The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/ale/if_ale.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
   28  */
   29 
   30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
   31 
   32 #include <sys/param.h>
   33 #include <sys/endian.h>
   34 #include <sys/kernel.h>
   35 #include <sys/bus.h>
   36 #include <sys/interrupt.h>
   37 #include <sys/malloc.h>
   38 #include <sys/proc.h>
   39 #include <sys/rman.h>
   40 #include <sys/serialize.h>
   41 #include <sys/socket.h>
   42 #include <sys/sockio.h>
   43 #include <sys/sysctl.h>
   44 
   45 #include <net/ethernet.h>
   46 #include <net/if.h>
   47 #include <net/bpf.h>
   48 #include <net/if_arp.h>
   49 #include <net/if_dl.h>
   50 #include <net/if_llc.h>
   51 #include <net/if_media.h>
   52 #include <net/ifq_var.h>
   53 #include <net/vlan/if_vlan_var.h>
   54 #include <net/vlan/if_vlan_ether.h>
   55 
   56 #include <netinet/ip.h>
   57 
   58 #include <dev/netif/mii_layer/mii.h>
   59 #include <dev/netif/mii_layer/miivar.h>
   60 
   61 #include <bus/pci/pcireg.h>
   62 #include <bus/pci/pcivar.h>
   63 #include "pcidevs.h"
   64 
   65 #include <dev/netif/ale/if_alereg.h>
   66 #include <dev/netif/ale/if_alevar.h>
   67 
   68 /* "device miibus" required.  See GENERIC if you get errors here. */
   69 #include "miibus_if.h"
   70 
   71 /* For more information about Tx checksum offload issues see ale_encap(). */
   72 #define ALE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
   73 
   74 struct ale_dmamap_ctx {
   75         int                     nsegs;
   76         bus_dma_segment_t       *segs;
   77 };
   78 
   79 static int      ale_probe(device_t);
   80 static int      ale_attach(device_t);
   81 static int      ale_detach(device_t);
   82 static int      ale_shutdown(device_t);
   83 static int      ale_suspend(device_t);
   84 static int      ale_resume(device_t);
   85 
   86 static int      ale_miibus_readreg(device_t, int, int);
   87 static int      ale_miibus_writereg(device_t, int, int, int);
   88 static void     ale_miibus_statchg(device_t);
   89 
   90 static void     ale_init(void *);
   91 static void     ale_start(struct ifnet *, struct ifaltq_subque *);
   92 static int      ale_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
   93 static void     ale_watchdog(struct ifnet *);
   94 static int      ale_mediachange(struct ifnet *);
   95 static void     ale_mediastatus(struct ifnet *, struct ifmediareq *);
   96 
   97 static void     ale_intr(void *);
   98 static int      ale_rxeof(struct ale_softc *sc);
   99 static void     ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
  100                     uint32_t, uint32_t *);
  101 static void     ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
  102 static void     ale_txeof(struct ale_softc *);
  103 
  104 static int      ale_dma_alloc(struct ale_softc *);
  105 static void     ale_dma_free(struct ale_softc *);
  106 static int      ale_check_boundary(struct ale_softc *);
  107 static void     ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  108 static void     ale_dmamap_buf_cb(void *, bus_dma_segment_t *, int,
  109                     bus_size_t, int);
  110 static int      ale_encap(struct ale_softc *, struct mbuf **);
  111 static void     ale_init_rx_pages(struct ale_softc *);
  112 static void     ale_init_tx_ring(struct ale_softc *);
  113 
  114 static void     ale_stop(struct ale_softc *);
  115 static void     ale_tick(void *);
  116 static void     ale_get_macaddr(struct ale_softc *);
  117 static void     ale_mac_config(struct ale_softc *);
  118 static void     ale_phy_reset(struct ale_softc *);
  119 static void     ale_reset(struct ale_softc *);
  120 static void     ale_rxfilter(struct ale_softc *);
  121 static void     ale_rxvlan(struct ale_softc *);
  122 static void     ale_stats_clear(struct ale_softc *);
  123 static void     ale_stats_update(struct ale_softc *);
  124 static void     ale_stop_mac(struct ale_softc *);
  125 #ifdef notyet
  126 static void     ale_setlinkspeed(struct ale_softc *);
  127 static void     ale_setwol(struct ale_softc *);
  128 #endif
  129 
  130 static void     ale_sysctl_node(struct ale_softc *);
  131 static int      sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
  132 
  133 /*
  134  * Devices supported by this driver.
  135  */
  136 static struct ale_dev {
  137         uint16_t        ale_vendorid;
  138         uint16_t        ale_deviceid;
  139         const char      *ale_name;
  140 } ale_devs[] = {
  141     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
  142     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
  143 };
  144 
  145 static device_method_t ale_methods[] = {
  146         /* Device interface. */
  147         DEVMETHOD(device_probe,         ale_probe),
  148         DEVMETHOD(device_attach,        ale_attach),
  149         DEVMETHOD(device_detach,        ale_detach),
  150         DEVMETHOD(device_shutdown,      ale_shutdown),
  151         DEVMETHOD(device_suspend,       ale_suspend),
  152         DEVMETHOD(device_resume,        ale_resume),
  153 
  154         /* Bus interface. */
  155         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  156         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  157 
  158         /* MII interface. */
  159         DEVMETHOD(miibus_readreg,       ale_miibus_readreg),
  160         DEVMETHOD(miibus_writereg,      ale_miibus_writereg),
  161         DEVMETHOD(miibus_statchg,       ale_miibus_statchg),
  162 
  163         { NULL, NULL }
  164 };
  165 
  166 static driver_t ale_driver = {
  167         "ale",
  168         ale_methods,
  169         sizeof(struct ale_softc)
  170 };
  171 
  172 static devclass_t ale_devclass;
  173 
  174 DECLARE_DUMMY_MODULE(if_ale);
  175 MODULE_VERSION(if_ale, 1);
  176 MODULE_DEPEND(if_ale, miibus, 1, 1, 1);
  177 DRIVER_MODULE(if_ale, pci, ale_driver, ale_devclass, NULL, NULL);
  178 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
  179 
  180 static int
  181 ale_miibus_readreg(device_t dev, int phy, int reg)
  182 {
  183         struct ale_softc *sc;
  184         uint32_t v;
  185         int i;
  186 
  187         sc = device_get_softc(dev);
  188 
  189         if (phy != sc->ale_phyaddr)
  190                 return (0);
  191 
  192         if (sc->ale_flags & ALE_FLAG_FASTETHER) {
  193                 if (reg == MII_100T2CR || reg == MII_100T2SR ||
  194                     reg == MII_EXTSR)
  195                         return (0);
  196         }
  197 
  198         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
  199             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  200         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  201                 DELAY(5);
  202                 v = CSR_READ_4(sc, ALE_MDIO);
  203                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  204                         break;
  205         }
  206 
  207         if (i == 0) {
  208                 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
  209                 return (0);
  210         }
  211 
  212         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
  213 }
  214 
  215 static int
  216 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
  217 {
  218         struct ale_softc *sc;
  219         uint32_t v;
  220         int i;
  221 
  222         sc = device_get_softc(dev);
  223 
  224         if (phy != sc->ale_phyaddr)
  225                 return (0);
  226 
  227         if (sc->ale_flags & ALE_FLAG_FASTETHER) {
  228                 if (reg == MII_100T2CR || reg == MII_100T2SR ||
  229                     reg == MII_EXTSR)
  230                         return (0);
  231         }
  232 
  233         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
  234             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
  235             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  236         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  237                 DELAY(5);
  238                 v = CSR_READ_4(sc, ALE_MDIO);
  239                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  240                         break;
  241         }
  242 
  243         if (i == 0)
  244                 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
  245 
  246         return (0);
  247 }
  248 
  249 static void
  250 ale_miibus_statchg(device_t dev)
  251 {
  252         struct ale_softc *sc = device_get_softc(dev);
  253         struct ifnet *ifp = &sc->arpcom.ac_if;
  254         struct mii_data *mii;
  255         uint32_t reg;
  256 
  257         ASSERT_SERIALIZED(ifp->if_serializer);
  258 
  259         if ((ifp->if_flags & IFF_RUNNING) == 0)
  260                 return;
  261 
  262         mii = device_get_softc(sc->ale_miibus);
  263 
  264         sc->ale_flags &= ~ALE_FLAG_LINK;
  265         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  266             (IFM_ACTIVE | IFM_AVALID)) {
  267                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  268                 case IFM_10_T:
  269                 case IFM_100_TX:
  270                         sc->ale_flags |= ALE_FLAG_LINK;
  271                         break;
  272 
  273                 case IFM_1000_T:
  274                         if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
  275                                 sc->ale_flags |= ALE_FLAG_LINK;
  276                         break;
  277 
  278                 default:
  279                         break;
  280                 }
  281         }
  282 
  283         /* Stop Rx/Tx MACs. */
  284         ale_stop_mac(sc);
  285 
  286         /* Program MACs with resolved speed/duplex/flow-control. */
  287         if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
  288                 ale_mac_config(sc);
  289                 /* Reenable Tx/Rx MACs. */
  290                 reg = CSR_READ_4(sc, ALE_MAC_CFG);
  291                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
  292                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
  293         }
  294 }
  295 
  296 static void
  297 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
  298 {
  299         struct ale_softc *sc = ifp->if_softc;
  300         struct mii_data *mii = device_get_softc(sc->ale_miibus);
  301 
  302         ASSERT_SERIALIZED(ifp->if_serializer);
  303 
  304         mii_pollstat(mii);
  305         ifmr->ifm_status = mii->mii_media_status;
  306         ifmr->ifm_active = mii->mii_media_active;
  307 }
  308 
  309 static int
  310 ale_mediachange(struct ifnet *ifp)
  311 {
  312         struct ale_softc *sc = ifp->if_softc;
  313         struct mii_data *mii = device_get_softc(sc->ale_miibus);
  314         int error;
  315 
  316         ASSERT_SERIALIZED(ifp->if_serializer);
  317 
  318         if (mii->mii_instance != 0) {
  319                 struct mii_softc *miisc;
  320 
  321                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  322                         mii_phy_reset(miisc);
  323         }
  324         error = mii_mediachg(mii);
  325 
  326         return (error);
  327 }
  328 
  329 static int
  330 ale_probe(device_t dev)
  331 {
  332         struct ale_dev *sp;
  333         int i;
  334         uint16_t vendor, devid;
  335 
  336         vendor = pci_get_vendor(dev);
  337         devid = pci_get_device(dev);
  338         sp = ale_devs;
  339         for (i = 0; i < NELEM(ale_devs); i++) {
  340                 if (vendor == sp->ale_vendorid &&
  341                     devid == sp->ale_deviceid) {
  342                         device_set_desc(dev, sp->ale_name);
  343                         return (0);
  344                 }
  345                 sp++;
  346         }
  347 
  348         return (ENXIO);
  349 }
  350 
  351 static void
  352 ale_get_macaddr(struct ale_softc *sc)
  353 {
  354         uint32_t ea[2], reg;
  355         int i, vpdc;
  356 
  357         reg = CSR_READ_4(sc, ALE_SPI_CTRL);
  358         if ((reg & SPI_VPD_ENB) != 0) {
  359                 reg &= ~SPI_VPD_ENB;
  360                 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
  361         }
  362 
  363         vpdc = pci_get_vpdcap_ptr(sc->ale_dev);
  364         if (vpdc) {
  365                 /*
  366                  * PCI VPD capability found, let TWSI reload EEPROM.
  367                  * This will set ethernet address of controller.
  368                  */
  369                 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
  370                     TWSI_CTRL_SW_LD_START);
  371                 for (i = 100; i > 0; i--) {
  372                         DELAY(1000);
  373                         reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
  374                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
  375                                 break;
  376                 }
  377                 if (i == 0)
  378                         device_printf(sc->ale_dev,
  379                             "reloading EEPROM timeout!\n");
  380         } else {
  381                 if (bootverbose)
  382                         device_printf(sc->ale_dev,
  383                             "PCI VPD capability not found!\n");
  384         }
  385 
  386         ea[0] = CSR_READ_4(sc, ALE_PAR0);
  387         ea[1] = CSR_READ_4(sc, ALE_PAR1);
  388         sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
  389         sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
  390         sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
  391         sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
  392         sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
  393         sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
  394 }
  395 
  396 static void
  397 ale_phy_reset(struct ale_softc *sc)
  398 {
  399         /* Reset magic from Linux. */
  400         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  401             GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
  402             GPHY_CTRL_PHY_PLL_ON);
  403         DELAY(1000);
  404         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  405             GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
  406             GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
  407         DELAY(1000);
  408 
  409 #define ATPHY_DBG_ADDR          0x1D
  410 #define ATPHY_DBG_DATA          0x1E
  411 
  412         /* Enable hibernation mode. */
  413         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  414             ATPHY_DBG_ADDR, 0x0B);
  415         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  416             ATPHY_DBG_DATA, 0xBC00);
  417         /* Set Class A/B for all modes. */
  418         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  419             ATPHY_DBG_ADDR, 0x00);
  420         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  421             ATPHY_DBG_DATA, 0x02EF);
  422         /* Enable 10BT power saving. */
  423         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  424             ATPHY_DBG_ADDR, 0x12);
  425         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  426             ATPHY_DBG_DATA, 0x4C04);
  427         /* Adjust 1000T power. */
  428         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  429             ATPHY_DBG_ADDR, 0x04);
  430         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  431             ATPHY_DBG_ADDR, 0x8BBB);
  432         /* 10BT center tap voltage. */
  433         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  434             ATPHY_DBG_ADDR, 0x05);
  435         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  436             ATPHY_DBG_ADDR, 0x2C46);
  437 
  438 #undef  ATPHY_DBG_ADDR
  439 #undef  ATPHY_DBG_DATA
  440         DELAY(1000);
  441 }
  442 
  443 static int
  444 ale_attach(device_t dev)
  445 {
  446         struct ale_softc *sc = device_get_softc(dev);
  447         struct ifnet *ifp = &sc->arpcom.ac_if;
  448         int error = 0;
  449         uint32_t rxf_len, txf_len;
  450         uint8_t pcie_ptr;
  451 
  452         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  453         sc->ale_dev = dev;
  454 
  455         callout_init(&sc->ale_tick_ch);
  456 
  457 #ifndef BURN_BRIDGES
  458         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
  459                 uint32_t irq, mem;
  460 
  461                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
  462                 mem = pci_read_config(dev, ALE_PCIR_BAR, 4);
  463 
  464                 device_printf(dev, "chip is in D%d power mode "
  465                     "-- setting to D0\n", pci_get_powerstate(dev));
  466 
  467                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
  468 
  469                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
  470                 pci_write_config(dev, ALE_PCIR_BAR, mem, 4);
  471         }
  472 #endif  /* !BURN_BRIDGE */
  473 
  474         /* Enable bus mastering */
  475         pci_enable_busmaster(dev);
  476 
  477         /*
  478          * Allocate memory mapped IO
  479          */
  480         sc->ale_mem_rid = ALE_PCIR_BAR;
  481         sc->ale_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  482                                                  &sc->ale_mem_rid, RF_ACTIVE);
  483         if (sc->ale_mem_res == NULL) {
  484                 device_printf(dev, "can't allocate IO memory\n");
  485                 return ENXIO;
  486         }
  487         sc->ale_mem_bt = rman_get_bustag(sc->ale_mem_res);
  488         sc->ale_mem_bh = rman_get_bushandle(sc->ale_mem_res);
  489 
  490         /*
  491          * Allocate IRQ
  492          */
  493         sc->ale_irq_rid = 0;
  494         sc->ale_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
  495                                                  &sc->ale_irq_rid,
  496                                                  RF_SHAREABLE | RF_ACTIVE);
  497         if (sc->ale_irq_res == NULL) {
  498                 device_printf(dev, "can't allocate irq\n");
  499                 error = ENXIO;
  500                 goto fail;
  501         }
  502 
  503         /* Set PHY address. */
  504         sc->ale_phyaddr = ALE_PHY_ADDR;
  505 
  506         /* Reset PHY. */
  507         ale_phy_reset(sc);
  508 
  509         /* Reset the ethernet controller. */
  510         ale_reset(sc);
  511 
  512         /* Get PCI and chip id/revision. */
  513         sc->ale_rev = pci_get_revid(dev);
  514         if (sc->ale_rev >= 0xF0) {
  515                 /* L2E Rev. B. AR8114 */
  516                 sc->ale_flags |= ALE_FLAG_FASTETHER;
  517         } else {
  518                 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
  519                         /* L1E AR8121 */
  520                         sc->ale_flags |= ALE_FLAG_JUMBO;
  521                 } else {
  522                         /* L2E Rev. A. AR8113 */
  523                         sc->ale_flags |= ALE_FLAG_FASTETHER;
  524                 }
  525         }
  526 
  527         /*
  528          * All known controllers seems to require 4 bytes alignment
  529          * of Tx buffers to make Tx checksum offload with custom
  530          * checksum generation method work.
  531          */
  532         sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
  533 
  534         /*
  535          * All known controllers seems to have issues on Rx checksum
  536          * offload for fragmented IP datagrams.
  537          */
  538         sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
  539 
  540         /*
  541          * Don't use Tx CMB. It is known to cause RRS update failure
  542          * under certain circumstances. Typical phenomenon of the
  543          * issue would be unexpected sequence number encountered in
  544          * Rx handler.
  545          */
  546         sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
  547         sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
  548             MASTER_CHIP_REV_SHIFT;
  549         if (bootverbose) {
  550                 device_printf(dev, "PCI device revision : 0x%04x\n",
  551                     sc->ale_rev);
  552                 device_printf(dev, "Chip id/revision : 0x%04x\n",
  553                     sc->ale_chip_rev);
  554         }
  555 
  556         /*
  557          * Uninitialized hardware returns an invalid chip id/revision
  558          * as well as 0xFFFFFFFF for Tx/Rx fifo length.
  559          */
  560         txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
  561         rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
  562         if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
  563             rxf_len == 0xFFFFFFF) {
  564                 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
  565                     "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
  566                     txf_len, rxf_len);
  567                 error = ENXIO;
  568                 goto fail;
  569         }
  570         device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
  571 
  572         /* Get DMA parameters from PCIe device control register. */
  573         pcie_ptr = pci_get_pciecap_ptr(dev);
  574         if (pcie_ptr) {
  575                 uint16_t devctl;
  576 
  577                 sc->ale_flags |= ALE_FLAG_PCIE;
  578                 devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
  579                 /* Max read request size. */
  580                 sc->ale_dma_rd_burst = ((devctl >> 12) & 0x07) <<
  581                     DMA_CFG_RD_BURST_SHIFT;
  582                 /* Max payload size. */
  583                 sc->ale_dma_wr_burst = ((devctl >> 5) & 0x07) <<
  584                     DMA_CFG_WR_BURST_SHIFT;
  585                 if (bootverbose) {
  586                         device_printf(dev, "Read request size : %d bytes.\n",
  587                             128 << ((devctl >> 12) & 0x07));
  588                         device_printf(dev, "TLP payload size : %d bytes.\n",
  589                             128 << ((devctl >> 5) & 0x07));
  590                 }
  591         } else {
  592                 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
  593                 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
  594         }
  595 
  596         /* Create device sysctl node. */
  597         ale_sysctl_node(sc);
  598 
  599         if ((error = ale_dma_alloc(sc) != 0))
  600                 goto fail;
  601 
  602         /* Load station address. */
  603         ale_get_macaddr(sc);
  604 
  605         ifp->if_softc = sc;
  606         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  607         ifp->if_ioctl = ale_ioctl;
  608         ifp->if_start = ale_start;
  609         ifp->if_init = ale_init;
  610         ifp->if_watchdog = ale_watchdog;
  611         ifq_set_maxlen(&ifp->if_snd, ALE_TX_RING_CNT - 1);
  612         ifq_set_ready(&ifp->if_snd);
  613 
  614         ifp->if_capabilities = IFCAP_RXCSUM |
  615                                IFCAP_VLAN_MTU |
  616                                IFCAP_VLAN_HWTAGGING;
  617 #ifdef notyet
  618         ifp->if_capabilities |= IFCAP_TXCSUM;
  619         ifp->if_hwassist = ALE_CSUM_FEATURES;
  620 #endif
  621         ifp->if_capenable = ifp->if_capabilities;
  622 
  623         /* Set up MII bus. */
  624         if ((error = mii_phy_probe(dev, &sc->ale_miibus, ale_mediachange,
  625             ale_mediastatus)) != 0) {
  626                 device_printf(dev, "no PHY found!\n");
  627                 goto fail;
  628         }
  629 
  630         ether_ifattach(ifp, sc->ale_eaddr, NULL);
  631 
  632         /* Tell the upper layer(s) we support long frames. */
  633         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  634 
  635         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->ale_irq_res));
  636 
  637         error = bus_setup_intr(dev, sc->ale_irq_res, INTR_MPSAFE, ale_intr, sc,
  638                                &sc->ale_irq_handle, ifp->if_serializer);
  639         if (error) {
  640                 device_printf(dev, "could not set up interrupt handler.\n");
  641                 ether_ifdetach(ifp);
  642                 goto fail;
  643         }
  644 
  645         return 0;
  646 fail:
  647         ale_detach(dev);
  648         return (error);
  649 }
  650 
  651 static int
  652 ale_detach(device_t dev)
  653 {
  654         struct ale_softc *sc = device_get_softc(dev);
  655 
  656         if (device_is_attached(dev)) {
  657                 struct ifnet *ifp = &sc->arpcom.ac_if;
  658 
  659                 lwkt_serialize_enter(ifp->if_serializer);
  660                 sc->ale_flags |= ALE_FLAG_DETACH;
  661                 ale_stop(sc);
  662                 bus_teardown_intr(dev, sc->ale_irq_res, sc->ale_irq_handle);
  663                 lwkt_serialize_exit(ifp->if_serializer);
  664 
  665                 ether_ifdetach(ifp);
  666         }
  667 
  668         if (sc->ale_sysctl_tree != NULL)
  669                 sysctl_ctx_free(&sc->ale_sysctl_ctx);
  670 
  671         if (sc->ale_miibus != NULL)
  672                 device_delete_child(dev, sc->ale_miibus);
  673         bus_generic_detach(dev);
  674 
  675         if (sc->ale_irq_res != NULL) {
  676                 bus_release_resource(dev, SYS_RES_IRQ, sc->ale_irq_rid,
  677                                      sc->ale_irq_res);
  678         }
  679         if (sc->ale_mem_res != NULL) {
  680                 bus_release_resource(dev, SYS_RES_MEMORY, sc->ale_mem_rid,
  681                                      sc->ale_mem_res);
  682         }
  683 
  684         ale_dma_free(sc);
  685 
  686         return (0);
  687 }
  688 
  689 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
  690             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
  691 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
  692             SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
  693 
  694 static void
  695 ale_sysctl_node(struct ale_softc *sc)
  696 {
  697         struct sysctl_ctx_list *ctx;
  698         struct sysctl_oid_list *child, *parent;
  699         struct sysctl_oid *tree;
  700         struct ale_hw_stats *stats;
  701         int error;
  702 
  703         sysctl_ctx_init(&sc->ale_sysctl_ctx);
  704         sc->ale_sysctl_tree = SYSCTL_ADD_NODE(&sc->ale_sysctl_ctx,
  705                                 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
  706                                 device_get_nameunit(sc->ale_dev),
  707                                 CTLFLAG_RD, 0, "");
  708         if (sc->ale_sysctl_tree == NULL) {
  709                 device_printf(sc->ale_dev, "can't add sysctl node\n");
  710                 return;
  711         }
  712 
  713         stats = &sc->ale_stats;
  714         ctx = &sc->ale_sysctl_ctx;
  715         child = SYSCTL_CHILDREN(sc->ale_sysctl_tree);
  716 
  717         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
  718             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
  719             sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
  720         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
  721             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
  722             sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
  723 
  724         /*
  725          * Pull in device tunables.
  726          */
  727         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  728         error = resource_int_value(device_get_name(sc->ale_dev),
  729             device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
  730         if (error == 0) {
  731                 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
  732                     sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
  733                         device_printf(sc->ale_dev, "int_rx_mod value out of "
  734                             "range; using default: %d\n",
  735                             ALE_IM_RX_TIMER_DEFAULT);
  736                         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  737                 }
  738         }
  739 
  740         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  741         error = resource_int_value(device_get_name(sc->ale_dev),
  742             device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
  743         if (error == 0) {
  744                 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
  745                     sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
  746                         device_printf(sc->ale_dev, "int_tx_mod value out of "
  747                             "range; using default: %d\n",
  748                             ALE_IM_TX_TIMER_DEFAULT);
  749                         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  750                 }
  751         }
  752 
  753         /* Misc statistics. */
  754         ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
  755             &stats->reset_brk_seq,
  756             "Controller resets due to broken Rx sequnce number");
  757 
  758         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
  759             NULL, "ATE statistics");
  760         parent = SYSCTL_CHILDREN(tree);
  761 
  762         /* Rx statistics. */
  763         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
  764             NULL, "Rx MAC statistics");
  765         child = SYSCTL_CHILDREN(tree);
  766         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  767             &stats->rx_frames, "Good frames");
  768         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  769             &stats->rx_bcast_frames, "Good broadcast frames");
  770         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  771             &stats->rx_mcast_frames, "Good multicast frames");
  772         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  773             &stats->rx_pause_frames, "Pause control frames");
  774         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  775             &stats->rx_control_frames, "Control frames");
  776         ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
  777             &stats->rx_crcerrs, "CRC errors");
  778         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  779             &stats->rx_lenerrs, "Frames with length mismatched");
  780         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  781             &stats->rx_bytes, "Good octets");
  782         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  783             &stats->rx_bcast_bytes, "Good broadcast octets");
  784         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  785             &stats->rx_mcast_bytes, "Good multicast octets");
  786         ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
  787             &stats->rx_runts, "Too short frames");
  788         ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
  789             &stats->rx_fragments, "Fragmented frames");
  790         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  791             &stats->rx_pkts_64, "64 bytes frames");
  792         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  793             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
  794         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  795             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
  796         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  797             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
  798         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  799             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
  800         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  801             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
  802         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  803             &stats->rx_pkts_1519_max, "1519 to max frames");
  804         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  805             &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
  806         ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
  807             &stats->rx_fifo_oflows, "FIFO overflows");
  808         ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
  809             &stats->rx_rrs_errs, "Return status write-back errors");
  810         ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
  811             &stats->rx_alignerrs, "Alignment errors");
  812         ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
  813             &stats->rx_pkts_filtered,
  814             "Frames dropped due to address filtering");
  815 
  816         /* Tx statistics. */
  817         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
  818             NULL, "Tx MAC statistics");
  819         child = SYSCTL_CHILDREN(tree);
  820         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  821             &stats->tx_frames, "Good frames");
  822         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  823             &stats->tx_bcast_frames, "Good broadcast frames");
  824         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  825             &stats->tx_mcast_frames, "Good multicast frames");
  826         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  827             &stats->tx_pause_frames, "Pause control frames");
  828         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  829             &stats->tx_control_frames, "Control frames");
  830         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
  831             &stats->tx_excess_defer, "Frames with excessive derferrals");
  832         ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
  833             &stats->tx_excess_defer, "Frames with derferrals");
  834         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  835             &stats->tx_bytes, "Good octets");
  836         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  837             &stats->tx_bcast_bytes, "Good broadcast octets");
  838         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  839             &stats->tx_mcast_bytes, "Good multicast octets");
  840         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  841             &stats->tx_pkts_64, "64 bytes frames");
  842         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  843             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
  844         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  845             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
  846         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  847             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
  848         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  849             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
  850         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  851             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
  852         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  853             &stats->tx_pkts_1519_max, "1519 to max frames");
  854         ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
  855             &stats->tx_single_colls, "Single collisions");
  856         ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
  857             &stats->tx_multi_colls, "Multiple collisions");
  858         ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
  859             &stats->tx_late_colls, "Late collisions");
  860         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
  861             &stats->tx_excess_colls, "Excessive collisions");
  862         ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
  863             &stats->tx_abort, "Aborted frames due to Excessive collisions");
  864         ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
  865             &stats->tx_underrun, "FIFO underruns");
  866         ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
  867             &stats->tx_desc_underrun, "Descriptor write-back errors");
  868         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  869             &stats->tx_lenerrs, "Frames with length mismatched");
  870         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  871             &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
  872 }
  873 
  874 #undef ALE_SYSCTL_STAT_ADD32
  875 #undef ALE_SYSCTL_STAT_ADD64
  876 
  877 struct ale_dmamap_arg {
  878         bus_addr_t      ale_busaddr;
  879 };
  880 
  881 static void
  882 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  883 {
  884         struct ale_dmamap_arg *ctx;
  885 
  886         if (error != 0)
  887                 return;
  888 
  889         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  890 
  891         ctx = (struct ale_dmamap_arg *)arg;
  892         ctx->ale_busaddr = segs[0].ds_addr;
  893 }
  894 
  895 /*
  896  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
  897  * which specifies high address region of DMA blocks. Therefore these
  898  * blocks should have the same high address of given 4GB address
  899  * space(i.e. crossing 4GB boundary is not allowed).
  900  */
  901 static int
  902 ale_check_boundary(struct ale_softc *sc)
  903 {
  904         bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
  905         bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
  906 
  907         rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
  908             sc->ale_pagesize;
  909         rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
  910             sc->ale_pagesize;
  911         tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
  912         tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
  913         rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
  914         rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
  915 
  916         if ((ALE_ADDR_HI(tx_ring_end) !=
  917             ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
  918             (ALE_ADDR_HI(rx_page_end[0]) !=
  919             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
  920             (ALE_ADDR_HI(rx_page_end[1]) !=
  921             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
  922             (ALE_ADDR_HI(tx_cmb_end) !=
  923             ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
  924             (ALE_ADDR_HI(rx_cmb_end[0]) !=
  925             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
  926             (ALE_ADDR_HI(rx_cmb_end[1]) !=
  927             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
  928                 return (EFBIG);
  929 
  930         if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
  931             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
  932             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
  933             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
  934             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
  935                 return (EFBIG);
  936 
  937         return (0);
  938 }
  939 
  940 static int
  941 ale_dma_alloc(struct ale_softc *sc)
  942 {
  943         struct ale_txdesc *txd;
  944         bus_addr_t lowaddr;
  945         struct ale_dmamap_arg ctx;
  946         int error, guard_size, i;
  947 
  948         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
  949                 guard_size = ALE_JUMBO_FRAMELEN;
  950         else
  951                 guard_size = ALE_MAX_FRAMELEN;
  952         sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
  953             ALE_RX_PAGE_ALIGN);
  954         lowaddr = BUS_SPACE_MAXADDR;
  955 again:
  956         /* Create parent DMA tag. */
  957         error = bus_dma_tag_create(
  958             NULL,                       /* parent */
  959             1, 0,                       /* alignment, boundary */
  960             lowaddr,                    /* lowaddr */
  961             BUS_SPACE_MAXADDR,          /* highaddr */
  962             NULL, NULL,                 /* filter, filterarg */
  963             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
  964             0,                          /* nsegments */
  965             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  966             0,                          /* flags */
  967             &sc->ale_cdata.ale_parent_tag);
  968         if (error != 0) {
  969                 device_printf(sc->ale_dev,
  970                     "could not create parent DMA tag.\n");
  971                 goto fail;
  972         }
  973 
  974         /* Create DMA tag for Tx descriptor ring. */
  975         error = bus_dma_tag_create(
  976             sc->ale_cdata.ale_parent_tag, /* parent */
  977             ALE_TX_RING_ALIGN, 0,       /* alignment, boundary */
  978             BUS_SPACE_MAXADDR,          /* lowaddr */
  979             BUS_SPACE_MAXADDR,          /* highaddr */
  980             NULL, NULL,                 /* filter, filterarg */
  981             ALE_TX_RING_SZ,             /* maxsize */
  982             1,                          /* nsegments */
  983             ALE_TX_RING_SZ,             /* maxsegsize */
  984             0,                          /* flags */
  985             &sc->ale_cdata.ale_tx_ring_tag);
  986         if (error != 0) {
  987                 device_printf(sc->ale_dev,
  988                     "could not create Tx ring DMA tag.\n");
  989                 goto fail;
  990         }
  991 
  992         /* Create DMA tag for Rx pages. */
  993         for (i = 0; i < ALE_RX_PAGES; i++) {
  994                 error = bus_dma_tag_create(
  995                     sc->ale_cdata.ale_parent_tag, /* parent */
  996                     ALE_RX_PAGE_ALIGN, 0,       /* alignment, boundary */
  997                     BUS_SPACE_MAXADDR,          /* lowaddr */
  998                     BUS_SPACE_MAXADDR,          /* highaddr */
  999                     NULL, NULL,                 /* filter, filterarg */
 1000                     sc->ale_pagesize,           /* maxsize */
 1001                     1,                          /* nsegments */
 1002                     sc->ale_pagesize,           /* maxsegsize */
 1003                     0,                          /* flags */
 1004                     &sc->ale_cdata.ale_rx_page[i].page_tag);
 1005                 if (error != 0) {
 1006                         device_printf(sc->ale_dev,
 1007                             "could not create Rx page %d DMA tag.\n", i);
 1008                         goto fail;
 1009                 }
 1010         }
 1011 
 1012         /* Create DMA tag for Tx coalescing message block. */
 1013         error = bus_dma_tag_create(
 1014             sc->ale_cdata.ale_parent_tag, /* parent */
 1015             ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1016             BUS_SPACE_MAXADDR,          /* lowaddr */
 1017             BUS_SPACE_MAXADDR,          /* highaddr */
 1018             NULL, NULL,                 /* filter, filterarg */
 1019             ALE_TX_CMB_SZ,              /* maxsize */
 1020             1,                          /* nsegments */
 1021             ALE_TX_CMB_SZ,              /* maxsegsize */
 1022             0,                          /* flags */
 1023             &sc->ale_cdata.ale_tx_cmb_tag);
 1024         if (error != 0) {
 1025                 device_printf(sc->ale_dev,
 1026                     "could not create Tx CMB DMA tag.\n");
 1027                 goto fail;
 1028         }
 1029 
 1030         /* Create DMA tag for Rx coalescing message block. */
 1031         for (i = 0; i < ALE_RX_PAGES; i++) {
 1032                 error = bus_dma_tag_create(
 1033                     sc->ale_cdata.ale_parent_tag, /* parent */
 1034                     ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1035                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1036                     BUS_SPACE_MAXADDR,          /* highaddr */
 1037                     NULL, NULL,                 /* filter, filterarg */
 1038                     ALE_RX_CMB_SZ,              /* maxsize */
 1039                     1,                          /* nsegments */
 1040                     ALE_RX_CMB_SZ,              /* maxsegsize */
 1041                     0,                          /* flags */
 1042                     &sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1043                 if (error != 0) {
 1044                         device_printf(sc->ale_dev,
 1045                             "could not create Rx page %d CMB DMA tag.\n", i);
 1046                         goto fail;
 1047                 }
 1048         }
 1049 
 1050         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
 1051         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
 1052             (void **)&sc->ale_cdata.ale_tx_ring,
 1053             BUS_DMA_WAITOK | BUS_DMA_ZERO,
 1054             &sc->ale_cdata.ale_tx_ring_map);
 1055         if (error != 0) {
 1056                 device_printf(sc->ale_dev,
 1057                     "could not allocate DMA'able memory for Tx ring.\n");
 1058                 goto fail;
 1059         }
 1060         ctx.ale_busaddr = 0;
 1061         error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
 1062             sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
 1063             ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
 1064         if (error != 0 || ctx.ale_busaddr == 0) {
 1065                 device_printf(sc->ale_dev,
 1066                     "could not load DMA'able memory for Tx ring.\n");
 1067                 goto fail;
 1068         }
 1069         sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
 1070 
 1071         /* Rx pages. */
 1072         for (i = 0; i < ALE_RX_PAGES; i++) {
 1073                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
 1074                     (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
 1075                     BUS_DMA_WAITOK | BUS_DMA_ZERO,
 1076                     &sc->ale_cdata.ale_rx_page[i].page_map);
 1077                 if (error != 0) {
 1078                         device_printf(sc->ale_dev,
 1079                             "could not allocate DMA'able memory for "
 1080                             "Rx page %d.\n", i);
 1081                         goto fail;
 1082                 }
 1083                 ctx.ale_busaddr = 0;
 1084                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
 1085                     sc->ale_cdata.ale_rx_page[i].page_map,
 1086                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1087                     sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
 1088                 if (error != 0 || ctx.ale_busaddr == 0) {
 1089                         device_printf(sc->ale_dev,
 1090                             "could not load DMA'able memory for "
 1091                             "Rx page %d.\n", i);
 1092                         goto fail;
 1093                 }
 1094                 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
 1095         }
 1096 
 1097         /* Tx CMB. */
 1098         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
 1099             (void **)&sc->ale_cdata.ale_tx_cmb,
 1100             BUS_DMA_WAITOK | BUS_DMA_ZERO,
 1101             &sc->ale_cdata.ale_tx_cmb_map);
 1102         if (error != 0) {
 1103                 device_printf(sc->ale_dev,
 1104                     "could not allocate DMA'able memory for Tx CMB.\n");
 1105                 goto fail;
 1106         }
 1107         ctx.ale_busaddr = 0;
 1108         error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
 1109             sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
 1110             ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1111         if (error != 0 || ctx.ale_busaddr == 0) {
 1112                 device_printf(sc->ale_dev,
 1113                     "could not load DMA'able memory for Tx CMB.\n");
 1114                 goto fail;
 1115         }
 1116         sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
 1117 
 1118         /* Rx CMB. */
 1119         for (i = 0; i < ALE_RX_PAGES; i++) {
 1120                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1121                     (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1122                     BUS_DMA_WAITOK | BUS_DMA_ZERO,
 1123                     &sc->ale_cdata.ale_rx_page[i].cmb_map);
 1124                 if (error != 0) {
 1125                         device_printf(sc->ale_dev, "could not allocate "
 1126                             "DMA'able memory for Rx page %d CMB.\n", i);
 1127                         goto fail;
 1128                 }
 1129                 ctx.ale_busaddr = 0;
 1130                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1131                     sc->ale_cdata.ale_rx_page[i].cmb_map,
 1132                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1133                     ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1134                 if (error != 0 || ctx.ale_busaddr == 0) {
 1135                         device_printf(sc->ale_dev, "could not load DMA'able "
 1136                             "memory for Rx page %d CMB.\n", i);
 1137                         goto fail;
 1138                 }
 1139                 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
 1140         }
 1141 
 1142         /*
 1143          * Tx descriptors/RXF0/CMB DMA blocks share the same
 1144          * high address region of 64bit DMA address space.
 1145          */
 1146         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
 1147             (error = ale_check_boundary(sc)) != 0) {
 1148                 device_printf(sc->ale_dev, "4GB boundary crossed, "
 1149                     "switching to 32bit DMA addressing mode.\n");
 1150                 ale_dma_free(sc);
 1151                 /*
 1152                  * Limit max allowable DMA address space to 32bit
 1153                  * and try again.
 1154                  */
 1155                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1156                 goto again;
 1157         }
 1158 
 1159         /*
 1160          * Create Tx buffer parent tag.
 1161          * AR81xx allows 64bit DMA addressing of Tx buffers so it
 1162          * needs separate parent DMA tag as parent DMA address space
 1163          * could be restricted to be within 32bit address space by
 1164          * 4GB boundary crossing.
 1165          */
 1166         error = bus_dma_tag_create(
 1167             NULL,                       /* parent */
 1168             1, 0,                       /* alignment, boundary */
 1169             BUS_SPACE_MAXADDR,          /* lowaddr */
 1170             BUS_SPACE_MAXADDR,          /* highaddr */
 1171             NULL, NULL,                 /* filter, filterarg */
 1172             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1173             0,                          /* nsegments */
 1174             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1175             0,                          /* flags */
 1176             &sc->ale_cdata.ale_buffer_tag);
 1177         if (error != 0) {
 1178                 device_printf(sc->ale_dev,
 1179                     "could not create parent buffer DMA tag.\n");
 1180                 goto fail;
 1181         }
 1182 
 1183         /* Create DMA tag for Tx buffers. */
 1184         error = bus_dma_tag_create(
 1185             sc->ale_cdata.ale_buffer_tag, /* parent */
 1186             1, 0,                       /* alignment, boundary */
 1187             BUS_SPACE_MAXADDR,          /* lowaddr */
 1188             BUS_SPACE_MAXADDR,          /* highaddr */
 1189             NULL, NULL,                 /* filter, filterarg */
 1190             ALE_TSO_MAXSIZE,            /* maxsize */
 1191             ALE_MAXTXSEGS,              /* nsegments */
 1192             ALE_TSO_MAXSEGSIZE,         /* maxsegsize */
 1193             0,                          /* flags */
 1194             &sc->ale_cdata.ale_tx_tag);
 1195         if (error != 0) {
 1196                 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
 1197                 goto fail;
 1198         }
 1199 
 1200         /* Create DMA maps for Tx buffers. */
 1201         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1202                 txd = &sc->ale_cdata.ale_txdesc[i];
 1203                 txd->tx_m = NULL;
 1204                 txd->tx_dmamap = NULL;
 1205                 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
 1206                     &txd->tx_dmamap);
 1207                 if (error != 0) {
 1208                         device_printf(sc->ale_dev,
 1209                             "could not create Tx dmamap.\n");
 1210                         goto fail;
 1211                 }
 1212         }
 1213 fail:
 1214         return (error);
 1215 }
 1216 
 1217 static void
 1218 ale_dma_free(struct ale_softc *sc)
 1219 {
 1220         struct ale_txdesc *txd;
 1221         int i;
 1222 
 1223         /* Tx buffers. */
 1224         if (sc->ale_cdata.ale_tx_tag != NULL) {
 1225                 for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1226                         txd = &sc->ale_cdata.ale_txdesc[i];
 1227                         if (txd->tx_dmamap != NULL) {
 1228                                 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
 1229                                     txd->tx_dmamap);
 1230                                 txd->tx_dmamap = NULL;
 1231                         }
 1232                 }
 1233                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
 1234                 sc->ale_cdata.ale_tx_tag = NULL;
 1235         }
 1236         /* Tx descriptor ring. */
 1237         if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
 1238                 if (sc->ale_cdata.ale_tx_ring_map != NULL)
 1239                         bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
 1240                             sc->ale_cdata.ale_tx_ring_map);
 1241                 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
 1242                     sc->ale_cdata.ale_tx_ring != NULL)
 1243                         bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
 1244                             sc->ale_cdata.ale_tx_ring,
 1245                             sc->ale_cdata.ale_tx_ring_map);
 1246                 sc->ale_cdata.ale_tx_ring = NULL;
 1247                 sc->ale_cdata.ale_tx_ring_map = NULL;
 1248                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
 1249                 sc->ale_cdata.ale_tx_ring_tag = NULL;
 1250         }
 1251         /* Rx page block. */
 1252         for (i = 0; i < ALE_RX_PAGES; i++) {
 1253                 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
 1254                         if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
 1255                                 bus_dmamap_unload(
 1256                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1257                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1258                         if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
 1259                             sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
 1260                                 bus_dmamem_free(
 1261                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1262                                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1263                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1264                         sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
 1265                         sc->ale_cdata.ale_rx_page[i].page_map = NULL;
 1266                         bus_dma_tag_destroy(
 1267                             sc->ale_cdata.ale_rx_page[i].page_tag);
 1268                         sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
 1269                 }
 1270         }
 1271         /* Rx CMB. */
 1272         for (i = 0; i < ALE_RX_PAGES; i++) {
 1273                 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
 1274                         if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
 1275                                 bus_dmamap_unload(
 1276                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1277                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1278                         if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
 1279                             sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
 1280                                 bus_dmamem_free(
 1281                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1282                                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1283                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1284                         sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
 1285                         sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
 1286                         bus_dma_tag_destroy(
 1287                             sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1288                         sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
 1289                 }
 1290         }
 1291         /* Tx CMB. */
 1292         if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
 1293                 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
 1294                         bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
 1295                             sc->ale_cdata.ale_tx_cmb_map);
 1296                 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
 1297                     sc->ale_cdata.ale_tx_cmb != NULL)
 1298                         bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
 1299                             sc->ale_cdata.ale_tx_cmb,
 1300                             sc->ale_cdata.ale_tx_cmb_map);
 1301                 sc->ale_cdata.ale_tx_cmb = NULL;
 1302                 sc->ale_cdata.ale_tx_cmb_map = NULL;
 1303                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
 1304                 sc->ale_cdata.ale_tx_cmb_tag = NULL;
 1305         }
 1306         if (sc->ale_cdata.ale_buffer_tag != NULL) {
 1307                 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
 1308                 sc->ale_cdata.ale_buffer_tag = NULL;
 1309         }
 1310         if (sc->ale_cdata.ale_parent_tag != NULL) {
 1311                 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
 1312                 sc->ale_cdata.ale_parent_tag = NULL;
 1313         }
 1314 }
 1315 
 1316 static int
 1317 ale_shutdown(device_t dev)
 1318 {
 1319         return (ale_suspend(dev));
 1320 }
 1321 
 1322 #ifdef notyet
 1323 
 1324 /*
 1325  * Note, this driver resets the link speed to 10/100Mbps by
 1326  * restarting auto-negotiation in suspend/shutdown phase but we
 1327  * don't know whether that auto-negotiation would succeed or not
 1328  * as driver has no control after powering off/suspend operation.
 1329  * If the renegotiation fail WOL may not work. Running at 1Gbps
 1330  * will draw more power than 375mA at 3.3V which is specified in
 1331  * PCI specification and that would result in complete
 1332  * shutdowning power to ethernet controller.
 1333  *
 1334  * TODO
 1335  * Save current negotiated media speed/duplex/flow-control to
 1336  * softc and restore the same link again after resuming. PHY
 1337  * handling such as power down/resetting to 100Mbps may be better
 1338  * handled in suspend method in phy driver.
 1339  */
 1340 static void
 1341 ale_setlinkspeed(struct ale_softc *sc)
 1342 {
 1343         struct mii_data *mii;
 1344         int aneg, i;
 1345 
 1346         mii = device_get_softc(sc->ale_miibus);
 1347         mii_pollstat(mii);
 1348         aneg = 0;
 1349         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 1350             (IFM_ACTIVE | IFM_AVALID)) {
 1351                 switch IFM_SUBTYPE(mii->mii_media_active) {
 1352                 case IFM_10_T:
 1353                 case IFM_100_TX:
 1354                         return;
 1355                 case IFM_1000_T:
 1356                         aneg++;
 1357                         break;
 1358                 default:
 1359                         break;
 1360                 }
 1361         }
 1362         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
 1363         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1364             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
 1365         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1366             MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
 1367         DELAY(1000);
 1368         if (aneg != 0) {
 1369                 /*
 1370                  * Poll link state until ale(4) get a 10/100Mbps link.
 1371                  */
 1372                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 1373                         mii_pollstat(mii);
 1374                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
 1375                             == (IFM_ACTIVE | IFM_AVALID)) {
 1376                                 switch (IFM_SUBTYPE(
 1377                                     mii->mii_media_active)) {
 1378                                 case IFM_10_T:
 1379                                 case IFM_100_TX:
 1380                                         ale_mac_config(sc);
 1381                                         return;
 1382                                 default:
 1383                                         break;
 1384                                 }
 1385                         }
 1386                         ALE_UNLOCK(sc);
 1387                         pause("alelnk", hz);
 1388                         ALE_LOCK(sc);
 1389                 }
 1390                 if (i == MII_ANEGTICKS_GIGE)
 1391                         device_printf(sc->ale_dev,
 1392                             "establishing a link failed, WOL may not work!");
 1393         }
 1394         /*
 1395          * No link, force MAC to have 100Mbps, full-duplex link.
 1396          * This is the last resort and may/may not work.
 1397          */
 1398         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 1399         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 1400         ale_mac_config(sc);
 1401 }
 1402 
 1403 static void
 1404 ale_setwol(struct ale_softc *sc)
 1405 {
 1406         struct ifnet *ifp;
 1407         uint32_t reg, pmcs;
 1408         uint16_t pmstat;
 1409         int pmc;
 1410 
 1411         ALE_LOCK_ASSERT(sc);
 1412 
 1413         if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
 1414                 /* Disable WOL. */
 1415                 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 1416                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1417                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1418                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1419                 /* Force PHY power down. */
 1420                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1421                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1422                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
 1423                     GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
 1424                     GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
 1425                 return;
 1426         }
 1427 
 1428         ifp = sc->ale_ifp;
 1429         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1430                 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
 1431                         ale_setlinkspeed(sc);
 1432         }
 1433 
 1434         pmcs = 0;
 1435         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 1436                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
 1437         CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
 1438         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 1439         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
 1440             MAC_CFG_BCAST);
 1441         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 1442                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
 1443         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1444                 reg |= MAC_CFG_RX_ENB;
 1445         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 1446 
 1447         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
 1448                 /* WOL disabled, PHY power down. */
 1449                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1450                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1451                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1452                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1453                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1454                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
 1455                     GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
 1456                     GPHY_CTRL_PWDOWN_HW);
 1457         }
 1458         /* Request PME. */
 1459         pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
 1460         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 1461         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1462                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 1463         pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 1464 }
 1465 
 1466 #endif  /* notyet */
 1467 
 1468 static int
 1469 ale_suspend(device_t dev)
 1470 {
 1471         struct ale_softc *sc = device_get_softc(dev);
 1472         struct ifnet *ifp = &sc->arpcom.ac_if;
 1473 
 1474         lwkt_serialize_enter(ifp->if_serializer);
 1475         ale_stop(sc);
 1476 #ifdef notyet
 1477         ale_setwol(sc);
 1478 #endif
 1479         lwkt_serialize_exit(ifp->if_serializer);
 1480         return (0);
 1481 }
 1482 
 1483 static int
 1484 ale_resume(device_t dev)
 1485 {
 1486         struct ale_softc *sc = device_get_softc(dev);
 1487         struct ifnet *ifp = &sc->arpcom.ac_if;
 1488         uint16_t cmd;
 1489 
 1490         lwkt_serialize_enter(ifp->if_serializer);
 1491 
 1492         /*
 1493          * Clear INTx emulation disable for hardwares that
 1494          * is set in resume event. From Linux.
 1495          */
 1496         cmd = pci_read_config(sc->ale_dev, PCIR_COMMAND, 2);
 1497         if ((cmd & 0x0400) != 0) {
 1498                 cmd &= ~0x0400;
 1499                 pci_write_config(sc->ale_dev, PCIR_COMMAND, cmd, 2);
 1500         }
 1501 
 1502 #ifdef notyet
 1503         if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
 1504                 uint16_t pmstat;
 1505                 int pmc;
 1506 
 1507                 /* Disable PME and clear PME status. */
 1508                 pmstat = pci_read_config(sc->ale_dev,
 1509                     pmc + PCIR_POWER_STATUS, 2);
 1510                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 1511                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 1512                         pci_write_config(sc->ale_dev,
 1513                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 1514                 }
 1515         }
 1516 #endif
 1517 
 1518         /* Reset PHY. */
 1519         ale_phy_reset(sc);
 1520         if ((ifp->if_flags & IFF_UP) != 0)
 1521                 ale_init(sc);
 1522 
 1523         lwkt_serialize_exit(ifp->if_serializer);
 1524         return (0);
 1525 }
 1526 
 1527 static int
 1528 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
 1529 {
 1530         struct ale_txdesc *txd, *txd_last;
 1531         struct tx_desc *desc;
 1532         struct mbuf *m;
 1533         bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
 1534         struct ale_dmamap_ctx ctx;
 1535         bus_dmamap_t map;
 1536         uint32_t cflags, poff, vtag;
 1537         int error, i, nsegs, prod;
 1538 
 1539         M_ASSERTPKTHDR((*m_head));
 1540 
 1541         m = *m_head;
 1542         cflags = vtag = 0;
 1543         poff = 0;
 1544 
 1545         prod = sc->ale_cdata.ale_tx_prod;
 1546         txd = &sc->ale_cdata.ale_txdesc[prod];
 1547         txd_last = txd;
 1548         map = txd->tx_dmamap;
 1549 
 1550         ctx.nsegs = ALE_MAXTXSEGS;
 1551         ctx.segs = txsegs;
 1552         error =  bus_dmamap_load_mbuf(sc->ale_cdata.ale_tx_tag, map,
 1553                                       *m_head, ale_dmamap_buf_cb, &ctx,
 1554                                       BUS_DMA_NOWAIT);
 1555         if (error == EFBIG) {
 1556                 m = m_defrag(*m_head, MB_DONTWAIT);
 1557                 if (m == NULL) {
 1558                         m_freem(*m_head);
 1559                         *m_head = NULL;
 1560                         return (ENOMEM);
 1561                 }
 1562                 *m_head = m;
 1563 
 1564                 ctx.nsegs = ALE_MAXTXSEGS;
 1565                 ctx.segs = txsegs;
 1566                 error =  bus_dmamap_load_mbuf(sc->ale_cdata.ale_tx_tag, map,
 1567                                               *m_head, ale_dmamap_buf_cb, &ctx,
 1568                                               BUS_DMA_NOWAIT);
 1569                 if (error != 0) {
 1570                         m_freem(*m_head);
 1571                         *m_head = NULL;
 1572                         return (error);
 1573                 }
 1574         } else if (error != 0) {
 1575                 return (error);
 1576         }
 1577         nsegs = ctx.nsegs;
 1578 
 1579         if (nsegs == 0) {
 1580                 m_freem(*m_head);
 1581                 *m_head = NULL;
 1582                 return (EIO);
 1583         }
 1584 
 1585         /* Check descriptor overrun. */
 1586         if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
 1587                 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
 1588                 return (ENOBUFS);
 1589         }
 1590         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
 1591 
 1592         m = *m_head;
 1593         /* Configure Tx checksum offload. */
 1594         if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
 1595                 /*
 1596                  * AR81xx supports Tx custom checksum offload feature
 1597                  * that offloads single 16bit checksum computation.
 1598                  * So you can choose one among IP, TCP and UDP.
 1599                  * Normally driver sets checksum start/insertion
 1600                  * position from the information of TCP/UDP frame as
 1601                  * TCP/UDP checksum takes more time than that of IP.
 1602                  * However it seems that custom checksum offload
 1603                  * requires 4 bytes aligned Tx buffers due to hardware
 1604                  * bug.
 1605                  * AR81xx also supports explicit Tx checksum computation
 1606                  * if it is told that the size of IP header and TCP
 1607                  * header(for UDP, the header size does not matter
 1608                  * because it's fixed length). However with this scheme
 1609                  * TSO does not work so you have to choose one either
 1610                  * TSO or explicit Tx checksum offload. I chosen TSO
 1611                  * plus custom checksum offload with work-around which
 1612                  * will cover most common usage for this consumer
 1613                  * ethernet controller. The work-around takes a lot of
 1614                  * CPU cycles if Tx buffer is not aligned on 4 bytes
 1615                  * boundary, though.
 1616                  */
 1617                 cflags |= ALE_TD_CXSUM;
 1618                 /* Set checksum start offset. */
 1619                 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
 1620                 /* Set checksum insertion position of TCP/UDP. */
 1621                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
 1622                     ALE_TD_CSUM_XSUMOFFSET_SHIFT);
 1623         }
 1624 
 1625         /* Configure VLAN hardware tag insertion. */
 1626         if ((m->m_flags & M_VLANTAG) != 0) {
 1627                 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vlantag);
 1628                 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
 1629                 cflags |= ALE_TD_INSERT_VLAN_TAG;
 1630         }
 1631 
 1632         desc = NULL;
 1633         for (i = 0; i < nsegs; i++) {
 1634                 desc = &sc->ale_cdata.ale_tx_ring[prod];
 1635                 desc->addr = htole64(txsegs[i].ds_addr);
 1636                 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
 1637                 desc->flags = htole32(cflags);
 1638                 sc->ale_cdata.ale_tx_cnt++;
 1639                 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1640         }
 1641         /* Update producer index. */
 1642         sc->ale_cdata.ale_tx_prod = prod;
 1643 
 1644         /* Finally set EOP on the last descriptor. */
 1645         prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
 1646         desc = &sc->ale_cdata.ale_tx_ring[prod];
 1647         desc->flags |= htole32(ALE_TD_EOP);
 1648 
 1649         /* Swap dmamap of the first and the last. */
 1650         txd = &sc->ale_cdata.ale_txdesc[prod];
 1651         map = txd_last->tx_dmamap;
 1652         txd_last->tx_dmamap = txd->tx_dmamap;
 1653         txd->tx_dmamap = map;
 1654         txd->tx_m = m;
 1655 
 1656         /* Sync descriptors. */
 1657         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 1658             sc->ale_cdata.ale_tx_ring_map, BUS_DMASYNC_PREWRITE);
 1659 
 1660         return (0);
 1661 }
 1662 
 1663 static void
 1664 ale_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 1665 {
 1666         struct ale_softc *sc = ifp->if_softc;
 1667         struct mbuf *m_head;
 1668         int enq;
 1669 
 1670         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 1671         ASSERT_SERIALIZED(ifp->if_serializer);
 1672 
 1673         if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
 1674                 ifq_purge(&ifp->if_snd);
 1675                 return;
 1676         }
 1677 
 1678         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
 1679                 return;
 1680 
 1681         /* Reclaim transmitted frames. */
 1682         if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
 1683                 ale_txeof(sc);
 1684 
 1685         enq = 0;
 1686         while (!ifq_is_empty(&ifp->if_snd)) {
 1687                 m_head = ifq_dequeue(&ifp->if_snd);
 1688                 if (m_head == NULL)
 1689                         break;
 1690 
 1691                 /*
 1692                  * Pack the data into the transmit ring. If we
 1693                  * don't have room, set the OACTIVE flag and wait
 1694                  * for the NIC to drain the ring.
 1695                  */
 1696                 if (ale_encap(sc, &m_head)) {
 1697                         if (m_head == NULL)
 1698                                 break;
 1699                         ifq_prepend(&ifp->if_snd, m_head);
 1700                         ifq_set_oactive(&ifp->if_snd);
 1701                         break;
 1702                 }
 1703                 enq = 1;
 1704 
 1705                 /*
 1706                  * If there's a BPF listener, bounce a copy of this frame
 1707                  * to him.
 1708                  */
 1709                 ETHER_BPF_MTAP(ifp, m_head);
 1710         }
 1711 
 1712         if (enq) {
 1713                 /* Kick. */
 1714                 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
 1715                     sc->ale_cdata.ale_tx_prod);
 1716 
 1717                 /* Set a timeout in case the chip goes out to lunch. */
 1718                 ifp->if_timer = ALE_TX_TIMEOUT;
 1719         }
 1720 }
 1721 
 1722 static void
 1723 ale_watchdog(struct ifnet *ifp)
 1724 {
 1725         struct ale_softc *sc = ifp->if_softc;
 1726 
 1727         ASSERT_SERIALIZED(ifp->if_serializer);
 1728 
 1729         if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
 1730                 if_printf(ifp, "watchdog timeout (lost link)\n");
 1731                 IFNET_STAT_INC(ifp, oerrors, 1);
 1732                 ale_init(sc);
 1733                 return;
 1734         }
 1735 
 1736         if_printf(ifp, "watchdog timeout -- resetting\n");
 1737         IFNET_STAT_INC(ifp, oerrors, 1);
 1738         ale_init(sc);
 1739 
 1740         if (!ifq_is_empty(&ifp->if_snd))
 1741                 if_devstart(ifp);
 1742 }
 1743 
 1744 static int
 1745 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
 1746 {
 1747         struct ale_softc *sc;
 1748         struct ifreq *ifr;
 1749         struct mii_data *mii;
 1750         int error, mask;
 1751 
 1752         ASSERT_SERIALIZED(ifp->if_serializer);
 1753 
 1754         sc = ifp->if_softc;
 1755         ifr = (struct ifreq *)data;
 1756         error = 0;
 1757 
 1758         switch (cmd) {
 1759         case SIOCSIFMTU:
 1760                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
 1761                     ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
 1762                     ifr->ifr_mtu > ETHERMTU))
 1763                         error = EINVAL;
 1764                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 1765                         ifp->if_mtu = ifr->ifr_mtu;
 1766                         if ((ifp->if_flags & IFF_RUNNING) != 0)
 1767                                 ale_init(sc);
 1768                 }
 1769                 break;
 1770 
 1771         case SIOCSIFFLAGS:
 1772                 if ((ifp->if_flags & IFF_UP) != 0) {
 1773                         if ((ifp->if_flags & IFF_RUNNING) != 0) {
 1774                                 if (((ifp->if_flags ^ sc->ale_if_flags)
 1775                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1776                                         ale_rxfilter(sc);
 1777                         } else {
 1778                                 if ((sc->ale_flags & ALE_FLAG_DETACH) == 0)
 1779                                         ale_init(sc);
 1780                         }
 1781                 } else {
 1782                         if ((ifp->if_flags & IFF_RUNNING) != 0)
 1783                                 ale_stop(sc);
 1784                 }
 1785                 sc->ale_if_flags = ifp->if_flags;
 1786                 break;
 1787 
 1788         case SIOCADDMULTI:
 1789         case SIOCDELMULTI:
 1790                 if ((ifp->if_flags & IFF_RUNNING) != 0)
 1791                         ale_rxfilter(sc);
 1792                 break;
 1793 
 1794         case SIOCSIFMEDIA:
 1795         case SIOCGIFMEDIA:
 1796                 mii = device_get_softc(sc->ale_miibus);
 1797                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1798                 break;
 1799 
 1800         case SIOCSIFCAP:
 1801                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1802                 if ((mask & IFCAP_TXCSUM) != 0 &&
 1803                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 1804                         ifp->if_capenable ^= IFCAP_TXCSUM;
 1805                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1806                                 ifp->if_hwassist |= ALE_CSUM_FEATURES;
 1807                         else
 1808                                 ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
 1809                 }
 1810                 if ((mask & IFCAP_RXCSUM) != 0 &&
 1811                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 1812                         ifp->if_capenable ^= IFCAP_RXCSUM;
 1813 
 1814                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 1815                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 1816                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 1817                         ale_rxvlan(sc);
 1818                 }
 1819                 break;
 1820 
 1821         default:
 1822                 error = ether_ioctl(ifp, cmd, data);
 1823                 break;
 1824         }
 1825         return (error);
 1826 }
 1827 
 1828 static void
 1829 ale_mac_config(struct ale_softc *sc)
 1830 {
 1831         struct mii_data *mii;
 1832         uint32_t reg;
 1833 
 1834         mii = device_get_softc(sc->ale_miibus);
 1835         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 1836         reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
 1837             MAC_CFG_SPEED_MASK);
 1838         /* Reprogram MAC with resolved speed/duplex. */
 1839         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1840         case IFM_10_T:
 1841         case IFM_100_TX:
 1842                 reg |= MAC_CFG_SPEED_10_100;
 1843                 break;
 1844         case IFM_1000_T:
 1845                 reg |= MAC_CFG_SPEED_1000;
 1846                 break;
 1847         }
 1848         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 1849                 reg |= MAC_CFG_FULL_DUPLEX;
 1850 #ifdef notyet
 1851                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 1852                         reg |= MAC_CFG_TX_FC;
 1853                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 1854                         reg |= MAC_CFG_RX_FC;
 1855 #endif
 1856         }
 1857         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 1858 }
 1859 
 1860 static void
 1861 ale_stats_clear(struct ale_softc *sc)
 1862 {
 1863         struct smb sb;
 1864         uint32_t *reg;
 1865         int i;
 1866 
 1867         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 1868                 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 1869                 i += sizeof(uint32_t);
 1870         }
 1871         /* Read Tx statistics. */
 1872         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 1873                 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 1874                 i += sizeof(uint32_t);
 1875         }
 1876 }
 1877 
 1878 static void
 1879 ale_stats_update(struct ale_softc *sc)
 1880 {
 1881         struct ale_hw_stats *stat;
 1882         struct smb sb, *smb;
 1883         struct ifnet *ifp;
 1884         uint32_t *reg;
 1885         int i;
 1886 
 1887         ifp = &sc->arpcom.ac_if;
 1888         stat = &sc->ale_stats;
 1889         smb = &sb;
 1890 
 1891         /* Read Rx statistics. */
 1892         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 1893                 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 1894                 i += sizeof(uint32_t);
 1895         }
 1896         /* Read Tx statistics. */
 1897         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 1898                 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 1899                 i += sizeof(uint32_t);
 1900         }
 1901 
 1902         /* Rx stats. */
 1903         stat->rx_frames += smb->rx_frames;
 1904         stat->rx_bcast_frames += smb->rx_bcast_frames;
 1905         stat->rx_mcast_frames += smb->rx_mcast_frames;
 1906         stat->rx_pause_frames += smb->rx_pause_frames;
 1907         stat->rx_control_frames += smb->rx_control_frames;
 1908         stat->rx_crcerrs += smb->rx_crcerrs;
 1909         stat->rx_lenerrs += smb->rx_lenerrs;
 1910         stat->rx_bytes += smb->rx_bytes;
 1911         stat->rx_runts += smb->rx_runts;
 1912         stat->rx_fragments += smb->rx_fragments;
 1913         stat->rx_pkts_64 += smb->rx_pkts_64;
 1914         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
 1915         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
 1916         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
 1917         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
 1918         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
 1919         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
 1920         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
 1921         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
 1922         stat->rx_rrs_errs += smb->rx_rrs_errs;
 1923         stat->rx_alignerrs += smb->rx_alignerrs;
 1924         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
 1925         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
 1926         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
 1927 
 1928         /* Tx stats. */
 1929         stat->tx_frames += smb->tx_frames;
 1930         stat->tx_bcast_frames += smb->tx_bcast_frames;
 1931         stat->tx_mcast_frames += smb->tx_mcast_frames;
 1932         stat->tx_pause_frames += smb->tx_pause_frames;
 1933         stat->tx_excess_defer += smb->tx_excess_defer;
 1934         stat->tx_control_frames += smb->tx_control_frames;
 1935         stat->tx_deferred += smb->tx_deferred;
 1936         stat->tx_bytes += smb->tx_bytes;
 1937         stat->tx_pkts_64 += smb->tx_pkts_64;
 1938         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
 1939         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
 1940         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
 1941         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
 1942         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
 1943         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
 1944         stat->tx_single_colls += smb->tx_single_colls;
 1945         stat->tx_multi_colls += smb->tx_multi_colls;
 1946         stat->tx_late_colls += smb->tx_late_colls;
 1947         stat->tx_excess_colls += smb->tx_excess_colls;
 1948         stat->tx_abort += smb->tx_abort;
 1949         stat->tx_underrun += smb->tx_underrun;
 1950         stat->tx_desc_underrun += smb->tx_desc_underrun;
 1951         stat->tx_lenerrs += smb->tx_lenerrs;
 1952         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
 1953         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
 1954         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
 1955 
 1956         /* Update counters in ifnet. */
 1957         IFNET_STAT_INC(ifp, opackets, smb->tx_frames);
 1958 
 1959         IFNET_STAT_INC(ifp, collisions, smb->tx_single_colls +
 1960             smb->tx_multi_colls * 2 + smb->tx_late_colls +
 1961             smb->tx_abort * HDPX_CFG_RETRY_DEFAULT);
 1962 
 1963         /*
 1964          * XXX
 1965          * tx_pkts_truncated counter looks suspicious. It constantly
 1966          * increments with no sign of Tx errors. This may indicate
 1967          * the counter name is not correct one so I've removed the
 1968          * counter in output errors.
 1969          */
 1970         IFNET_STAT_INC(ifp, oerrors, smb->tx_abort + smb->tx_late_colls +
 1971             smb->tx_underrun);
 1972 
 1973         IFNET_STAT_INC(ifp, ipackets, smb->rx_frames);
 1974 
 1975         IFNET_STAT_INC(ifp, ierrors, smb->rx_crcerrs + smb->rx_lenerrs +
 1976             smb->rx_runts + smb->rx_pkts_truncated +
 1977             smb->rx_fifo_oflows + smb->rx_rrs_errs +
 1978             smb->rx_alignerrs);
 1979 }
 1980 
 1981 static void
 1982 ale_intr(void *xsc)
 1983 {
 1984         struct ale_softc *sc = xsc;
 1985         struct ifnet *ifp = &sc->arpcom.ac_if;
 1986         uint32_t status;
 1987 
 1988         ASSERT_SERIALIZED(ifp->if_serializer);
 1989 
 1990         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 1991         if ((status & ALE_INTRS) == 0)
 1992                 return;
 1993 
 1994         /* Acknowledge and disable interrupts. */
 1995         CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
 1996 
 1997         if ((ifp->if_flags & IFF_RUNNING) != 0) {
 1998                 int error;
 1999 
 2000                 error = ale_rxeof(sc);
 2001                 if (error) {
 2002                         sc->ale_stats.reset_brk_seq++;
 2003                         ale_init(sc);
 2004                         return;
 2005                 }
 2006 
 2007                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
 2008                         if ((status & INTR_DMA_RD_TO_RST) != 0)
 2009                                 device_printf(sc->ale_dev,
 2010                                     "DMA read error! -- resetting\n");
 2011                         if ((status & INTR_DMA_WR_TO_RST) != 0)
 2012                                 device_printf(sc->ale_dev,
 2013                                     "DMA write error! -- resetting\n");
 2014                         ale_init(sc);
 2015                         return;
 2016                 }
 2017 
 2018                 ale_txeof(sc);
 2019                 if (!ifq_is_empty(&ifp->if_snd))
 2020                         if_devstart(ifp);
 2021         }
 2022 
 2023         /* Re-enable interrupts. */
 2024         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
 2025 }
 2026 
 2027 static void
 2028 ale_txeof(struct ale_softc *sc)
 2029 {
 2030         struct ifnet *ifp = &sc->arpcom.ac_if;
 2031         struct ale_txdesc *txd;
 2032         uint32_t cons, prod;
 2033         int prog;
 2034 
 2035         if (sc->ale_cdata.ale_tx_cnt == 0)
 2036                 return;
 2037 
 2038         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2039             sc->ale_cdata.ale_tx_ring_map, BUS_DMASYNC_POSTREAD);
 2040         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
 2041                 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2042                     sc->ale_cdata.ale_tx_cmb_map, BUS_DMASYNC_POSTREAD);
 2043                 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
 2044         } else
 2045                 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
 2046         cons = sc->ale_cdata.ale_tx_cons;
 2047         /*
 2048          * Go through our Tx list and free mbufs for those
 2049          * frames which have been transmitted.
 2050          */
 2051         for (prog = 0; cons != prod; prog++,
 2052              ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
 2053                 if (sc->ale_cdata.ale_tx_cnt <= 0)
 2054                         break;
 2055                 prog++;
 2056                 ifq_clr_oactive(&ifp->if_snd);
 2057                 sc->ale_cdata.ale_tx_cnt--;
 2058                 txd = &sc->ale_cdata.ale_txdesc[cons];
 2059                 if (txd->tx_m != NULL) {
 2060                         /* Reclaim transmitted mbufs. */
 2061                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2062                             txd->tx_dmamap);
 2063                         m_freem(txd->tx_m);
 2064                         txd->tx_m = NULL;
 2065                 }
 2066         }
 2067 
 2068         if (prog > 0) {
 2069                 sc->ale_cdata.ale_tx_cons = cons;
 2070                 /*
 2071                  * Unarm watchdog timer only when there is no pending
 2072                  * Tx descriptors in queue.
 2073                  */
 2074                 if (sc->ale_cdata.ale_tx_cnt == 0)
 2075                         ifp->if_timer = 0;
 2076         }
 2077 }
 2078 
 2079 static void
 2080 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
 2081     uint32_t length, uint32_t *prod)
 2082 {
 2083         struct ale_rx_page *rx_page;
 2084 
 2085         rx_page = *page;
 2086         /* Update consumer position. */
 2087         rx_page->cons += roundup(length + sizeof(struct rx_rs),
 2088             ALE_RX_PAGE_ALIGN);
 2089         if (rx_page->cons >= ALE_RX_PAGE_SZ) {
 2090                 /*
 2091                  * End of Rx page reached, let hardware reuse
 2092                  * this page.
 2093                  */
 2094                 rx_page->cons = 0;
 2095                 *rx_page->cmb_addr = 0;
 2096                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2097                                 BUS_DMASYNC_PREWRITE);
 2098                 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
 2099                     RXF_VALID);
 2100                 /* Switch to alternate Rx page. */
 2101                 sc->ale_cdata.ale_rx_curp ^= 1;
 2102                 rx_page = *page =
 2103                     &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2104                 /* Page flipped, sync CMB and Rx page. */
 2105                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2106                     BUS_DMASYNC_POSTREAD);
 2107                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2108                     BUS_DMASYNC_POSTREAD);
 2109                 /* Sync completed, cache updated producer index. */
 2110                 *prod = *rx_page->cmb_addr;
 2111         }
 2112 }
 2113 
 2114 
 2115 /*
 2116  * It seems that AR81xx controller can compute partial checksum.
 2117  * The partial checksum value can be used to accelerate checksum
 2118  * computation for fragmented TCP/UDP packets. Upper network stack
 2119  * already takes advantage of the partial checksum value in IP
 2120  * reassembly stage. But I'm not sure the correctness of the
 2121  * partial hardware checksum assistance due to lack of data sheet.
 2122  * In addition, the Rx feature of controller that requires copying
 2123  * for every frames effectively nullifies one of most nice offload
 2124  * capability of controller.
 2125  */
 2126 static void
 2127 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
 2128 {
 2129         struct ifnet *ifp = &sc->arpcom.ac_if;
 2130         struct ip *ip;
 2131         char *p;
 2132 
 2133         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2134         if ((status & ALE_RD_IPCSUM_NOK) == 0)
 2135                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2136 
 2137         if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
 2138                 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
 2139                     ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
 2140                     ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
 2141                         m->m_pkthdr.csum_flags |=
 2142                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2143                         m->m_pkthdr.csum_data = 0xffff;
 2144                 }
 2145         } else {
 2146                 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
 2147                     (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
 2148                         p = mtod(m, char *);
 2149                         p += ETHER_HDR_LEN;
 2150                         if ((status & ALE_RD_802_3) != 0)
 2151                                 p += LLC_SNAPFRAMELEN;
 2152                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
 2153                             (status & ALE_RD_VLAN) != 0)
 2154                                 p += EVL_ENCAPLEN;
 2155                         ip = (struct ip *)p;
 2156                         if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
 2157                                 return;
 2158                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 2159                             CSUM_PSEUDO_HDR;
 2160                         m->m_pkthdr.csum_data = 0xffff;
 2161                 }
 2162         }
 2163         /*
 2164          * Don't mark bad checksum for TCP/UDP frames
 2165          * as fragmented frames may always have set
 2166          * bad checksummed bit of frame status.
 2167          */
 2168 }
 2169 
 2170 /* Process received frames. */
 2171 static int
 2172 ale_rxeof(struct ale_softc *sc)
 2173 {
 2174         struct ifnet *ifp = &sc->arpcom.ac_if;
 2175         struct ale_rx_page *rx_page;
 2176         struct rx_rs *rs;
 2177         struct mbuf *m;
 2178         uint32_t length, prod, seqno, status, vtags;
 2179         int prog;
 2180 
 2181         rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2182         bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2183                         BUS_DMASYNC_POSTREAD);
 2184         bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2185                         BUS_DMASYNC_POSTREAD);
 2186         /*
 2187          * Don't directly access producer index as hardware may
 2188          * update it while Rx handler is in progress. It would
 2189          * be even better if there is a way to let hardware
 2190          * know how far driver processed its received frames.
 2191          * Alternatively, hardware could provide a way to disable
 2192          * CMB updates until driver acknowledges the end of CMB
 2193          * access.
 2194          */
 2195         prod = *rx_page->cmb_addr;
 2196         for (prog = 0; ; prog++) {
 2197                 if (rx_page->cons >= prod)
 2198                         break;
 2199                 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
 2200                 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
 2201                 if (sc->ale_cdata.ale_rx_seqno != seqno) {
 2202                         /*
 2203                          * Normally I believe this should not happen unless
 2204                          * severe driver bug or corrupted memory. However
 2205                          * it seems to happen under certain conditions which
 2206                          * is triggered by abrupt Rx events such as initiation
 2207                          * of bulk transfer of remote host. It's not easy to
 2208                          * reproduce this and I doubt it could be related
 2209                          * with FIFO overflow of hardware or activity of Tx
 2210                          * CMB updates. I also remember similar behaviour
 2211                          * seen on RealTek 8139 which uses resembling Rx
 2212                          * scheme.
 2213                          */
 2214                         if (bootverbose)
 2215                                 device_printf(sc->ale_dev,
 2216                                     "garbled seq: %u, expected: %u -- "
 2217                                     "resetting!\n", seqno,
 2218                                     sc->ale_cdata.ale_rx_seqno);
 2219                         return (EIO);
 2220                 }
 2221                 /* Frame received. */
 2222                 sc->ale_cdata.ale_rx_seqno++;
 2223                 length = ALE_RX_BYTES(le32toh(rs->length));
 2224                 status = le32toh(rs->flags);
 2225                 if ((status & ALE_RD_ERROR) != 0) {
 2226                         /*
 2227                          * We want to pass the following frames to upper
 2228                          * layer regardless of error status of Rx return
 2229                          * status.
 2230                          *
 2231                          *  o IP/TCP/UDP checksum is bad.
 2232                          *  o frame length and protocol specific length
 2233                          *     does not match.
 2234                          */
 2235                         if ((status & (ALE_RD_CRC | ALE_RD_CODE |
 2236                             ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
 2237                             ALE_RD_TRUNC)) != 0) {
 2238                                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2239                                 continue;
 2240                         }
 2241                 }
 2242                 /*
 2243                  * m_devget(9) is major bottle-neck of ale(4)(It comes
 2244                  * from hardware limitation). For jumbo frames we could
 2245                  * get a slightly better performance if driver use
 2246                  * m_getjcl(9) with proper buffer size argument. However
 2247                  * that would make code more complicated and I don't
 2248                  * think users would expect good Rx performance numbers
 2249                  * on these low-end consumer ethernet controller.
 2250                  */
 2251                 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
 2252                     ETHER_ALIGN, ifp, NULL);
 2253                 if (m == NULL) {
 2254                         IFNET_STAT_INC(ifp, iqdrops, 1);
 2255                         ale_rx_update_page(sc, &rx_page, length, &prod);
 2256                         continue;
 2257                 }
 2258                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 2259                     (status & ALE_RD_IPV4) != 0)
 2260                         ale_rxcsum(sc, m, status);
 2261                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 2262                     (status & ALE_RD_VLAN) != 0) {
 2263                         vtags = ALE_RX_VLAN(le32toh(rs->vtags));
 2264                         m->m_pkthdr.ether_vlantag = ALE_RX_VLAN_TAG(vtags);
 2265                         m->m_flags |= M_VLANTAG;
 2266                 }
 2267 
 2268                 /* Pass it to upper layer. */
 2269                 ifp->if_input(ifp, m);
 2270 
 2271                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2272         }
 2273         return 0;
 2274 }
 2275 
 2276 static void
 2277 ale_tick(void *xsc)
 2278 {
 2279         struct ale_softc *sc = xsc;
 2280         struct ifnet *ifp = &sc->arpcom.ac_if;
 2281         struct mii_data *mii;
 2282 
 2283         lwkt_serialize_enter(ifp->if_serializer);
 2284 
 2285         mii = device_get_softc(sc->ale_miibus);
 2286         mii_tick(mii);
 2287         ale_stats_update(sc);
 2288 
 2289         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2290 
 2291         lwkt_serialize_exit(ifp->if_serializer);
 2292 }
 2293 
 2294 static void
 2295 ale_reset(struct ale_softc *sc)
 2296 {
 2297         uint32_t reg;
 2298         int i;
 2299 
 2300         /* Initialize PCIe module. From Linux. */
 2301         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2302 
 2303         CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
 2304         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2305                 DELAY(10);
 2306                 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
 2307                         break;
 2308         }
 2309         if (i == 0)
 2310                 device_printf(sc->ale_dev, "master reset timeout!\n");
 2311 
 2312         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2313                 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
 2314                         break;
 2315                 DELAY(10);
 2316         }
 2317 
 2318         if (i == 0)
 2319                 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
 2320 }
 2321 
 2322 static void
 2323 ale_init(void *xsc)
 2324 {
 2325         struct ale_softc *sc = xsc;
 2326         struct ifnet *ifp = &sc->arpcom.ac_if;
 2327         struct mii_data *mii;
 2328         uint8_t eaddr[ETHER_ADDR_LEN];
 2329         bus_addr_t paddr;
 2330         uint32_t reg, rxf_hi, rxf_lo;
 2331 
 2332         ASSERT_SERIALIZED(ifp->if_serializer);
 2333 
 2334         mii = device_get_softc(sc->ale_miibus);
 2335 
 2336         /*
 2337          * Cancel any pending I/O.
 2338          */
 2339         ale_stop(sc);
 2340 
 2341         /*
 2342          * Reset the chip to a known state.
 2343          */
 2344         ale_reset(sc);
 2345 
 2346         /* Initialize Tx descriptors, DMA memory blocks. */
 2347         ale_init_rx_pages(sc);
 2348         ale_init_tx_ring(sc);
 2349 
 2350         /* Reprogram the station address. */
 2351         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
 2352         CSR_WRITE_4(sc, ALE_PAR0,
 2353             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2354         CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
 2355 
 2356         /*
 2357          * Clear WOL status and disable all WOL feature as WOL
 2358          * would interfere Rx operation under normal environments.
 2359          */
 2360         CSR_READ_4(sc, ALE_WOL_CFG);
 2361         CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 2362 
 2363         /*
 2364          * Set Tx descriptor/RXF0/CMB base addresses. They share
 2365          * the same high address part of DMAable region.
 2366          */
 2367         paddr = sc->ale_cdata.ale_tx_ring_paddr;
 2368         CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
 2369         CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
 2370         CSR_WRITE_4(sc, ALE_TPD_CNT,
 2371             (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
 2372 
 2373         /* Set Rx page base address, note we use single queue. */
 2374         paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
 2375         CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
 2376         paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
 2377         CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
 2378 
 2379         /* Set Tx/Rx CMB addresses. */
 2380         paddr = sc->ale_cdata.ale_tx_cmb_paddr;
 2381         CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
 2382         paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
 2383         CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
 2384         paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
 2385         CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
 2386 
 2387         /* Mark RXF0 is valid. */
 2388         CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
 2389         CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
 2390         /*
 2391          * No need to initialize RFX1/RXF2/RXF3. We don't use
 2392          * multi-queue yet.
 2393          */
 2394 
 2395         /* Set Rx page size, excluding guard frame size. */
 2396         CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
 2397 
 2398         /* Tell hardware that we're ready to load DMA blocks. */
 2399         CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
 2400 
 2401         /* Set Rx/Tx interrupt trigger threshold. */
 2402         CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
 2403             (4 << INT_TRIG_TX_THRESH_SHIFT));
 2404         /*
 2405          * XXX
 2406          * Set interrupt trigger timer, its purpose and relation
 2407          * with interrupt moderation mechanism is not clear yet.
 2408          */
 2409         CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
 2410             ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
 2411             (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
 2412 
 2413         /* Configure interrupt moderation timer. */
 2414         reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
 2415         reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
 2416         CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
 2417         reg = CSR_READ_4(sc, ALE_MASTER_CFG);
 2418         reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
 2419         reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
 2420         if (ALE_USECS(sc->ale_int_rx_mod) != 0)
 2421                 reg |= MASTER_IM_RX_TIMER_ENB;
 2422         if (ALE_USECS(sc->ale_int_tx_mod) != 0)
 2423                 reg |= MASTER_IM_TX_TIMER_ENB;
 2424         CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
 2425         CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
 2426 
 2427         /* Set Maximum frame size of controller. */
 2428         if (ifp->if_mtu < ETHERMTU)
 2429                 sc->ale_max_frame_size = ETHERMTU;
 2430         else
 2431                 sc->ale_max_frame_size = ifp->if_mtu;
 2432         sc->ale_max_frame_size += ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN;
 2433         CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
 2434 
 2435         /* Configure IPG/IFG parameters. */
 2436         CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
 2437             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
 2438             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
 2439             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
 2440             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
 2441 
 2442         /* Set parameters for half-duplex media. */
 2443         CSR_WRITE_4(sc, ALE_HDPX_CFG,
 2444             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
 2445             HDPX_CFG_LCOL_MASK) |
 2446             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
 2447             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
 2448             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
 2449             HDPX_CFG_ABEBT_MASK) |
 2450             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
 2451             HDPX_CFG_JAMIPG_MASK));
 2452 
 2453         /* Configure Tx jumbo frame parameters. */
 2454         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2455                 if (ifp->if_mtu < ETHERMTU)
 2456                         reg = sc->ale_max_frame_size;
 2457                 else if (ifp->if_mtu < 6 * 1024)
 2458                         reg = (sc->ale_max_frame_size * 2) / 3;
 2459                 else
 2460                         reg = sc->ale_max_frame_size / 2;
 2461                 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
 2462                     roundup(reg, TX_JUMBO_THRESH_UNIT) >>
 2463                     TX_JUMBO_THRESH_UNIT_SHIFT);
 2464         }
 2465 
 2466         /* Configure TxQ. */
 2467         reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
 2468             << TXQ_CFG_TX_FIFO_BURST_SHIFT;
 2469         reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
 2470             TXQ_CFG_TPD_BURST_MASK;
 2471         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
 2472 
 2473         /* Configure Rx jumbo frame & flow control parameters. */
 2474         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2475                 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
 2476                 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
 2477                     (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
 2478                     RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
 2479                     ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
 2480                     RX_JUMBO_LKAH_MASK));
 2481                 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
 2482                 rxf_hi = (reg * 7) / 10;
 2483                 rxf_lo = (reg * 3)/ 10;
 2484                 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
 2485                     ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
 2486                     RX_FIFO_PAUSE_THRESH_LO_MASK) |
 2487                     ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
 2488                      RX_FIFO_PAUSE_THRESH_HI_MASK));
 2489         }
 2490 
 2491         /* Disable RSS. */
 2492         CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
 2493         CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
 2494 
 2495         /* Configure RxQ. */
 2496         CSR_WRITE_4(sc, ALE_RXQ_CFG,
 2497             RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
 2498 
 2499         /* Configure DMA parameters. */
 2500         reg = 0;
 2501         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
 2502                 reg |= DMA_CFG_TXCMB_ENB;
 2503         CSR_WRITE_4(sc, ALE_DMA_CFG,
 2504             DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
 2505             sc->ale_dma_rd_burst | reg |
 2506             sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
 2507             ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
 2508             DMA_CFG_RD_DELAY_CNT_MASK) |
 2509             ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
 2510             DMA_CFG_WR_DELAY_CNT_MASK));
 2511 
 2512         /*
 2513          * Hardware can be configured to issue SMB interrupt based
 2514          * on programmed interval. Since there is a callout that is
 2515          * invoked for every hz in driver we use that instead of
 2516          * relying on periodic SMB interrupt.
 2517          */
 2518         CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
 2519 
 2520         /* Clear MAC statistics. */
 2521         ale_stats_clear(sc);
 2522 
 2523         /*
 2524          * Configure Tx/Rx MACs.
 2525          *  - Auto-padding for short frames.
 2526          *  - Enable CRC generation.
 2527          *  Actual reconfiguration of MAC for resolved speed/duplex
 2528          *  is followed after detection of link establishment.
 2529          *  AR81xx always does checksum computation regardless of
 2530          *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
 2531          *  cause Rx handling issue for fragmented IP datagrams due
 2532          *  to silicon bug.
 2533          */
 2534         reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
 2535             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
 2536             MAC_CFG_PREAMBLE_MASK);
 2537         if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
 2538                 reg |= MAC_CFG_SPEED_10_100;
 2539         else
 2540                 reg |= MAC_CFG_SPEED_1000;
 2541         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2542 
 2543         /* Set up the receive filter. */
 2544         ale_rxfilter(sc);
 2545         ale_rxvlan(sc);
 2546 
 2547         /* Acknowledge all pending interrupts and clear it. */
 2548         CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
 2549         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2550         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
 2551 
 2552         sc->ale_flags &= ~ALE_FLAG_LINK;
 2553 
 2554         /* Switch to the current media. */
 2555         mii_mediachg(mii);
 2556 
 2557         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2558 
 2559         ifp->if_flags |= IFF_RUNNING;
 2560         ifq_clr_oactive(&ifp->if_snd);
 2561 }
 2562 
 2563 static void
 2564 ale_stop(struct ale_softc *sc)
 2565 {
 2566         struct ifnet *ifp = &sc->arpcom.ac_if;
 2567         struct ale_txdesc *txd;
 2568         uint32_t reg;
 2569         int i;
 2570 
 2571         ASSERT_SERIALIZED(ifp->if_serializer);
 2572 
 2573         /*
 2574          * Mark the interface down and cancel the watchdog timer.
 2575          */
 2576         ifp->if_flags &= ~IFF_RUNNING;
 2577         ifq_clr_oactive(&ifp->if_snd);
 2578         ifp->if_timer = 0;
 2579 
 2580         callout_stop(&sc->ale_tick_ch);
 2581         sc->ale_flags &= ~ALE_FLAG_LINK;
 2582 
 2583         ale_stats_update(sc);
 2584 
 2585         /* Disable interrupts. */
 2586         CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
 2587         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2588 
 2589         /* Disable queue processing and DMA. */
 2590         reg = CSR_READ_4(sc, ALE_TXQ_CFG);
 2591         reg &= ~TXQ_CFG_ENB;
 2592         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
 2593         reg = CSR_READ_4(sc, ALE_RXQ_CFG);
 2594         reg &= ~RXQ_CFG_ENB;
 2595         CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
 2596         reg = CSR_READ_4(sc, ALE_DMA_CFG);
 2597         reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
 2598         CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
 2599         DELAY(1000);
 2600 
 2601         /* Stop Rx/Tx MACs. */
 2602         ale_stop_mac(sc);
 2603 
 2604         /* Disable interrupts again? XXX */
 2605         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2606 
 2607         /*
 2608          * Free TX mbufs still in the queues.
 2609          */
 2610         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2611                 txd = &sc->ale_cdata.ale_txdesc[i];
 2612                 if (txd->tx_m != NULL) {
 2613                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2614                             txd->tx_dmamap);
 2615                         m_freem(txd->tx_m);
 2616                         txd->tx_m = NULL;
 2617                 }
 2618         }
 2619 }
 2620 
 2621 static void
 2622 ale_stop_mac(struct ale_softc *sc)
 2623 {
 2624         uint32_t reg;
 2625         int i;
 2626 
 2627         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2628         if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
 2629                 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
 2630                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2631         }
 2632 
 2633         for (i = ALE_TIMEOUT; i > 0; i--) {
 2634                 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
 2635                 if (reg == 0)
 2636                         break;
 2637                 DELAY(10);
 2638         }
 2639         if (i == 0)
 2640                 device_printf(sc->ale_dev,
 2641                     "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
 2642 }
 2643 
 2644 static void
 2645 ale_init_tx_ring(struct ale_softc *sc)
 2646 {
 2647         struct ale_txdesc *txd;
 2648         int i;
 2649 
 2650         sc->ale_cdata.ale_tx_prod = 0;
 2651         sc->ale_cdata.ale_tx_cons = 0;
 2652         sc->ale_cdata.ale_tx_cnt = 0;
 2653 
 2654         bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
 2655         bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
 2656         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2657                 txd = &sc->ale_cdata.ale_txdesc[i];
 2658                 txd->tx_m = NULL;
 2659         }
 2660         *sc->ale_cdata.ale_tx_cmb = 0;
 2661         bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2662             sc->ale_cdata.ale_tx_cmb_map,
 2663             BUS_DMASYNC_PREWRITE);
 2664         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2665             sc->ale_cdata.ale_tx_ring_map,
 2666             BUS_DMASYNC_PREWRITE);
 2667 }
 2668 
 2669 static void
 2670 ale_init_rx_pages(struct ale_softc *sc)
 2671 {
 2672         struct ale_rx_page *rx_page;
 2673         int i;
 2674 
 2675         sc->ale_cdata.ale_rx_seqno = 0;
 2676         sc->ale_cdata.ale_rx_curp = 0;
 2677 
 2678         for (i = 0; i < ALE_RX_PAGES; i++) {
 2679                 rx_page = &sc->ale_cdata.ale_rx_page[i];
 2680                 bzero(rx_page->page_addr, sc->ale_pagesize);
 2681                 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
 2682                 rx_page->cons = 0;
 2683                 *rx_page->cmb_addr = 0;
 2684                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2685                                 BUS_DMASYNC_PREWRITE);
 2686                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2687                                 BUS_DMASYNC_PREWRITE);
 2688         }
 2689 }
 2690 
 2691 static void
 2692 ale_rxvlan(struct ale_softc *sc)
 2693 {
 2694         struct ifnet *ifp;
 2695         uint32_t reg;
 2696 
 2697         ifp = &sc->arpcom.ac_if;
 2698         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2699         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
 2700         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 2701                 reg |= MAC_CFG_VLAN_TAG_STRIP;
 2702         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2703 }
 2704 
 2705 static void
 2706 ale_rxfilter(struct ale_softc *sc)
 2707 {
 2708         struct ifnet *ifp;
 2709         struct ifmultiaddr *ifma;
 2710         uint32_t crc;
 2711         uint32_t mchash[2];
 2712         uint32_t rxcfg;
 2713 
 2714         ifp = &sc->arpcom.ac_if;
 2715 
 2716         rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
 2717         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
 2718         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 2719                 rxcfg |= MAC_CFG_BCAST;
 2720         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
 2721                 if ((ifp->if_flags & IFF_PROMISC) != 0)
 2722                         rxcfg |= MAC_CFG_PROMISC;
 2723                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
 2724                         rxcfg |= MAC_CFG_ALLMULTI;
 2725                 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
 2726                 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
 2727                 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 2728                 return;
 2729         }
 2730 
 2731         /* Program new filter. */
 2732         bzero(mchash, sizeof(mchash));
 2733 
 2734         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 2735                 if (ifma->ifma_addr->sa_family != AF_LINK)
 2736                         continue;
 2737                 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
 2738                     ifma->ifma_addr), ETHER_ADDR_LEN);
 2739                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
 2740         }
 2741 
 2742         CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
 2743         CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
 2744         CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 2745 }
 2746 
 2747 static int
 2748 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
 2749 {
 2750         return (sysctl_int_range(oidp, arg1, arg2, req,
 2751             ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
 2752 }
 2753 
 2754 static void
 2755 ale_dmamap_buf_cb(void *xctx, bus_dma_segment_t *segs, int nsegs,
 2756                   bus_size_t mapsz __unused, int error)
 2757 {
 2758         struct ale_dmamap_ctx *ctx = xctx;
 2759         int i;
 2760 
 2761         if (error)
 2762                 return;
 2763 
 2764         if (nsegs > ctx->nsegs) {
 2765                 ctx->nsegs = 0;
 2766                 return;
 2767         }
 2768 
 2769         ctx->nsegs = nsegs;
 2770         for (i = 0; i < nsegs; ++i)
 2771                 ctx->segs[i] = segs[i];
 2772 }

Cache object: 958df0aa16a300cd27db67d6c46f7d42


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.