }
820
821 /* Configure MAC media */
822 mvneta_update_media(sc, ifm_target);
823 }
824
825 ether_ifattach(ifp, sc->enaddr);
826
827 callout_reset(&sc->tick_ch, 0, mvneta_tick, sc);
828
829 sysctl_mvneta_init(sc);
830
831 return (0);
832 }
833
834 STATIC int
835 mvneta_detach(device_t dev)
836 {
837 struct mvneta_softc *sc;
838 int q;
839
840 sc = device_get_softc(dev);
841
842 if (device_is_attached(dev)) {
843 mvneta_stop(sc);
844 callout_drain(&sc->tick_ch);
845 ether_ifdetach(sc->ifp);
846 }
847
848 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++)
849 mvneta_ring_dealloc_rx_queue(sc, q);
850 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++)
851 mvneta_ring_dealloc_tx_queue(sc, q);
852
853 device_delete_children(dev);
854
855 if (sc->ih_cookie[0] != NULL)
856 bus_teardown_intr(dev, sc->res[1], sc->ih_cookie[0]);
857
858 if (sc->tx_dtag != NULL)
859 bus_dma_tag_destroy(sc->tx_dtag);
860 if (sc->rx_dtag != NULL)
861 bus_dma_tag_destroy(sc->rx_dtag);
862 if (sc->txmbuf_dtag != NULL)
863 bus_dma_tag_destroy(sc->txmbuf_dtag);
864 if (sc->rxbuf_dtag != NULL)
865 bus_dma_tag_destroy(sc->rxbuf_dtag);
866
867 bus_release_resources(dev, res_spec, sc->res);
868
869 if (sc->ifp)
870 if_free(sc->ifp);
871
872 if (mtx_initialized(&sc->mtx))
873 mtx_destroy(&sc->mtx);
874
875 return (0);
876 }
877
878 /*
879 * MII
880 */
881 STATIC int
882 mvneta_miibus_readreg(device_t dev, int phy, int reg)
883 {
884 struct mvneta_softc *sc;
885 if_t ifp;
886 uint32_t smi, val;
887 int i;
888
889 sc = device_get_softc(dev);
890 ifp = sc->ifp;
891
892 mtx_lock(&mii_mutex);
893
894 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
895 if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
896 break;
897 DELAY(1);
898 }
899 if (i == MVNETA_PHY_TIMEOUT) {
900 if_printf(ifp, "SMI busy timeout\n");
901 mtx_unlock(&mii_mutex);
902 return (-1);
903 }
904
905 smi = MVNETA_SMI_PHYAD(phy) |
906 MVNETA_SMI_REGAD(reg) | MVNETA_SMI_OPCODE_READ;
907 MVNETA_WRITE(sc, MVNETA_SMI, smi);
908
909 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
910 if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
911 break;
912 DELAY(1);
913 }
914
915 if (i == MVNETA_PHY_TIMEOUT) {
916 if_printf(ifp, "SMI busy timeout\n");
917 mtx_unlock(&mii_mutex);
918 return (-1);
919 }
920 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
921 smi = MVNETA_READ(sc, MVNETA_SMI);
922 if (smi & MVNETA_SMI_READVALID)
923 break;
924 DELAY(1);
925 }
926
927 if (i == MVNETA_PHY_TIMEOUT) {
928 if_printf(ifp, "SMI busy timeout\n");
929 mtx_unlock(&mii_mutex);
930 return (-1);
931 }
932
933 mtx_unlock(&mii_mutex);
934
935 #ifdef MVNETA_KTR
936 CTR3(KTR_SPARE2, "%s i=%d, timeout=%d\n", if_getname(ifp), i,
937 MVNETA_PHY_TIMEOUT);
938 #endif
939
940 val = smi & MVNETA_SMI_DATA_MASK;
941
942 #ifdef MVNETA_KTR
943 CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", if_getname(ifp), phy,
944 reg, val);
945 #endif
946 return (val);
947 }
948
949 STATIC int
950 mvneta_miibus_writereg(device_t dev, int phy, int reg, int val)
951 {
952 struct mvneta_softc *sc;
953 if_t ifp;
954 uint32_t smi;
955 int i;
956
957 sc = device_get_softc(dev);
958 ifp = sc->ifp;
959 #ifdef MVNETA_KTR
960 CTR4(KTR_SPARE2, "%s phy=%d, reg=%#x, val=%#x\n", if_name(ifp),
961 phy, reg, val);
962 #endif
963
964 mtx_lock(&mii_mutex);
965
966 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
967 if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
968 break;
969 DELAY(1);
970 }
971 if (i == MVNETA_PHY_TIMEOUT) {
972 if_printf(ifp, "SMI busy timeout\n");
973 mtx_unlock(&mii_mutex);
974 return (0);
975 }
976
977 smi = MVNETA_SMI_PHYAD(phy) | MVNETA_SMI_REGAD(reg) |
978 MVNETA_SMI_OPCODE_WRITE | (val & MVNETA_SMI_DATA_MASK);
979 MVNETA_WRITE(sc, MVNETA_SMI, smi);
980
981 for (i = 0; i < MVNETA_PHY_TIMEOUT; i++) {
982 if ((MVNETA_READ(sc, MVNETA_SMI) & MVNETA_SMI_BUSY) == 0)
983 break;
984 DELAY(1);
985 }
986
987 mtx_unlock(&mii_mutex);
988
989 if (i == MVNETA_PHY_TIMEOUT)
990 if_printf(ifp, "phy write timed out\n");
991
992 return (0);
993 }
994
995 STATIC void
996 mvneta_portup(struct mvneta_softc *sc)
997 {
998 int q;
999
1000 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1001 mvneta_rx_lockq(sc, q);
1002 mvneta_rx_queue_enable(sc->ifp, q);
1003 mvneta_rx_unlockq(sc, q);
1004 }
1005
1006 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1007 mvneta_tx_lockq(sc, q);
1008 mvneta_tx_queue_enable(sc->ifp, q);
1009 mvneta_tx_unlockq(sc, q);
1010 }
1011
1012 }
1013
1014 STATIC void
1015 mvneta_portdown(struct mvneta_softc *sc)
1016 {
1017 struct mvneta_rx_ring *rx;
1018 struct mvneta_tx_ring *tx;
1019 int q, cnt;
1020 uint32_t reg;
1021
1022 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1023 rx = MVNETA_RX_RING(sc, q);
1024 mvneta_rx_lockq(sc, q);
1025 rx->queue_status = MVNETA_QUEUE_DISABLED;
1026 mvneta_rx_unlockq(sc, q);
1027 }
1028
1029 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1030 tx = MVNETA_TX_RING(sc, q);
1031 mvneta_tx_lockq(sc, q);
1032 tx->queue_status = MVNETA_QUEUE_DISABLED;
1033 mvneta_tx_unlockq(sc, q);
1034 }
1035
1036 /* Wait for all Rx activity to terminate. */
1037 reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1038 reg = MVNETA_RQC_DIS(reg);
1039 MVNETA_WRITE(sc, MVNETA_RQC, reg);
1040 cnt = 0;
1041 do {
1042 if (cnt >= RX_DISABLE_TIMEOUT) {
1043 if_printf(sc->ifp,
1044 "timeout for RX stopped. rqc 0x%x\n", reg);
1045 break;
1046 }
1047 cnt++;
1048 reg = MVNETA_READ(sc, MVNETA_RQC);
1049 } while ((reg & MVNETA_RQC_EN_MASK) != 0);
1050
1051 /* Wait for all Tx activity to terminate. */
1052 reg = MVNETA_READ(sc, MVNETA_PIE);
1053 reg &= ~MVNETA_PIE_TXPKTINTRPTENB_MASK;
1054 MVNETA_WRITE(sc, MVNETA_PIE, reg);
1055
1056 reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1057 reg &= ~MVNETA_PRXTXTI_TBTCQ_MASK;
1058 MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1059
1060 reg = MVNETA_READ(sc, MVNETA_TQC) & MVNETA_TQC_EN_MASK;
1061 reg = MVNETA_TQC_DIS(reg);
1062 MVNETA_WRITE(sc, MVNETA_TQC, reg);
1063 cnt = 0;
1064 do {
1065 if (cnt >= TX_DISABLE_TIMEOUT) {
1066 if_printf(sc->ifp,
1067 "timeout for TX stopped. tqc 0x%x\n", reg);
1068 break;
1069 }
1070 cnt++;
1071 reg = MVNETA_READ(sc, MVNETA_TQC);
1072 } while ((reg & MVNETA_TQC_EN_MASK) != 0);
1073
1074 /* Wait for all Tx FIFO is empty */
1075 cnt = 0;
1076 do {
1077 if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1078 if_printf(sc->ifp,
1079 "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1080 break;
1081 }
1082 cnt++;
1083 reg = MVNETA_READ(sc, MVNETA_PS0);
1084 } while (((reg & MVNETA_PS0_TXFIFOEMP) == 0) &&
1085 ((reg & MVNETA_PS0_TXINPROG) != 0));
1086 }
1087
1088 /*
1089 * Device Register Initialization
1090 * reset device registers to device driver default value.
1091 * the device is not enabled here.
1092 */
1093 STATIC int
1094 mvneta_initreg(if_t ifp)
1095 {
1096 struct mvneta_softc *sc;
1097 int q;
1098 uint32_t reg;
1099
1100 sc = if_getsoftc(ifp);
1101 #ifdef MVNETA_KTR
1102 CTR1(KTR_SPARE2, "%s initializing device register", if_name(ifp));
1103 #endif
1104
1105 /* Disable Legacy WRR, Disable EJP, Release from reset. */
1106 MVNETA_WRITE(sc, MVNETA_TQC_1, 0);
1107 /* Enable mbus retry. */
1108 MVNETA_WRITE(sc, MVNETA_MBUS_CONF, MVNETA_MBUS_RETRY_EN);
1109
1110 /* Init TX/RX Queue Registers */
1111 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1112 mvneta_rx_lockq(sc, q);
1113 if (mvneta_rx_queue_init(ifp, q) != 0) {
1114 device_printf(sc->dev,
1115 "initialization failed: cannot initialize queue\n");
1116 mvneta_rx_unlockq(sc, q);
1117 return (ENOBUFS);
1118 }
1119 mvneta_rx_unlockq(sc, q);
1120 }
1121 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1122 mvneta_tx_lockq(sc, q);
1123 if (mvneta_tx_queue_init(ifp, q) != 0) {
1124 device_printf(sc->dev,
1125 "initialization failed: cannot initialize queue\n");
1126 mvneta_tx_unlockq(sc, q);
1127 return (ENOBUFS);
1128 }
1129 mvneta_tx_unlockq(sc, q);
1130 }
1131
1132 /*
1133 * Ethernet Unit Control - disable automatic PHY management by HW.
1134 * In case the port uses SMI-controlled PHY, poll its status with
1135 * mii_tick() and update MAC settings accordingly.
1136 */
1137 reg = MVNETA_READ(sc, MVNETA_EUC);
1138 reg &= ~MVNETA_EUC_POLLING;
1139 MVNETA_WRITE(sc, MVNETA_EUC, reg);
1140
1141 /* EEE: Low Power Idle */
1142 reg = MVNETA_LPIC0_LILIMIT(MVNETA_LPI_LI);
1143 reg |= MVNETA_LPIC0_TSLIMIT(MVNETA_LPI_TS);
1144 MVNETA_WRITE(sc, MVNETA_LPIC0, reg);
1145
1146 reg = MVNETA_LPIC1_TWLIMIT(MVNETA_LPI_TW);
1147 MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
1148
1149 reg = MVNETA_LPIC2_MUSTSET;
1150 MVNETA_WRITE(sc, MVNETA_LPIC2, reg);
1151
1152 /* Port MAC Control set 0 */
1153 reg = MVNETA_PMACC0_MUSTSET; /* must write 0x1 */
1154 reg &= ~MVNETA_PMACC0_PORTEN; /* port is still disabled */
1155 reg |= MVNETA_PMACC0_FRAMESIZELIMIT(if_getmtu(ifp) + MVNETA_ETHER_SIZE);
1156 MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
1157
1158 /* Port MAC Control set 2 */
1159 reg = MVNETA_READ(sc, MVNETA_PMACC2);
1160 switch (sc->phy_mode) {
1161 case MVNETA_PHY_QSGMII:
1162 reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1163 MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_QSGMII);
1164 break;
1165 case MVNETA_PHY_SGMII:
1166 reg |= (MVNETA_PMACC2_PCSEN | MVNETA_PMACC2_RGMIIEN);
1167 MVNETA_WRITE(sc, MVNETA_PSERDESCFG, MVNETA_PSERDESCFG_SGMII);
1168 break;
1169 case MVNETA_PHY_RGMII:
1170 case MVNETA_PHY_RGMII_ID:
1171 reg |= MVNETA_PMACC2_RGMIIEN;
1172 break;
1173 }
1174 reg |= MVNETA_PMACC2_MUSTSET;
1175 reg &= ~MVNETA_PMACC2_PORTMACRESET;
1176 MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
1177
1178 /* Port Configuration Extended: enable Tx CRC generation */
1179 reg = MVNETA_READ(sc, MVNETA_PXCX);
1180 reg &= ~MVNETA_PXCX_TXCRCDIS;
1181 MVNETA_WRITE(sc, MVNETA_PXCX, reg);
1182
1183 /* clear MIB counter registers(clear by read) */
1184 mvneta_sc_lock(sc);
1185 mvneta_clear_mib(sc);
1186 mvneta_sc_unlock(sc);
1187
1188 /* Set SDC register except IPGINT bits */
1189 reg = MVNETA_SDC_RXBSZ_16_64BITWORDS;
1190 reg |= MVNETA_SDC_TXBSZ_16_64BITWORDS;
1191 reg |= MVNETA_SDC_BLMR;
1192 reg |= MVNETA_SDC_BLMT;
1193 MVNETA_WRITE(sc, MVNETA_SDC, reg);
1194
1195 return (0);
1196 }
1197
1198 STATIC void
1199 mvneta_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
1200 {
1201
1202 if (error != 0)
1203 return;
1204 *(bus_addr_t *)arg = segs->ds_addr;
1205 }
1206
1207 STATIC int
1208 mvneta_ring_alloc_rx_queue(struct mvneta_softc *sc, int q)
1209 {
1210 struct mvneta_rx_ring *rx;
1211 struct mvneta_buf *rxbuf;
1212 bus_dmamap_t dmap;
1213 int i, error;
1214
1215 if (q >= MVNETA_RX_QNUM_MAX)
1216 return (EINVAL);
1217
1218 rx = MVNETA_RX_RING(sc, q);
1219 mtx_init(&rx->ring_mtx, "mvneta_rx", NULL, MTX_DEF);
1220 /* Allocate DMA memory for Rx descriptors */
1221 error = bus_dmamem_alloc(sc->rx_dtag,
1222 (void**)&(rx->desc),
1223 BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1224 &rx->desc_map);
1225 if (error != 0 || rx->desc == NULL)
1226 goto fail;
1227 error = bus_dmamap_load(sc->rx_dtag, rx->desc_map,
1228 rx->desc,
1229 sizeof(struct mvneta_rx_desc) * MVNETA_RX_RING_CNT,
1230 mvneta_dmamap_cb, &rx->desc_pa, BUS_DMA_NOWAIT);
1231 if (error != 0)
1232 goto fail;
1233
1234 for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1235 error = bus_dmamap_create(sc->rxbuf_dtag, 0, &dmap);
1236 if (error != 0) {
1237 device_printf(sc->dev,
1238 "Failed to create DMA map for Rx buffer num: %d\n", i);
1239 goto fail;
1240 }
1241 rxbuf = &rx->rxbuf[i];
1242 rxbuf->dmap = dmap;
1243 rxbuf->m = NULL;
1244 }
1245
1246 return (0);
1247 fail:
1248 mvneta_rx_lockq(sc, q);
1249 mvneta_ring_flush_rx_queue(sc, q);
1250 mvneta_rx_unlockq(sc, q);
1251 mvneta_ring_dealloc_rx_queue(sc, q);
1252 device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1253 return (error);
1254 }
1255
1256 STATIC int
1257 mvneta_ring_alloc_tx_queue(struct mvneta_softc *sc, int q)
1258 {
1259 struct mvneta_tx_ring *tx;
1260 int error;
1261
1262 if (q >= MVNETA_TX_QNUM_MAX)
1263 return (EINVAL);
1264 tx = MVNETA_TX_RING(sc, q);
1265 mtx_init(&tx->ring_mtx, "mvneta_tx", NULL, MTX_DEF);
1266 error = bus_dmamem_alloc(sc->tx_dtag,
1267 (void**)&(tx->desc),
1268 BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1269 &tx->desc_map);
1270 if (error != 0 || tx->desc == NULL)
1271 goto fail;
1272 error = bus_dmamap_load(sc->tx_dtag, tx->desc_map,
1273 tx->desc,
1274 sizeof(struct mvneta_tx_desc) * MVNETA_TX_RING_CNT,
1275 mvneta_dmamap_cb, &tx->desc_pa, BUS_DMA_NOWAIT);
1276 if (error != 0)
1277 goto fail;
1278
1279 #ifdef MVNETA_MULTIQUEUE
1280 tx->br = buf_ring_alloc(MVNETA_BUFRING_SIZE, M_DEVBUF, M_NOWAIT,
1281 &tx->ring_mtx);
1282 if (tx->br == NULL) {
1283 device_printf(sc->dev,
1284 "Could not setup buffer ring for TxQ(%d)\n", q);
1285 error = ENOMEM;
1286 goto fail;
1287 }
1288 #endif
1289
1290 return (0);
1291 fail:
1292 mvneta_tx_lockq(sc, q);
1293 mvneta_ring_flush_tx_queue(sc, q);
1294 mvneta_tx_unlockq(sc, q);
1295 mvneta_ring_dealloc_tx_queue(sc, q);
1296 device_printf(sc->dev, "DMA Ring buffer allocation failure.\n");
1297 return (error);
1298 }
1299
1300 STATIC void
1301 mvneta_ring_dealloc_tx_queue(struct mvneta_softc *sc, int q)
1302 {
1303 struct mvneta_tx_ring *tx;
1304 struct mvneta_buf *txbuf;
1305 void *kva;
1306 int error;
1307 int i;
1308
1309 if (q >= MVNETA_TX_QNUM_MAX)
1310 return;
1311 tx = MVNETA_TX_RING(sc, q);
1312
1313 if (tx->taskq != NULL) {
1314 /* Remove task */
1315 while (taskqueue_cancel(tx->taskq, &tx->task, NULL) != 0)
1316 taskqueue_drain(tx->taskq, &tx->task);
1317 }
1318 #ifdef MVNETA_MULTIQUEUE
1319 if (tx->br != NULL)
1320 drbr_free(tx->br, M_DEVBUF);
1321 #endif
1322
1323 if (sc->txmbuf_dtag != NULL) {
1324 for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1325 txbuf = &tx->txbuf[i];
1326 if (txbuf->dmap != NULL) {
1327 error = bus_dmamap_destroy(sc->txmbuf_dtag,
1328 txbuf->dmap);
1329 if (error != 0) {
1330 panic("%s: map busy for Tx descriptor (Q%d, %d)",
1331 __func__, q, i);
1332 }
1333 }
1334 }
1335 }
1336
1337 if (tx->desc_pa != 0)
1338 bus_dmamap_unload(sc->tx_dtag, tx->desc_map);
1339
1340 kva = (void *)tx->desc;
1341 if (kva != NULL)
1342 bus_dmamem_free(sc->tx_dtag, tx->desc, tx->desc_map);
1343
1344 if (mtx_name(&tx->ring_mtx) != NULL)
1345 mtx_destroy(&tx->ring_mtx);
1346
1347 memset(tx, 0, sizeof(*tx));
1348 }
1349
1350 STATIC void
1351 mvneta_ring_dealloc_rx_queue(struct mvneta_softc *sc, int q)
1352 {
1353 struct mvneta_rx_ring *rx;
1354 struct lro_ctrl *lro;
1355 void *kva;
1356
1357 if (q >= MVNETA_RX_QNUM_MAX)
1358 return;
1359
1360 rx = MVNETA_RX_RING(sc, q);
1361
1362 if (rx->desc_pa != 0)
1363 bus_dmamap_unload(sc->rx_dtag, rx->desc_map);
1364
1365 kva = (void *)rx->desc;
1366 if (kva != NULL)
1367 bus_dmamem_free(sc->rx_dtag, rx->desc, rx->desc_map);
1368
1369 lro = &rx->lro;
1370 tcp_lro_free(lro);
1371
1372 if (mtx_name(&rx->ring_mtx) != NULL)
1373 mtx_destroy(&rx->ring_mtx);
1374
1375 memset(rx, 0, sizeof(*rx));
1376 }
1377
1378 STATIC int
1379 mvneta_ring_init_rx_queue(struct mvneta_softc *sc, int q)
1380 {
1381 struct mvneta_rx_ring *rx;
1382 struct lro_ctrl *lro;
1383 int error;
1384
1385 if (q >= MVNETA_RX_QNUM_MAX)
1386 return (0);
1387
1388 rx = MVNETA_RX_RING(sc, q);
1389 rx->dma = rx->cpu = 0;
1390 rx->queue_th_received = MVNETA_RXTH_COUNT;
1391 rx->queue_th_time = (sc->clk_freq / 1000) / 10; /* 0.1 [ms] */
1392
1393 /* Initialize LRO */
1394 rx->lro_enabled = FALSE;
1395 if ((if_getcapenable(sc->ifp) & IFCAP_LRO) != 0) {
1396 lro = &rx->lro;
1397 error = tcp_lro_init(lro);
1398 if (error != 0)
1399 device_printf(sc->dev, "LRO Initialization failed!\n");
1400 else {
1401 rx->lro_enabled = TRUE;
1402 lro->ifp = sc->ifp;
1403 }
1404 }
1405
1406 return (0);
1407 }
1408
1409 STATIC int
1410 mvneta_ring_init_tx_queue(struct mvneta_softc *sc, int q)
1411 {
1412 struct mvneta_tx_ring *tx;
1413 struct mvneta_buf *txbuf;
1414 int i, error;
1415
1416 if (q >= MVNETA_TX_QNUM_MAX)
1417 return (0);
1418
1419 tx = MVNETA_TX_RING(sc, q);
1420
1421 /* Tx handle */
1422 for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1423 txbuf = &tx->txbuf[i];
1424 txbuf->m = NULL;
1425 /* Tx handle needs DMA map for busdma_load_mbuf() */
1426 error = bus_dmamap_create(sc->txmbuf_dtag, 0,
1427 &txbuf->dmap);
1428 if (error != 0) {
1429 device_printf(sc->dev,
1430 "can't create dma map (tx ring %d)\n", i);
1431 return (error);
1432 }
1433 }
1434 tx->dma = tx->cpu = 0;
1435 tx->used = 0;
1436 tx->drv_error = 0;
1437 tx->queue_status = MVNETA_QUEUE_DISABLED;
1438 tx->queue_hung = FALSE;
1439
1440 tx->ifp = sc->ifp;
1441 tx->qidx = q;
1442 TASK_INIT(&tx->task, 0, mvneta_tx_task, tx);
1443 tx->taskq = taskqueue_create_fast("mvneta_tx_taskq", M_WAITOK,
1444 taskqueue_thread_enqueue, &tx->taskq);
1445 taskqueue_start_threads(&tx->taskq, 1, PI_NET, "%s: tx_taskq(%d)",
1446 device_get_nameunit(sc->dev), q);
1447
1448 return (0);
1449 }
1450
1451 STATIC void
1452 mvneta_ring_flush_tx_queue(struct mvneta_softc *sc, int q)
1453 {
1454 struct mvneta_tx_ring *tx;
1455 struct mvneta_buf *txbuf;
1456 int i;
1457
1458 tx = MVNETA_TX_RING(sc, q);
1459 KASSERT_TX_MTX(sc, q);
1460
1461 /* Tx handle */
1462 for (i = 0; i < MVNETA_TX_RING_CNT; i++) {
1463 txbuf = &tx->txbuf[i];
1464 bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
1465 if (txbuf->m != NULL) {
1466 m_freem(txbuf->m);
1467 txbuf->m = NULL;
1468 }
1469 }
1470 tx->dma = tx->cpu = 0;
1471 tx->used = 0;
1472 }
1473
1474 STATIC void
1475 mvneta_ring_flush_rx_queue(struct mvneta_softc *sc, int q)
1476 {
1477 struct mvneta_rx_ring *rx;
1478 struct mvneta_buf *rxbuf;
1479 int i;
1480
1481 rx = MVNETA_RX_RING(sc, q);
1482 KASSERT_RX_MTX(sc, q);
1483
1484 /* Rx handle */
1485 for (i = 0; i < MVNETA_RX_RING_CNT; i++) {
1486 rxbuf = &rx->rxbuf[i];
1487 mvneta_rx_buf_free(sc, rxbuf);
1488 }
1489 rx->dma = rx->cpu = 0;
1490 }
1491
1492 /*
1493 * Rx/Tx Queue Control
1494 */
1495 STATIC int
1496 mvneta_rx_queue_init(if_t ifp, int q)
1497 {
1498 struct mvneta_softc *sc;
1499 struct mvneta_rx_ring *rx;
1500 uint32_t reg;
1501
1502 sc = if_getsoftc(ifp);
1503 KASSERT_RX_MTX(sc, q);
1504 rx = MVNETA_RX_RING(sc, q);
1505 DASSERT(rx->desc_pa != 0);
1506
1507 /* descriptor address */
1508 MVNETA_WRITE(sc, MVNETA_PRXDQA(q), rx->desc_pa);
1509
1510 /* Rx buffer size and descriptor ring size */
1511 reg = MVNETA_PRXDQS_BUFFERSIZE(sc->rx_frame_size >> 3);
1512 reg |= MVNETA_PRXDQS_DESCRIPTORSQUEUESIZE(MVNETA_RX_RING_CNT);
1513 MVNETA_WRITE(sc, MVNETA_PRXDQS(q), reg);
1514 #ifdef MVNETA_KTR
1515 CTR3(KTR_SPARE2, "%s PRXDQS(%d): %#x", if_name(ifp), q,
1516 MVNETA_READ(sc, MVNETA_PRXDQS(q)));
1517 #endif
1518 /* Rx packet offset address */
1519 reg = MVNETA_PRXC_PACKETOFFSET(MVNETA_PACKET_OFFSET >> 3);
1520 MVNETA_WRITE(sc, MVNETA_PRXC(q), reg);
1521 #ifdef MVNETA_KTR
1522 CTR3(KTR_SPARE2, "%s PRXC(%d): %#x", if_name(ifp), q,
1523 MVNETA_READ(sc, MVNETA_PRXC(q)));
1524 #endif
1525
1526 /* if DMA is not working, register is not updated */
1527 DASSERT(MVNETA_READ(sc, MVNETA_PRXDQA(q)) == rx->desc_pa);
1528 return (0);
1529 }
1530
1531 STATIC int
1532 mvneta_tx_queue_init(if_t ifp, int q)
1533 {
1534 struct mvneta_softc *sc;
1535 struct mvneta_tx_ring *tx;
1536 uint32_t reg;
1537
1538 sc = if_getsoftc(ifp);
1539 KASSERT_TX_MTX(sc, q);
1540 tx = MVNETA_TX_RING(sc, q);
1541 DASSERT(tx->desc_pa != 0);
1542
1543 /* descriptor address */
1544 MVNETA_WRITE(sc, MVNETA_PTXDQA(q), tx->desc_pa);
1545
1546 /* descriptor ring size */
1547 reg = MVNETA_PTXDQS_DQS(MVNETA_TX_RING_CNT);
1548 MVNETA_WRITE(sc, MVNETA_PTXDQS(q), reg);
1549
1550 /* if DMA is not working, register is not updated */
1551 DASSERT(MVNETA_READ(sc, MVNETA_PTXDQA(q)) == tx->desc_pa);
1552 return (0);
1553 }
1554
1555 STATIC int
1556 mvneta_rx_queue_enable(if_t ifp, int q)
1557 {
1558 struct mvneta_softc *sc;
1559 struct mvneta_rx_ring *rx;
1560 uint32_t reg;
1561
1562 sc = if_getsoftc(ifp);
1563 rx = MVNETA_RX_RING(sc, q);
1564 KASSERT_RX_MTX(sc, q);
1565
1566 /* Set Rx interrupt threshold */
1567 reg = MVNETA_PRXDQTH_ODT(rx->queue_th_received);
1568 MVNETA_WRITE(sc, MVNETA_PRXDQTH(q), reg);
1569
1570 reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
1571 MVNETA_WRITE(sc, MVNETA_PRXITTH(q), reg);
1572
1573 /* Unmask RXTX_TH Intr. */
1574 reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1575 reg |= MVNETA_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1576 MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1577
1578 /* Enable Rx queue */
1579 reg = MVNETA_READ(sc, MVNETA_RQC) & MVNETA_RQC_EN_MASK;
1580 reg |= MVNETA_RQC_ENQ(q);
1581 MVNETA_WRITE(sc, MVNETA_RQC, reg);
1582
1583 rx->queue_status = MVNETA_QUEUE_WORKING;
1584 return (0);
1585 }
1586
1587 STATIC int
1588 mvneta_tx_queue_enable(if_t ifp, int q)
1589 {
1590 struct mvneta_softc *sc;
1591 struct mvneta_tx_ring *tx;
1592
1593 sc = if_getsoftc(ifp);
1594 tx = MVNETA_TX_RING(sc, q);
1595 KASSERT_TX_MTX(sc, q);
1596
1597 /* Enable Tx queue */
1598 MVNETA_WRITE(sc, MVNETA_TQC, MVNETA_TQC_ENQ(q));
1599
1600 tx->queue_status = MVNETA_QUEUE_IDLE;
1601 tx->queue_hung = FALSE;
1602 return (0);
1603 }
1604
1605 STATIC __inline void
1606 mvneta_rx_lockq(struct mvneta_softc *sc, int q)
1607 {
1608
1609 DASSERT(q >= 0);
1610 DASSERT(q < MVNETA_RX_QNUM_MAX);
1611 mtx_lock(&sc->rx_ring[q].ring_mtx);
1612 }
1613
1614 STATIC __inline void
1615 mvneta_rx_unlockq(struct mvneta_softc *sc, int q)
1616 {
1617
1618 DASSERT(q >= 0);
1619 DASSERT(q < MVNETA_RX_QNUM_MAX);
1620 mtx_unlock(&sc->rx_ring[q].ring_mtx);
1621 }
1622
1623 STATIC __inline int __unused
1624 mvneta_tx_trylockq(struct mvneta_softc *sc, int q)
1625 {
1626
1627 DASSERT(q >= 0);
1628 DASSERT(q < MVNETA_TX_QNUM_MAX);
1629 return (mtx_trylock(&sc->tx_ring[q].ring_mtx));
1630 }
1631
1632 STATIC __inline void
1633 mvneta_tx_lockq(struct mvneta_softc *sc, int q)
1634 {
1635
1636 DASSERT(q >= 0);
1637 DASSERT(q < MVNETA_TX_QNUM_MAX);
1638 mtx_lock(&sc->tx_ring[q].ring_mtx);
1639 }
1640
1641 STATIC __inline void
1642 mvneta_tx_unlockq(struct mvneta_softc *sc, int q)
1643 {
1644
1645 DASSERT(q >= 0);
1646 DASSERT(q < MVNETA_TX_QNUM_MAX);
1647 mtx_unlock(&sc->tx_ring[q].ring_mtx);
1648 }
1649
1650 /*
1651 * Interrupt Handlers
1652 */
1653 STATIC void
1654 mvneta_disable_intr(struct mvneta_softc *sc)
1655 {
1656
1657 MVNETA_WRITE(sc, MVNETA_EUIM, 0);
1658 MVNETA_WRITE(sc, MVNETA_EUIC, 0);
1659 MVNETA_WRITE(sc, MVNETA_PRXTXTIM, 0);
1660 MVNETA_WRITE(sc, MVNETA_PRXTXTIC, 0);
1661 MVNETA_WRITE(sc, MVNETA_PRXTXIM, 0);
1662 MVNETA_WRITE(sc, MVNETA_PRXTXIC, 0);
1663 MVNETA_WRITE(sc, MVNETA_PMIM, 0);
1664 MVNETA_WRITE(sc, MVNETA_PMIC, 0);
1665 MVNETA_WRITE(sc, MVNETA_PIE, 0);
1666 }
1667
1668 STATIC void
1669 mvneta_enable_intr(struct mvneta_softc *sc)
1670 {
1671 uint32_t reg;
1672
1673 /* Enable Summary Bit to check all interrupt cause. */
1674 reg = MVNETA_READ(sc, MVNETA_PRXTXTIM);
1675 reg |= MVNETA_PRXTXTI_PMISCICSUMMARY;
1676 MVNETA_WRITE(sc, MVNETA_PRXTXTIM, reg);
1677
1678 if (!sc->phy_attached || sc->use_inband_status) {
1679 /* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1680 MVNETA_WRITE(sc, MVNETA_PMIM, MVNETA_PMI_PHYSTATUSCHNG |
1681 MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE);
1682 }
1683
1684 /* Enable All Queue Interrupt */
1685 reg = MVNETA_READ(sc, MVNETA_PIE);
1686 reg |= MVNETA_PIE_RXPKTINTRPTENB_MASK;
1687 reg |= MVNETA_PIE_TXPKTINTRPTENB_MASK;
1688 MVNETA_WRITE(sc, MVNETA_PIE, reg);
1689 }
1690
1691 STATIC void
1692 mvneta_rxtxth_intr(void *arg)
1693 {
1694 struct mvneta_softc *sc;
1695 if_t ifp;
1696 uint32_t ic, queues;
1697
1698 sc = arg;
1699 ifp = sc->ifp;
1700 #ifdef MVNETA_KTR
1701 CTR1(KTR_SPARE2, "%s got RXTX_TH_Intr", if_name(ifp));
1702 #endif
1703 ic = MVNETA_READ(sc, MVNETA_PRXTXTIC);
1704 if (ic == 0)
1705 return;
1706 MVNETA_WRITE(sc, MVNETA_PRXTXTIC, ~ic);
1707
1708 /* Ack maintenance interrupt first */
1709 if (__predict_false((ic & MVNETA_PRXTXTI_PMISCICSUMMARY) &&
1710 (!sc->phy_attached || sc->use_inband_status))) {
1711 mvneta_sc_lock(sc);
1712 mvneta_misc_intr(sc);
1713 mvneta_sc_unlock(sc);
1714 }
1715 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)))
1716 return;
1717 /* RxTxTH interrupt */
1718 queues = MVNETA_PRXTXTI_GET_RBICTAPQ(ic);
1719 if (__predict_true(queues)) {
1720 #ifdef MVNETA_KTR
1721 CTR1(KTR_SPARE2, "%s got PRXTXTIC: +RXEOF", if_name(ifp));
1722 #endif
1723 /* At the moment the driver support only one RX queue. */
1724 DASSERT(MVNETA_IS_QUEUE_SET(queues, 0));
1725 mvneta_rx(sc, 0, 0);
1726 }
1727 }
1728
1729 STATIC int
1730 mvneta_misc_intr(struct mvneta_softc *sc)
1731 {
1732 uint32_t ic;
1733 int claimed = 0;
1734
1735 #ifdef MVNETA_KTR
1736 CTR1(KTR_SPARE2, "%s got MISC_INTR", if_name(sc->ifp));
1737 #endif
1738 KASSERT_SC_MTX(sc);
1739
1740 for (;;) {
1741 ic = MVNETA_READ(sc, MVNETA_PMIC);
1742 ic &= MVNETA_READ(sc, MVNETA_PMIM);
1743 if (ic == 0)
1744 break;
1745 MVNETA_WRITE(sc, MVNETA_PMIC, ~ic);
1746 claimed = 1;
1747
1748 if (ic & (MVNETA_PMI_PHYSTATUSCHNG |
1749 MVNETA_PMI_LINKCHANGE | MVNETA_PMI_PSCSYNCCHANGE))
1750 mvneta_link_isr(sc);
1751 }
1752 return (claimed);
1753 }
1754
1755 STATIC void
1756 mvneta_tick(void *arg)
1757 {
1758 struct mvneta_softc *sc;
1759 struct mvneta_tx_ring *tx;
1760 struct mvneta_rx_ring *rx;
1761 int q;
1762 uint32_t fc_prev, fc_curr;
1763
1764 sc = arg;
1765
1766 /*
1767 * This is done before mib update to get the right stats
1768 * for this tick.
1769 */
1770 mvneta_tx_drain(sc);
1771
1772 /* Extract previous flow-control frame received counter. */
1773 fc_prev = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1774 /* Read mib registers (clear by read). */
1775 mvneta_update_mib(sc);
1776 /* Extract current flow-control frame received counter. */
1777 fc_curr = sc->sysctl_mib[MVNETA_MIB_FC_GOOD_IDX].counter;
1778
1779
1780 if (sc->phy_attached && if_getflags(sc->ifp) & IFF_UP) {
1781 mvneta_sc_lock(sc);
1782 mii_tick(sc->mii);
1783
1784 /* Adjust MAC settings */
1785 mvneta_adjust_link(sc);
1786 mvneta_sc_unlock(sc);
1787 }
1788
1789 /*
1790 * We were unable to refill the rx queue and left the rx func, leaving
1791 * the ring without mbuf and no way to call the refill func.
1792 */
1793 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
1794 rx = MVNETA_RX_RING(sc, q);
1795 if (rx->needs_refill == TRUE) {
1796 mvneta_rx_lockq(sc, q);
1797 mvneta_rx_queue_refill(sc, q);
1798 mvneta_rx_unlockq(sc, q);
1799 }
1800 }
1801
1802 /*
1803 * Watchdog:
1804 * - check if queue is mark as hung.
1805 * - ignore hung status if we received some pause frame
1806 * as hardware may have paused packet transmit.
1807 */
1808 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1809 /*
1810 * We should take queue lock, but as we only read
1811 * queue status we can do it without lock, we may
1812 * only missdetect queue status for one tick.
1813 */
1814 tx = MVNETA_TX_RING(sc, q);
1815
1816 if (tx->queue_hung && (fc_curr - fc_prev) == 0)
1817 goto timeout;
1818 }
1819
1820 callout_schedule(&sc->tick_ch, hz);
1821 return;
1822
1823 timeout:
1824 if_printf(sc->ifp, "watchdog timeout\n");
1825
1826 mvneta_sc_lock(sc);
1827 sc->counter_watchdog++;
1828 sc->counter_watchdog_mib++;
1829 /* Trigger reinitialize sequence. */
1830 mvneta_stop_locked(sc);
1831 mvneta_init_locked(sc);
1832 mvneta_sc_unlock(sc);
1833 }
1834
1835 STATIC void
1836 mvneta_qflush(if_t ifp)
1837 {
1838 #ifdef MVNETA_MULTIQUEUE
1839 struct mvneta_softc *sc;
1840 struct mvneta_tx_ring *tx;
1841 struct mbuf *m;
1842 size_t q;
1843
1844 sc = if_getsoftc(ifp);
1845
1846 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
1847 tx = MVNETA_TX_RING(sc, q);
1848 mvneta_tx_lockq(sc, q);
1849 while ((m = buf_ring_dequeue_sc(tx->br)) != NULL)
1850 m_freem(m);
1851 mvneta_tx_unlockq(sc, q);
1852 }
1853 #endif
1854 if_qflush(ifp);
1855 }
1856
1857 STATIC void
1858 mvneta_tx_task(void *arg, int pending)
1859 {
1860 struct mvneta_softc *sc;
1861 struct mvneta_tx_ring *tx;
1862 if_t ifp;
1863 int error;
1864
1865 tx = arg;
1866 ifp = tx->ifp;
1867 sc = if_getsoftc(ifp);
1868
1869 mvneta_tx_lockq(sc, tx->qidx);
1870 error = mvneta_xmit_locked(sc, tx->qidx);
1871 mvneta_tx_unlockq(sc, tx->qidx);
1872
1873 /* Try again */
1874 if (__predict_false(error != 0 && error != ENETDOWN)) {
1875 pause("mvneta_tx_task_sleep", 1);
1876 taskqueue_enqueue(tx->taskq, &tx->task);
1877 }
1878 }
1879
1880 STATIC int
1881 mvneta_xmitfast_locked(struct mvneta_softc *sc, int q, struct mbuf **m)
1882 {
1883 struct mvneta_tx_ring *tx;
1884 if_t ifp;
1885 int error;
1886
1887 KASSERT_TX_MTX(sc, q);
1888 tx = MVNETA_TX_RING(sc, q);
1889 error = 0;
1890
1891 ifp = sc->ifp;
1892
1893 /* Dont enqueue packet if the queue is disabled. */
1894 if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED)) {
1895 m_freem(*m);
1896 *m = NULL;
1897 return (ENETDOWN);
1898 }
1899
1900 /* Reclaim mbuf if above threshold. */
1901 if (__predict_true(tx->used > MVNETA_TX_RECLAIM_COUNT))
1902 mvneta_tx_queue_complete(sc, q);
1903
1904 /* Do not call transmit path if queue is already too full. */
1905 if (__predict_false(tx->used >
1906 MVNETA_TX_RING_CNT - MVNETA_TX_SEGLIMIT))
1907 return (ENOBUFS);
1908
1909 error = mvneta_tx_queue(sc, m, q);
1910 if (__predict_false(error != 0))
1911 return (error);
1912
1913 /* Send a copy of the frame to the BPF listener */
1914 ETHER_BPF_MTAP(ifp, *m);
1915
1916 /* Set watchdog on */
1917 tx->watchdog_time = ticks;
1918 tx->queue_status = MVNETA_QUEUE_WORKING;
1919
1920 return (error);
1921 }
1922
1923 #ifdef MVNETA_MULTIQUEUE
1924 STATIC int
1925 mvneta_transmit(if_t ifp, struct mbuf *m)
1926 {
1927 struct mvneta_softc *sc;
1928 struct mvneta_tx_ring *tx;
1929 int error;
1930 int q;
1931
1932 sc = if_getsoftc(ifp);
1933
1934 /* Use default queue if there is no flow id as thread can migrate. */
1935 if (__predict_true(M_HASHTYPE_GET(m) != M_HASHTYPE_NONE))
1936 q = m->m_pkthdr.flowid % MVNETA_TX_QNUM_MAX;
1937 else
1938 q = 0;
1939
1940 tx = MVNETA_TX_RING(sc, q);
1941
1942 /* If buf_ring is full start transmit immediately. */
1943 if (buf_ring_full(tx->br)) {
1944 mvneta_tx_lockq(sc, q);
1945 mvneta_xmit_locked(sc, q);
1946 mvneta_tx_unlockq(sc, q);
1947 }
1948
1949 /*
1950 * If the buf_ring is empty we will not reorder packets.
1951 * If the lock is available transmit without using buf_ring.
1952 */
1953 if (buf_ring_empty(tx->br) && mvneta_tx_trylockq(sc, q) != 0) {
1954 error = mvneta_xmitfast_locked(sc, q, &m);
1955 mvneta_tx_unlockq(sc, q);
1956 if (__predict_true(error == 0))
1957 return (0);
1958
1959 /* Transmit can fail in fastpath. */
1960 if (__predict_false(m == NULL))
1961 return (error);
1962 }
1963
1964 /* Enqueue then schedule taskqueue. */
1965 error = drbr_enqueue(ifp, tx->br, m);
1966 if (__predict_false(error != 0))
1967 return (error);
1968
1969 taskqueue_enqueue(tx->taskq, &tx->task);
1970 return (0);
1971 }
1972
1973 STATIC int
1974 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
1975 {
1976 if_t ifp;
1977 struct mvneta_tx_ring *tx;
1978 struct mbuf *m;
1979 int error;
1980
1981 KASSERT_TX_MTX(sc, q);
1982 ifp = sc->ifp;
1983 tx = MVNETA_TX_RING(sc, q);
1984 error = 0;
1985
1986 while ((m = drbr_peek(ifp, tx->br)) != NULL) {
1987 error = mvneta_xmitfast_locked(sc, q, &m);
1988 if (__predict_false(error != 0)) {
1989 if (m != NULL)
1990 drbr_putback(ifp, tx->br, m);
1991 else
1992 drbr_advance(ifp, tx->br);
1993 break;
1994 }
1995 drbr_advance(ifp, tx->br);
1996 }
1997
1998 return (error);
1999 }
2000 #else /* !MVNETA_MULTIQUEUE */
2001 STATIC void
2002 mvneta_start(if_t ifp)
2003 {
2004 struct mvneta_softc *sc;
2005 struct mvneta_tx_ring *tx;
2006 int error;
2007
2008 sc = if_getsoftc(ifp);
2009 tx = MVNETA_TX_RING(sc, 0);
2010
2011 mvneta_tx_lockq(sc, 0);
2012 error = mvneta_xmit_locked(sc, 0);
2013 mvneta_tx_unlockq(sc, 0);
2014 /* Handle retransmit in the background taskq. */
2015 if (__predict_false(error != 0 && error != ENETDOWN))
2016 taskqueue_enqueue(tx->taskq, &tx->task);
2017 }
2018
2019 STATIC int
2020 mvneta_xmit_locked(struct mvneta_softc *sc, int q)
2021 {
2022 if_t ifp;
2023 struct mbuf *m;
2024 int error;
2025
2026 KASSERT_TX_MTX(sc, q);
2027 ifp = sc->ifp;
2028 error = 0;
2029
2030 while (!if_sendq_empty(ifp)) {
2031 m = if_dequeue(ifp);
2032 if (m == NULL)
2033 break;
2034
2035 error = mvneta_xmitfast_locked(sc, q, &m);
2036 if (__predict_false(error != 0)) {
2037 if (m != NULL)
2038 if_sendq_prepend(ifp, m);
2039 break;
2040 }
2041 }
2042
2043 return (error);
2044 }
2045 #endif
2046
2047 STATIC int
2048 mvneta_ioctl(if_t ifp, u_long cmd, caddr_t data)
2049 {
2050 struct mvneta_softc *sc;
2051 struct mvneta_rx_ring *rx;
2052 struct ifreq *ifr;
2053 int error, mask;
2054 uint32_t flags;
2055 bool reinit;
2056 int q;
2057
2058 error = 0;
2059 reinit = false;
2060 sc = if_getsoftc(ifp);
2061 ifr = (struct ifreq *)data;
2062 switch (cmd) {
2063 case SIOCSIFFLAGS:
2064 mvneta_sc_lock(sc);
2065 if (if_getflags(ifp) & IFF_UP) {
2066 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2067 flags = if_getflags(ifp) ^ sc->mvneta_if_flags;
2068
2069 if (flags != 0)
2070 sc->mvneta_if_flags = if_getflags(ifp);
2071
2072 if ((flags & IFF_PROMISC) != 0)
2073 mvneta_filter_setup(sc);
2074 } else {
2075 mvneta_init_locked(sc);
2076 sc->mvneta_if_flags = if_getflags(ifp);
2077 if (sc->phy_attached)
2078 mii_mediachg(sc->mii);
2079 mvneta_sc_unlock(sc);
2080 break;
2081 }
2082 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2083 mvneta_stop_locked(sc);
2084
2085 sc->mvneta_if_flags = if_getflags(ifp);
2086 mvneta_sc_unlock(sc);
2087 break;
2088 case SIOCSIFCAP:
2089 if (if_getmtu(ifp) > sc->tx_csum_limit &&
2090 ifr->ifr_reqcap & IFCAP_TXCSUM)
2091 ifr->ifr_reqcap &= ~IFCAP_TXCSUM;
2092 mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
2093 if (mask & IFCAP_HWCSUM) {
2094 if_setcapenablebit(ifp, IFCAP_HWCSUM & ifr->ifr_reqcap,
2095 IFCAP_HWCSUM);
2096 if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2097 if_sethwassist(ifp, CSUM_IP | CSUM_TCP |
2098 CSUM_UDP);
2099 else
2100 if_sethwassist(ifp, 0);
2101 }
2102 if (mask & IFCAP_LRO) {
2103 mvneta_sc_lock(sc);
2104 if_togglecapenable(ifp, IFCAP_LRO);
2105 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2106 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2107 rx = MVNETA_RX_RING(sc, q);
2108 rx->lro_enabled = !rx->lro_enabled;
2109 }
2110 }
2111 mvneta_sc_unlock(sc);
2112 }
2113 VLAN_CAPABILITIES(ifp);
2114 break;
2115 case SIOCSIFMEDIA:
2116 if ((IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ||
2117 IFM_SUBTYPE(ifr->ifr_media) == IFM_2500_T) &&
2118 (ifr->ifr_media & IFM_FDX) == 0) {
2119 device_printf(sc->dev,
2120 "%s half-duplex unsupported\n",
2121 IFM_SUBTYPE(ifr->ifr_media) == IFM_1000_T ?
2122 "1000Base-T" :
2123 "2500Base-T");
2124 error = EINVAL;
2125 break;
2126 }
2127 case SIOCGIFMEDIA: /* FALLTHROUGH */
2128 case SIOCGIFXMEDIA:
2129 if (!sc->phy_attached)
2130 error = ifmedia_ioctl(ifp, ifr, &sc->mvneta_ifmedia,
2131 cmd);
2132 else
2133 error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media,
2134 cmd);
2135 break;
2136 case SIOCSIFMTU:
2137 if (ifr->ifr_mtu < 68 || ifr->ifr_mtu > MVNETA_MAX_FRAME -
2138 MVNETA_ETHER_SIZE) {
2139 error = EINVAL;
2140 } else {
2141 if_setmtu(ifp, ifr->ifr_mtu);
2142 mvneta_sc_lock(sc);
2143 if (if_getmtu(ifp) + MVNETA_ETHER_SIZE <= MCLBYTES) {
2144 sc->rx_frame_size = MCLBYTES;
2145 } else {
2146 sc->rx_frame_size = MJUM9BYTES;
2147 }
2148 if (if_getmtu(ifp) > sc->tx_csum_limit) {
2149 if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2150 if_sethwassist(ifp, 0);
2151 } else {
2152 if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2153 if_sethwassist(ifp, CSUM_IP | CSUM_TCP |
2154 CSUM_UDP);
2155 }
2156 /*
2157 * Reinitialize RX queues.
2158 * We need to update RX descriptor size.
2159 */
2160 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2161 reinit = true;
2162 mvneta_stop_locked(sc);
2163 }
2164
2165 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2166 mvneta_rx_lockq(sc, q);
2167 if (mvneta_rx_queue_init(ifp, q) != 0) {
2168 device_printf(sc->dev,
2169 "initialization failed:"
2170 " cannot initialize queue\n");
2171 mvneta_rx_unlockq(sc, q);
2172 error = ENOBUFS;
2173 break;
2174 }
2175 mvneta_rx_unlockq(sc, q);
2176 }
2177 if (reinit)
2178 mvneta_init_locked(sc);
2179
2180 mvneta_sc_unlock(sc);
2181 }
2182 break;
2183
2184 default:
2185 error = ether_ioctl(ifp, cmd, data);
2186 break;
2187 }
2188
2189 return (error);
2190 }
2191
2192 STATIC void
2193 mvneta_init_locked(void *arg)
2194 {
2195 struct mvneta_softc *sc;
2196 if_t ifp;
2197 uint32_t reg;
2198 int q, cpu;
2199
2200 sc = arg;
2201 ifp = sc->ifp;
2202
2203 if (!device_is_attached(sc->dev) ||
2204 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2205 return;
2206
2207 mvneta_disable_intr(sc);
2208 callout_stop(&sc->tick_ch);
2209
2210 /* Get the latest mac address */
2211 bcopy(if_getlladdr(ifp), sc->enaddr, ETHER_ADDR_LEN);
2212 mvneta_set_mac_address(sc, sc->enaddr);
2213 mvneta_filter_setup(sc);
2214
2215 /* Start DMA Engine */
2216 MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000000);
2217 MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000000);
2218 MVNETA_WRITE(sc, MVNETA_PACC, MVNETA_PACC_ACCELERATIONMODE_EDM);
2219
2220 /* Enable port */
2221 reg = MVNETA_READ(sc, MVNETA_PMACC0);
2222 reg |= MVNETA_PMACC0_PORTEN;
2223 reg &= ~MVNETA_PMACC0_FRAMESIZELIMIT_MASK;
2224 reg |= MVNETA_PMACC0_FRAMESIZELIMIT(if_getmtu(ifp) + MVNETA_ETHER_SIZE);
2225 MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2226
2227 /* Allow access to each TXQ/RXQ from both CPU's */
2228 for (cpu = 0; cpu < mp_ncpus; ++cpu)
2229 MVNETA_WRITE(sc, MVNETA_PCP2Q(cpu),
2230 MVNETA_PCP2Q_TXQEN_MASK | MVNETA_PCP2Q_RXQEN_MASK);
2231
2232 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2233 mvneta_rx_lockq(sc, q);
2234 mvneta_rx_queue_refill(sc, q);
2235 mvneta_rx_unlockq(sc, q);
2236 }
2237
2238 if (!sc->phy_attached)
2239 mvneta_linkup(sc);
2240
2241 /* Enable interrupt */
2242 mvneta_enable_intr(sc);
2243
2244 /* Set Counter */
2245 callout_schedule(&sc->tick_ch, hz);
2246
2247 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2248 }
2249
2250 STATIC void
2251 mvneta_init(void *arg)
2252 {
2253 struct mvneta_softc *sc;
2254
2255 sc = arg;
2256 mvneta_sc_lock(sc);
2257 mvneta_init_locked(sc);
2258 if (sc->phy_attached)
2259 mii_mediachg(sc->mii);
2260 mvneta_sc_unlock(sc);
2261 }
2262
2263 /* ARGSUSED */
2264 STATIC void
2265 mvneta_stop_locked(struct mvneta_softc *sc)
2266 {
2267 if_t ifp;
2268 uint32_t reg;
2269 int q;
2270
2271 ifp = sc->ifp;
2272 if (ifp == NULL || (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2273 return;
2274
2275 mvneta_disable_intr(sc);
2276
2277 callout_stop(&sc->tick_ch);
2278
2279 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2280
2281 /* Link down */
2282 if (sc->linkup == TRUE)
2283 mvneta_linkdown(sc);
2284
2285 /* Reset the MAC Port Enable bit */
2286 reg = MVNETA_READ(sc, MVNETA_PMACC0);
2287 reg &= ~MVNETA_PMACC0_PORTEN;
2288 MVNETA_WRITE(sc, MVNETA_PMACC0, reg);
2289
2290 /* Disable each of queue */
2291 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
2292 mvneta_rx_lockq(sc, q);
2293 mvneta_ring_flush_rx_queue(sc, q);
2294 mvneta_rx_unlockq(sc, q);
2295 }
2296
2297 /*
2298 * Hold Reset state of DMA Engine
2299 * (must write 0x0 to restart it)
2300 */
2301 MVNETA_WRITE(sc, MVNETA_PRXINIT, 0x00000001);
2302 MVNETA_WRITE(sc, MVNETA_PTXINIT, 0x00000001);
2303
2304 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2305 mvneta_tx_lockq(sc, q);
2306 mvneta_ring_flush_tx_queue(sc, q);
2307 mvneta_tx_unlockq(sc, q);
2308 }
2309 }
2310
2311 STATIC void
2312 mvneta_stop(struct mvneta_softc *sc)
2313 {
2314
2315 mvneta_sc_lock(sc);
2316 mvneta_stop_locked(sc);
2317 mvneta_sc_unlock(sc);
2318 }
2319
2320 STATIC int
2321 mvneta_mediachange(if_t ifp)
2322 {
2323 struct mvneta_softc *sc;
2324
2325 sc = if_getsoftc(ifp);
2326
2327 if (!sc->phy_attached && !sc->use_inband_status) {
2328 /* We shouldn't be here */
2329 if_printf(ifp, "Cannot change media in fixed-link mode!\n");
2330 return (0);
2331 }
2332
2333 if (sc->use_inband_status) {
2334 mvneta_update_media(sc, sc->mvneta_ifmedia.ifm_media);
2335 return (0);
2336 }
2337
2338 mvneta_sc_lock(sc);
2339
2340 /* Update PHY */
2341 mii_mediachg(sc->mii);
2342
2343 mvneta_sc_unlock(sc);
2344
2345 return (0);
2346 }
2347
2348 STATIC void
2349 mvneta_get_media(struct mvneta_softc *sc, struct ifmediareq *ifmr)
2350 {
2351 uint32_t psr;
2352
2353 psr = MVNETA_READ(sc, MVNETA_PSR);
2354
2355 /* Speed */
2356 if (psr & MVNETA_PSR_GMIISPEED)
2357 ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_1000_T);
2358 else if (psr & MVNETA_PSR_MIISPEED)
2359 ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_100_TX);
2360 else if (psr & MVNETA_PSR_LINKUP)
2361 ifmr->ifm_active = IFM_ETHER_SUBTYPE_SET(IFM_10_T);
2362
2363 /* Duplex */
2364 if (psr & MVNETA_PSR_FULLDX)
2365 ifmr->ifm_active |= IFM_FDX;
2366
2367 /* Link */
2368 ifmr->ifm_status = IFM_AVALID;
2369 if (psr & MVNETA_PSR_LINKUP)
2370 ifmr->ifm_status |= IFM_ACTIVE;
2371 }
2372
2373 STATIC void
2374 mvneta_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2375 {
2376 struct mvneta_softc *sc;
2377 struct mii_data *mii;
2378
2379 sc = if_getsoftc(ifp);
2380
2381 if (!sc->phy_attached && !sc->use_inband_status) {
2382 ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2383 return;
2384 }
2385
2386 mvneta_sc_lock(sc);
2387
2388 if (sc->use_inband_status) {
2389 mvneta_get_media(sc, ifmr);
2390 mvneta_sc_unlock(sc);
2391 return;
2392 }
2393
2394 mii = sc->mii;
2395 mii_pollstat(mii);
2396
2397 ifmr->ifm_active = mii->mii_media_active;
2398 ifmr->ifm_status = mii->mii_media_status;
2399
2400 mvneta_sc_unlock(sc);
2401 }
2402
2403 /*
2404 * Link State Notify
2405 */
2406 STATIC void
2407 mvneta_update_autoneg(struct mvneta_softc *sc, int enable)
2408 {
2409 int reg;
2410
2411 if (enable) {
2412 reg = MVNETA_READ(sc, MVNETA_PANC);
2413 reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2414 MVNETA_PANC_ANFCEN);
2415 reg |= MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2416 MVNETA_PANC_INBANDANEN;
2417 MVNETA_WRITE(sc, MVNETA_PANC, reg);
2418
2419 reg = MVNETA_READ(sc, MVNETA_PMACC2);
2420 reg |= MVNETA_PMACC2_INBANDANMODE;
2421 MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2422
2423 reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2424 reg |= MVNETA_PSOMSCD_ENABLE;
2425 MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2426 } else {
2427 reg = MVNETA_READ(sc, MVNETA_PANC);
2428 reg &= ~(MVNETA_PANC_FORCELINKFAIL | MVNETA_PANC_FORCELINKPASS |
2429 MVNETA_PANC_ANDUPLEXEN | MVNETA_PANC_ANSPEEDEN |
2430 MVNETA_PANC_INBANDANEN);
2431 MVNETA_WRITE(sc, MVNETA_PANC, reg);
2432
2433 reg = MVNETA_READ(sc, MVNETA_PMACC2);
2434 reg &= ~MVNETA_PMACC2_INBANDANMODE;
2435 MVNETA_WRITE(sc, MVNETA_PMACC2, reg);
2436
2437 reg = MVNETA_READ(sc, MVNETA_PSOMSCD);
2438 reg &= ~MVNETA_PSOMSCD_ENABLE;
2439 MVNETA_WRITE(sc, MVNETA_PSOMSCD, reg);
2440 }
2441 }
2442
2443 STATIC int
2444 mvneta_update_media(struct mvneta_softc *sc, int media)
2445 {
2446 int reg, err;
2447 boolean_t running;
2448
2449 err = 0;
2450
2451 mvneta_sc_lock(sc);
2452
2453 mvneta_linkreset(sc);
2454
2455 running = (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) != 0;
2456 if (running)
2457 mvneta_stop_locked(sc);
2458
2459 sc->autoneg = (IFM_SUBTYPE(media) == IFM_AUTO);
2460
2461 if (!sc->phy_attached || sc->use_inband_status)
2462 mvneta_update_autoneg(sc, IFM_SUBTYPE(media) == IFM_AUTO);
2463
2464 mvneta_update_eee(sc);
2465 mvneta_update_fc(sc);
2466
2467 if (IFM_SUBTYPE(media) != IFM_AUTO) {
2468 reg = MVNETA_READ(sc, MVNETA_PANC);
2469 reg &= ~(MVNETA_PANC_SETGMIISPEED |
2470 MVNETA_PANC_SETMIISPEED |
2471 MVNETA_PANC_SETFULLDX);
2472 if (IFM_SUBTYPE(media) == IFM_1000_T ||
2473 IFM_SUBTYPE(media) == IFM_2500_T) {
2474 if ((media & IFM_FDX) == 0) {
2475 device_printf(sc->dev,
2476 "%s half-duplex unsupported\n",
2477 IFM_SUBTYPE(media) == IFM_1000_T ?
2478 "1000Base-T" :
2479 "2500Base-T");
2480 err = EINVAL;
2481 goto out;
2482 }
2483 reg |= MVNETA_PANC_SETGMIISPEED;
2484 } else if (IFM_SUBTYPE(media) == IFM_100_TX)
2485 reg |= MVNETA_PANC_SETMIISPEED;
2486
2487 if (media & IFM_FDX)
2488 reg |= MVNETA_PANC_SETFULLDX;
2489
2490 MVNETA_WRITE(sc, MVNETA_PANC, reg);
2491 }
2492 out:
2493 if (running)
2494 mvneta_init_locked(sc);
2495 mvneta_sc_unlock(sc);
2496 return (err);
2497 }
2498
2499 STATIC void
2500 mvneta_adjust_link(struct mvneta_softc *sc)
2501 {
2502 boolean_t phy_linkup;
2503 int reg;
2504
2505 /* Update eee/fc */
2506 mvneta_update_eee(sc);
2507 mvneta_update_fc(sc);
2508
2509 /* Check for link change */
2510 phy_linkup = (sc->mii->mii_media_status &
2511 (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE);
2512
2513 if (sc->linkup != phy_linkup)
2514 mvneta_linkupdate(sc, phy_linkup);
2515
2516 /* Don't update media on disabled link */
2517 if (!phy_linkup)
2518 return;
2519
2520 /* Check for media type change */
2521 if (sc->mvneta_media != sc->mii->mii_media_active) {
2522 sc->mvneta_media = sc->mii->mii_media_active;
2523
2524 reg = MVNETA_READ(sc, MVNETA_PANC);
2525 reg &= ~(MVNETA_PANC_SETGMIISPEED |
2526 MVNETA_PANC_SETMIISPEED |
2527 MVNETA_PANC_SETFULLDX);
2528 if (IFM_SUBTYPE(sc->mvneta_media) == IFM_1000_T ||
2529 IFM_SUBTYPE(sc->mvneta_media) == IFM_2500_T) {
2530 reg |= MVNETA_PANC_SETGMIISPEED;
2531 } else if (IFM_SUBTYPE(sc->mvneta_media) == IFM_100_TX)
2532 reg |= MVNETA_PANC_SETMIISPEED;
2533
2534 if (sc->mvneta_media & IFM_FDX)
2535 reg |= MVNETA_PANC_SETFULLDX;
2536
2537 MVNETA_WRITE(sc, MVNETA_PANC, reg);
2538 }
2539 }
2540
2541 STATIC void
2542 mvneta_link_isr(struct mvneta_softc *sc)
2543 {
2544 int linkup;
2545
2546 KASSERT_SC_MTX(sc);
2547
2548 linkup = MVNETA_IS_LINKUP(sc) ? TRUE : FALSE;
2549 if (sc->linkup == linkup)
2550 return;
2551
2552 if (linkup == TRUE)
2553 mvneta_linkup(sc);
2554 else
2555 mvneta_linkdown(sc);
2556
2557 #ifdef DEBUG
2558 device_printf(sc->dev,
2559 "%s: link %s\n", if_name(sc->ifp), linkup ? "up" : "down");
2560 #endif
2561 }
2562
2563 STATIC void
2564 mvneta_linkupdate(struct mvneta_softc *sc, boolean_t linkup)
2565 {
2566
2567 KASSERT_SC_MTX(sc);
2568
2569 if (linkup == TRUE)
2570 mvneta_linkup(sc);
2571 else
2572 mvneta_linkdown(sc);
2573
2574 #ifdef DEBUG
2575 device_printf(sc->dev,
2576 "%s: link %s\n", if_name(sc->ifp), linkup ? "up" : "down");
2577 #endif
2578 }
2579
2580 STATIC void
2581 mvneta_update_eee(struct mvneta_softc *sc)
2582 {
2583 uint32_t reg;
2584
2585 KASSERT_SC_MTX(sc);
2586
2587 /* set EEE parameters */
2588 reg = MVNETA_READ(sc, MVNETA_LPIC1);
2589 if (sc->cf_lpi)
2590 reg |= MVNETA_LPIC1_LPIRE;
2591 else
2592 reg &= ~MVNETA_LPIC1_LPIRE;
2593 MVNETA_WRITE(sc, MVNETA_LPIC1, reg);
2594 }
2595
2596 STATIC void
2597 mvneta_update_fc(struct mvneta_softc *sc)
2598 {
2599 uint32_t reg;
2600
2601 KASSERT_SC_MTX(sc);
2602
2603 reg = MVNETA_READ(sc, MVNETA_PANC);
2604 if (sc->cf_fc) {
2605 /* Flow control negotiation */
2606 reg |= MVNETA_PANC_PAUSEADV;
2607 reg |= MVNETA_PANC_ANFCEN;
2608 } else {
2609 /* Disable flow control negotiation */
2610 reg &= ~MVNETA_PANC_PAUSEADV;
2611 reg &= ~MVNETA_PANC_ANFCEN;
2612 }
2613
2614 MVNETA_WRITE(sc, MVNETA_PANC, reg);
2615 }
2616
2617 STATIC void
2618 mvneta_linkup(struct mvneta_softc *sc)
2619 {
2620 uint32_t reg;
2621
2622 KASSERT_SC_MTX(sc);
2623
2624 if (!sc->phy_attached || !sc->use_inband_status) {
2625 reg = MVNETA_READ(sc, MVNETA_PANC);
2626 reg |= MVNETA_PANC_FORCELINKPASS;
2627 reg &= ~MVNETA_PANC_FORCELINKFAIL;
2628 MVNETA_WRITE(sc, MVNETA_PANC, reg);
2629 }
2630
2631 mvneta_qflush(sc->ifp);
2632 mvneta_portup(sc);
2633 sc->linkup = TRUE;
2634 if_link_state_change(sc->ifp, LINK_STATE_UP);
2635 }
2636
2637 STATIC void
2638 mvneta_linkdown(struct mvneta_softc *sc)
2639 {
2640 uint32_t reg;
2641
2642 KASSERT_SC_MTX(sc);
2643
2644 if (!sc->phy_attached || !sc->use_inband_status) {
2645 reg = MVNETA_READ(sc, MVNETA_PANC);
2646 reg &= ~MVNETA_PANC_FORCELINKPASS;
2647 reg |= MVNETA_PANC_FORCELINKFAIL;
2648 MVNETA_WRITE(sc, MVNETA_PANC, reg);
2649 }
2650
2651 mvneta_portdown(sc);
2652 mvneta_qflush(sc->ifp);
2653 sc->linkup = FALSE;
2654 if_link_state_change(sc->ifp, LINK_STATE_DOWN);
2655 }
2656
2657 STATIC void
2658 mvneta_linkreset(struct mvneta_softc *sc)
2659 {
2660 struct mii_softc *mii;
2661
2662 if (sc->phy_attached) {
2663 /* Force reset PHY */
2664 mii = LIST_FIRST(&sc->mii->mii_phys);
2665 if (mii)
2666 mii_phy_reset(mii);
2667 }
2668 }
2669
2670 /*
2671 * Tx Subroutines
2672 */
2673 STATIC int
2674 mvneta_tx_queue(struct mvneta_softc *sc, struct mbuf **mbufp, int q)
2675 {
2676 if_t ifp;
2677 bus_dma_segment_t txsegs[MVNETA_TX_SEGLIMIT];
2678 struct mbuf *mtmp, *mbuf;
2679 struct mvneta_tx_ring *tx;
2680 struct mvneta_buf *txbuf;
2681 struct mvneta_tx_desc *t;
2682 uint32_t ptxsu;
2683 int used, error, i, txnsegs;
2684
2685 mbuf = *mbufp;
2686 tx = MVNETA_TX_RING(sc, q);
2687 DASSERT(tx->used >= 0);
2688 DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2689 t = NULL;
2690 ifp = sc->ifp;
2691
2692 if (__predict_false(mbuf->m_flags & M_VLANTAG)) {
2693 mbuf = ether_vlanencap(mbuf, mbuf->m_pkthdr.ether_vtag);
2694 if (mbuf == NULL) {
2695 tx->drv_error++;
2696 *mbufp = NULL;
2697 return (ENOBUFS);
2698 }
2699 mbuf->m_flags &= ~M_VLANTAG;
2700 *mbufp = mbuf;
2701 }
2702
2703 if (__predict_false(mbuf->m_next != NULL &&
2704 (mbuf->m_pkthdr.csum_flags &
2705 (CSUM_IP | CSUM_TCP | CSUM_UDP)) != 0)) {
2706 if (M_WRITABLE(mbuf) == 0) {
2707 mtmp = m_dup(mbuf, M_NOWAIT);
2708 m_freem(mbuf);
2709 if (mtmp == NULL) {
2710 tx->drv_error++;
2711 *mbufp = NULL;
2712 return (ENOBUFS);
2713 }
2714 *mbufp = mbuf = mtmp;
2715 }
2716 }
2717
2718 /* load mbuf using dmamap of 1st descriptor */
2719 txbuf = &tx->txbuf[tx->cpu];
2720 error = bus_dmamap_load_mbuf_sg(sc->txmbuf_dtag,
2721 txbuf->dmap, mbuf, txsegs, &txnsegs,
2722 BUS_DMA_NOWAIT);
2723 if (__predict_false(error != 0)) {
2724 #ifdef MVNETA_KTR
2725 CTR3(KTR_SPARE2, "%s:%u bus_dmamap_load_mbuf_sg error=%d", if_name(ifp), q, error);
2726 #endif
2727 /* This is the only recoverable error (except EFBIG). */
2728 if (error != ENOMEM) {
2729 tx->drv_error++;
2730 m_freem(mbuf);
2731 *mbufp = NULL;
2732 return (ENOBUFS);
2733 }
2734 return (error);
2735 }
2736
2737 if (__predict_false(txnsegs <= 0
2738 || (txnsegs + tx->used) > MVNETA_TX_RING_CNT)) {
2739 /* we have no enough descriptors or mbuf is broken */
2740 #ifdef MVNETA_KTR
2741 CTR3(KTR_SPARE2, "%s:%u not enough descriptors txnsegs=%d",
2742 if_name(ifp), q, txnsegs);
2743 #endif
2744 bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2745 return (ENOBUFS);
2746 }
2747 DASSERT(txbuf->m == NULL);
2748
2749 /* remember mbuf using 1st descriptor */
2750 txbuf->m = mbuf;
2751 bus_dmamap_sync(sc->txmbuf_dtag, txbuf->dmap,
2752 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2753
2754 /* load to tx descriptors */
2755 used = 0;
2756 for (i = 0; i < txnsegs; i++) {
2757 t = &tx->desc[tx->cpu];
2758 t->command = 0;
2759 t->l4ichk = 0;
2760 t->flags = 0;
2761 if (__predict_true(i == 0)) {
2762 /* 1st descriptor */
2763 t->command |= MVNETA_TX_CMD_W_PACKET_OFFSET(0);
2764 t->command |= MVNETA_TX_CMD_F;
2765 mvneta_tx_set_csumflag(ifp, t, mbuf);
2766 }
2767 t->bufptr_pa = txsegs[i].ds_addr;
2768 t->bytecnt = txsegs[i].ds_len;
2769 tx->cpu = tx_counter_adv(tx->cpu, 1);
2770
2771 tx->used++;
2772 used++;
2773 }
2774 /* t is last descriptor here */
2775 DASSERT(t != NULL);
2776 t->command |= MVNETA_TX_CMD_L|MVNETA_TX_CMD_PADDING;
2777
2778 bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2779 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2780
2781 while (__predict_false(used > 255)) {
2782 ptxsu = MVNETA_PTXSU_NOWD(255);
2783 MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2784 used -= 255;
2785 }
2786 if (__predict_true(used > 0)) {
2787 ptxsu = MVNETA_PTXSU_NOWD(used);
2788 MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2789 }
2790 return (0);
2791 }
2792
2793 STATIC void
2794 mvneta_tx_set_csumflag(if_t ifp,
2795 struct mvneta_tx_desc *t, struct mbuf *m)
2796 {
2797 struct ether_header *eh;
2798 struct ether_vlan_header *evh;
2799 int csum_flags;
2800 uint32_t iphl, ipoff;
2801 struct ip *ip;
2802
2803 iphl = ipoff = 0;
2804 csum_flags = if_gethwassist(ifp) & m->m_pkthdr.csum_flags;
2805 eh = mtod(m, struct ether_header *);
2806
2807 switch (ntohs(eh->ether_type)) {
2808 case ETHERTYPE_IP:
2809 ipoff = ETHER_HDR_LEN;
2810 break;
2811 case ETHERTYPE_VLAN:
2812 ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2813 evh = mtod(m, struct ether_vlan_header *);
2814 if (ntohs(evh->evl_proto) == ETHERTYPE_VLAN)
2815 ipoff += ETHER_VLAN_ENCAP_LEN;
2816 break;
2817 default:
2818 csum_flags = 0;
2819 }
2820
2821 if (__predict_true(csum_flags & (CSUM_IP|CSUM_IP_TCP|CSUM_IP_UDP))) {
2822 ip = (struct ip *)(m->m_data + ipoff);
2823 iphl = ip->ip_hl<<2;
2824 t->command |= MVNETA_TX_CMD_L3_IP4;
2825 } else {
2826 t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2827 return;
2828 }
2829
2830
2831 /* L3 */
2832 if (csum_flags & CSUM_IP) {
2833 t->command |= MVNETA_TX_CMD_IP4_CHECKSUM;
2834 }
2835
2836 /* L4 */
2837 if (csum_flags & CSUM_IP_TCP) {
2838 t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2839 t->command |= MVNETA_TX_CMD_L4_TCP;
2840 } else if (csum_flags & CSUM_IP_UDP) {
2841 t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NOFRAG;
2842 t->command |= MVNETA_TX_CMD_L4_UDP;
2843 } else
2844 t->command |= MVNETA_TX_CMD_L4_CHECKSUM_NONE;
2845
2846 t->l4ichk = 0;
2847 t->command |= MVNETA_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2848 t->command |= MVNETA_TX_CMD_L3_OFFSET(ipoff);
2849 }
2850
2851 STATIC void
2852 mvneta_tx_queue_complete(struct mvneta_softc *sc, int q)
2853 {
2854 struct mvneta_tx_ring *tx;
2855 struct mvneta_buf *txbuf;
2856 struct mvneta_tx_desc *t __diagused;
2857 uint32_t ptxs, ptxsu, ndesc;
2858 int i;
2859
2860 KASSERT_TX_MTX(sc, q);
2861
2862 tx = MVNETA_TX_RING(sc, q);
2863 if (__predict_false(tx->queue_status == MVNETA_QUEUE_DISABLED))
2864 return;
2865
2866 ptxs = MVNETA_READ(sc, MVNETA_PTXS(q));
2867 ndesc = MVNETA_PTXS_GET_TBC(ptxs);
2868
2869 if (__predict_false(ndesc == 0)) {
2870 if (tx->used == 0)
2871 tx->queue_status = MVNETA_QUEUE_IDLE;
2872 else if (tx->queue_status == MVNETA_QUEUE_WORKING &&
2873 ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG))
2874 tx->queue_hung = TRUE;
2875 return;
2876 }
2877
2878 #ifdef MVNETA_KTR
2879 CTR3(KTR_SPARE2, "%s:%u tx_complete begin ndesc=%u",
2880 if_name(sc->ifp), q, ndesc);
2881 #endif
2882
2883 bus_dmamap_sync(sc->tx_dtag, tx->desc_map,
2884 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2885
2886 for (i = 0; i < ndesc; i++) {
2887 t = &tx->desc[tx->dma];
2888 #ifdef MVNETA_KTR
2889 if (t->flags & MVNETA_TX_F_ES)
2890 CTR3(KTR_SPARE2, "%s tx error queue %d desc %d",
2891 if_name(sc->ifp), q, tx->dma);
2892 #endif
2893 txbuf = &tx->txbuf[tx->dma];
2894 if (__predict_true(txbuf->m != NULL)) {
2895 DASSERT((t->command & MVNETA_TX_CMD_F) != 0);
2896 bus_dmamap_unload(sc->txmbuf_dtag, txbuf->dmap);
2897 m_freem(txbuf->m);
2898 txbuf->m = NULL;
2899 }
2900 else
2901 DASSERT((t->flags & MVNETA_TX_CMD_F) == 0);
2902 tx->dma = tx_counter_adv(tx->dma, 1);
2903 tx->used--;
2904 }
2905 DASSERT(tx->used >= 0);
2906 DASSERT(tx->used <= MVNETA_TX_RING_CNT);
2907 while (__predict_false(ndesc > 255)) {
2908 ptxsu = MVNETA_PTXSU_NORB(255);
2909 MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2910 ndesc -= 255;
2911 }
2912 if (__predict_true(ndesc > 0)) {
2913 ptxsu = MVNETA_PTXSU_NORB(ndesc);
2914 MVNETA_WRITE(sc, MVNETA_PTXSU(q), ptxsu);
2915 }
2916 #ifdef MVNETA_KTR
2917 CTR5(KTR_SPARE2, "%s:%u tx_complete tx_cpu=%d tx_dma=%d tx_used=%d",
2918 if_name(sc->ifp), q, tx->cpu, tx->dma, tx->used);
2919 #endif
2920
2921 tx->watchdog_time = ticks;
2922
2923 if (tx->used == 0)
2924 tx->queue_status = MVNETA_QUEUE_IDLE;
2925 }
2926
2927 /*
2928 * Do a final TX complete when TX is idle.
2929 */
2930 STATIC void
2931 mvneta_tx_drain(struct mvneta_softc *sc)
2932 {
2933 struct mvneta_tx_ring *tx;
2934 int q;
2935
2936 /*
2937 * Handle trailing mbuf on TX queue.
2938 * Check is done lockess to avoid TX path contention.
2939 */
2940 for (q = 0; q < MVNETA_TX_QNUM_MAX; q++) {
2941 tx = MVNETA_TX_RING(sc, q);
2942 if ((ticks - tx->watchdog_time) > MVNETA_WATCHDOG_TXCOMP &&
2943 tx->used > 0) {
2944 mvneta_tx_lockq(sc, q);
2945 mvneta_tx_queue_complete(sc, q);
2946 mvneta_tx_unlockq(sc, q);
2947 }
2948 }
2949 }
2950
2951 /*
2952 * Rx Subroutines
2953 */
2954 STATIC int
2955 mvneta_rx(struct mvneta_softc *sc, int q, int count)
2956 {
2957 uint32_t prxs, npkt;
2958 int more;
2959
2960 more = 0;
2961 mvneta_rx_lockq(sc, q);
2962 prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
2963 npkt = MVNETA_PRXS_GET_ODC(prxs);
2964 if (__predict_false(npkt == 0))
2965 goto out;
2966
2967 if (count > 0 && npkt > count) {
2968 more = 1;
2969 npkt = count;
2970 }
2971 mvneta_rx_queue(sc, q, npkt);
2972 out:
2973 mvneta_rx_unlockq(sc, q);
2974 return more;
2975 }
2976
2977 /*
2978 * Helper routine for updating PRXSU register of a given queue.
2979 * Handles number of processed descriptors bigger than maximum acceptable value.
2980 */
2981 STATIC __inline void
2982 mvneta_prxsu_update(struct mvneta_softc *sc, int q, int processed)
2983 {
2984 uint32_t prxsu;
2985
2986 while (__predict_false(processed > 255)) {
2987 prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2988 MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2989 processed -= 255;
2990 }
2991 prxsu = MVNETA_PRXSU_NOOFPROCESSEDDESCRIPTORS(processed);
2992 MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
2993 }
2994
2995 static __inline void
2996 mvneta_prefetch(void *p)
2997 {
2998
2999 __builtin_prefetch(p);
3000 }
3001
3002 STATIC void
3003 mvneta_rx_queue(struct mvneta_softc *sc, int q, int npkt)
3004 {
3005 if_t ifp;
3006 struct mvneta_rx_ring *rx;
3007 struct mvneta_rx_desc *r;
3008 struct mvneta_buf *rxbuf;
3009 struct mbuf *m;
3010 struct lro_ctrl *lro;
3011 struct lro_entry *queued;
3012 void *pktbuf;
3013 int i, pktlen, processed, ndma;
3014
3015 KASSERT_RX_MTX(sc, q);
3016
3017 ifp = sc->ifp;
3018 rx = MVNETA_RX_RING(sc, q);
3019 processed = 0;
3020
3021 if (__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3022 return;
3023
3024 bus_dmamap_sync(sc->rx_dtag, rx->desc_map,
3025 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3026
3027 for (i = 0; i < npkt; i++) {
3028 /* Prefetch next desc, rxbuf. */
3029 ndma = rx_counter_adv(rx->dma, 1);
3030 mvneta_prefetch(&rx->desc[ndma]);
3031 mvneta_prefetch(&rx->rxbuf[ndma]);
3032
3033 /* get descriptor and packet */
3034 r = &rx->desc[rx->dma];
3035 rxbuf = &rx->rxbuf[rx->dma];
3036 m = rxbuf->m;
3037 rxbuf->m = NULL;
3038 DASSERT(m != NULL);
3039 bus_dmamap_sync(sc->rxbuf_dtag, rxbuf->dmap,
3040 BUS_DMASYNC_POSTREAD);
3041 bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3042 /* Prefetch mbuf header. */
3043 mvneta_prefetch(m);
3044
3045 processed++;
3046 /* Drop desc with error status or not in a single buffer. */
3047 DASSERT((r->status & (MVNETA_RX_F|MVNETA_RX_L)) ==
3048 (MVNETA_RX_F|MVNETA_RX_L));
3049 if (__predict_false((r->status & MVNETA_RX_ES) ||
3050 (r->status & (MVNETA_RX_F|MVNETA_RX_L)) !=
3051 (MVNETA_RX_F|MVNETA_RX_L)))
3052 goto rx_error;
3053
3054 /*
3055 * [ OFF | MH | PKT | CRC ]
3056 * bytecnt cover MH, PKT, CRC
3057 */
3058 pktlen = r->bytecnt - ETHER_CRC_LEN - MVNETA_HWHEADER_SIZE;
3059 pktbuf = (uint8_t *)rx->rxbuf_virt_addr[rx->dma] + MVNETA_PACKET_OFFSET +
3060 MVNETA_HWHEADER_SIZE;
3061
3062 /* Prefetch mbuf data. */
3063 mvneta_prefetch(pktbuf);
3064
3065 /* Write value to mbuf (avoid read). */
3066 m->m_data = pktbuf;
3067 m->m_len = m->m_pkthdr.len = pktlen;
3068 m->m_pkthdr.rcvif = ifp;
3069 mvneta_rx_set_csumflag(ifp, r, m);
3070
3071 /* Increase rx_dma before releasing the lock. */
3072 rx->dma = ndma;
3073
3074 if (__predict_false(rx->lro_enabled &&
3075 ((r->status & MVNETA_RX_L3_IP) != 0) &&
3076 ((r->status & MVNETA_RX_L4_MASK) == MVNETA_RX_L4_TCP) &&
3077 (m->m_pkthdr.csum_flags &
3078 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
3079 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) {
3080 if (rx->lro.lro_cnt != 0) {
3081 if (tcp_lro_rx(&rx->lro, m, 0) == 0)
3082 goto rx_done;
3083 }
3084 }
3085
3086 mvneta_rx_unlockq(sc, q);
3087 if_input(ifp, m);
3088 mvneta_rx_lockq(sc, q);
3089 /*
3090 * Check whether this queue has been disabled in the
3091 * meantime. If yes, then clear LRO and exit.
3092 */
3093 if(__predict_false(rx->queue_status == MVNETA_QUEUE_DISABLED))
3094 goto rx_lro;
3095 rx_done:
3096 /* Refresh receive ring to avoid stall and minimize jitter. */
3097 if (processed >= MVNETA_RX_REFILL_COUNT) {
3098 mvneta_prxsu_update(sc, q, processed);
3099 mvneta_rx_queue_refill(sc, q);
3100 processed = 0;
3101 }
3102 continue;
3103 rx_error:
3104 m_freem(m);
3105 rx->dma = ndma;
3106 /* Refresh receive ring to avoid stall and minimize jitter. */
3107 if (processed >= MVNETA_RX_REFILL_COUNT) {
3108 mvneta_prxsu_update(sc, q, processed);
3109 mvneta_rx_queue_refill(sc, q);
3110 processed = 0;
3111 }
3112 }
3113 #ifdef MVNETA_KTR
3114 CTR3(KTR_SPARE2, "%s:%u %u packets received", if_name(ifp), q, npkt);
3115 #endif
3116 /* DMA status update */
3117 mvneta_prxsu_update(sc, q, processed);
3118 /* Refill the rest of buffers if there are any to refill */
3119 mvneta_rx_queue_refill(sc, q);
3120
3121 rx_lro:
3122 /*
3123 * Flush any outstanding LRO work
3124 */
3125 lro = &rx->lro;
3126 while (__predict_false((queued = LIST_FIRST(&lro->lro_active)) != NULL)) {
3127 LIST_REMOVE(LIST_FIRST((&lro->lro_active)), next);
3128 tcp_lro_flush(lro, queued);
3129 }
3130 }
3131
3132 STATIC void
3133 mvneta_rx_buf_free(struct mvneta_softc *sc, struct mvneta_buf *rxbuf)
3134 {
3135
3136 bus_dmamap_unload(sc->rxbuf_dtag, rxbuf->dmap);
3137 /* This will remove all data at once */
3138 m_freem(rxbuf->m);
3139 }
3140
3141 STATIC void
3142 mvneta_rx_queue_refill(struct mvneta_softc *sc, int q)
3143 {
3144 struct mvneta_rx_ring *rx;
3145 struct mvneta_rx_desc *r;
3146 struct mvneta_buf *rxbuf;
3147 bus_dma_segment_t segs;
3148 struct mbuf *m;
3149 uint32_t prxs, prxsu, ndesc;
3150 int npkt, refill, nsegs, error;
3151
3152 KASSERT_RX_MTX(sc, q);
3153
3154 rx = MVNETA_RX_RING(sc, q);
3155 prxs = MVNETA_READ(sc, MVNETA_PRXS(q));
3156 ndesc = MVNETA_PRXS_GET_NODC(prxs) + MVNETA_PRXS_GET_ODC(prxs);
3157 refill = MVNETA_RX_RING_CNT - ndesc;
3158 #ifdef MVNETA_KTR
3159 CTR3(KTR_SPARE2, "%s:%u refill %u packets", if_name(sc->ifp), q,
3160 refill);
3161 #endif
3162 if (__predict_false(refill <= 0))
3163 return;
3164
3165 for (npkt = 0; npkt < refill; npkt++) {
3166 rxbuf = &rx->rxbuf[rx->cpu];
3167 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->rx_frame_size);
3168 if (__predict_false(m == NULL)) {
3169 error = ENOBUFS;
3170 break;
3171 }
3172 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3173
3174 error = bus_dmamap_load_mbuf_sg(sc->rxbuf_dtag, rxbuf->dmap,
3175 m, &segs, &nsegs, BUS_DMA_NOWAIT);
3176 if (__predict_false(error != 0 || nsegs != 1)) {
3177 KASSERT(1, ("Failed to load Rx mbuf DMA map"));
3178 m_freem(m);
3179 break;
3180 }
3181
3182 /* Add the packet to the ring */
3183 rxbuf->m = m;
3184 r = &rx->desc[rx->cpu];
3185 r->bufptr_pa = segs.ds_addr;
3186 rx->rxbuf_virt_addr[rx->cpu] = m->m_data;
3187
3188 rx->cpu = rx_counter_adv(rx->cpu, 1);
3189 }
3190 if (npkt == 0) {
3191 if (refill == MVNETA_RX_RING_CNT)
3192 rx->needs_refill = TRUE;
3193 return;
3194 }
3195
3196 rx->needs_refill = FALSE;
3197 bus_dmamap_sync(sc->rx_dtag, rx->desc_map, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3198
3199 while (__predict_false(npkt > 255)) {
3200 prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(255);
3201 MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3202 npkt -= 255;
3203 }
3204 if (__predict_true(npkt > 0)) {
3205 prxsu = MVNETA_PRXSU_NOOFNEWDESCRIPTORS(npkt);
3206 MVNETA_WRITE(sc, MVNETA_PRXSU(q), prxsu);
3207 }
3208 }
3209
3210 STATIC __inline void
3211 mvneta_rx_set_csumflag(if_t ifp,
3212 struct mvneta_rx_desc *r, struct mbuf *m)
3213 {
3214 uint32_t csum_flags;
3215
3216 csum_flags = 0;
3217 if (__predict_false((r->status &
3218 (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) == 0))
3219 return; /* not a IP packet */
3220
3221 /* L3 */
3222 if (__predict_true((r->status & MVNETA_RX_IP_HEADER_OK) ==
3223 MVNETA_RX_IP_HEADER_OK))
3224 csum_flags |= CSUM_L3_CALC|CSUM_L3_VALID;
3225
3226 if (__predict_true((r->status & (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP)) ==
3227 (MVNETA_RX_IP_HEADER_OK|MVNETA_RX_L3_IP))) {
3228 /* L4 */
3229 switch (r->status & MVNETA_RX_L4_MASK) {
3230 case MVNETA_RX_L4_TCP:
3231 case MVNETA_RX_L4_UDP:
3232 csum_flags |= CSUM_L4_CALC;
3233 if (__predict_true((r->status &
3234 MVNETA_RX_L4_CHECKSUM_OK) == MVNETA_RX_L4_CHECKSUM_OK)) {
3235 csum_flags |= CSUM_L4_VALID;
3236 m->m_pkthdr.csum_data = htons(0xffff);
3237 }
3238 break;
3239 case MVNETA_RX_L4_OTH:
3240 default:
3241 break;
3242 }
3243 }
3244 m->m_pkthdr.csum_flags = csum_flags;
3245 }
3246
3247 /*
3248 * MAC address filter
3249 */
3250 STATIC void
3251 mvneta_filter_setup(struct mvneta_softc *sc)
3252 {
3253 if_t ifp;
3254 uint32_t dfut[MVNETA_NDFUT], dfsmt[MVNETA_NDFSMT], dfomt[MVNETA_NDFOMT];
3255 uint32_t pxc;
3256 int i;
3257
3258 KASSERT_SC_MTX(sc);
3259
3260 memset(dfut, 0, sizeof(dfut));
3261 memset(dfsmt, 0, sizeof(dfsmt));
3262 memset(dfomt, 0, sizeof(dfomt));
3263
3264 ifp = sc->ifp;
3265 if_setflagbits(ifp, IFF_ALLMULTI, 0);
3266 if (if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) {
3267 for (i = 0; i < MVNETA_NDFSMT; i++) {
3268 dfsmt[i] = dfomt[i] =
3269 MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3270 MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3271 MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3272 MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3273 }
3274 }
3275
3276 pxc = MVNETA_READ(sc, MVNETA_PXC);
3277 pxc &= ~(MVNETA_PXC_UPM | MVNETA_PXC_RXQ_MASK | MVNETA_PXC_RXQARP_MASK |
3278 MVNETA_PXC_TCPQ_MASK | MVNETA_PXC_UDPQ_MASK | MVNETA_PXC_BPDUQ_MASK);
3279 pxc |= MVNETA_PXC_RXQ(MVNETA_RX_QNUM_MAX-1);
3280 pxc |= MVNETA_PXC_RXQARP(MVNETA_RX_QNUM_MAX-1);
3281 pxc |= MVNETA_PXC_TCPQ(MVNETA_RX_QNUM_MAX-1);
3282 pxc |= MVNETA_PXC_UDPQ(MVNETA_RX_QNUM_MAX-1);
3283 pxc |= MVNETA_PXC_BPDUQ(MVNETA_RX_QNUM_MAX-1);
3284 pxc |= MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP;
3285 if (if_getflags(ifp) & IFF_BROADCAST) {
3286 pxc &= ~(MVNETA_PXC_RB | MVNETA_PXC_RBIP | MVNETA_PXC_RBARP);
3287 }
3288 if (if_getflags(ifp) & IFF_PROMISC) {
3289 pxc |= MVNETA_PXC_UPM;
3290 }
3291 MVNETA_WRITE(sc, MVNETA_PXC, pxc);
3292
3293 /* Set Destination Address Filter Unicast Table */
3294 if (if_getflags(ifp) & IFF_PROMISC) {
3295 /* pass all unicast addresses */
3296 for (i = 0; i < MVNETA_NDFUT; i++) {
3297 dfut[i] =
3298 MVNETA_DF(0, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3299 MVNETA_DF(1, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3300 MVNETA_DF(2, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS) |
3301 MVNETA_DF(3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3302 }
3303 } else {
3304 i = sc->enaddr[5] & 0xf; /* last nibble */
3305 dfut[i>>2] = MVNETA_DF(i&3, MVNETA_DF_QUEUE(0) | MVNETA_DF_PASS);
3306 }
3307 MVNETA_WRITE_REGION(sc, MVNETA_DFUT(0), dfut, MVNETA_NDFUT);
3308
3309 /* Set Destination Address Filter Multicast Tables */
3310 MVNETA_WRITE_REGION(sc, MVNETA_DFSMT(0), dfsmt, MVNETA_NDFSMT);
3311 MVNETA_WRITE_REGION(sc, MVNETA_DFOMT(0), dfomt, MVNETA_NDFOMT);
3312 }
3313
3314 /*
3315 * sysctl(9)
3316 */
3317 STATIC int
3318 sysctl_read_mib(SYSCTL_HANDLER_ARGS)
3319 {
3320 struct mvneta_sysctl_mib *arg;
3321 struct mvneta_softc *sc;
3322 uint64_t val;
3323
3324 arg = (struct mvneta_sysctl_mib *)arg1;
3325 if (arg == NULL)
3326 return (EINVAL);
3327
3328 sc = arg->sc;
3329 if (sc == NULL)
3330 return (EINVAL);
3331 if (arg->index < 0 || arg->index > MVNETA_PORTMIB_NOCOUNTER)
3332 return (EINVAL);
3333
3334 mvneta_sc_lock(sc);
3335 val = arg->counter;
3336 mvneta_sc_unlock(sc);
3337 return sysctl_handle_64(oidp, &val, 0, req);
3338 }
3339
3340
3341 STATIC int
3342 sysctl_clear_mib(SYSCTL_HANDLER_ARGS)
3343 {
3344 struct mvneta_softc *sc;
3345 int err, val;
3346
3347 val = 0;
3348 sc = (struct mvneta_softc *)arg1;
3349 if (sc == NULL)
3350 return (EINVAL);
3351
3352 err = sysctl_handle_int(oidp, &val, 0, req);
3353 if (err != 0)
3354 return (err);
3355
3356 if (val < 0 || val > 1)
3357 return (EINVAL);
3358
3359 if (val == 1) {
3360 mvneta_sc_lock(sc);
3361 mvneta_clear_mib(sc);
3362 mvneta_sc_unlock(sc);
3363 }
3364
3365 return (0);
3366 }
3367
3368 STATIC int
3369 sysctl_set_queue_rxthtime(SYSCTL_HANDLER_ARGS)
3370 {
3371 struct mvneta_sysctl_queue *arg;
3372 struct mvneta_rx_ring *rx;
3373 struct mvneta_softc *sc;
3374 uint32_t reg, time_mvtclk;
3375 int err, time_us;
3376
3377 rx = NULL;
3378 arg = (struct mvneta_sysctl_queue *)arg1;
3379 if (arg == NULL)
3380 return (EINVAL);
3381 if (arg->queue < 0 || arg->queue > MVNETA_RX_RING_CNT)
3382 return (EINVAL);
3383 if (arg->rxtx != MVNETA_SYSCTL_RX)
3384 return (EINVAL);
3385
3386 sc = arg->sc;
3387 if (sc == NULL)
3388 return (EINVAL);
3389
3390 /* read queue length */
3391 mvneta_sc_lock(sc);
3392 mvneta_rx_lockq(sc, arg->queue);
3393 rx = MVNETA_RX_RING(sc, arg->queue);
3394 time_mvtclk = rx->queue_th_time;
3395 time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / sc->clk_freq;
3396 mvneta_rx_unlockq(sc, arg->queue);
3397 mvneta_sc_unlock(sc);
3398
3399 err = sysctl_handle_int(oidp, &time_us, 0, req);
3400 if (err != 0)
3401 return (err);
3402
3403 mvneta_sc_lock(sc);
3404 mvneta_rx_lockq(sc, arg->queue);
3405
3406 /* update queue length (0[sec] - 1[sec]) */
3407 if (time_us < 0 || time_us > (1000 * 1000)) {
3408 mvneta_rx_unlockq(sc, arg->queue);
3409 mvneta_sc_unlock(sc);
3410 return (EINVAL);
3411 }
3412 time_mvtclk = sc->clk_freq * (uint64_t)time_us / (1000ULL * 1000ULL);
3413 rx->queue_th_time = time_mvtclk;
3414 reg = MVNETA_PRXITTH_RITT(rx->queue_th_time);
3415 MVNETA_WRITE(sc, MVNETA_PRXITTH(arg->queue), reg);
3416 mvneta_rx_unlockq(sc, arg->queue);
3417 mvneta_sc_unlock(sc);
3418
3419 return (0);
3420 }
3421
3422 STATIC void
3423 sysctl_mvneta_init(struct mvneta_softc *sc)
3424 {
3425 struct sysctl_ctx_list *ctx;
3426 struct sysctl_oid_list *children;
3427 struct sysctl_oid_list *rxchildren;
3428 struct sysctl_oid_list *qchildren, *mchildren;
3429 struct sysctl_oid *tree;
3430 int i, q;
3431 struct mvneta_sysctl_queue *rxarg;
3432 #define MVNETA_SYSCTL_NAME(num) "queue" # num
3433 static const char *sysctl_queue_names[] = {
3434 MVNETA_SYSCTL_NAME(0), MVNETA_SYSCTL_NAME(1),
3435 MVNETA_SYSCTL_NAME(2), MVNETA_SYSCTL_NAME(3),
3436 MVNETA_SYSCTL_NAME(4), MVNETA_SYSCTL_NAME(5),
3437 MVNETA_SYSCTL_NAME(6), MVNETA_SYSCTL_NAME(7),
3438 };
3439 #undef MVNETA_SYSCTL_NAME
3440
3441 #ifndef NO_SYSCTL_DESCR
3442 #define MVNETA_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3443 static const char *sysctl_queue_descrs[] = {
3444 MVNETA_SYSCTL_DESCR(0), MVNETA_SYSCTL_DESCR(1),
3445 MVNETA_SYSCTL_DESCR(2), MVNETA_SYSCTL_DESCR(3),
3446 MVNETA_SYSCTL_DESCR(4), MVNETA_SYSCTL_DESCR(5),
3447 MVNETA_SYSCTL_DESCR(6), MVNETA_SYSCTL_DESCR(7),
3448 };
3449 #undef MVNETA_SYSCTL_DESCR
3450 #endif
3451
3452
3453 ctx = device_get_sysctl_ctx(sc->dev);
3454 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3455
3456 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rx",
3457 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA RX");
3458 rxchildren = SYSCTL_CHILDREN(tree);
3459 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "mib",
3460 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "NETA MIB");
3461 mchildren = SYSCTL_CHILDREN(tree);
3462
3463
3464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "flow_control",
3465 CTLFLAG_RW, &sc->cf_fc, 0, "flow control");
3466 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpi",
3467 CTLFLAG_RW, &sc->cf_lpi, 0, "Low Power Idle");
3468
3469 /*
3470 * MIB access
3471 */
3472 /* dev.mvneta.[unit].mib.<mibs> */
3473 for (i = 0; i < MVNETA_PORTMIB_NOCOUNTER; i++) {
3474 struct mvneta_sysctl_mib *mib_arg = &sc->sysctl_mib[i];
3475
3476 mib_arg->sc = sc;
3477 mib_arg->index = i;
3478 SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO,
3479 mvneta_mib_list[i].sysctl_name,
3480 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
3481 (void *)mib_arg, 0, sysctl_read_mib, "I",
3482 mvneta_mib_list[i].desc);
3483 }
3484 SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "rx_discard",
3485 CTLFLAG_RD, &sc->counter_pdfc, "Port Rx Discard Frame Counter");
3486 SYSCTL_ADD_UQUAD(ctx, mchildren, OID_AUTO, "overrun",
3487 CTLFLAG_RD, &sc->counter_pofc, "Port Overrun Frame Counter");
3488 SYSCTL_ADD_UINT(ctx, mchildren, OID_AUTO, "watchdog",
3489 CTLFLAG_RD, &sc->counter_watchdog, 0, "TX Watchdog Counter");
3490
3491 SYSCTL_ADD_PROC(ctx, mchildren, OID_AUTO, "reset",
3492 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3493 (void *)sc, 0, sysctl_clear_mib, "I", "Reset MIB counters");
3494
3495 for (q = 0; q < MVNETA_RX_QNUM_MAX; q++) {
3496 rxarg = &sc->sysctl_rx_queue[q];
3497
3498 rxarg->sc = sc;
3499 rxarg->queue = q;
3500 rxarg->rxtx = MVNETA_SYSCTL_RX;
3501
3502 /* hw.mvneta.mvneta[unit].rx.[queue] */
3503 tree = SYSCTL_ADD_NODE(ctx, rxchildren, OID_AUTO,
3504 sysctl_queue_names[q], CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3505 sysctl_queue_descrs[q]);
3506 qchildren = SYSCTL_CHILDREN(tree);
3507
3508 /* hw.mvneta.mvneta[unit].rx.[queue].threshold_timer_us */
3509 SYSCTL_ADD_PROC(ctx, qchildren, OID_AUTO, "threshold_timer_us",
3510 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, rxarg, 0,
3511 sysctl_set_queue_rxthtime, "I",
3512 "interrupt coalescing threshold timer [us]");
3513 }
3514 }
3515
3516 /*
3517 * MIB
3518 */
3519 STATIC uint64_t
3520 mvneta_read_mib(struct mvneta_softc *sc, int index)
3521 {
3522 struct mvneta_mib_def *mib;
3523 uint64_t val;
3524
3525 mib = &mvneta_mib_list[index];
3526 val = MVNETA_READ_MIB(sc, mib->regnum);
3527 if (mib->reg64)
3528 val |= (uint64_t)MVNETA_READ_MIB(sc, mib->regnum + 4) << 32;
3529 return (val);
3530 }
3531
3532 STATIC void
3533 mvneta_clear_mib(struct mvneta_softc *sc)
3534 {
3535 int i;
3536
3537 KASSERT_SC_MTX(sc);
3538
3539 for (i = 0; i < nitems(mvneta_mib_list); i++) {
3540 (void)mvneta_read_mib(sc, i);
3541 sc->sysctl_mib[i].counter = 0;
3542 }
3543 MVNETA_READ(sc, MVNETA_PDFC);
3544 sc->counter_pdfc = 0;
3545 MVNETA_READ(sc, MVNETA_POFC);
3546 sc->counter_pofc = 0;
3547 sc->counter_watchdog = 0;
3548 }
3549
3550 STATIC void
3551 mvneta_update_mib(struct mvneta_softc *sc)
3552 {
3553 struct mvneta_tx_ring *tx;
3554 int i;
3555 uint64_t val;
3556 uint32_t reg;
3557
3558 for (i = 0; i < nitems(mvneta_mib_list); i++) {
3559
3560 val = mvneta_read_mib(sc, i);
3561 if (val == 0)
3562 continue;
3563
3564 sc->sysctl_mib[i].counter += val;
3565 switch (mvneta_mib_list[i].regnum) {
3566 case MVNETA_MIB_RX_GOOD_OCT:
3567 if_inc_counter(sc->ifp, IFCOUNTER_IBYTES, val);
3568 break;
3569 case MVNETA_MIB_RX_BAD_FRAME:
3570 if_inc_counter(sc->ifp, IFCOUNTER_IERRORS, val);
3571 break;
3572 case MVNETA_MIB_RX_GOOD_FRAME:
3573 if_inc_counter(sc->ifp, IFCOUNTER_IPACKETS, val);
3574 break;
3575 case MVNETA_MIB_RX_MCAST_FRAME:
3576 if_inc_counter(sc->ifp, IFCOUNTER_IMCASTS, val);
3577 break;
3578 case MVNETA_MIB_TX_GOOD_OCT:
3579 if_inc_counter(sc->ifp, IFCOUNTER_OBYTES, val);
3580 break;
3581 case MVNETA_MIB_TX_GOOD_FRAME:
3582 if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, val);
3583 break;
3584 case MVNETA_MIB_TX_MCAST_FRAME:
3585 if_inc_counter(sc->ifp, IFCOUNTER_OMCASTS, val);
3586 break;
3587 case MVNETA_MIB_MAC_COL:
3588 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, val);
3589 break;
3590 case MVNETA_MIB_TX_MAC_TRNS_ERR:
3591 case MVNETA_MIB_TX_EXCES_COL:
3592 case MVNETA_MIB_MAC_LATE_COL:
3593 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, val);
3594 break;
3595 }
3596 }
3597
3598 reg = MVNETA_READ(sc, MVNETA_PDFC);
3599 sc->counter_pdfc += reg;
3600 if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3601 reg = MVNETA_READ(sc, MVNETA_POFC);
3602 sc->counter_pofc += reg;
3603 if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, reg);
3604
3605 /* TX watchdog. */
3606 if (sc->counter_watchdog_mib > 0) {
3607 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, sc->counter_watchdog_mib);
3608 sc->counter_watchdog_mib = 0;
3609 }
3610 /*
3611 * TX driver errors:
3612 * We do not take queue locks to not disrupt TX path.
3613 * We may only miss one drv error which will be fixed at
3614 * next mib update. We may also clear counter when TX path
3615 * is incrementing it but we only do it if counter was not zero
3616 * thus we may only loose one error.
3617 */
3618 for (i = 0; i < MVNETA_TX_QNUM_MAX; i++) {
3619 tx = MVNETA_TX_RING(sc, i);
3620
3621 if (tx->drv_error > 0) {
3622 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, tx->drv_error);
3623 tx->drv_error = 0;
3624 }
3625 }
3626 }
Cache object: 4db7da28356662de851d3c14c7dfdbfd
|