The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/netif/ed/if_ed.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1995, David Greenman
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  * $FreeBSD: src/sys/dev/ed/if_ed.c,v 1.224 2003/12/08 07:54:12 obrien Exp $
   28  */
   29 
   30 /*
   31  * Device driver for National Semiconductor DS8390/WD83C690 based ethernet
   32  *   adapters. By David Greenman, 29-April-1993
   33  *
   34  * Currently supports the Western Digital/SMC 8003 and 8013 series,
   35  *   the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000,
   36  *   and a variety of similar clones.
   37  *
   38  */
   39 
   40 #include "opt_ed.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/sockio.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/kernel.h>
   47 #include <sys/socket.h>
   48 #include <sys/syslog.h>
   49 #include <sys/module.h>
   50 #include <sys/bus.h>
   51 #include <sys/rman.h>
   52 #include <sys/thread2.h>
   53 #include <sys/machintr.h>
   54 
   55 #include <net/ethernet.h>
   56 #include <net/if.h>
   57 #include <net/ifq_var.h>
   58 #include <net/if_arp.h>
   59 #include <net/if_dl.h>
   60 #include <net/if_mib.h>
   61 #include <net/if_media.h>
   62 
   63 #ifndef ED_NO_MIIBUS
   64 #include <dev/netif/mii_layer/mii.h>
   65 #include <dev/netif/mii_layer/miivar.h>
   66 #endif
   67 
   68 #include <net/bpf.h>
   69 
   70 #include <machine/md_var.h>
   71 
   72 #include "if_edreg.h"
   73 #include "if_edvar.h"
   74 
   75 devclass_t ed_devclass;
   76 
   77 static void     ed_init         (void *);
   78 static int      ed_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
   79 static void     ed_start        (struct ifnet *, struct ifaltq_subque *);
   80 static void     ed_reset        (struct ifnet *);
   81 static void     ed_watchdog     (struct ifnet *);
   82 #ifndef ED_NO_MIIBUS
   83 static void     ed_tick         (void *);
   84 #endif
   85 
   86 static void     ds_getmcaf      (struct ed_softc *, u_int32_t *);
   87 
   88 static void     ed_get_packet   (struct ed_softc *, char *, u_short);
   89 
   90 static __inline void    ed_rint (struct ed_softc *);
   91 static __inline void    ed_xmit (struct ed_softc *);
   92 static __inline char *  ed_ring_copy (struct ed_softc *, char *, char *,
   93                                           u_short);
   94 static void     ed_hpp_set_physical_link (struct ed_softc *);
   95 static void     ed_hpp_readmem  (struct ed_softc *, u_short, u_char *, u_short);
   96 static void     ed_hpp_writemem (struct ed_softc *, u_char *, u_short, u_short);
   97 static u_short  ed_hpp_write_mbufs (struct ed_softc *, struct mbuf *, int);
   98 
   99 static u_short  ed_pio_write_mbufs (struct ed_softc *, struct mbuf *, int);
  100 
  101 static void     ed_setrcr       (struct ed_softc *);
  102 
  103 static uint32_t ds_mchash       (const uint8_t *);
  104 
  105 DECLARE_DUMMY_MODULE(if_ed);
  106 
  107 /*
  108  * Interrupt conversion table for WD/SMC ASIC/83C584
  109  */
  110 static u_short ed_intr_val[] = {
  111         9,
  112         3,
  113         5,
  114         7,
  115         10,
  116         11,
  117         15,
  118         4
  119 };
  120 
  121 /*
  122  * Interrupt conversion table for 83C790
  123  */
  124 static u_short ed_790_intr_val[] = {
  125         0,
  126         9,
  127         3,
  128         5,
  129         7,
  130         10,
  131         11,
  132         15
  133 };
  134 
  135 /*
  136  * Interrupt conversion table for the HP PC LAN+
  137  */
  138 
  139 static u_short ed_hpp_intr_val[] = {
  140         0,              /* 0 */
  141         0,              /* 1 */
  142         0,              /* 2 */
  143         3,              /* 3 */
  144         4,              /* 4 */
  145         5,              /* 5 */
  146         6,              /* 6 */
  147         7,              /* 7 */
  148         0,              /* 8 */
  149         9,              /* 9 */
  150         10,             /* 10 */
  151         11,             /* 11 */
  152         12,             /* 12 */
  153         0,              /* 13 */
  154         0,              /* 14 */
  155         15              /* 15 */
  156 };
  157 
  158 /*
  159  * Generic probe routine for testing for the existance of a DS8390.
  160  *      Must be called after the NIC has just been reset. This routine
  161  *      works by looking at certain register values that are guaranteed
  162  *      to be initialized a certain way after power-up or reset. Seems
  163  *      not to currently work on the 83C690.
  164  *
  165  * Specifically:
  166  *
  167  *      Register                        reset bits      set bits
  168  *      Command Register (CR)           TXP, STA        RD2, STP
  169  *      Interrupt Status (ISR)                          RST
  170  *      Interrupt Mask (IMR)            All bits
  171  *      Data Control (DCR)                              LAS
  172  *      Transmit Config. (TCR)          LB1, LB0
  173  *
  174  * We only look at the CR and ISR registers, however, because looking at
  175  *      the others would require changing register pages (which would be
  176  *      intrusive if this isn't an 8390).
  177  *
  178  * Return 1 if 8390 was found, 0 if not.
  179  */
  180 
  181 int
  182 ed_probe_generic8390(struct ed_softc *sc)
  183 {
  184         if ((ed_nic_inb(sc, ED_P0_CR) &
  185              (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
  186             (ED_CR_RD2 | ED_CR_STP))
  187                 return (0);
  188         if ((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
  189                 return (0);
  190 
  191         return (1);
  192 }
  193 
  194 /*
  195  * Probe and vendor-specific initialization routine for SMC/WD80x3 boards
  196  */
  197 int
  198 ed_probe_WD80x3_generic(device_t dev, int flags, u_short *intr_vals[])
  199 {
  200         struct ed_softc *sc = device_get_softc(dev);
  201         int     error;
  202         int     i;
  203         u_int   memsize, maddr;
  204         u_char  iptr, isa16bit, sum, totalsum;
  205         u_long  conf_maddr, conf_msize, irq, junk;
  206 
  207         sc->chip_type = ED_CHIP_TYPE_DP8390;
  208 
  209         if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER) {
  210                 totalsum = ED_WD_ROM_CHECKSUM_TOTAL_TOSH_ETHER;
  211                 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_POW);
  212                 DELAY(10000);
  213         }
  214         else
  215                 totalsum = ED_WD_ROM_CHECKSUM_TOTAL;
  216 
  217         /*
  218          * Attempt to do a checksum over the station address PROM. If it
  219          * fails, it's probably not a SMC/WD board. There is a problem with
  220          * this, though: some clone WD boards don't pass the checksum test.
  221          * Danpex boards for one.
  222          */
  223         for (sum = 0, i = 0; i < 8; ++i)
  224                 sum += ed_asic_inb(sc, ED_WD_PROM + i);
  225 
  226         if (sum != totalsum) {
  227 
  228                 /*
  229                  * Checksum is invalid. This often happens with cheap WD8003E
  230                  * clones.  In this case, the checksum byte (the eighth byte)
  231                  * seems to always be zero.
  232                  */
  233                 if (ed_asic_inb(sc, ED_WD_CARD_ID) != ED_TYPE_WD8003E ||
  234                     ed_asic_inb(sc, ED_WD_PROM + 7) != 0)
  235                         return (ENXIO);
  236         }
  237         /* reset card to force it into a known state. */
  238         if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER)
  239                 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW);
  240         else
  241                 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_RST);
  242 
  243         DELAY(100);
  244         ed_asic_outb(sc, ED_WD_MSR, ed_asic_inb(sc, ED_WD_MSR) & ~ED_WD_MSR_RST);
  245         /* wait in the case this card is reading its EEROM */
  246         DELAY(5000);
  247 
  248         sc->vendor = ED_VENDOR_WD_SMC;
  249         sc->type = ed_asic_inb(sc, ED_WD_CARD_ID);
  250 
  251         /*
  252          * Set initial values for width/size.
  253          */
  254         memsize = 8192;
  255         isa16bit = 0;
  256         switch (sc->type) {
  257         case ED_TYPE_WD8003S:
  258                 sc->type_str = "WD8003S";
  259                 break;
  260         case ED_TYPE_WD8003E:
  261                 sc->type_str = "WD8003E";
  262                 break;
  263         case ED_TYPE_WD8003EB:
  264                 sc->type_str = "WD8003EB";
  265                 break;
  266         case ED_TYPE_WD8003W:
  267                 sc->type_str = "WD8003W";
  268                 break;
  269         case ED_TYPE_WD8013EBT:
  270                 sc->type_str = "WD8013EBT";
  271                 memsize = 16384;
  272                 isa16bit = 1;
  273                 break;
  274         case ED_TYPE_WD8013W:
  275                 sc->type_str = "WD8013W";
  276                 memsize = 16384;
  277                 isa16bit = 1;
  278                 break;
  279         case ED_TYPE_WD8013EP:  /* also WD8003EP */
  280                 if (ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_16BIT) {
  281                         isa16bit = 1;
  282                         memsize = 16384;
  283                         sc->type_str = "WD8013EP";
  284                 } else {
  285                         sc->type_str = "WD8003EP";
  286                 }
  287                 break;
  288         case ED_TYPE_WD8013WC:
  289                 sc->type_str = "WD8013WC";
  290                 memsize = 16384;
  291                 isa16bit = 1;
  292                 break;
  293         case ED_TYPE_WD8013EBP:
  294                 sc->type_str = "WD8013EBP";
  295                 memsize = 16384;
  296                 isa16bit = 1;
  297                 break;
  298         case ED_TYPE_WD8013EPC:
  299                 sc->type_str = "WD8013EPC";
  300                 memsize = 16384;
  301                 isa16bit = 1;
  302                 break;
  303         case ED_TYPE_SMC8216C: /* 8216 has 16K shared mem -- 8416 has 8K */
  304         case ED_TYPE_SMC8216T:
  305                 if (sc->type == ED_TYPE_SMC8216C) {
  306                         sc->type_str = "SMC8216/SMC8216C";
  307                 } else {
  308                         sc->type_str = "SMC8216T";
  309                 }
  310 
  311                 ed_asic_outb(sc, ED_WD790_HWR,
  312                     ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH);
  313                 switch (ed_asic_inb(sc, ED_WD790_RAR) & ED_WD790_RAR_SZ64) {
  314                 case ED_WD790_RAR_SZ64:
  315                         memsize = 65536;
  316                         break;
  317                 case ED_WD790_RAR_SZ32:
  318                         memsize = 32768;
  319                         break;
  320                 case ED_WD790_RAR_SZ16:
  321                         memsize = 16384;
  322                         break;
  323                 case ED_WD790_RAR_SZ8:
  324                         /* 8216 has 16K shared mem -- 8416 has 8K */
  325                         if (sc->type == ED_TYPE_SMC8216C) {
  326                                 sc->type_str = "SMC8416C/SMC8416BT";
  327                         } else {
  328                                 sc->type_str = "SMC8416T";
  329                         }
  330                         memsize = 8192;
  331                         break;
  332                 }
  333                 ed_asic_outb(sc, ED_WD790_HWR,
  334                     ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
  335 
  336                 isa16bit = 1;
  337                 sc->chip_type = ED_CHIP_TYPE_WD790;
  338                 break;
  339         case ED_TYPE_TOSHIBA1:
  340                 sc->type_str = "Toshiba1";
  341                 memsize = 32768;
  342                 isa16bit = 1;
  343                 break;
  344         case ED_TYPE_TOSHIBA4:
  345                 sc->type_str = "Toshiba4";
  346                 memsize = 32768;
  347                 isa16bit = 1;
  348                 break;
  349         default:
  350                 sc->type_str = "";
  351                 break;
  352         }
  353 
  354         /*
  355          * Make some adjustments to initial values depending on what is found
  356          * in the ICR.
  357          */
  358         if (isa16bit && (sc->type != ED_TYPE_WD8013EBT)
  359           && (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4)
  360             && ((ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) {
  361                 isa16bit = 0;
  362                 memsize = 8192;
  363         }
  364 
  365         error = bus_get_resource(dev, SYS_RES_MEMORY, 0,
  366                                  &conf_maddr, &conf_msize);
  367         if (error)
  368                 return (error);
  369 
  370 #ifdef ED_DEBUG
  371         kprintf("type = %x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
  372                sc->type, sc->type_str, isa16bit, memsize, conf_msize);
  373         for (i = 0; i < 8; i++)
  374                 kprintf("%x -> %x\n", i, ed_asic_inb(sc, i));
  375 #endif
  376 
  377         /*
  378          * Allow the user to override the autoconfiguration
  379          */
  380         if (conf_msize > 1)
  381                 memsize = conf_msize;
  382 
  383         maddr = conf_maddr;
  384         if (maddr < 0xa0000 || maddr + memsize > 0x1000000) {
  385                 device_printf(dev, "Invalid ISA memory address range configured: 0x%x - 0x%x\n",
  386                               maddr, maddr + memsize);
  387                 return (ENXIO);
  388         }
  389 
  390         /*
  391          * (note that if the user specifies both of the following flags that
  392          * '8bit' mode intentionally has precedence)
  393          */
  394         if (flags & ED_FLAGS_FORCE_16BIT_MODE)
  395                 isa16bit = 1;
  396         if (flags & ED_FLAGS_FORCE_8BIT_MODE)
  397                 isa16bit = 0;
  398 
  399         /*
  400          * If possible, get the assigned interrupt number from the card and
  401          * use it.
  402          */
  403         if ((sc->type & ED_WD_SOFTCONFIG) &&
  404             (sc->chip_type != ED_CHIP_TYPE_WD790)) {
  405 
  406                 /*
  407                  * Assemble together the encoded interrupt number.
  408                  */
  409                 iptr = (ed_asic_inb(sc, ED_WD_ICR) & ED_WD_ICR_IR2) |
  410                     ((ed_asic_inb(sc, ED_WD_IRR) &
  411                       (ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5);
  412 
  413                 /*
  414                  * If no interrupt specified (or "?"), use what the board tells us.
  415                  */
  416                 error = bus_get_resource(dev, SYS_RES_IRQ, 0,
  417                                          &irq, &junk);
  418                 if (error && intr_vals[0] != NULL) {
  419                         int intr_val = intr_vals[0][iptr];
  420 
  421                         error = bus_set_resource(dev, SYS_RES_IRQ, 0,
  422                             intr_val, 1, machintr_legacy_intr_cpuid(intr_val));
  423                 }
  424                 if (error)
  425                         return (error);
  426 
  427                 /*
  428                  * Enable the interrupt.
  429                  */
  430                 ed_asic_outb(sc, ED_WD_IRR,
  431                      ed_asic_inb(sc, ED_WD_IRR) | ED_WD_IRR_IEN);
  432         }
  433         if (sc->chip_type == ED_CHIP_TYPE_WD790) {
  434                 ed_asic_outb(sc, ED_WD790_HWR,
  435                   ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH);
  436                 iptr = (((ed_asic_inb(sc, ED_WD790_GCR) & ED_WD790_GCR_IR2) >> 4) |
  437                         (ed_asic_inb(sc, ED_WD790_GCR) &
  438                          (ED_WD790_GCR_IR1 | ED_WD790_GCR_IR0)) >> 2);
  439                 ed_asic_outb(sc, ED_WD790_HWR,
  440                  ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
  441 
  442                 /*
  443                  * If no interrupt specified (or "?"), use what the board tells us.
  444                  */
  445                 error = bus_get_resource(dev, SYS_RES_IRQ, 0,
  446                                          &irq, &junk);
  447                 if (error && intr_vals[1] != NULL) {
  448                         int intr_val = intr_vals[1][iptr];
  449 
  450                         error = bus_set_resource(dev, SYS_RES_IRQ, 0,
  451                             intr_val, 1, machintr_legacy_intr_cpuid(intr_val));
  452                 }
  453                 if (error)
  454                         return (error);
  455 
  456                 /*
  457                  * Enable interrupts.
  458                  */
  459                 ed_asic_outb(sc, ED_WD790_ICR,
  460                   ed_asic_inb(sc, ED_WD790_ICR) | ED_WD790_ICR_EIL);
  461         }
  462         error = bus_get_resource(dev, SYS_RES_IRQ, 0,
  463                                  &irq, &junk);
  464         if (error) {
  465                 device_printf(dev, "%s cards don't support auto-detected/assigned interrupts.\n",
  466                               sc->type_str);
  467                 return (ENXIO);
  468         }
  469         sc->isa16bit = isa16bit;
  470         sc->mem_shared = 1;
  471 
  472         error = ed_alloc_memory(dev, 0, memsize);
  473         if (error) {
  474                 kprintf("*** ed_alloc_memory() failed! (%d)\n", error);
  475                 return (error);
  476         }
  477         sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res);
  478 
  479         /*
  480          * allocate one xmit buffer if < 16k, two buffers otherwise
  481          */
  482         if ((memsize < 16384) ||
  483             (flags & ED_FLAGS_NO_MULTI_BUFFERING)) {
  484                 sc->txb_cnt = 1;
  485         } else {
  486                 sc->txb_cnt = 2;
  487         }
  488         sc->tx_page_start = ED_WD_PAGE_OFFSET;
  489         sc->rec_page_start = ED_WD_PAGE_OFFSET + ED_TXBUF_SIZE * sc->txb_cnt;
  490         sc->rec_page_stop = ED_WD_PAGE_OFFSET + memsize / ED_PAGE_SIZE;
  491         sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * sc->rec_page_start);
  492         sc->mem_size = memsize;
  493         sc->mem_end = sc->mem_start + memsize;
  494 
  495         /*
  496          * Get station address from on-board ROM
  497          */
  498         for (i = 0; i < ETHER_ADDR_LEN; ++i)
  499                 sc->arpcom.ac_enaddr[i] = ed_asic_inb(sc, ED_WD_PROM + i);
  500 
  501         /*
  502          * Set upper address bits and 8/16 bit access to shared memory.
  503          */
  504         if (isa16bit) {
  505                 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
  506                         sc->wd_laar_proto = ed_asic_inb(sc, ED_WD_LAAR);
  507                 } else {
  508                         sc->wd_laar_proto = ED_WD_LAAR_L16EN |
  509                             ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI);
  510                 }
  511                 /*
  512                  * Enable 16bit access
  513                  */
  514                 ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto |
  515                     ED_WD_LAAR_M16EN);
  516         } else {
  517                 if (((sc->type & ED_WD_SOFTCONFIG) ||
  518                      (sc->type == ED_TYPE_TOSHIBA1) ||
  519                      (sc->type == ED_TYPE_TOSHIBA4) ||
  520                      (sc->type == ED_TYPE_WD8013EBT)) &&
  521                     (sc->chip_type != ED_CHIP_TYPE_WD790)) {
  522                         sc->wd_laar_proto = (kvtop(sc->mem_start) >> 19) &
  523                             ED_WD_LAAR_ADDRHI;
  524                         ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto);
  525                 }
  526         }
  527 
  528         /*
  529          * Set address and enable interface shared memory.
  530          */
  531         if (sc->chip_type != ED_CHIP_TYPE_WD790) {
  532                 if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_TOSH_ETHER) {
  533                         ed_asic_outb(sc, ED_WD_MSR + 1,
  534                                      ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4);
  535                         ed_asic_outb(sc, ED_WD_MSR + 2,
  536                                      ((kvtop(sc->mem_start) >> 16) & 0x0f));
  537                         ed_asic_outb(sc, ED_WD_MSR,
  538                                      ED_WD_MSR_MENB | ED_WD_MSR_POW);
  539                 } else {
  540                         ed_asic_outb(sc, ED_WD_MSR,
  541                                      ((kvtop(sc->mem_start) >> 13) &
  542                                       ED_WD_MSR_ADDR) | ED_WD_MSR_MENB);
  543                 }
  544                 sc->cr_proto = ED_CR_RD2;
  545         } else {
  546                 ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB);
  547                 ed_asic_outb(sc, ED_WD790_HWR, (ed_asic_inb(sc, ED_WD790_HWR) | ED_WD790_HWR_SWH));
  548                 ed_asic_outb(sc, ED_WD790_RAR, ((kvtop(sc->mem_start) >> 13) & 0x0f) |
  549                      ((kvtop(sc->mem_start) >> 11) & 0x40) |
  550                      (ed_asic_inb(sc, ED_WD790_RAR) & 0xb0));
  551                 ed_asic_outb(sc, ED_WD790_HWR, (ed_asic_inb(sc, ED_WD790_HWR) & ~ED_WD790_HWR_SWH));
  552                 sc->cr_proto = 0;
  553         }
  554 
  555 #if 0
  556         kprintf("starting memory performance test at 0x%x, size %d...\n",
  557                 sc->mem_start, memsize*16384);
  558         for (i = 0; i < 16384; i++)
  559                 bzero(sc->mem_start, memsize);
  560         kprintf("***DONE***\n");
  561 #endif
  562 
  563         /*
  564          * Now zero memory and verify that it is clear
  565          */
  566         bzero(sc->mem_start, memsize);
  567 
  568         for (i = 0; i < memsize; ++i) {
  569                 if (sc->mem_start[i]) {
  570                         device_printf(dev, "failed to clear shared memory at %llx - check configuration\n",
  571                                       (long long)kvtop(sc->mem_start + i));
  572 
  573                         /*
  574                          * Disable 16 bit access to shared memory
  575                          */
  576                         if (isa16bit) {
  577                                 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
  578                                         ed_asic_outb(sc, ED_WD_MSR, 0x00);
  579                                 }
  580                                 ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto &
  581                                     ~ED_WD_LAAR_M16EN);
  582                         }
  583                         return (ENXIO);
  584                 }
  585         }
  586 
  587         /*
  588          * Disable 16bit access to shared memory - we leave it
  589          * disabled so that 1) machines reboot properly when the board
  590          * is set 16 bit mode and there are conflicting 8bit
  591          * devices/ROMS in the same 128k address space as this boards
  592          * shared memory. and 2) so that other 8 bit devices with
  593          * shared memory can be used in this 128k region, too.
  594          */
  595         if (isa16bit) {
  596                 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
  597                         ed_asic_outb(sc, ED_WD_MSR, 0x00);
  598                 }
  599                 ed_asic_outb(sc, ED_WD_LAAR, sc->wd_laar_proto &
  600                     ~ED_WD_LAAR_M16EN);
  601         }
  602         return (0);
  603 }
  604 
  605 int
  606 ed_probe_WD80x3(device_t dev, int port_rid, int flags)
  607 {
  608         struct ed_softc *sc = device_get_softc(dev);
  609         int     error;
  610         static u_short *intr_vals[] = {ed_intr_val, ed_790_intr_val};
  611 
  612         error = ed_alloc_port(dev, port_rid, ED_WD_IO_PORTS);
  613         if (error)
  614                 return (error);
  615 
  616         sc->asic_offset = ED_WD_ASIC_OFFSET;
  617         sc->nic_offset  = ED_WD_NIC_OFFSET;
  618 
  619         return ed_probe_WD80x3_generic(dev, flags, intr_vals);
  620 }
  621 
  622 /*
  623  * Probe and vendor-specific initialization routine for 3Com 3c503 boards
  624  */
  625 int
  626 ed_probe_3Com(device_t dev, int port_rid, int flags)
  627 {
  628         struct ed_softc *sc = device_get_softc(dev);
  629         int     error;
  630         int     i;
  631         u_int   memsize;
  632         u_char  isa16bit;
  633         u_long  conf_maddr, conf_msize, irq, junk;
  634 
  635         error = ed_alloc_port(dev, 0, ED_3COM_IO_PORTS);
  636         if (error)
  637                 return (error);
  638 
  639         sc->asic_offset = ED_3COM_ASIC_OFFSET;
  640         sc->nic_offset  = ED_3COM_NIC_OFFSET;
  641 
  642         /*
  643          * Verify that the kernel configured I/O address matches the board
  644          * configured address
  645          */
  646         switch (ed_asic_inb(sc, ED_3COM_BCFR)) {
  647         case ED_3COM_BCFR_300:
  648                 if (rman_get_start(sc->port_res) != 0x300)
  649                         return (ENXIO);
  650                 break;
  651         case ED_3COM_BCFR_310:
  652                 if (rman_get_start(sc->port_res) != 0x310)
  653                         return (ENXIO);
  654                 break;
  655         case ED_3COM_BCFR_330:
  656                 if (rman_get_start(sc->port_res) != 0x330)
  657                         return (ENXIO);
  658                 break;
  659         case ED_3COM_BCFR_350:
  660                 if (rman_get_start(sc->port_res) != 0x350)
  661                         return (ENXIO);
  662                 break;
  663         case ED_3COM_BCFR_250:
  664                 if (rman_get_start(sc->port_res) != 0x250)
  665                         return (ENXIO);
  666                 break;
  667         case ED_3COM_BCFR_280:
  668                 if (rman_get_start(sc->port_res) != 0x280)
  669                         return (ENXIO);
  670                 break;
  671         case ED_3COM_BCFR_2A0:
  672                 if (rman_get_start(sc->port_res) != 0x2a0)
  673                         return (ENXIO);
  674                 break;
  675         case ED_3COM_BCFR_2E0:
  676                 if (rman_get_start(sc->port_res) != 0x2e0)
  677                         return (ENXIO);
  678                 break;
  679         default:
  680                 return (ENXIO);
  681         }
  682 
  683         error = bus_get_resource(dev, SYS_RES_MEMORY, 0,
  684                                  &conf_maddr, &conf_msize);
  685         if (error)
  686                 return (error);
  687 
  688         /*
  689          * Verify that the kernel shared memory address matches the board
  690          * configured address.
  691          */
  692         switch (ed_asic_inb(sc, ED_3COM_PCFR)) {
  693         case ED_3COM_PCFR_DC000:
  694                 if (conf_maddr != 0xdc000)
  695                         return (ENXIO);
  696                 break;
  697         case ED_3COM_PCFR_D8000:
  698                 if (conf_maddr != 0xd8000)
  699                         return (ENXIO);
  700                 break;
  701         case ED_3COM_PCFR_CC000:
  702                 if (conf_maddr != 0xcc000)
  703                         return (ENXIO);
  704                 break;
  705         case ED_3COM_PCFR_C8000:
  706                 if (conf_maddr != 0xc8000)
  707                         return (ENXIO);
  708                 break;
  709         default:
  710                 return (ENXIO);
  711         }
  712 
  713 
  714         /*
  715          * Reset NIC and ASIC. Enable on-board transceiver throughout reset
  716          * sequence because it'll lock up if the cable isn't connected if we
  717          * don't.
  718          */
  719         ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL);
  720 
  721         /*
  722          * Wait for a while, then un-reset it
  723          */
  724         DELAY(50);
  725 
  726         /*
  727          * The 3Com ASIC defaults to rather strange settings for the CR after
  728          * a reset - it's important to set it again after the following outb
  729          * (this is done when we map the PROM below).
  730          */
  731         ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL);
  732 
  733         /*
  734          * Wait a bit for the NIC to recover from the reset
  735          */
  736         DELAY(5000);
  737 
  738         sc->vendor = ED_VENDOR_3COM;
  739         sc->type_str = "3c503";
  740         sc->mem_shared = 1;
  741         sc->cr_proto = ED_CR_RD2;
  742 
  743         /*
  744          * Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window
  745          * to it.
  746          */
  747         memsize = 8192;
  748 
  749         /*
  750          * Get station address from on-board ROM
  751          */
  752 
  753         /*
  754          * First, map ethernet address PROM over the top of where the NIC
  755          * registers normally appear.
  756          */
  757         ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL);
  758 
  759         for (i = 0; i < ETHER_ADDR_LEN; ++i)
  760                 sc->arpcom.ac_enaddr[i] = ed_nic_inb(sc, i);
  761 
  762         /*
  763          * Unmap PROM - select NIC registers. The proper setting of the
  764          * tranceiver is set in ed_init so that the attach code is given a
  765          * chance to set the default based on a compile-time config option
  766          */
  767         ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL);
  768 
  769         /*
  770          * Determine if this is an 8bit or 16bit board
  771          */
  772 
  773         /*
  774          * select page 0 registers
  775          */
  776         ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
  777 
  778         /*
  779          * Attempt to clear WTS bit. If it doesn't clear, then this is a 16bit
  780          * board.
  781          */
  782         ed_nic_outb(sc, ED_P0_DCR, 0);
  783 
  784         /*
  785          * select page 2 registers
  786          */
  787         ed_nic_outb(sc, ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP);
  788 
  789         /*
  790          * The 3c503 forces the WTS bit to a one if this is a 16bit board
  791          */
  792         if (ed_nic_inb(sc, ED_P2_DCR) & ED_DCR_WTS)
  793                 isa16bit = 1;
  794         else
  795                 isa16bit = 0;
  796 
  797         /*
  798          * select page 0 registers
  799          */
  800         ed_nic_outb(sc, ED_P2_CR, ED_CR_RD2 | ED_CR_STP);
  801 
  802         error = ed_alloc_memory(dev, 0, memsize);
  803         if (error)
  804                 return (error);
  805 
  806         sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res);
  807         sc->mem_size = memsize;
  808         sc->mem_end = sc->mem_start + memsize;
  809 
  810         /*
  811          * We have an entire 8k window to put the transmit buffers on the
  812          * 16bit boards. But since the 16bit 3c503's shared memory is only
  813          * fast enough to overlap the loading of one full-size packet, trying
  814          * to load more than 2 buffers can actually leave the transmitter idle
  815          * during the load. So 2 seems the best value. (Although a mix of
  816          * variable-sized packets might change this assumption. Nonetheless,
  817          * we optimize for linear transfers of same-size packets.)
  818          */
  819         if (isa16bit) {
  820                 if (flags & ED_FLAGS_NO_MULTI_BUFFERING)
  821                         sc->txb_cnt = 1;
  822                 else
  823                         sc->txb_cnt = 2;
  824 
  825                 sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT;
  826                 sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT;
  827                 sc->rec_page_stop = memsize / ED_PAGE_SIZE +
  828                     ED_3COM_RX_PAGE_OFFSET_16BIT;
  829                 sc->mem_ring = sc->mem_start;
  830         } else {
  831                 sc->txb_cnt = 1;
  832                 sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT;
  833                 sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
  834                 sc->rec_page_stop = memsize / ED_PAGE_SIZE +
  835                     ED_3COM_TX_PAGE_OFFSET_8BIT;
  836                 sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE);
  837         }
  838 
  839         sc->isa16bit = isa16bit;
  840 
  841         /*
  842          * Initialize GA page start/stop registers. Probably only needed if
  843          * doing DMA, but what the hell.
  844          */
  845         ed_asic_outb(sc, ED_3COM_PSTR, sc->rec_page_start);
  846         ed_asic_outb(sc, ED_3COM_PSPR, sc->rec_page_stop);
  847 
  848         /*
  849          * Set IRQ. 3c503 only allows a choice of irq 2-5.
  850          */
  851         error = bus_get_resource(dev, SYS_RES_IRQ, 0, &irq, &junk);
  852         if (error)
  853                 return (error);
  854 
  855         switch (irq) {
  856         case 2:
  857         case 9:
  858                 ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2);
  859                 break;
  860         case 3:
  861                 ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3);
  862                 break;
  863         case 4:
  864                 ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4);
  865                 break;
  866         case 5:
  867                 ed_asic_outb(sc, ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5);
  868                 break;
  869         default:
  870                 device_printf(dev, "Invalid irq configuration (%ld) must be 3-5,9 for 3c503\n",
  871                               irq);
  872                 return (ENXIO);
  873         }
  874 
  875         /*
  876          * Initialize GA configuration register. Set bank and enable shared
  877          * mem.
  878          */
  879         ed_asic_outb(sc, ED_3COM_GACFR, ED_3COM_GACFR_RSEL |
  880              ED_3COM_GACFR_MBS0);
  881 
  882         /*
  883          * Initialize "Vector Pointer" registers. These gawd-awful things are
  884          * compared to 20 bits of the address on ISA, and if they match, the
  885          * shared memory is disabled. We set them to 0xffff0...allegedly the
  886          * reset vector.
  887          */
  888         ed_asic_outb(sc, ED_3COM_VPTR2, 0xff);
  889         ed_asic_outb(sc, ED_3COM_VPTR1, 0xff);
  890         ed_asic_outb(sc, ED_3COM_VPTR0, 0x00);
  891 
  892         /*
  893          * Zero memory and verify that it is clear
  894          */
  895         bzero(sc->mem_start, memsize);
  896 
  897         for (i = 0; i < memsize; ++i)
  898                 if (sc->mem_start[i]) {
  899                         device_printf(dev, "failed to clear shared memory "
  900                             "at %llx - check configuration\n",
  901                             (unsigned long long)kvtop(sc->mem_start + i));
  902                         return (ENXIO);
  903                 }
  904         return (0);
  905 }
  906 
  907 /*
  908  * Probe and vendor-specific initialization routine for SIC boards
  909  */
  910 int
  911 ed_probe_SIC(device_t dev, int port_rid, int flags)
  912 {
  913         struct ed_softc *sc = device_get_softc(dev);
  914         int     error;
  915         int     i;
  916         u_int   memsize;
  917         u_long  conf_maddr, conf_msize;
  918         u_char  sum;
  919 #ifdef ED_DEBUG
  920         char ethstr[ETHER_ADDRSTRLEN + 1];
  921 #endif
  922 
  923         error = ed_alloc_port(dev, 0, ED_SIC_IO_PORTS);
  924         if (error)
  925                 return (error);
  926 
  927         sc->asic_offset = ED_SIC_ASIC_OFFSET;
  928         sc->nic_offset  = ED_SIC_NIC_OFFSET;
  929 
  930         error = bus_get_resource(dev, SYS_RES_MEMORY, 0,
  931                                  &conf_maddr, &conf_msize);
  932         if (error)
  933                 return (error);
  934 
  935         memsize = 16384;
  936         if (conf_msize > 1)
  937                 memsize = conf_msize;
  938 
  939         error = ed_alloc_memory(dev, 0, memsize);
  940         if (error)
  941                 return (error);
  942 
  943         sc->mem_start = (caddr_t) rman_get_virtual(sc->mem_res);
  944         sc->mem_size  = memsize;
  945 
  946         /* Reset card to force it into a known state. */
  947         ed_asic_outb(sc, 0, 0x00);
  948         DELAY(100);
  949 
  950         /*
  951          * Here we check the card ROM, if the checksum passes, and the
  952          * type code and ethernet address check out, then we know we have
  953          * an SIC card.
  954          */
  955         ed_asic_outb(sc, 0, 0x81);
  956         DELAY(100);
  957 
  958         sum = sc->mem_start[6];
  959         for (i = 0; i < ETHER_ADDR_LEN; i++) {
  960                 sum ^= (sc->arpcom.ac_enaddr[i] = sc->mem_start[i]);
  961         }
  962 #ifdef ED_DEBUG
  963         device_printf(dev, "ed_probe_sic: got address %s\n",
  964             kether_ntoa(sc->arpcom.ac_enaddr, ethstr));
  965 #endif
  966         if (sum != 0) {
  967                 return (ENXIO);
  968         }
  969         if ((sc->arpcom.ac_enaddr[0] | sc->arpcom.ac_enaddr[1] |
  970              sc->arpcom.ac_enaddr[2]) == 0) {
  971                 return (ENXIO);
  972         }
  973 
  974         sc->vendor   = ED_VENDOR_SIC;
  975         sc->type_str = "SIC";
  976         sc->isa16bit = 0;
  977         sc->cr_proto = 0;
  978 
  979         /*
  980          * SIC RAM page 0x0000-0x3fff(or 0x7fff)
  981          */
  982         ed_asic_outb(sc, 0, 0x80);
  983         DELAY(100);
  984 
  985         /*
  986          * Now zero memory and verify that it is clear
  987          */
  988         bzero(sc->mem_start, sc->mem_size);
  989 
  990         for (i = 0; i < sc->mem_size; i++) {
  991                 if (sc->mem_start[i]) {
  992                         device_printf(dev, "failed to clear shared memory "
  993                                 "at %llx - check configuration\n",
  994                                 (long long)kvtop(sc->mem_start + i));
  995 
  996                         return (ENXIO);
  997                 }
  998         }
  999 
 1000         sc->mem_shared = 1;
 1001         sc->mem_end = sc->mem_start + sc->mem_size;
 1002 
 1003         /*
 1004          * allocate one xmit buffer if < 16k, two buffers otherwise
 1005          */
 1006         if ((sc->mem_size < 16384) || (flags & ED_FLAGS_NO_MULTI_BUFFERING)) {
 1007                 sc->txb_cnt = 1;
 1008         } else {
 1009                 sc->txb_cnt = 2;
 1010         }
 1011         sc->tx_page_start = 0;
 1012 
 1013         sc->rec_page_start = sc->tx_page_start + ED_TXBUF_SIZE * sc->txb_cnt;
 1014         sc->rec_page_stop = sc->tx_page_start + sc->mem_size / ED_PAGE_SIZE;
 1015 
 1016         sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
 1017 
 1018         return (0);
 1019 }
 1020 
 1021 /*
 1022  * Probe and vendor-specific initialization routine for NE1000/2000 boards
 1023  */
 1024 int
 1025 ed_probe_Novell_generic(device_t dev, int flags)
 1026 {
 1027         struct ed_softc *sc = device_get_softc(dev);
 1028         u_int   memsize, n;
 1029         u_char  romdata[16], tmp;
 1030         static char test_pattern[32] = "THIS is A memory TEST pattern";
 1031         char    test_buffer[32];
 1032 
 1033         /* XXX - do Novell-specific probe here */
 1034 
 1035         /* Reset the board */
 1036         if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) {
 1037                 ed_asic_outb(sc, ED_NOVELL_RESET, 0);
 1038                 DELAY(200);
 1039         }
 1040         tmp = ed_asic_inb(sc, ED_NOVELL_RESET);
 1041 
 1042         /*
 1043          * I don't know if this is necessary; probably cruft leftover from
 1044          * Clarkson packet driver code. Doesn't do a thing on the boards I've
 1045          * tested. -DG [note that an outb(0x84, 0) seems to work here, and is
 1046          * non-invasive...but some boards don't seem to reset and I don't have
 1047          * complete documentation on what the 'right' thing to do is...so we
 1048          * do the invasive thing for now. Yuck.]
 1049          */
 1050         ed_asic_outb(sc, ED_NOVELL_RESET, tmp);
 1051         DELAY(5000);
 1052 
 1053         /*
 1054          * This is needed because some NE clones apparently don't reset the
 1055          * NIC properly (or the NIC chip doesn't reset fully on power-up) XXX
 1056          * - this makes the probe invasive! ...Done against my better
 1057          * judgement. -DLG
 1058          */
 1059         ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
 1060 
 1061         DELAY(5000);
 1062 
 1063         /* Make sure that we really have an 8390 based board */
 1064         if (!ed_probe_generic8390(sc))
 1065                 return (ENXIO);
 1066 
 1067         sc->vendor = ED_VENDOR_NOVELL;
 1068         sc->mem_shared = 0;
 1069         sc->cr_proto = ED_CR_RD2;
 1070 
 1071         /*
 1072          * Test the ability to read and write to the NIC memory. This has the
 1073          * side affect of determining if this is an NE1000 or an NE2000.
 1074          */
 1075 
 1076         /*
 1077          * This prevents packets from being stored in the NIC memory when the
 1078          * readmem routine turns on the start bit in the CR.
 1079          */
 1080         ed_nic_outb(sc, ED_P0_RCR, ED_RCR_MON);
 1081 
 1082         /* Temporarily initialize DCR for byte operations */
 1083         ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
 1084 
 1085         ed_nic_outb(sc, ED_P0_PSTART, 8192 / ED_PAGE_SIZE);
 1086         ed_nic_outb(sc, ED_P0_PSTOP, 16384 / ED_PAGE_SIZE);
 1087 
 1088         sc->isa16bit = 0;
 1089 
 1090         /*
 1091          * Write a test pattern in byte mode. If this fails, then there
 1092          * probably isn't any memory at 8k - which likely means that the board
 1093          * is an NE2000.
 1094          */
 1095         ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern));
 1096         ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern));
 1097 
 1098         if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)) == 0) {
 1099                 sc->type = ED_TYPE_NE1000;
 1100                 sc->type_str = "NE1000";
 1101         } else {
 1102 
 1103                 /* neither an NE1000 nor a Linksys - try NE2000 */
 1104                 ed_nic_outb(sc, ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS);
 1105                 ed_nic_outb(sc, ED_P0_PSTART, 16384 / ED_PAGE_SIZE);
 1106                 ed_nic_outb(sc, ED_P0_PSTOP, 32768 / ED_PAGE_SIZE);
 1107 
 1108                 sc->isa16bit = 1;
 1109 
 1110                 /*
 1111                  * Write a test pattern in word mode. If this also fails, then
 1112                  * we don't know what this board is.
 1113                  */
 1114                 ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern));
 1115                 ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern));
 1116                 if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)) == 0) {
 1117                         sc->type = ED_TYPE_NE2000;
 1118                         sc->type_str = "NE2000";
 1119                 } else {
 1120                         return (ENXIO);
 1121                 }
 1122         }
 1123 
 1124 
 1125         /* 8k of memory plus an additional 8k if 16bit */
 1126         memsize = 8192 + sc->isa16bit * 8192;
 1127 
 1128 #if 0   /* probably not useful - NE boards only come two ways */
 1129         /* allow kernel config file overrides */
 1130         if (isa_dev->id_msize)
 1131                 memsize = isa_dev->id_msize;
 1132 #endif
 1133 
 1134         sc->mem_size = memsize;
 1135 
 1136         /* NIC memory doesn't start at zero on an NE board */
 1137         /* The start address is tied to the bus width */
 1138         sc->mem_start = (char *) 8192 + sc->isa16bit * 8192;
 1139         sc->mem_end = sc->mem_start + memsize;
 1140         sc->tx_page_start = memsize / ED_PAGE_SIZE;
 1141 
 1142         if (ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) {
 1143                 int     x, i, mstart = 0, msize = 0;
 1144                 char    pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE];
 1145 
 1146                 for (i = 0; i < ED_PAGE_SIZE; i++)
 1147                         pbuf0[i] = 0;
 1148 
 1149                 /* Clear all the memory. */
 1150                 for (x = 1; x < 256; x++)
 1151                         ed_pio_writemem(sc, pbuf0, x * 256, ED_PAGE_SIZE);
 1152 
 1153                 /* Search for the start of RAM. */
 1154                 for (x = 1; x < 256; x++) {
 1155                         ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
 1156                         if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
 1157                                 for (i = 0; i < ED_PAGE_SIZE; i++)
 1158                                         pbuf[i] = 255 - x;
 1159                                 ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
 1160                                 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
 1161                                 if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) {
 1162                                         mstart = x * ED_PAGE_SIZE;
 1163                                         msize = ED_PAGE_SIZE;
 1164                                         break;
 1165                                 }
 1166                         }
 1167                 }
 1168 
 1169                 if (mstart == 0) {
 1170                         device_printf(dev, "Cannot find start of RAM.\n");
 1171                         return (ENXIO);
 1172                 }
 1173                 /* Search for the start of RAM. */
 1174                 for (x = (mstart / ED_PAGE_SIZE) + 1; x < 256; x++) {
 1175                         ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
 1176                         if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
 1177                                 for (i = 0; i < ED_PAGE_SIZE; i++)
 1178                                         pbuf[i] = 255 - x;
 1179                                 ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
 1180                                 ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
 1181                                 if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0)
 1182                                         msize += ED_PAGE_SIZE;
 1183                                 else {
 1184                                         break;
 1185                                 }
 1186                         } else {
 1187                                 break;
 1188                         }
 1189                 }
 1190 
 1191                 if (msize == 0) {
 1192                         device_printf(dev, "Cannot find any RAM, start : %d, x = %d.\n", mstart, x);
 1193                         return (ENXIO);
 1194                 }
 1195                 device_printf(dev, "RAM start at %d, size : %d.\n", mstart, msize);
 1196 
 1197                 sc->mem_size = msize;
 1198                 sc->mem_start = (caddr_t) mstart;
 1199                 sc->mem_end = (caddr_t) (msize + mstart);
 1200                 sc->tx_page_start = mstart / ED_PAGE_SIZE;
 1201         }
 1202 
 1203         /*
 1204          * Use one xmit buffer if < 16k, two buffers otherwise (if not told
 1205          * otherwise).
 1206          */
 1207         if ((memsize < 16384) || (flags & ED_FLAGS_NO_MULTI_BUFFERING))
 1208                 sc->txb_cnt = 1;
 1209         else
 1210                 sc->txb_cnt = 2;
 1211 
 1212         sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
 1213         sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE;
 1214 
 1215         sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
 1216 
 1217         ed_pio_readmem(sc, 0, romdata, 16);
 1218         for (n = 0; n < ETHER_ADDR_LEN; n++)
 1219                 sc->arpcom.ac_enaddr[n] = romdata[n * (sc->isa16bit + 1)];
 1220 
 1221         if ((ED_FLAGS_GETTYPE(flags) == ED_FLAGS_GWETHER) &&
 1222             (sc->arpcom.ac_enaddr[2] == 0x86)) {
 1223                 sc->type_str = "Gateway AT";
 1224         }
 1225 
 1226         /* clear any pending interrupts that might have occurred above */
 1227         ed_nic_outb(sc, ED_P0_ISR, 0xff);
 1228 
 1229         return (0);
 1230 }
 1231 
 1232 int
 1233 ed_probe_Novell(device_t dev, int port_rid, int flags)
 1234 {
 1235         struct ed_softc *sc = device_get_softc(dev);
 1236         int     error;
 1237 
 1238         error = ed_alloc_port(dev, port_rid, ED_NOVELL_IO_PORTS);
 1239         if (error)
 1240                 return (error);
 1241 
 1242         sc->asic_offset = ED_NOVELL_ASIC_OFFSET;
 1243         sc->nic_offset  = ED_NOVELL_NIC_OFFSET;
 1244 
 1245         return ed_probe_Novell_generic(dev, flags);
 1246 }
 1247 
 1248 #define ED_HPP_TEST_SIZE        16
 1249 
 1250 /*
 1251  * Probe and vendor specific initialization for the HP PC Lan+ Cards.
 1252  * (HP Part nos: 27247B and 27252A).
 1253  *
 1254  * The card has an asic wrapper around a DS8390 core.  The asic handles 
 1255  * host accesses and offers both standard register IO and memory mapped 
 1256  * IO.  Memory mapped I/O allows better performance at the expense of greater
 1257  * chance of an incompatibility with existing ISA cards.
 1258  *
 1259  * The card has a few caveats: it isn't tolerant of byte wide accesses, only
 1260  * short (16 bit) or word (32 bit) accesses are allowed.  Some card revisions
 1261  * don't allow 32 bit accesses; these are indicated by a bit in the software
 1262  * ID register (see if_edreg.h).
 1263  * 
 1264  * Other caveats are: we should read the MAC address only when the card
 1265  * is inactive.
 1266  *
 1267  * For more information; please consult the CRYNWR packet driver.
 1268  *
 1269  * The AUI port is turned on using the "link2" option on the ifconfig 
 1270  * command line.
 1271  */
 1272 int
 1273 ed_probe_HP_pclanp(device_t dev, int port_rid, int flags)
 1274 {
 1275         struct ed_softc *sc = device_get_softc(dev);
 1276         int error;
 1277         int n;                          /* temp var */
 1278         int memsize;                    /* mem on board */
 1279         u_char checksum;                /* checksum of board address */
 1280         u_char irq;                     /* board configured IRQ */
 1281         char test_pattern[ED_HPP_TEST_SIZE];    /* read/write areas for */
 1282         char test_buffer[ED_HPP_TEST_SIZE];     /* probing card */
 1283         u_long conf_maddr, conf_msize, conf_irq, junk;
 1284 
 1285         error = ed_alloc_port(dev, 0, ED_HPP_IO_PORTS);
 1286         if (error)
 1287                 return (error);
 1288 
 1289         /* Fill in basic information */
 1290         sc->asic_offset = ED_HPP_ASIC_OFFSET;
 1291         sc->nic_offset  = ED_HPP_NIC_OFFSET;
 1292 
 1293         sc->chip_type = ED_CHIP_TYPE_DP8390;
 1294         sc->isa16bit = 0;       /* the 8390 core needs to be in byte mode */
 1295 
 1296         /* 
 1297          * Look for the HP PCLAN+ signature: "0x50,0x48,0x00,0x53" 
 1298          */
 1299         
 1300         if ((ed_asic_inb(sc, ED_HPP_ID) != 0x50) || 
 1301             (ed_asic_inb(sc, ED_HPP_ID + 1) != 0x48) ||
 1302             ((ed_asic_inb(sc, ED_HPP_ID + 2) & 0xF0) != 0) ||
 1303             (ed_asic_inb(sc, ED_HPP_ID + 3) != 0x53))
 1304                 return ENXIO;
 1305 
 1306         /* 
 1307          * Read the MAC address and verify checksum on the address.
 1308          */
 1309 
 1310         ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_MAC);
 1311         for (n  = 0, checksum = 0; n < ETHER_ADDR_LEN; n++)
 1312                 checksum += (sc->arpcom.ac_enaddr[n] = 
 1313                         ed_asic_inb(sc, ED_HPP_MAC_ADDR + n));
 1314         
 1315         checksum += ed_asic_inb(sc, ED_HPP_MAC_ADDR + ETHER_ADDR_LEN);
 1316 
 1317         if (checksum != 0xFF)
 1318                 return ENXIO;
 1319 
 1320         /*
 1321          * Verify that the software model number is 0.
 1322          */
 1323         
 1324         ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_ID);
 1325         if (((sc->hpp_id = ed_asic_inw(sc, ED_HPP_PAGE_4)) & 
 1326                 ED_HPP_ID_SOFT_MODEL_MASK) != 0x0000)
 1327                 return ENXIO;
 1328 
 1329         /*
 1330          * Read in and save the current options configured on card.
 1331          */
 1332 
 1333         sc->hpp_options = ed_asic_inw(sc, ED_HPP_OPTION);
 1334 
 1335         sc->hpp_options |= (ED_HPP_OPTION_NIC_RESET | 
 1336                                 ED_HPP_OPTION_CHIP_RESET |
 1337                                 ED_HPP_OPTION_ENABLE_IRQ);
 1338 
 1339         /* 
 1340          * Reset the chip.  This requires writing to the option register
 1341          * so take care to preserve the other bits.
 1342          */
 1343 
 1344         ed_asic_outw(sc, ED_HPP_OPTION, 
 1345                 (sc->hpp_options & ~(ED_HPP_OPTION_NIC_RESET | 
 1346                         ED_HPP_OPTION_CHIP_RESET)));
 1347 
 1348         DELAY(5000);    /* wait for chip reset to complete */
 1349 
 1350         ed_asic_outw(sc, ED_HPP_OPTION,
 1351                 (sc->hpp_options | (ED_HPP_OPTION_NIC_RESET |
 1352                         ED_HPP_OPTION_CHIP_RESET |
 1353                         ED_HPP_OPTION_ENABLE_IRQ)));
 1354 
 1355         DELAY(5000);
 1356 
 1357         if (!(ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST))
 1358                 return ENXIO;   /* reset did not complete */
 1359 
 1360         /*
 1361          * Read out configuration information.
 1362          */
 1363 
 1364         ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW);
 1365 
 1366         irq = ed_asic_inb(sc, ED_HPP_HW_IRQ);
 1367 
 1368         /*
 1369          * Check for impossible IRQ.
 1370          */
 1371 
 1372         if (irq >= NELEM(ed_hpp_intr_val))
 1373                 return ENXIO;
 1374 
 1375         /* 
 1376          * If the kernel IRQ was specified with a '?' use the cards idea
 1377          * of the IRQ.  If the kernel IRQ was explicitly specified, it
 1378          * should match that of the hardware.
 1379          */
 1380         error = bus_get_resource(dev, SYS_RES_IRQ, 0,
 1381                                  &conf_irq, &junk);
 1382         if (error) {
 1383                 int intr_val = ed_hpp_intr_val[irq];
 1384 
 1385                 bus_set_resource(dev, SYS_RES_IRQ, 0, intr_val, 1,
 1386                     machintr_legacy_intr_cpuid(intr_val));
 1387         } else {
 1388                 if (conf_irq != ed_hpp_intr_val[irq])
 1389                         return (ENXIO);
 1390         }
 1391 
 1392         /*
 1393          * Fill in softconfig info.
 1394          */
 1395 
 1396         sc->vendor = ED_VENDOR_HP;
 1397         sc->type = ED_TYPE_HP_PCLANPLUS;
 1398         sc->type_str = "HP-PCLAN+";
 1399 
 1400         sc->mem_shared = 0;     /* we DON'T have dual ported RAM */
 1401         sc->mem_start = 0;      /* we use offsets inside the card RAM */
 1402 
 1403         sc->hpp_mem_start = NULL;/* no memory mapped I/O by default */
 1404 
 1405         /*
 1406          * The board has 32KB of memory.  Is there a way to determine
 1407          * this programmatically?
 1408          */
 1409         
 1410         memsize = 32768;
 1411 
 1412         /*
 1413          * Check if memory mapping of the I/O registers possible.
 1414          */
 1415 
 1416         if (sc->hpp_options & ED_HPP_OPTION_MEM_ENABLE)
 1417         {
 1418                 u_long mem_addr;
 1419 
 1420                 /*
 1421                  * determine the memory address from the board.
 1422                  */
 1423                 
 1424                 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW);
 1425                 mem_addr = (ed_asic_inw(sc, ED_HPP_HW_MEM_MAP) << 8);
 1426 
 1427                 /*
 1428                  * Check that the kernel specified start of memory and
 1429                  * hardware's idea of it match.
 1430                  */
 1431                 error = bus_get_resource(dev, SYS_RES_MEMORY, 0,
 1432                                          &conf_maddr, &conf_msize);
 1433                 if (error)
 1434                         return (error);
 1435                 
 1436                 if (mem_addr != conf_maddr)
 1437                         return ENXIO;
 1438 
 1439                 error = ed_alloc_memory(dev, 0, memsize);
 1440                 if (error)
 1441                         return (error);
 1442 
 1443                 sc->hpp_mem_start = rman_get_virtual(sc->mem_res);
 1444         }
 1445 
 1446         /*
 1447          * Fill in the rest of the soft config structure.
 1448          */
 1449 
 1450         /*
 1451          * The transmit page index.
 1452          */
 1453 
 1454         sc->tx_page_start = ED_HPP_TX_PAGE_OFFSET;
 1455 
 1456         if (device_get_flags(dev) & ED_FLAGS_NO_MULTI_BUFFERING)
 1457                 sc->txb_cnt = 1;
 1458         else
 1459                 sc->txb_cnt = 2;
 1460 
 1461         /*
 1462          * Memory description
 1463          */
 1464 
 1465         sc->mem_size = memsize;
 1466         sc->mem_ring = sc->mem_start + 
 1467                 (sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE);
 1468         sc->mem_end = sc->mem_start + sc->mem_size;
 1469 
 1470         /*
 1471          * Receive area starts after the transmit area and 
 1472          * continues till the end of memory.
 1473          */
 1474 
 1475         sc->rec_page_start = sc->tx_page_start + 
 1476                                 (sc->txb_cnt * ED_TXBUF_SIZE);
 1477         sc->rec_page_stop = (sc->mem_size / ED_PAGE_SIZE);
 1478 
 1479 
 1480         sc->cr_proto = 0;       /* value works */
 1481 
 1482         /*
 1483          * Set the wrap registers for string I/O reads.
 1484          */
 1485 
 1486         ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_HW);
 1487         ed_asic_outw(sc, ED_HPP_HW_WRAP,
 1488                 ((sc->rec_page_start / ED_PAGE_SIZE) |
 1489                  (((sc->rec_page_stop / ED_PAGE_SIZE) - 1) << 8)));
 1490 
 1491         /*
 1492          * Reset the register page to normal operation.
 1493          */
 1494 
 1495         ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_PERF);
 1496 
 1497         /*
 1498          * Verify that we can read/write from adapter memory.
 1499          * Create test pattern.
 1500          */
 1501 
 1502         for (n = 0; n < ED_HPP_TEST_SIZE; n++)
 1503         {
 1504                 test_pattern[n] = (n*n) ^ ~n;
 1505         }
 1506 
 1507 #undef  ED_HPP_TEST_SIZE
 1508 
 1509         /*
 1510          * Check that the memory is accessible thru the I/O ports.
 1511          * Write out the contents of "test_pattern", read back
 1512          * into "test_buffer" and compare the two for any
 1513          * mismatch.
 1514          */
 1515 
 1516         for (n = 0; n < (32768 / ED_PAGE_SIZE); n ++) {
 1517 
 1518                 ed_hpp_writemem(sc, test_pattern, (n * ED_PAGE_SIZE), 
 1519                                 sizeof(test_pattern));
 1520                 ed_hpp_readmem(sc, (n * ED_PAGE_SIZE), 
 1521                         test_buffer, sizeof(test_pattern));
 1522 
 1523                 if (bcmp(test_pattern, test_buffer, 
 1524                         sizeof(test_pattern)))
 1525                         return ENXIO;
 1526         }
 1527 
 1528         return (0);
 1529 
 1530 }
 1531 
 1532 /*
 1533  * HP PC Lan+ : Set the physical link to use AUI or TP/TL.
 1534  */
 1535 
 1536 static void
 1537 ed_hpp_set_physical_link(struct ed_softc *sc)
 1538 {
 1539         struct ifnet *ifp = &sc->arpcom.ac_if;
 1540         int lan_page;
 1541 
 1542         ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN);
 1543         lan_page = ed_asic_inw(sc, ED_HPP_PAGE_0);
 1544 
 1545         if (ifp->if_flags & IFF_ALTPHYS) {
 1546 
 1547                 /*
 1548                  * Use the AUI port.
 1549                  */
 1550 
 1551                 lan_page |= ED_HPP_LAN_AUI;
 1552 
 1553                 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN);
 1554                 ed_asic_outw(sc, ED_HPP_PAGE_0, lan_page);
 1555 
 1556 
 1557         } else {
 1558 
 1559                 /*
 1560                  * Use the ThinLan interface
 1561                  */
 1562 
 1563                 lan_page &= ~ED_HPP_LAN_AUI;
 1564 
 1565                 ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_LAN);
 1566                 ed_asic_outw(sc, ED_HPP_PAGE_0, lan_page);
 1567 
 1568         }
 1569 
 1570         /*
 1571          * Wait for the lan card to re-initialize itself
 1572          */
 1573 
 1574         DELAY(150000);  /* wait 150 ms */
 1575 
 1576         /*
 1577          * Restore normal pages.
 1578          */
 1579 
 1580         ed_asic_outw(sc, ED_HPP_PAGING, ED_HPP_PAGE_PERF);
 1581 
 1582 }
 1583 
 1584 /*
 1585  * Allocate a port resource with the given resource id.
 1586  */
 1587 int
 1588 ed_alloc_port(device_t dev, int rid, int size)
 1589 {
 1590         struct ed_softc *sc = device_get_softc(dev);
 1591         struct resource *res;
 1592 
 1593         res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
 1594                                  0ul, ~0ul, size, RF_ACTIVE);
 1595         if (res) {
 1596                 sc->port_rid = rid;
 1597                 sc->port_res = res;
 1598                 sc->port_used = size;
 1599                 return (0);
 1600         } else {
 1601                 return (ENOENT);
 1602         }
 1603 }
 1604 
 1605 /*
 1606  * Allocate a memory resource with the given resource id.
 1607  */
 1608 int
 1609 ed_alloc_memory(device_t dev, int rid, int size)
 1610 {
 1611         struct ed_softc *sc = device_get_softc(dev);
 1612         struct resource *res;
 1613 
 1614         res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
 1615                                  0ul, ~0ul, size, RF_ACTIVE);
 1616         if (res) {
 1617                 sc->mem_rid = rid;
 1618                 sc->mem_res = res;
 1619                 sc->mem_used = size;
 1620                 return (0);
 1621         } else {
 1622                 return (ENOENT);
 1623         }
 1624 }
 1625 
 1626 /*
 1627  * Allocate an irq resource with the given resource id.
 1628  */
 1629 int
 1630 ed_alloc_irq(device_t dev, int rid, int flags)
 1631 {
 1632         struct ed_softc *sc = device_get_softc(dev);
 1633         struct resource *res;
 1634 
 1635         res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 1636             (RF_ACTIVE | flags));
 1637         if (res) {
 1638                 sc->irq_rid = rid;
 1639                 sc->irq_res = res;
 1640                 return (0);
 1641         } else {
 1642                 return (ENOENT);
 1643         }
 1644 }
 1645 
 1646 /*
 1647  * Release all resources
 1648  */
 1649 void
 1650 ed_release_resources(device_t dev)
 1651 {
 1652         struct ed_softc *sc = device_get_softc(dev);
 1653 
 1654         if (sc->port_res) {
 1655                 bus_deactivate_resource(dev, SYS_RES_IOPORT,
 1656                                         sc->port_rid, sc->port_res);
 1657                 bus_release_resource(dev, SYS_RES_IOPORT,
 1658                                      sc->port_rid, sc->port_res);
 1659                 sc->port_res = 0;
 1660         }
 1661         if (sc->mem_res) {
 1662                 bus_deactivate_resource(dev, SYS_RES_MEMORY,
 1663                                         sc->mem_rid, sc->mem_res);
 1664                 bus_release_resource(dev, SYS_RES_MEMORY,
 1665                                      sc->mem_rid, sc->mem_res);
 1666                 sc->mem_res = 0;
 1667         }
 1668         if (sc->irq_res) {
 1669                 bus_deactivate_resource(dev, SYS_RES_IRQ,
 1670                                         sc->irq_rid, sc->irq_res);
 1671                 bus_release_resource(dev, SYS_RES_IRQ,
 1672                                      sc->irq_rid, sc->irq_res);
 1673                 sc->irq_res = 0;
 1674         }
 1675 }
 1676 
 1677 /*
 1678  * Install interface into kernel networking data structures
 1679  */
 1680 int
 1681 ed_attach(device_t dev)
 1682 {
 1683         struct ed_softc *sc = device_get_softc(dev);
 1684         struct ifnet *ifp = &sc->arpcom.ac_if;
 1685 
 1686         callout_init(&sc->ed_timer);
 1687         /*
 1688          * Set interface to stopped condition (reset)
 1689          */
 1690         ed_stop(sc);
 1691 
 1692         /*
 1693          * Initialize ifnet structure
 1694          */
 1695         ifp->if_softc = sc;
 1696         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1697         ifp->if_mtu = ETHERMTU;
 1698         ifp->if_start = ed_start;
 1699         ifp->if_ioctl = ed_ioctl;
 1700         ifp->if_watchdog = ed_watchdog;
 1701         ifp->if_init = ed_init;
 1702         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
 1703         ifq_set_ready(&ifp->if_snd);
 1704         ifp->if_linkmib = &sc->mibdata;
 1705         ifp->if_linkmiblen = sizeof sc->mibdata;
 1706         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1707         /*
 1708          * XXX - should do a better job.
 1709          */
 1710         if (sc->chip_type == ED_CHIP_TYPE_WD790)
 1711                 sc->mibdata.dot3StatsEtherChipSet =
 1712                         DOT3CHIPSET(dot3VendorWesternDigital,
 1713                                     dot3ChipSetWesternDigital83C790);
 1714         else
 1715                 sc->mibdata.dot3StatsEtherChipSet =
 1716                         DOT3CHIPSET(dot3VendorNational, 
 1717                                     dot3ChipSetNational8390);
 1718         sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS;
 1719 
 1720         /*
 1721          * Set default state for ALTPHYS flag (used to disable the 
 1722          * tranceiver for AUI operation), based on compile-time 
 1723          * config option.
 1724          */
 1725         if (device_get_flags(dev) & ED_FLAGS_DISABLE_TRANCEIVER)
 1726                 ifp->if_flags |= IFF_ALTPHYS;
 1727 
 1728         /*
 1729          * Attach the interface
 1730          */
 1731         ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
 1732 
 1733         /* device attach does transition from UNCONFIGURED to IDLE state */
 1734 
 1735         if (sc->type_str && (*sc->type_str != 0))
 1736                 kprintf("type %s ", sc->type_str);
 1737         else
 1738                 kprintf("type unknown (0x%x) ", sc->type);
 1739 
 1740         if (sc->vendor == ED_VENDOR_HP)
 1741                 kprintf("(%s %s IO)", (sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS) ?
 1742                         "16-bit" : "32-bit",
 1743                         sc->hpp_mem_start ? "memory mapped" : "regular");
 1744         else
 1745                 kprintf("%s ", sc->isa16bit ? "(16 bit)" : "(8 bit)");
 1746 
 1747         kprintf("%s\n", (((sc->vendor == ED_VENDOR_3COM) ||
 1748                          (sc->vendor == ED_VENDOR_HP)) &&
 1749                 (ifp->if_flags & IFF_ALTPHYS)) ? " transceiver disabled" : "");
 1750 
 1751         return (0);
 1752 }
 1753 
 1754 /*
 1755  * Reset interface.
 1756  */
 1757 static void
 1758 ed_reset(struct ifnet *ifp)
 1759 {
 1760         struct ed_softc *sc = ifp->if_softc;
 1761 
 1762         crit_enter();
 1763 
 1764         if (sc->gone) {
 1765                 crit_exit();
 1766                 return;
 1767         }
 1768 
 1769         /*
 1770          * Stop interface and re-initialize.
 1771          */
 1772         ed_stop(sc);
 1773         ed_init(sc);
 1774 
 1775         crit_exit();
 1776 }
 1777 
 1778 /*
 1779  * Take interface offline.
 1780  */
 1781 void
 1782 ed_stop(struct ed_softc *sc)
 1783 {
 1784         int     n = 5000;
 1785 
 1786 #ifndef ED_NO_MIIBUS
 1787         callout_stop(&sc->ed_timer);
 1788 #endif
 1789         if (sc->gone)
 1790                 return;
 1791         /*
 1792          * Stop everything on the interface, and select page 0 registers.
 1793          */
 1794         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
 1795 
 1796         /*
 1797          * Wait for interface to enter stopped state, but limit # of checks to
 1798          * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
 1799          * just in case it's an old one.
 1800          */
 1801         if (sc->chip_type != ED_CHIP_TYPE_AX88190)
 1802                 while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
 1803 }
 1804 
 1805 /*
 1806  * Device timeout/watchdog routine. Entered if the device neglects to
 1807  *      generate an interrupt after a transmit has been started on it.
 1808  */
 1809 static void
 1810 ed_watchdog(struct ifnet *ifp)
 1811 {
 1812         struct ed_softc *sc = ifp->if_softc;
 1813 
 1814         if (sc->gone)
 1815                 return;
 1816         log(LOG_ERR, "%s: device timeout\n", ifp->if_xname);
 1817         IFNET_STAT_INC(ifp, oerrors, 1);
 1818 
 1819         ed_reset(ifp);
 1820 }
 1821 
 1822 #ifndef ED_NO_MIIBUS
 1823 static void
 1824 ed_tick(void *arg)
 1825 {
 1826         struct ed_softc *sc = arg;
 1827         struct mii_data *mii;
 1828         struct ifnet *ifp;
 1829 
 1830         ifp = &sc->arpcom.ac_if;
 1831         lwkt_serialize_enter(ifp->if_serializer);
 1832 
 1833         if (sc->gone) {
 1834                 lwkt_serialize_exit(ifp->if_serializer);
 1835                 return;
 1836         }
 1837 
 1838         if (sc->miibus != NULL) {
 1839                 mii = device_get_softc(sc->miibus);
 1840                 mii_tick(mii);
 1841         }
 1842 
 1843         callout_reset(&sc->ed_timer, hz, ed_tick, sc);
 1844         lwkt_serialize_exit(ifp->if_serializer);
 1845 }
 1846 #endif
 1847 
 1848 /*
 1849  * Initialize device.
 1850  */
 1851 static void
 1852 ed_init(void *xsc)
 1853 {
 1854         struct ed_softc *sc = xsc;
 1855         struct ifnet *ifp = &sc->arpcom.ac_if;
 1856         int i;
 1857 
 1858         crit_enter();
 1859 
 1860         if (sc->gone) {
 1861                 crit_exit();
 1862                 return;
 1863         }
 1864 
 1865         /*
 1866          * Initialize the NIC in the exact order outlined in the NS manual.
 1867          * This init procedure is "mandatory"...don't change what or when
 1868          * things happen.
 1869          */
 1870 
 1871         /* reset transmitter flags */
 1872         sc->xmit_busy = 0;
 1873         ifp->if_timer = 0;
 1874 
 1875         sc->txb_inuse = 0;
 1876         sc->txb_new = 0;
 1877         sc->txb_next_tx = 0;
 1878 
 1879         /* This variable is used below - don't move this assignment */
 1880         sc->next_packet = sc->rec_page_start + 1;
 1881 
 1882         /*
 1883          * Set interface for page 0, Remote DMA complete, Stopped
 1884          */
 1885         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
 1886 
 1887         if (sc->isa16bit) {
 1888 
 1889                 /*
 1890                  * Set FIFO threshold to 8, No auto-init Remote DMA, byte
 1891                  * order=80x86, word-wide DMA xfers,
 1892                  */
 1893                 ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
 1894         } else {
 1895 
 1896                 /*
 1897                  * Same as above, but byte-wide DMA xfers
 1898                  */
 1899                 ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
 1900         }
 1901 
 1902         /*
 1903          * Clear Remote Byte Count Registers
 1904          */
 1905         ed_nic_outb(sc, ED_P0_RBCR0, 0);
 1906         ed_nic_outb(sc, ED_P0_RBCR1, 0);
 1907 
 1908         /*
 1909          * For the moment, don't store incoming packets in memory.
 1910          */
 1911         ed_nic_outb(sc, ED_P0_RCR, ED_RCR_MON);
 1912 
 1913         /*
 1914          * Place NIC in internal loopback mode
 1915          */
 1916         ed_nic_outb(sc, ED_P0_TCR, ED_TCR_LB0);
 1917 
 1918         /*
 1919          * Initialize transmit/receive (ring-buffer) Page Start
 1920          */
 1921         ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start);
 1922         ed_nic_outb(sc, ED_P0_PSTART, sc->rec_page_start);
 1923         /* Set lower bits of byte addressable framing to 0 */
 1924         if (sc->chip_type == ED_CHIP_TYPE_WD790)
 1925                 ed_nic_outb(sc, 0x09, 0);
 1926 
 1927         /*
 1928          * Initialize Receiver (ring-buffer) Page Stop and Boundry
 1929          */
 1930         ed_nic_outb(sc, ED_P0_PSTOP, sc->rec_page_stop);
 1931         ed_nic_outb(sc, ED_P0_BNRY, sc->rec_page_start);
 1932 
 1933         /*
 1934          * Clear all interrupts. A '1' in each bit position clears the
 1935          * corresponding flag.
 1936          */
 1937         ed_nic_outb(sc, ED_P0_ISR, 0xff);
 1938 
 1939         /*
 1940          * Enable the following interrupts: receive/transmit complete,
 1941          * receive/transmit error, and Receiver OverWrite.
 1942          *
 1943          * Counter overflow and Remote DMA complete are *not* enabled.
 1944          */
 1945         ed_nic_outb(sc, ED_P0_IMR,
 1946         ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE);
 1947 
 1948         /*
 1949          * Program Command Register for page 1
 1950          */
 1951         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
 1952 
 1953         /*
 1954          * Copy out our station address
 1955          */
 1956         for (i = 0; i < ETHER_ADDR_LEN; ++i)
 1957                 ed_nic_outb(sc, ED_P1_PAR(i), sc->arpcom.ac_enaddr[i]);
 1958 
 1959         /*
 1960          * Set Current Page pointer to next_packet (initialized above)
 1961          */
 1962         ed_nic_outb(sc, ED_P1_CURR, sc->next_packet);
 1963 
 1964         /*
 1965          * Program Receiver Configuration Register and multicast filter. CR is
 1966          * set to page 0 on return.
 1967          */
 1968         ed_setrcr(sc);
 1969 
 1970         /*
 1971          * Take interface out of loopback
 1972          */
 1973         ed_nic_outb(sc, ED_P0_TCR, 0);
 1974 
 1975         /*
 1976          * If this is a 3Com board, the tranceiver must be software enabled
 1977          * (there is no settable hardware default).
 1978          */
 1979         if (sc->vendor == ED_VENDOR_3COM) {
 1980                 if (ifp->if_flags & IFF_ALTPHYS) {
 1981                         ed_asic_outb(sc, ED_3COM_CR, 0);
 1982                 } else {
 1983                         ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL);
 1984                 }
 1985         }
 1986 
 1987 #ifndef ED_NO_MIIBUS
 1988         if (sc->miibus != NULL) {
 1989                 struct mii_data *mii;
 1990                 mii = device_get_softc(sc->miibus);
 1991                 mii_mediachg(mii);
 1992         }
 1993 #endif
 1994         /*
 1995          * Set 'running' flag, and clear output active flag.
 1996          */
 1997         ifp->if_flags |= IFF_RUNNING;
 1998         ifq_clr_oactive(&ifp->if_snd);
 1999 
 2000         /*
 2001          * ...and attempt to start output
 2002          */
 2003         if_devstart(ifp);
 2004 
 2005 #ifndef ED_NO_MIIBUS
 2006         callout_reset(&sc->ed_timer, hz, ed_tick, sc);
 2007 #endif
 2008 
 2009         crit_exit();
 2010 }
 2011 
 2012 /*
 2013  * This routine actually starts the transmission on the interface
 2014  */
 2015 static __inline void
 2016 ed_xmit(struct ed_softc *sc)
 2017 {
 2018         struct ifnet *ifp = (struct ifnet *)sc;
 2019         u_short len;
 2020 
 2021         if (sc->gone)
 2022                 return;
 2023         len = sc->txb_len[sc->txb_next_tx];
 2024 
 2025         /*
 2026          * Set NIC for page 0 register access
 2027          */
 2028         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
 2029 
 2030         /*
 2031          * Set TX buffer start page
 2032          */
 2033         ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start +
 2034                     sc->txb_next_tx * ED_TXBUF_SIZE);
 2035 
 2036         /*
 2037          * Set TX length
 2038          */
 2039         ed_nic_outb(sc, ED_P0_TBCR0, len);
 2040         ed_nic_outb(sc, ED_P0_TBCR1, len >> 8);
 2041 
 2042         /*
 2043          * Set page 0, Remote DMA complete, Transmit Packet, and *Start*
 2044          */
 2045         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA);
 2046         sc->xmit_busy = 1;
 2047 
 2048         /*
 2049          * Point to next transmit buffer slot and wrap if necessary.
 2050          */
 2051         sc->txb_next_tx++;
 2052         if (sc->txb_next_tx == sc->txb_cnt)
 2053                 sc->txb_next_tx = 0;
 2054 
 2055         /*
 2056          * Set a timer just in case we never hear from the board again
 2057          */
 2058         ifp->if_timer = 2;
 2059 }
 2060 
 2061 /*
 2062  * Start output on interface.
 2063  * We make two assumptions here:
 2064  *  1) that the current priority is set to splimp _before_ this code
 2065  *     is called *and* is returned to the appropriate priority after
 2066  *     return
 2067  *  2) that the OACTIVE flag is checked before this code is called
 2068  *     (i.e. that the output part of the interface is idle)
 2069  */
 2070 static void
 2071 ed_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
 2072 {
 2073         struct ed_softc *sc = ifp->if_softc;
 2074         struct mbuf *m0, *m;
 2075         caddr_t buffer;
 2076         int     len;
 2077 
 2078         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
 2079 
 2080         if (sc->gone) {
 2081                 kprintf("ed_start(%p) GONE\n",ifp);
 2082                 ifq_purge(&ifp->if_snd);
 2083                 return;
 2084         }
 2085 outloop:
 2086 
 2087         /*
 2088          * First, see if there are buffered packets and an idle transmitter -
 2089          * should never happen at this point.
 2090          */
 2091         if (sc->txb_inuse && (sc->xmit_busy == 0)) {
 2092                 kprintf("ed: packets buffered, but transmitter idle\n");
 2093                 ed_xmit(sc);
 2094         }
 2095 
 2096         /*
 2097          * See if there is room to put another packet in the buffer.
 2098          */
 2099         if (sc->txb_inuse == sc->txb_cnt) {
 2100 
 2101                 /*
 2102                  * No room. Indicate this to the outside world and exit.
 2103                  */
 2104                 ifq_set_oactive(&ifp->if_snd);
 2105                 return;
 2106         }
 2107         m = ifq_dequeue(&ifp->if_snd);
 2108         if (m == NULL) {
 2109 
 2110                 /*
 2111                  * We are using the !OACTIVE flag to indicate to the outside
 2112                  * world that we can accept an additional packet rather than
 2113                  * that the transmitter is _actually_ active. Indeed, the
 2114                  * transmitter may be active, but if we haven't filled all the
 2115                  * buffers with data then we still want to accept more.
 2116                  */
 2117                 ifq_clr_oactive(&ifp->if_snd);
 2118                 return;
 2119         }
 2120 
 2121         /*
 2122          * Copy the mbuf chain into the transmit buffer
 2123          */
 2124 
 2125         m0 = m;
 2126 
 2127         /* txb_new points to next open buffer slot */
 2128         buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE);
 2129 
 2130         if (sc->mem_shared) {
 2131 
 2132                 /*
 2133                  * Special case setup for 16 bit boards...
 2134                  */
 2135                 if (sc->isa16bit) {
 2136                         switch (sc->vendor) {
 2137 
 2138                                 /*
 2139                                  * For 16bit 3Com boards (which have 16k of
 2140                                  * memory), we have the xmit buffers in a
 2141                                  * different page of memory ('page 0') - so
 2142                                  * change pages.
 2143                                  */
 2144                         case ED_VENDOR_3COM:
 2145                                 ed_asic_outb(sc, ED_3COM_GACFR,
 2146                                              ED_3COM_GACFR_RSEL);
 2147                                 break;
 2148 
 2149                                 /*
 2150                                  * Enable 16bit access to shared memory on
 2151                                  * WD/SMC boards.
 2152                                  */
 2153                         case ED_VENDOR_WD_SMC:
 2154                                 ed_asic_outb(sc, ED_WD_LAAR,
 2155                                              sc->wd_laar_proto | ED_WD_LAAR_M16EN);
 2156                                 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
 2157                                         ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB);
 2158                                 }
 2159                                 break;
 2160                         }
 2161                 }
 2162                 for (len = 0; m != NULL; m = m->m_next) {
 2163                         bcopy(mtod(m, caddr_t), buffer, m->m_len);
 2164                         buffer += m->m_len;
 2165                         len += m->m_len;
 2166                 }
 2167 
 2168                 /*
 2169                  * Restore previous shared memory access
 2170                  */
 2171                 if (sc->isa16bit) {
 2172                         switch (sc->vendor) {
 2173                         case ED_VENDOR_3COM:
 2174                                 ed_asic_outb(sc, ED_3COM_GACFR,
 2175                                              ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
 2176                                 break;
 2177                         case ED_VENDOR_WD_SMC:
 2178                                 if (sc->chip_type == ED_CHIP_TYPE_WD790) {
 2179                                         ed_asic_outb(sc, ED_WD_MSR, 0x00);
 2180                                 }
 2181                                 ed_asic_outb(sc, ED_WD_LAAR,
 2182                                              sc->wd_laar_proto & ~ED_WD_LAAR_M16EN);
 2183                                 break;
 2184                         }
 2185                 }
 2186         } else {
 2187                 len = ed_pio_write_mbufs(sc, m, (int)buffer);
 2188                 if (len == 0) {
 2189                         m_freem(m0);
 2190                         goto outloop;
 2191                 }
 2192         }
 2193 
 2194         sc->txb_len[sc->txb_new] = max(len, (ETHER_MIN_LEN-ETHER_CRC_LEN));
 2195 
 2196         sc->txb_inuse++;
 2197 
 2198         /*
 2199          * Point to next buffer slot and wrap if necessary.
 2200          */
 2201         sc->txb_new++;
 2202         if (sc->txb_new == sc->txb_cnt)
 2203                 sc->txb_new = 0;
 2204 
 2205         if (sc->xmit_busy == 0)
 2206                 ed_xmit(sc);
 2207 
 2208         BPF_MTAP(ifp, m0);
 2209 
 2210         m_freem(m0);
 2211 
 2212         /*
 2213          * Loop back to the top to possibly buffer more packets
 2214          */
 2215         goto outloop;
 2216 }
 2217 
 2218 /*
 2219  * Ethernet interface receiver interrupt.
 2220  */
 2221 static __inline void
 2222 ed_rint(struct ed_softc *sc)
 2223 {
 2224         struct ifnet *ifp = &sc->arpcom.ac_if;
 2225         u_char  boundry;
 2226         u_short len;
 2227         struct ed_ring packet_hdr;
 2228         char   *packet_ptr;
 2229 
 2230         if (sc->gone)
 2231                 return;
 2232 
 2233         /*
 2234          * Set NIC to page 1 registers to get 'current' pointer
 2235          */
 2236         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
 2237 
 2238         /*
 2239          * 'sc->next_packet' is the logical beginning of the ring-buffer -
 2240          * i.e. it points to where new data has been buffered. The 'CURR'
 2241          * (current) register points to the logical end of the ring-buffer -
 2242          * i.e. it points to where additional new data will be added. We loop
 2243          * here until the logical beginning equals the logical end (or in
 2244          * other words, until the ring-buffer is empty).
 2245          */
 2246         while (sc->next_packet != ed_nic_inb(sc, ED_P1_CURR)) {
 2247 
 2248                 /* get pointer to this buffer's header structure */
 2249                 packet_ptr = sc->mem_ring +
 2250                     (sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE;
 2251 
 2252                 /*
 2253                  * The byte count includes a 4 byte header that was added by
 2254                  * the NIC.
 2255                  */
 2256                 if (sc->mem_shared)
 2257                         packet_hdr = *(struct ed_ring *) packet_ptr;
 2258                 else
 2259                         ed_pio_readmem(sc, (int)packet_ptr, (char *) &packet_hdr,
 2260                                        sizeof(packet_hdr));
 2261                 len = packet_hdr.count;
 2262                 if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring)) ||
 2263                     len < (ETHER_MIN_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring))) {
 2264                         /*
 2265                          * Length is a wild value. There's a good chance that
 2266                          * this was caused by the NIC being old and buggy.
 2267                          * The bug is that the length low byte is duplicated in
 2268                          * the high byte. Try to recalculate the length based on
 2269                          * the pointer to the next packet.
 2270                          */
 2271                         /*
 2272                          * NOTE: sc->next_packet is pointing at the current packet.
 2273                          */
 2274                         len &= ED_PAGE_SIZE - 1;        /* preserve offset into page */
 2275                         if (packet_hdr.next_packet >= sc->next_packet) {
 2276                                 len += (packet_hdr.next_packet - sc->next_packet) * ED_PAGE_SIZE;
 2277                         } else {
 2278                                 len += ((packet_hdr.next_packet - sc->rec_page_start) +
 2279                                         (sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE;
 2280                         }
 2281                         /*
 2282                          * because buffers are aligned on 256-byte boundary,
 2283                          * the length computed above is off by 256 in almost
 2284                          * all cases. Fix it...
 2285                          */
 2286                         if (len & 0xff)
 2287                                 len -= 256 ;
 2288                         if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN 
 2289                                    + sizeof(struct ed_ring)))
 2290                                 sc->mibdata.dot3StatsFrameTooLongs++;
 2291                 }
 2292                 /*
 2293                  * Be fairly liberal about what we allow as a "reasonable" length
 2294                  * so that a [crufty] packet will make it to BPF (and can thus
 2295                  * be analyzed). Note that all that is really important is that
 2296                  * we have a length that will fit into one mbuf cluster or less;
 2297                  * the upper layer protocols can then figure out the length from
 2298                  * their own length field(s).
 2299                  * But make sure that we have at least a full ethernet header
 2300                  * or we would be unable to call ether_input() later.
 2301                  */
 2302                 if ((len >= sizeof(struct ed_ring) + ETHER_HDR_LEN) &&
 2303                     (len <= MCLBYTES) &&
 2304                     (packet_hdr.next_packet >= sc->rec_page_start) &&
 2305                     (packet_hdr.next_packet < sc->rec_page_stop)) {
 2306                         /*
 2307                          * Go get packet.
 2308                          */
 2309                         ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring),
 2310                                       len - sizeof(struct ed_ring));
 2311                         IFNET_STAT_INC(ifp, ipackets, 1);
 2312                 } else {
 2313                         /*
 2314                          * Really BAD. The ring pointers are corrupted.
 2315                          */
 2316                         log(LOG_ERR,
 2317                             "%s: NIC memory corrupt - invalid packet length %d\n",
 2318                             ifp->if_xname, len);
 2319                         IFNET_STAT_INC(ifp, ierrors, 1);
 2320                         ed_reset(ifp);
 2321                         return;
 2322                 }
 2323 
 2324                 /*
 2325                  * Update next packet pointer
 2326                  */
 2327                 sc->next_packet = packet_hdr.next_packet;
 2328 
 2329                 /*
 2330                  * Update NIC boundry pointer - being careful to keep it one
 2331                  * buffer behind. (as recommended by NS databook)
 2332                  */
 2333                 boundry = sc->next_packet - 1;
 2334                 if (boundry < sc->rec_page_start)
 2335                         boundry = sc->rec_page_stop - 1;
 2336 
 2337                 /*
 2338                  * Set NIC to page 0 registers to update boundry register
 2339                  */
 2340                 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
 2341 
 2342                 ed_nic_outb(sc, ED_P0_BNRY, boundry);
 2343 
 2344                 /*
 2345                  * Set NIC to page 1 registers before looping to top (prepare
 2346                  * to get 'CURR' current pointer)
 2347                  */
 2348                 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
 2349         }
 2350 }
 2351 
 2352 /*
 2353  * Ethernet interface interrupt processor
 2354  */
 2355 void
 2356 edintr(void *arg)
 2357 {
 2358         struct ed_softc *sc = (struct ed_softc*) arg;
 2359         struct ifnet *ifp = (struct ifnet *)sc;
 2360         u_char  isr;
 2361         int     count;
 2362 
 2363         if (sc->gone)
 2364                 return;
 2365         /*
 2366          * Set NIC to page 0 registers
 2367          */
 2368         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
 2369 
 2370         /*
 2371          * loop until there are no more new interrupts.  When the card
 2372          * goes away, the hardware will read back 0xff.  Looking at
 2373          * the interrupts, it would appear that 0xff is impossible,
 2374          * or at least extremely unlikely.
 2375          */
 2376         while ((isr = ed_nic_inb(sc, ED_P0_ISR)) != 0 && isr != 0xff) {
 2377 
 2378                 /*
 2379                  * reset all the bits that we are 'acknowledging' by writing a
 2380                  * '1' to each bit position that was set (writing a '1'
 2381                  * *clears* the bit)
 2382                  */
 2383                 ed_nic_outb(sc, ED_P0_ISR, isr);
 2384 
 2385                 /* 
 2386                  * XXX workaround for AX88190
 2387                  * We limit this to 5000 iterations.  At 1us per inb/outb,
 2388                  * this translates to about 15ms, which should be plenty
 2389                  * of time, and also gives protection in the card eject
 2390                  * case.
 2391                  */
 2392                 if (sc->chip_type == ED_CHIP_TYPE_AX88190) {
 2393                         count = 5000;           /* 15ms */
 2394                         while (count-- && (ed_nic_inb(sc, ED_P0_ISR) & isr)) {
 2395                                 ed_nic_outb(sc, ED_P0_ISR,0);
 2396                                 ed_nic_outb(sc, ED_P0_ISR,isr);
 2397                         }
 2398                         if (count == 0)
 2399                                 break;
 2400                 }
 2401 
 2402                 /*
 2403                  * Handle transmitter interrupts. Handle these first because
 2404                  * the receiver will reset the board under some conditions.
 2405                  */
 2406                 if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
 2407                         u_char  collisions = ed_nic_inb(sc, ED_P0_NCR) & 0x0f;
 2408 
 2409                         /*
 2410                          * Check for transmit error. If a TX completed with an
 2411                          * error, we end up throwing the packet away. Really
 2412                          * the only error that is possible is excessive
 2413                          * collisions, and in this case it is best to allow
 2414                          * the automatic mechanisms of TCP to backoff the
 2415                          * flow. Of course, with UDP we're screwed, but this
 2416                          * is expected when a network is heavily loaded.
 2417                          */
 2418                         ed_nic_inb(sc, ED_P0_TSR);
 2419                         if (isr & ED_ISR_TXE) {
 2420                                 u_char tsr;
 2421 
 2422                                 /*
 2423                                  * Excessive collisions (16)
 2424                                  */
 2425                                 tsr = ed_nic_inb(sc, ED_P0_TSR);
 2426                                 if ((tsr & ED_TSR_ABT)  
 2427                                     && (collisions == 0)) {
 2428 
 2429                                         /*
 2430                                          * When collisions total 16, the
 2431                                          * P0_NCR will indicate 0, and the
 2432                                          * TSR_ABT is set.
 2433                                          */
 2434                                         collisions = 16;
 2435                                         sc->mibdata.dot3StatsExcessiveCollisions++;
 2436                                         sc->mibdata.dot3StatsCollFrequencies[15]++;
 2437                                 }
 2438                                 if (tsr & ED_TSR_OWC)
 2439                                         sc->mibdata.dot3StatsLateCollisions++;
 2440                                 if (tsr & ED_TSR_CDH)
 2441                                         sc->mibdata.dot3StatsSQETestErrors++;
 2442                                 if (tsr & ED_TSR_CRS)
 2443                                         sc->mibdata.dot3StatsCarrierSenseErrors++;
 2444                                 if (tsr & ED_TSR_FU)
 2445                                         sc->mibdata.dot3StatsInternalMacTransmitErrors++;
 2446 
 2447                                 /*
 2448                                  * update output errors counter
 2449                                  */
 2450                                 IFNET_STAT_INC(ifp, oerrors, 1);
 2451                         } else {
 2452 
 2453                                 /*
 2454                                  * Update total number of successfully
 2455                                  * transmitted packets.
 2456                                  */
 2457                                 IFNET_STAT_INC(ifp, opackets, 1);
 2458                         }
 2459 
 2460                         /*
 2461                          * reset tx busy and output active flags
 2462                          */
 2463                         sc->xmit_busy = 0;
 2464                         ifq_clr_oactive(&ifp->if_snd);
 2465 
 2466                         /*
 2467                          * clear watchdog timer
 2468                          */
 2469                         ifp->if_timer = 0;
 2470 
 2471                         /*
 2472                          * Add in total number of collisions on last
 2473                          * transmission.
 2474                          */
 2475                         IFNET_STAT_INC(ifp, collisions, collisions);
 2476                         switch(collisions) {
 2477                         case 0:
 2478                         case 16:
 2479                                 break;
 2480                         case 1:
 2481                                 sc->mibdata.dot3StatsSingleCollisionFrames++;
 2482                                 sc->mibdata.dot3StatsCollFrequencies[0]++;
 2483                                 break;
 2484                         default:
 2485                                 sc->mibdata.dot3StatsMultipleCollisionFrames++;
 2486                                 sc->mibdata.
 2487                                         dot3StatsCollFrequencies[collisions-1]
 2488                                                 ++;
 2489                                 break;
 2490                         }
 2491 
 2492                         /*
 2493                          * Decrement buffer in-use count if not zero (can only
 2494                          * be zero if a transmitter interrupt occured while
 2495                          * not actually transmitting). If data is ready to
 2496                          * transmit, start it transmitting, otherwise defer
 2497                          * until after handling receiver
 2498                          */
 2499                         if (sc->txb_inuse && --sc->txb_inuse)
 2500                                 ed_xmit(sc);
 2501                 }
 2502 
 2503                 /*
 2504                  * Handle receiver interrupts
 2505                  */
 2506                 if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
 2507 
 2508                         /*
 2509                          * Overwrite warning. In order to make sure that a
 2510                          * lockup of the local DMA hasn't occurred, we reset
 2511                          * and re-init the NIC. The NSC manual suggests only a
 2512                          * partial reset/re-init is necessary - but some chips
 2513                          * seem to want more. The DMA lockup has been seen
 2514                          * only with early rev chips - Methinks this bug was
 2515                          * fixed in later revs. -DG
 2516                          */
 2517                         if (isr & ED_ISR_OVW) {
 2518                                 IFNET_STAT_INC(ifp, ierrors, 1);
 2519 #ifdef DIAGNOSTIC
 2520                                 log(LOG_WARNING,
 2521                                     "%s: warning - receiver ring buffer overrun\n",
 2522                                     ifp->if_xname);
 2523 #endif
 2524 
 2525                                 /*
 2526                                  * Stop/reset/re-init NIC
 2527                                  */
 2528                                 ed_reset(ifp);
 2529                         } else {
 2530 
 2531                                 /*
 2532                                  * Receiver Error. One or more of: CRC error,
 2533                                  * frame alignment error FIFO overrun, or
 2534                                  * missed packet.
 2535                                  */
 2536                                 if (isr & ED_ISR_RXE) {
 2537                                         u_char rsr;
 2538                                         rsr = ed_nic_inb(sc, ED_P0_RSR);
 2539                                         if (rsr & ED_RSR_CRC)
 2540                                                 sc->mibdata.dot3StatsFCSErrors++;
 2541                                         if (rsr & ED_RSR_FAE)
 2542                                                 sc->mibdata.dot3StatsAlignmentErrors++;
 2543                                         if (rsr & ED_RSR_FO)
 2544                                                 sc->mibdata.dot3StatsInternalMacReceiveErrors++;
 2545                                         IFNET_STAT_INC(ifp, ierrors, 1);
 2546 #ifdef ED_DEBUG
 2547                                         if_printf("receive error %x\n",
 2548                                                ed_nic_inb(sc, ED_P0_RSR));
 2549 #endif
 2550                                 }
 2551 
 2552                                 /*
 2553                                  * Go get the packet(s) XXX - Doing this on an
 2554                                  * error is dubious because there shouldn't be
 2555                                  * any data to get (we've configured the
 2556                                  * interface to not accept packets with
 2557                                  * errors).
 2558                                  */
 2559 
 2560                                 /*
 2561                                  * Enable 16bit access to shared memory first
 2562                                  * on WD/SMC boards.
 2563                                  */
 2564                                 if (sc->isa16bit &&
 2565                                     (sc->vendor == ED_VENDOR_WD_SMC)) {
 2566 
 2567                                         ed_asic_outb(sc, ED_WD_LAAR,
 2568                                                      sc->wd_laar_proto | ED_WD_LAAR_M16EN);
 2569                                         if (sc->chip_type == ED_CHIP_TYPE_WD790) {
 2570                                                 ed_asic_outb(sc, ED_WD_MSR,
 2571                                                              ED_WD_MSR_MENB);
 2572                                         }
 2573                                 }
 2574                                 ed_rint(sc);
 2575 
 2576                                 /* disable 16bit access */
 2577                                 if (sc->isa16bit &&
 2578                                     (sc->vendor == ED_VENDOR_WD_SMC)) {
 2579 
 2580                                         if (sc->chip_type == ED_CHIP_TYPE_WD790) {
 2581                                                 ed_asic_outb(sc, ED_WD_MSR, 0x00);
 2582                                         }
 2583                                         ed_asic_outb(sc, ED_WD_LAAR,
 2584                                                      sc->wd_laar_proto & ~ED_WD_LAAR_M16EN);
 2585                                 }
 2586                         }
 2587                 }
 2588 
 2589                 /*
 2590                  * If it looks like the transmitter can take more data,
 2591                  * attempt to start output on the interface. This is done
 2592                  * after handling the receiver to give the receiver priority.
 2593                  */
 2594                 if (!ifq_is_oactive(&ifp->if_snd))
 2595                         if_devstart(ifp);
 2596 
 2597                 /*
 2598                  * return NIC CR to standard state: page 0, remote DMA
 2599                  * complete, start (toggling the TXP bit off, even if was just
 2600                  * set in the transmit routine, is *okay* - it is 'edge'
 2601                  * triggered from low to high)
 2602                  */
 2603                 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
 2604 
 2605                 /*
 2606                  * If the Network Talley Counters overflow, read them to reset
 2607                  * them. It appears that old 8390's won't clear the ISR flag
 2608                  * otherwise - resulting in an infinite loop.
 2609                  */
 2610                 if (isr & ED_ISR_CNT) {
 2611                         ed_nic_inb(sc, ED_P0_CNTR0);
 2612                         ed_nic_inb(sc, ED_P0_CNTR1);
 2613                         ed_nic_inb(sc, ED_P0_CNTR2);
 2614                 }
 2615         }
 2616 }
 2617 
 2618 /*
 2619  * Process an ioctl request. This code needs some work - it looks
 2620  *      pretty ugly.
 2621  */
 2622 static int
 2623 ed_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
 2624 {
 2625         struct ed_softc *sc = ifp->if_softc;
 2626 #ifndef ED_NO_MIIBUS
 2627         struct ifreq *ifr = (struct ifreq *)data;
 2628         struct mii_data *mii;
 2629 #endif
 2630         int error = 0;
 2631 
 2632         crit_enter();
 2633 
 2634         if (sc == NULL || sc->gone) {
 2635                 ifp->if_flags &= ~IFF_RUNNING;
 2636                 crit_exit();
 2637                 return ENXIO;
 2638         }
 2639 
 2640         switch (command) {
 2641         case SIOCSIFFLAGS:
 2642 
 2643                 /*
 2644                  * If the interface is marked up and stopped, then start it.
 2645                  * If it is marked down and running, then stop it.
 2646                  */
 2647                 if (ifp->if_flags & IFF_UP) {
 2648                         if ((ifp->if_flags & IFF_RUNNING) == 0)
 2649                                 ed_init(sc);
 2650                 } else {
 2651                         if (ifp->if_flags & IFF_RUNNING) {
 2652                                 ed_stop(sc);
 2653                                 ifp->if_flags &= ~IFF_RUNNING;
 2654                         }
 2655                 }
 2656 
 2657                 /*
 2658                  * Promiscuous flag may have changed, so reprogram the RCR.
 2659                  */
 2660                 ed_setrcr(sc);
 2661 
 2662                 /*
 2663                  * An unfortunate hack to provide the (required) software
 2664                  * control of the tranceiver for 3Com boards. The ALTPHYS flag
 2665                  * disables the tranceiver if set.
 2666                  */
 2667                 if (sc->vendor == ED_VENDOR_3COM) {
 2668                         if (ifp->if_flags & IFF_ALTPHYS) {
 2669                                 ed_asic_outb(sc, ED_3COM_CR, 0);
 2670                         } else {
 2671                                 ed_asic_outb(sc, ED_3COM_CR, ED_3COM_CR_XSEL);
 2672                         }
 2673                 } else if (sc->vendor == ED_VENDOR_HP) 
 2674                         ed_hpp_set_physical_link(sc);
 2675                 break;
 2676 
 2677         case SIOCADDMULTI:
 2678         case SIOCDELMULTI:
 2679                 /*
 2680                  * Multicast list has changed; set the hardware filter
 2681                  * accordingly.
 2682                  */
 2683                 ed_setrcr(sc);
 2684                 error = 0;
 2685                 break;
 2686 
 2687 #ifndef ED_NO_MIIBUS
 2688         case SIOCGIFMEDIA:
 2689         case SIOCSIFMEDIA:
 2690                 if (sc->miibus == NULL) {
 2691                         error = EINVAL;
 2692                         break;
 2693                 }
 2694                 mii = device_get_softc(sc->miibus);
 2695                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 2696                 break;
 2697 #endif
 2698 
 2699         default:
 2700                 error = ether_ioctl(ifp, command, data);
 2701                 break;
 2702         }
 2703 
 2704         crit_exit();
 2705 
 2706         return (error);
 2707 }
 2708 
 2709 /*
 2710  * Given a source and destination address, copy 'amount' of a packet from
 2711  *      the ring buffer into a linear destination buffer. Takes into account
 2712  *      ring-wrap.
 2713  */
 2714 static __inline char *
 2715 ed_ring_copy(struct ed_softc *sc, char *src, char *dst, u_short amount)
 2716 {
 2717         u_short tmp_amount;
 2718 
 2719         /* does copy wrap to lower addr in ring buffer? */
 2720         if (src + amount > sc->mem_end) {
 2721                 tmp_amount = sc->mem_end - src;
 2722 
 2723                 /* copy amount up to end of NIC memory */
 2724                 if (sc->mem_shared)
 2725                         bcopy(src, dst, tmp_amount);
 2726                 else
 2727                         ed_pio_readmem(sc, (int)src, dst, tmp_amount);
 2728 
 2729                 amount -= tmp_amount;
 2730                 src = sc->mem_ring;
 2731                 dst += tmp_amount;
 2732         }
 2733         if (sc->mem_shared)
 2734                 bcopy(src, dst, amount);
 2735         else
 2736                 ed_pio_readmem(sc, (int)src, dst, amount);
 2737 
 2738         return (src + amount);
 2739 }
 2740 
 2741 /*
 2742  * Retreive packet from shared memory and send to the next level up via
 2743  * ether_input().
 2744  */
 2745 static void
 2746 ed_get_packet(struct ed_softc *sc, char *buf, u_short len)
 2747 {
 2748         struct ifnet *ifp = &sc->arpcom.ac_if;
 2749         struct ether_header *eh;
 2750         struct mbuf *m;
 2751 
 2752         /*
 2753          * Allocate a header mbuf.
 2754          * We always put the received packet in a single buffer -
 2755          * either with just an mbuf header or in a cluster attached
 2756          * to the header. The +2 is to compensate for the alignment
 2757          * fixup below.
 2758          */
 2759         m = m_getl(len + 2, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
 2760         if (m == NULL)
 2761                 return;
 2762         m->m_pkthdr.rcvif = ifp;
 2763         m->m_pkthdr.len = m->m_len = len;
 2764 
 2765         /*
 2766          * The +2 is to longword align the start of the real packet.
 2767          * This is important for NFS.
 2768          */
 2769         m->m_data += 2;
 2770         eh = mtod(m, struct ether_header *);
 2771 
 2772         /*
 2773          * Get packet, including link layer address, from interface.
 2774          */
 2775         ed_ring_copy(sc, buf, (char *)eh, len);
 2776 
 2777         m->m_pkthdr.len = m->m_len = len;
 2778 
 2779         ifp->if_input(ifp, m);
 2780 }
 2781 
 2782 /*
 2783  * Supporting routines
 2784  */
 2785 
 2786 /*
 2787  * Given a NIC memory source address and a host memory destination
 2788  *      address, copy 'amount' from NIC to host using Programmed I/O.
 2789  *      The 'amount' is rounded up to a word - okay as long as mbufs
 2790  *              are word sized.
 2791  *      This routine is currently Novell-specific.
 2792  */
 2793 void
 2794 ed_pio_readmem(struct ed_softc *sc, int src, u_char *dst, u_short amount)
 2795 {
 2796         /* HP PC Lan+ cards need special handling */
 2797         if (sc->vendor == ED_VENDOR_HP && sc->type == ED_TYPE_HP_PCLANPLUS) {
 2798                 ed_hpp_readmem(sc, src, dst, amount);
 2799                 return;
 2800         }
 2801 
 2802         /* Regular Novell cards */
 2803         /* select page 0 registers */
 2804         ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
 2805 
 2806         /* round up to a word */
 2807         if (amount & 1)
 2808                 ++amount;
 2809 
 2810         /* set up DMA byte count */
 2811         ed_nic_outb(sc, ED_P0_RBCR0, amount);
 2812         ed_nic_outb(sc, ED_P0_RBCR1, amount >> 8);
 2813 
 2814         /* set up source address in NIC mem */
 2815         ed_nic_outb(sc, ED_P0_RSAR0, src);
 2816         ed_nic_outb(sc, ED_P0_RSAR1, src >> 8);
 2817 
 2818         ed_nic_outb(sc, ED_P0_CR, ED_CR_RD0 | ED_CR_STA);
 2819 
 2820         if (sc->isa16bit) {
 2821                 ed_asic_insw(sc, ED_NOVELL_DATA, dst, amount / 2);
 2822         } else {
 2823                 ed_asic_insb(sc, ED_NOVELL_DATA, dst, amount);
 2824         }
 2825 }
 2826 
 2827 /*
 2828  * Stripped down routine for writing a linear buffer to NIC memory.
 2829  *      Only used in the probe routine to test the memory. 'len' must
 2830  *      be even.
 2831  */
 2832 void
 2833 ed_pio_writemem(struct ed_softc *sc, char *src, u_short dst, u_short len)
 2834 {
 2835         int     maxwait = 200;  /* about 240us */
 2836 
 2837         /* select page 0 registers */
 2838         ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
 2839 
 2840         /* reset remote DMA complete flag */
 2841         ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
 2842 
 2843         /* set up DMA byte count */
 2844         ed_nic_outb(sc, ED_P0_RBCR0, len);
 2845         ed_nic_outb(sc, ED_P0_RBCR1, len >> 8);
 2846 
 2847         /* set up destination address in NIC mem */
 2848         ed_nic_outb(sc, ED_P0_RSAR0, dst);
 2849         ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8);
 2850 
 2851         /* set remote DMA write */
 2852         ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
 2853 
 2854         if (sc->isa16bit) {
 2855                 ed_asic_outsw(sc, ED_NOVELL_DATA, src, len / 2);
 2856         } else {
 2857                 ed_asic_outsb(sc, ED_NOVELL_DATA, src, len);
 2858         }
 2859 
 2860         /*
 2861          * Wait for remote DMA complete. This is necessary because on the
 2862          * transmit side, data is handled internally by the NIC in bursts and
 2863          * we can't start another remote DMA until this one completes. Not
 2864          * waiting causes really bad things to happen - like the NIC
 2865          * irrecoverably jamming the ISA bus.
 2866          */
 2867         while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
 2868 }
 2869 
 2870 /*
 2871  * Write an mbuf chain to the destination NIC memory address using
 2872  *      programmed I/O.
 2873  */
 2874 static u_short
 2875 ed_pio_write_mbufs(struct ed_softc *sc, struct mbuf *m, int dst)
 2876 {
 2877         struct ifnet *ifp = (struct ifnet *)sc;
 2878         u_short total_len, dma_len;
 2879         struct mbuf *mp;
 2880         int     maxwait = 200;  /* about 240us */
 2881 
 2882         /* HP PC Lan+ cards need special handling */
 2883         if (sc->vendor == ED_VENDOR_HP && sc->type == ED_TYPE_HP_PCLANPLUS) {
 2884                 return ed_hpp_write_mbufs(sc, m, dst);
 2885         }
 2886 
 2887         /* Regular Novell cards */
 2888         /* First, count up the total number of bytes to copy */
 2889         for (total_len = 0, mp = m; mp; mp = mp->m_next)
 2890                 total_len += mp->m_len;
 2891 
 2892         dma_len = total_len;
 2893         if (sc->isa16bit && (dma_len & 1))
 2894                 dma_len++;
 2895 
 2896         /* select page 0 registers */
 2897         ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
 2898 
 2899         /* reset remote DMA complete flag */
 2900         ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
 2901 
 2902         /* set up DMA byte count */
 2903         ed_nic_outb(sc, ED_P0_RBCR0, dma_len);
 2904         ed_nic_outb(sc, ED_P0_RBCR1, dma_len >> 8);
 2905 
 2906         /* set up destination address in NIC mem */
 2907         ed_nic_outb(sc, ED_P0_RSAR0, dst);
 2908         ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8);
 2909 
 2910         /* set remote DMA write */
 2911         ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
 2912 
 2913   /*
 2914    * Transfer the mbuf chain to the NIC memory.
 2915    * 16-bit cards require that data be transferred as words, and only words.
 2916    * So that case requires some extra code to patch over odd-length mbufs.
 2917    */
 2918 
 2919         if (!sc->isa16bit) {
 2920                 /* NE1000s are easy */
 2921                 while (m) {
 2922                         if (m->m_len) {
 2923                                 ed_asic_outsb(sc, ED_NOVELL_DATA,
 2924                                               m->m_data, m->m_len);
 2925                         }
 2926                         m = m->m_next;
 2927                 }
 2928         } else {
 2929                 /* NE2000s are a pain */
 2930                 u_char *data;
 2931                 int len, wantbyte;
 2932                 u_char savebyte[2];
 2933 
 2934                 wantbyte = 0;
 2935 
 2936                 while (m) {
 2937                         len = m->m_len;
 2938                         if (len) {
 2939                                 data = mtod(m, caddr_t);
 2940                                 /* finish the last word */
 2941                                 if (wantbyte) {
 2942                                         savebyte[1] = *data;
 2943                                         ed_asic_outw(sc, ED_NOVELL_DATA,
 2944                                                      *(u_short *)savebyte);
 2945                                         data++;
 2946                                         len--;
 2947                                         wantbyte = 0;
 2948                                 }
 2949                                 /* output contiguous words */
 2950                                 if (len > 1) {
 2951                                         ed_asic_outsw(sc, ED_NOVELL_DATA,
 2952                                                       data, len >> 1);
 2953                                         data += len & ~1;
 2954                                         len &= 1;
 2955                                 }
 2956                                 /* save last byte, if necessary */
 2957                                 if (len == 1) {
 2958                                         savebyte[0] = *data;
 2959                                         wantbyte = 1;
 2960                                 }
 2961                         }
 2962                         m = m->m_next;
 2963                 }
 2964                 /* spit last byte */
 2965                 if (wantbyte) {
 2966                         ed_asic_outw(sc, ED_NOVELL_DATA, *(u_short *)savebyte);
 2967                 }
 2968         }
 2969 
 2970         /*
 2971          * Wait for remote DMA complete. This is necessary because on the
 2972          * transmit side, data is handled internally by the NIC in bursts and
 2973          * we can't start another remote DMA until this one completes. Not
 2974          * waiting causes really bad things to happen - like the NIC
 2975          * irrecoverably jamming the ISA bus.
 2976          */
 2977         while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
 2978 
 2979         if (!maxwait) {
 2980                 log(LOG_WARNING, "%s: remote transmit DMA failed to complete\n",
 2981                     ifp->if_xname);
 2982                 ed_reset(ifp);
 2983                 return(0);
 2984         }
 2985         return (total_len);
 2986 }
 2987 
 2988 /*
 2989  * Support routines to handle the HP PC Lan+ card.
 2990  */
 2991 
 2992 /*
 2993  * HP PC Lan+: Read from NIC memory, using either PIO or memory mapped
 2994  * IO.
 2995  */
 2996 
 2997 static void
 2998 ed_hpp_readmem(struct ed_softc *sc, u_short src, u_char *dst, u_short amount)
 2999 {
 3000 
 3001         int use_32bit_access = !(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS);
 3002 
 3003 
 3004         /* Program the source address in RAM */
 3005         ed_asic_outw(sc, ED_HPP_PAGE_2, src);
 3006 
 3007         /*
 3008          * The HP PC Lan+ card supports word reads as well as
 3009          * a memory mapped i/o port that is aliased to every 
 3010          * even address on the board.
 3011          */
 3012 
 3013         if (sc->hpp_mem_start) {
 3014 
 3015                 /* Enable memory mapped access.  */
 3016                 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options & 
 3017                         ~(ED_HPP_OPTION_MEM_DISABLE | 
 3018                           ED_HPP_OPTION_BOOT_ROM_ENB));
 3019 
 3020                 if (use_32bit_access && (amount > 3)) {
 3021                         u_int32_t *dl = (u_int32_t *) dst;      
 3022                         volatile u_int32_t *const sl = 
 3023                                 (u_int32_t *) sc->hpp_mem_start;
 3024                         u_int32_t *const fence = dl + (amount >> 2);
 3025                         
 3026                         /* Copy out NIC data.  We could probably write this
 3027                            as a `movsl'. The currently generated code is lousy.
 3028                            */
 3029 
 3030                         while (dl < fence)
 3031                                 *dl++ = *sl;
 3032                 
 3033                         dst += (amount & ~3);
 3034                         amount &= 3;
 3035 
 3036                 } 
 3037 
 3038                 /* Finish off any words left, as a series of short reads */
 3039                 if (amount > 1) {
 3040                         u_short *d = (u_short *) dst;   
 3041                         volatile u_short *const s = 
 3042                                 (u_short *) sc->hpp_mem_start;
 3043                         u_short *const fence = d + (amount >> 1);
 3044                         
 3045                         /* Copy out NIC data.  */
 3046 
 3047                         while (d < fence)
 3048                                 *d++ = *s;
 3049         
 3050                         dst += (amount & ~1);
 3051                         amount &= 1;
 3052                 }
 3053 
 3054                 /*
 3055                  * read in a byte; however we need to always read 16 bits
 3056                  * at a time or the hardware gets into a funny state
 3057                  */
 3058 
 3059                 if (amount == 1) {
 3060                         /* need to read in a short and copy LSB */
 3061                         volatile u_short *const s = 
 3062                                 (volatile u_short *) sc->hpp_mem_start;
 3063                         
 3064                         *dst = (*s) & 0xFF;     
 3065                 }
 3066 
 3067                 /* Restore Boot ROM access.  */
 3068 
 3069                 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options);
 3070 
 3071 
 3072         } else { 
 3073                 /* Read in data using the I/O port */
 3074                 if (use_32bit_access && (amount > 3)) {
 3075                         ed_asic_insl(sc, ED_HPP_PAGE_4, dst, amount >> 2);
 3076                         dst += (amount & ~3);
 3077                         amount &= 3;
 3078                 }
 3079                 if (amount > 1) {
 3080                         ed_asic_insw(sc, ED_HPP_PAGE_4, dst, amount >> 1);
 3081                         dst += (amount & ~1);
 3082                         amount &= 1;
 3083                 }
 3084                 if (amount == 1) { /* read in a short and keep the LSB */
 3085                         *dst = ed_asic_inw(sc, ED_HPP_PAGE_4) & 0xFF;
 3086                 }
 3087         }
 3088 }
 3089 
 3090 /*
 3091  * HP PC Lan+: Write to NIC memory, using either PIO or memory mapped
 3092  * IO.
 3093  *      Only used in the probe routine to test the memory. 'len' must
 3094  *      be even.
 3095  */
 3096 static void
 3097 ed_hpp_writemem(struct ed_softc *sc, u_char *src, u_short dst, u_short len)
 3098 {
 3099         /* reset remote DMA complete flag */
 3100         ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
 3101 
 3102         /* program the write address in RAM */
 3103         ed_asic_outw(sc, ED_HPP_PAGE_0, dst);
 3104 
 3105         if (sc->hpp_mem_start) {
 3106                 u_short *s = (u_short *) src;
 3107                 volatile u_short *d = (u_short *) sc->hpp_mem_start;
 3108                 u_short *const fence = s + (len >> 1);
 3109 
 3110                 /*
 3111                  * Enable memory mapped access.
 3112                  */
 3113 
 3114                 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options & 
 3115                         ~(ED_HPP_OPTION_MEM_DISABLE | 
 3116                           ED_HPP_OPTION_BOOT_ROM_ENB));
 3117 
 3118                 /*
 3119                  * Copy to NIC memory.
 3120                  */
 3121 
 3122                 while (s < fence)
 3123                         *d = *s++;
 3124 
 3125                 /*
 3126                  * Restore Boot ROM access.
 3127                  */
 3128 
 3129                 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options);
 3130 
 3131         } else {
 3132                 /* write data using I/O writes */
 3133                 ed_asic_outsw(sc, ED_HPP_PAGE_4, src, len / 2);
 3134         }
 3135 }
 3136 
 3137 /*
 3138  * Write to HP PC Lan+ NIC memory.  Access to the NIC can be by using 
 3139  * outsw() or via the memory mapped interface to the same register.
 3140  * Writes have to be in word units; byte accesses won't work and may cause
 3141  * the NIC to behave weirdly. Long word accesses are permitted if the ASIC
 3142  * allows it.
 3143  */
 3144 
 3145 static u_short
 3146 ed_hpp_write_mbufs(struct ed_softc *sc, struct mbuf *m, int dst)
 3147 {
 3148         int len, wantbyte;
 3149         u_short total_len;
 3150         u_char savebyte[2];
 3151         volatile u_short * const d = 
 3152                 (volatile u_short *) sc->hpp_mem_start;
 3153         int use_32bit_accesses = !(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS);
 3154 
 3155         /* select page 0 registers */
 3156         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
 3157 
 3158         /* reset remote DMA complete flag */
 3159         ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
 3160 
 3161         /* program the write address in RAM */
 3162         ed_asic_outw(sc, ED_HPP_PAGE_0, dst);
 3163 
 3164         if (sc->hpp_mem_start)  /* enable memory mapped I/O */
 3165                 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options & 
 3166                         ~(ED_HPP_OPTION_MEM_DISABLE |
 3167                         ED_HPP_OPTION_BOOT_ROM_ENB));
 3168 
 3169         wantbyte = 0;
 3170         total_len = 0;
 3171 
 3172         if (sc->hpp_mem_start) {        /* Memory mapped I/O port */
 3173                 while (m) {
 3174                         total_len += (len = m->m_len);
 3175                         if (len) {
 3176                                 caddr_t data = mtod(m, caddr_t);
 3177                                 /* finish the last word of the previous mbuf */
 3178                                 if (wantbyte) {
 3179                                         savebyte[1] = *data;
 3180                                         *d = *((u_short *) savebyte);
 3181                                         data++; len--; wantbyte = 0;
 3182                                 }
 3183                                 /* output contiguous words */
 3184                                 if ((len > 3) && (use_32bit_accesses)) {
 3185                                         volatile u_int32_t *const dl = 
 3186                                                 (volatile u_int32_t *) d;
 3187                                         u_int32_t *sl = (u_int32_t *) data;
 3188                                         u_int32_t *fence = sl + (len >> 2);
 3189 
 3190                                         while (sl < fence)
 3191                                                 *dl = *sl++;
 3192 
 3193                                         data += (len & ~3);
 3194                                         len &= 3;
 3195                                 }
 3196                                 /* finish off remain 16 bit writes */
 3197                                 if (len > 1) {
 3198                                         u_short *s = (u_short *) data;
 3199                                         u_short *fence = s + (len >> 1);
 3200 
 3201                                         while (s < fence)
 3202                                                 *d = *s++;
 3203 
 3204                                         data += (len & ~1); 
 3205                                         len &= 1;
 3206                                 }
 3207                                 /* save last byte if needed */
 3208                                 if ((wantbyte = (len == 1)) != 0)
 3209                                         savebyte[0] = *data;
 3210                         }
 3211                         m = m->m_next;  /* to next mbuf */
 3212                 }
 3213                 if (wantbyte) /* write last byte */
 3214                         *d = *((u_short *) savebyte);
 3215         } else {
 3216                 /* use programmed I/O */
 3217                 while (m) {
 3218                         total_len += (len = m->m_len);
 3219                         if (len) {
 3220                                 caddr_t data = mtod(m, caddr_t);
 3221                                 /* finish the last word of the previous mbuf */
 3222                                 if (wantbyte) {
 3223                                         savebyte[1] = *data;
 3224                                         ed_asic_outw(sc, ED_HPP_PAGE_4,
 3225                                                      *((u_short *)savebyte));
 3226                                         data++; 
 3227                                         len--; 
 3228                                         wantbyte = 0;
 3229                                 }
 3230                                 /* output contiguous words */
 3231                                 if ((len > 3) && use_32bit_accesses) {
 3232                                         ed_asic_outsl(sc, ED_HPP_PAGE_4,
 3233                                                       data, len >> 2);
 3234                                         data += (len & ~3);
 3235                                         len &= 3;
 3236                                 }
 3237                                 /* finish off remaining 16 bit accesses */
 3238                                 if (len > 1) {
 3239                                         ed_asic_outsw(sc, ED_HPP_PAGE_4,
 3240                                                       data, len >> 1);
 3241                                         data += (len & ~1);
 3242                                         len &= 1;
 3243                                 }
 3244                                 if ((wantbyte = (len == 1)) != 0)
 3245                                         savebyte[0] = *data;
 3246 
 3247                         } /* if len != 0 */
 3248                         m = m->m_next;
 3249                 }
 3250                 if (wantbyte) /* spit last byte */
 3251                         ed_asic_outw(sc, ED_HPP_PAGE_4, *(u_short *)savebyte);
 3252 
 3253         }
 3254 
 3255         if (sc->hpp_mem_start)  /* turn off memory mapped i/o */
 3256                 ed_asic_outw(sc, ED_HPP_OPTION, sc->hpp_options);
 3257 
 3258         return (total_len);
 3259 }
 3260 
 3261 #ifndef ED_NO_MIIBUS
 3262 /*
 3263  * MII bus support routines.
 3264  */
 3265 int
 3266 ed_miibus_readreg(device_t dev, int phy, int reg)
 3267 {
 3268         struct ed_softc *sc = device_get_softc(dev);
 3269         int failed, val;
 3270 
 3271         crit_enter();
 3272 
 3273         if (sc->gone) {
 3274                 crit_exit();
 3275                 return (0);
 3276         }
 3277 
 3278         (*sc->mii_writebits)(sc, 0xffffffff, 32);
 3279         (*sc->mii_writebits)(sc, ED_MII_STARTDELIM, ED_MII_STARTDELIM_BITS);
 3280         (*sc->mii_writebits)(sc, ED_MII_READOP, ED_MII_OP_BITS);
 3281         (*sc->mii_writebits)(sc, phy, ED_MII_PHY_BITS);
 3282         (*sc->mii_writebits)(sc, reg, ED_MII_REG_BITS);
 3283 
 3284         failed = (*sc->mii_readbits)(sc, ED_MII_ACK_BITS);
 3285         val = (*sc->mii_readbits)(sc, ED_MII_DATA_BITS);
 3286         (*sc->mii_writebits)(sc, ED_MII_IDLE, ED_MII_IDLE_BITS);
 3287 
 3288         crit_exit();
 3289 
 3290         return (failed ? 0 : val);
 3291 }
 3292 
 3293 void
 3294 ed_miibus_writereg(device_t dev, int phy, int reg, int data)
 3295 {
 3296         struct ed_softc *sc = device_get_softc(dev);
 3297 
 3298         crit_enter();
 3299 
 3300         if (sc->gone) {
 3301                 crit_exit();
 3302                 return;
 3303         }
 3304 
 3305         (*sc->mii_writebits)(sc, 0xffffffff, 32);
 3306         (*sc->mii_writebits)(sc, ED_MII_STARTDELIM, ED_MII_STARTDELIM_BITS);
 3307         (*sc->mii_writebits)(sc, ED_MII_WRITEOP, ED_MII_OP_BITS);
 3308         (*sc->mii_writebits)(sc, phy, ED_MII_PHY_BITS);
 3309         (*sc->mii_writebits)(sc, reg, ED_MII_REG_BITS);
 3310         (*sc->mii_writebits)(sc, ED_MII_TURNAROUND, ED_MII_TURNAROUND_BITS);
 3311         (*sc->mii_writebits)(sc, data, ED_MII_DATA_BITS);
 3312         (*sc->mii_writebits)(sc, ED_MII_IDLE, ED_MII_IDLE_BITS);
 3313 
 3314         crit_exit();
 3315 }
 3316 
 3317 int
 3318 ed_ifmedia_upd(struct ifnet *ifp)
 3319 {
 3320         struct ed_softc *sc;
 3321         struct mii_data *mii;
 3322 
 3323         sc = ifp->if_softc;
 3324         if (sc->gone || sc->miibus == NULL)
 3325                 return (ENXIO);
 3326         
 3327         mii = device_get_softc(sc->miibus);
 3328         return mii_mediachg(mii);
 3329 }
 3330 
 3331 void
 3332 ed_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3333 {
 3334         struct ed_softc *sc;
 3335         struct mii_data *mii;
 3336 
 3337         sc = ifp->if_softc;
 3338         if (sc->gone || sc->miibus == NULL)
 3339                 return;
 3340 
 3341         mii = device_get_softc(sc->miibus);
 3342         mii_pollstat(mii);
 3343         ifmr->ifm_active = mii->mii_media_active;
 3344         ifmr->ifm_status = mii->mii_media_status;
 3345 }
 3346 
 3347 void
 3348 ed_child_detached(device_t dev, device_t child)
 3349 {
 3350         struct ed_softc *sc;
 3351 
 3352         sc = device_get_softc(dev);
 3353         if (child == sc->miibus)
 3354                 sc->miibus = NULL;
 3355 }
 3356 #endif
 3357 
 3358 static void
 3359 ed_setrcr(struct ed_softc *sc)
 3360 {
 3361         struct ifnet *ifp = (struct ifnet *)sc;
 3362         int     i;
 3363         u_char  reg1;
 3364 
 3365         /* Bit 6 in AX88190 RCR register must be set. */
 3366         if (sc->chip_type == ED_CHIP_TYPE_AX88190)
 3367                 reg1 = ED_RCR_INTT;
 3368         else
 3369                 reg1 = 0x00;
 3370 
 3371         /* set page 1 registers */
 3372         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
 3373 
 3374         if (ifp->if_flags & IFF_PROMISC) {
 3375 
 3376                 /*
 3377                  * Reconfigure the multicast filter.
 3378                  */
 3379                 for (i = 0; i < 8; i++)
 3380                         ed_nic_outb(sc, ED_P1_MAR(i), 0xff);
 3381 
 3382                 /*
 3383                  * And turn on promiscuous mode. Also enable reception of
 3384                  * runts and packets with CRC & alignment errors.
 3385                  */
 3386                 /* Set page 0 registers */
 3387                 ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
 3388 
 3389                 ed_nic_outb(sc, ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM |
 3390                             ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP | reg1);
 3391         } else {
 3392                 /* set up multicast addresses and filter modes */
 3393                 if (ifp->if_flags & IFF_MULTICAST) {
 3394                         u_int32_t  mcaf[2];
 3395 
 3396                         if (ifp->if_flags & IFF_ALLMULTI) {
 3397                                 mcaf[0] = 0xffffffff;
 3398                                 mcaf[1] = 0xffffffff;
 3399                         } else
 3400                                 ds_getmcaf(sc, mcaf);
 3401 
 3402                         /*
 3403                          * Set multicast filter on chip.
 3404                          */
 3405                         for (i = 0; i < 8; i++)
 3406                                 ed_nic_outb(sc, ED_P1_MAR(i), ((u_char *) mcaf)[i]);
 3407 
 3408                         /* Set page 0 registers */
 3409                         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
 3410 
 3411                         ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AM | ED_RCR_AB | reg1);
 3412                 } else {
 3413 
 3414                         /*
 3415                          * Initialize multicast address hashing registers to
 3416                          * not accept multicasts.
 3417                          */
 3418                         for (i = 0; i < 8; ++i)
 3419                                 ed_nic_outb(sc, ED_P1_MAR(i), 0x00);
 3420 
 3421                         /* Set page 0 registers */
 3422                         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
 3423 
 3424                         ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AB | reg1);
 3425                 }
 3426         }
 3427 
 3428         /*
 3429          * Start interface.
 3430          */
 3431         ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
 3432 }
 3433 
 3434 /*
 3435  * Compute crc for ethernet address
 3436  */
 3437 static uint32_t
 3438 ds_mchash(const uint8_t *addr)
 3439 {
 3440 #define ED_POLYNOMIAL 0x04c11db6
 3441         uint32_t crc = 0xffffffff;
 3442         int carry, idx, bit;
 3443         uint8_t data;
 3444 
 3445         for (idx = 6; --idx >= 0;) {
 3446                 for (data = *addr++, bit = 8; --bit >= 0; data >>=1 ) {
 3447                         carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
 3448                         crc <<= 1;
 3449                         if (carry)
 3450                                 crc = (crc ^ ED_POLYNOMIAL) | carry;
 3451                 }
 3452         }
 3453         return crc;
 3454 #undef POLYNOMIAL
 3455 }
 3456 
 3457 /*
 3458  * Compute the multicast address filter from the
 3459  * list of multicast addresses we need to listen to.
 3460  */
 3461 static void
 3462 ds_getmcaf(struct ed_softc *sc, u_int32_t *mcaf)
 3463 {
 3464         u_int32_t index;
 3465         u_char *af = (u_char *) mcaf;
 3466         struct ifmultiaddr *ifma;
 3467 
 3468         mcaf[0] = 0;
 3469         mcaf[1] = 0;
 3470 
 3471         TAILQ_FOREACH(ifma, &sc->arpcom.ac_if.if_multiaddrs, ifma_link) {
 3472                 if (ifma->ifma_addr->sa_family != AF_LINK)
 3473                         continue;
 3474                 index = ds_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr))
 3475                         >> 26;
 3476                 af[index >> 3] |= 1 << (index & 7);
 3477         }
 3478 }

Cache object: 6385189f39d62275df4782261117d019


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.